alpha-Aminoadipate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus. (1/6)

The extremely thermophilic bacterium Thermus thermophilus HB27 synthesizes lysine through alpha-aminoadipate (AAA). In this study, a T. thermophilus gene encoding the enzyme that catalyses transamination of AAA was cloned as a mammalian kynurenine/AAA aminotransferase (Kat2) gene homologue. A T. thermophilus mutant with disruption of the Kat2 homologue required a longer lag phase for growth and showed slower growth in minimal medium. Furthermore, addition of AAA or lysine shortened the lag phase and improved the growth rate. The Kat2 homologue was therefore termed lysN. LysN recognizes not only 2-oxoadipate, an intermediate of lysine biosynthesis, but also 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, intermediates of leucine, valine and isoleucine biosyntheses, respectively, along with oxaloacetate, a compound in the TCA cycle, as an amino acceptor. These results suggest multiple roles of LysN in several cellular metabolic pathways including lysine and branched-chain amino acid biosyntheses.  (+info)

Purification and properties of kynurenine aminotransferase from rat kidney. (2/6)

Previous reports indicated that a single protein exhibits kynurenine aminotransferase (KAT) and alpha-aminoadipate aminotransferase (AadAT) activities. However, recently we discovered that KAT and AadAT activities are associated with two different proteins. KAT from rat kidney supernatant fraction was purified to electrophoretic homogeneity by (NH4)2SO4 fractionation, DEAE-Sephacel and hydroxyapatite chromatography. This procedure separated KAT from AadAT and improved the overall yield and the degree of purification over previously published methods. Some of the properties of purified KAT, such as Mr, subunit structure and the inhibition by dicarboxylic acids, were identical with those reported previously. However, the substrate specificity and pI of purified KAT were different from earlier reports. The same procedure can also be used to purify KAT from rat kidney mitochondria. These results support our earlier observation that KAT and AadAT activities are associated with two proteins and suggest that cytosolic KAT may be structurally similar to the mitochondrial enzyme.  (+info)

Alpha-aminoadipate and kynurenine aminotransferase activities from rat kidney. Evidence for separate identity. (3/6)

alpha-Aminoadipate aminotransferase and kynurenine aminotransferase activities from rat kidney are reportedly associated with the same protein. We observed that when the supernatant fraction was maintained at pH 4.5 for 75 min, 100% of kynurenine aminotransferase activity was lost, whereas only 40% of aminoadipate aminotransferase activity was lost. We purified alpha-aminoadipate aminotransferase and kynurenine aminotransferase from rat kidney supernatant fraction to electrophoretic homogeneity by ammonium sulfate fractionation, DEAE-Sephacel, and hydroxylapatite chromatography. Kynurenine aminotransferase activity was precipitated by pH treatment. The remaining aminoadipate aminotransferase activity was concentrated and injected into rabbits to raise antibodies that were used to prepare an affinity column. A mixture of aminoadipate aminotransferase and kynurenine aminotransferase activities obtained after hydroxylapatite chromatography was subjected to affinity chromatography. Aminoadipate aminotransferase and kynurenine aminotransferase activities resolved as separate peaks, providing evidence that the two activities are associated with two different proteins.  (+info)

Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. (4/6)

 (+info)

Purification and properties of 2-aminoadipate: 2-oxoglutarate aminotransferase from bovine kidney. (5/6)

Previous studies with rat kidney preparations indicated that 2-aminoadipate aminotransferase (AadAT) and kynurenine aminotransferase (KAT) activities are properties of a single protein. We found that bovine kidney contains an appreciable amount of AadAT activity, but lacks KAT activity. AadAT from bovine and rat kidney extracts were purified to electrophoretic homogeneity. The purification procedure included fractionation with (NH1)2SO1, heat treatment, DEAE-cellulose chromatography and hydroxyapatite chromatography. Physical and kinetic properties, such as pH optima, Km for substrates, Mr, electrophoretic mobility and inhibition by dicarboxylic acids of bovine kidney AadAT, were similar to those of the rat kidney enzyme. However, bovine kidney AadAT differed from rat kidney AadAT in substrate specificity, amino acid composition and stability when stored. The titration curve of bovine kidney AadAT was also different from that of the rat kidney enzyme. The results suggest that bovine kidney AadAT may have some structural similarity to rat kidney AadAT and that the structural differences observed between the two enzymes may explain the absence of KAT activity in bovine kidney.  (+info)

Cloning and functional expression of a soluble form of kynurenine/alpha-aminoadipate aminotransferase from rat kidney. (6/6)

Several aminotransferases with kynurenine aminotransferase (KAT) activity are able to convert L-kynurenine into kynurenic acid, a putative endogenous modulator of glutamatergic neurotransmission. In the rat, one of the described KAT isoforms has been found to correspond to glutamine transaminase K. In addition, rat kidney alpha-aminoadipate aminotransferase (AadAT) also shows KAT activity. In this report, we describe the isolation of a cDNA clone encoding the soluble form of this aminotransferase isoenzyme from rat (KAT/AadAT). Degenerate oligonucleotides were designed from the amino acid sequences of rat kidney KAT/AadAT tryptic peptides for use as primers for reverse transcription-polymerase chain reaction of rat kidney RNA. The resulting polymerase chain reaction fragment was used to screen a rat kidney cDNA library and to isolate a cDNA clone encoding KAT/AadAT. Analysis of the combined DNA sequences indicated the presence of a single 1275-base pair open reading frame coding for a soluble protein of 425 amino acid residues. KAT/AadAT appears to be structurally homologous to aspartate aminotransferase in the pyridoxal 5'-phosphate binding domain. RNA blot analysis of rat tissues, including brain, revealed a single species of KAT/AadAT mRNA of approximately 2.1 kilobases. HEK-293 cells transfected with the KAT/AadAT cDNA exhibited both KAT and AadAT activities with enzymatic properties similar to those reported for the rat native protein.  (+info)