Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. (1/562)

A novel and potent azetidinone inhibitor of the lipoprotein-associated phospholipase A2 (Lp-PLA2), i.e. platelet-activating factor acetylhydrolase, is described for the first time. This inhibitor, SB-222657 (Ki=40+/-3 nM, kobs/[I]=6. 6x10(5) M-1.s-1), is inactive against paraoxonase, is a poor inhibitor of lecithin:cholesterol acyltransferase and has been used to investigate the role of Lp-PLA2 in the oxidative modification of lipoproteins. Although pretreatment with SB-222657 did not affect the kinetics of low-density lipoprotein (LDL) oxidation by Cu2+ or an azo free-radical generator as determined by assay of lipid hydroperoxides (LOOHs), conjugated dienes and thiobarbituric acid-reacting substances, in both cases it inhibited the elevation in lysophosphatidylcholine content. Moreover, the significantly increased monocyte chemoattractant activity found in a non-esterified fatty acid fraction from LDL oxidized by Cu2+ was also prevented by pretreatment with SB-222657, with an IC50 value of 5.0+/-0.4 nM. The less potent diastereoisomer of SB-222657, SB-223777 (Ki=6.3+/-0.5 microM, kobs/[I]=1.6x10(4) M-1.s-1), was found to be significantly less active in both assays. Thus, in addition to generating lysophosphatidylcholine, a known biologically active lipid, these results demonstrate that Lp-PLA2 is capable of generating oxidized non-esterified fatty acid moieties that are also bioactive. These findings are consistent with our proposal that Lp-PLA2 has a predominantly pro-inflammatory role in atherogenesis. Finally, similar studies have demonstrated that a different situation exists during the oxidation of high-density lipoprotein, with enzyme(s) other than Lp-PLA2 apparently being responsible for generating lysophosphatidylcholine.  (+info)

Association of the inflammatory state in active juvenile rheumatoid arthritis with hypo-high-density lipoproteinemia and reduced lipoprotein-associated platelet-activating factor acetylhydrolase activity. (2/562)

OBJECTIVE: To investigate the relationship between the quantitative and qualitative abnormalities of apolipoprotein B (Apo B)- and Apo A-I-containing lipoproteins and between lipoprotein-associated platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with juvenile rheumatoid arthritis (JRA) as a function of the inflammatory state. METHODS: Twenty-six JRA patients and 22 age- and sex-matched control subjects with normal lipid levels participated in the study. Fourteen patients had active disease, and 12 had inactive disease. Plasma lipoproteins were fractionated by gradient ultracentrifugation into 9 subfractions, and their chemical composition and mass were determined. The PAF-AH activity associated with lipoprotein subfractions and the activity in plasma were also measured. RESULTS: Patients with active JRA had significantly lower plasma total cholesterol and high-density lipoprotein (HDL) cholesterol levels as compared with controls, due to the decrease in the mass of both the HDL2 and HDL3 subfractions. Patients with active JRA also had higher plasma triglyceride levels, mainly due to the higher triglyceride content of the very low-density lipoprotein plus the intermediate-density lipoprotein subfraction. The plasma PAF-AH activity in patients with active JRA was lower than that in controls, mainly due to the decrease in PAF-AH activity associated with the intermediate and dense low-density lipoprotein subclasses. The lipid abnormalities and the reduction in plasma PAF-AH activity were significantly correlated with plasma C-reactive protein levels and were not observed in patients with inactive JRA. CONCLUSION: This is the first study to show that patients with active JRA exhibit low levels of HDL2 and HDL3 and are deficient in plasma PAF-AH activity. These alterations suggest that active JRA is associated with partial loss of the antiinflammatory activity of plasma Apo B- and Apo A-I-containing lipoproteins.  (+info)

Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. (3/562)

Glutamate receptors modulate multiple signaling pathways, several of which involve mitogen-activated protein (MAP) kinases, with subsequent physiological or pathological consequences. Here we report that stimulation of the N-methyl-D-aspartate (NMDA) receptor, using platelet-activating factor (PAF) as a messenger, activates MAP kinases, including c-Jun NH2-terminal kinase, p38, and extracellular signal-regulated kinase, in primary cultures of hippocampal neurons. Activation of the metabotropic glutamate receptor (mGluR) blocks this NMDA-signaling through PAF and MAP kinases, and the resultant cell death. Recombinant PAF-acetylhydrolase degrades PAF generated by NMDA-receptor activation; the hetrazepine BN50730 (an intracellular PAF receptor antagonist) also inhibits both NMDA-stimulated MAP kinases and neuronal cell death. The finding that the NMDA receptor-PAF-MAP kinase signaling pathway is attenuated by mGluR activation highlights the exquisite interplay between glutamate receptors in the decision making process between neuronal survival and death.  (+info)

Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. (4/562)

The platelet-activating factor acetylhydrolases are enzymes that were initially characterized by their ability to hydrolyze platelet-activating factor (PAF). In human plasma, PAF acetylhydrolase (EC 3.1.1.47) circulates in a complex with low density lipoproteins (LDL) and high density lipoproteins (HDL). This association defines the physical state of PAF acetylhydrolase, confers a long half-life, and is a major determinant of its catalytic efficiency in vivo. The lipoprotein-associated enzyme accounts for all of the PAF hydrolysis in plasma but only two-thirds of the protein mass. To characterize the enzyme-lipoprotein interaction, we employed site-directed mutagenesis techniques. Two domains within the primary sequence of human PAF acetylhydrolase, tyrosine 205 and residues 115 and 116, were important for its binding to LDL. Mutation or deletion of those sequences prevented the association of the enzyme with lipoproteins. When residues 115 and 116 from human PAF acetylhydrolase were introduced into mouse PAF acetylhydrolase (which normally does not associate with LDL), the mutant mouse PAF acetylhydrolase associated with lipoproteins. To analyze the role of apolipoprotein (apo) B100 in the formation of the PAF acetylhydrolase-LDL complex, we tested the ability of PAF acetylhydrolase to bind to lipoproteins containing truncated forms of apoB. These studies indicated that the carboxyl terminus of apoB plays a key role in the association of PAF acetylhydrolase with LDL. These data on the molecular basis of the PAF acetylhydrolase-LDL association provide a new level of understanding regarding the pathway for the catabolism of PAF in human blood.  (+info)

Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. (5/562)

Asthma, a family of airway disorders characterized by airway inflammation, has an increasing incidence worldwide. Platelet-activating factor (PAF) may play a role in the pathophysiology of asthma. Its proinflammatory actions are antagonized by PAF acetylhydrolase. A missense mutation (V279F) in the PAF acetylhydrolase gene results in the complete loss of activity, which occurs in 4% of the Japanese population. We asked if PAF acetylhydrolase deficiency correlates with the incidence and severity of asthma in Japan. We found that the prevalence of PAF acetylhydrolase deficiency is higher in Japanese asthmatics than healthy subjects and that the severity of this syndrome is highest in homozygous-deficient subjects. We conclude that the PAF acetylhydrolase gene is a modulating locus for the severity of asthma.  (+info)

Platelet-activating factor may act as an endogenous pulse generator for sheep of luteolytic PGF2alpha release. (6/562)

Pulsatile release of uterine prostaglandin F2alpha (PGF2alpha) induces luteolysis in ruminants. However, the mechanism(s) that initiates and maintains luteolysis has not been defined. The present study tested the hypothesis that the endogenous PGF2alpha pulse generator is uterine-derived platelet-activating factor (PAF). Ovariectomized ewes were given exogenous progesterone (P), estradiol (E), or both (P+E, mimicking the normal luteal phase). Only ewes treated with steroids released PAF into the uterine lumen and had increased PAF:acetylhydrolase activity in the uterine lumen. Steroid treatment also influenced the capacity of the uterus to release PGF2alpha in response to exogenous PAF. PAF infusion did not affect plasma PGF2alpha metabolite (PGFM) levels in control (no steroid treatment) ewes but increased plasma PGFM levels in P+E ewes (P < 0.001) and ewes treated with P or E alone (P < 0.05). Infusion of PAF followed by or coincident with oxytocin (OT) acted in a synergistic manner to increase plasma PGFM levels. Repeated infusion of PAF into the uterus at 1-h intervals induced tachyphylaxis of the PGFM response to PAF; however, sensitivity of the uterus to PAF returned spontaneously by the 6th h. Interferon-tau (IFN-tau) inhibits pulsatile release of PGF2alpha during pregnancy to prevent luteolysis. Exogenous recombinant ovine IFN-tau (50 microgram) inhibited the uterine response to PAF alone or the combined effects of PAF and OT. These results indicate that uterine PAF fulfills many of the criteria for an endogenous PGF2alpha pulse-generator: steroid induction of PAF production and uterine responsiveness to PAF-induced release of PGF; synergistic stimulation of PAF-induced PGF release by OT; inhibition of PAF effects by IFN-tau; and PAF's ability to induce pulses of PGF with a periodicity during a period of chronic exposure of the uterus to PAF.  (+info)

Molecular analysis of an unstable genomic region at chromosome band 11q23 reveals a disruption of the gene encoding the alpha2 subunit of platelet-activating factor acetylhydrolase (Pafah1a2) in human lymphoma. (7/562)

A region of 150 kb has been analysed around a previously isolated, lymphoma associated, translocation breakpoint located at chromosome band 11q23. This balanced and reciprocal translocation, t(11;14)(q32;q23), has been shown to result in the fusion between chromosome 11 specific sequence and the switch gamma4 region of the IGH locus. The LPC gene, encoding a novel proprotein convertase belonging to the furin family, has been identified in this region. In order to characterize further the region surrounding the translocation, we have determined the detailed structure of LPC. Here we show that LPC consists of at least 16 exons covering 25 kb, and that there is a partial duplication, involving mobile genetic elements and containing LPC exons 13-17 in a tail-tail configuration at 65 kb downstream. Since the chromosomal breakpoint lay between these two structures, the intervening region was further analysed and shown to contain at least two unrelated genes. The previously known SM22 gene was localized close to the 3' tail of LPC. Furthermore, we identified the gene encoding the alpha2 subunit of platelet-activating factor acetylhydrolase (Pafah1a2) at the chromosomal breakpoint. The position of another previously identified breakpoint was also located to within the first intron of this gene. Altogether, our results give evidence of a genomic instability of this area of 11q23 and show that Pafah1a2 and not LPC is the gene disrupted by the translocation, suggesting that deregulated Pafah1a2 may have a role in lymphomagenesis.  (+info)

All ApoB-containing lipoproteins induce monocyte chemotaxis and adhesion when minimally modified. Modulation of lipoprotein bioactivity by platelet-activating factor acetylhydrolase. (8/562)

Mildly oxidized LDL has many proinflammatory properties, including the stimulation of monocyte chemotaxis and adhesion, that are important in the development of atherosclerosis. Although ApoB-containing lipoproteins other than LDL may enter the artery wall and undergo oxidation, very little is known regarding their proinflammatory potential. LDL, IDL, VLDL, postprandial remnant particles, and chylomicrons were mildly oxidized by fibroblasts overexpressing 15-lipoxygenase (15-LO) and tested for their ability to stimulate monocyte chemotaxis and adhesion to endothelial cells. When conditioned on 15-LO cells, LDL, IDL, but not VLDL increased monocyte chemotaxis and adhesion approximately 4-fold. Chylomicrons and postprandial remnant particles were also bioactive. Although chylomicrons had a high 18:1/18:2 ratio, similar to that of VLDL, and should presumably be less susceptible to oxidation, they contained (in contrast to VLDL) essentially no platelet-activating factor acetylhydrolase (PAF-AH) activity. Because PAF-AH activity of lipoproteins may be reduced in vivo by oxidation or glycation, LDL, IDL, and VLDL were treated in vitro to reduce PAF-AH activity and then conditioned on 15-lipoxygenase cells. All 3 PAF-AH-depleted lipoproteins, including VLDL, exhibited increased stimulation of monocyte chemotaxis and adhesion. In a similar manner, lipoproteins from Japanese subjects with a deficiency of plasma PAF-AH activity were also markedly more bioactive, and stimulated monocyte adhesion nearly 2-fold compared with lipoproteins from Japanese control subjects with normal plasma PAF-AH. For each lipoprotein, bioactivity resided in the lipid fraction and monocyte adhesion could be blocked by PAF-receptor antagonists. These data suggest that the susceptibility of plasma lipoproteins to develop proinflammatory activity is in part related to their 18:1/18:2 ratio and PAF-AH activity, and that bioactive phospholipids similar to PAF are generated during oxidation of each lipoprotein. Moreover, LDL, IDL, postprandial remnant particles, and chylomicrons and PAF-AH-depleted VLDL all give rise to proinflammatory lipids when mildly oxidized.  (+info)