Further improvement of the thermal stability of a partially stabilized Bacillus subtilis 3-isopropylmalate dehydrogenase variant by random and site-directed mutagenesis. (1/111)

A thermostabilized mutant of Bacillus subtilis 3-isopropylmalate dehydrogenase (IPMDH) obtained in a previous study contained a set of triple amino acid substitutions. To further improve the stability of the mutant, we used a random mutagenesis technique and identified two additional thermostabilizing substitutions, Thr22-->Lys and Met256-->Val, that separately endowed the protein with further stability. We introduced the two mutations into a single enzyme molecule, thus constructing a mutant with overall quintuple mutations. Other studies have suggested that an improved hydrophobic subunit interaction and a rigid type II beta-turn play important roles in enhancing the protein stability. Based on those observations, we successively introduced amino acid substitutions into the mutant with the quintuple mutations by site-directed mutagenesis: Glu253 at the subunit interface was replaced by Leu to increase the hydrophobic interaction between the subunits; Glu112, Ser113 and Ser115 that were involved in the formation of the turn were replaced by Pro, Gly and Glu, respectively, to make the turn more rigid. The thermal stability of the mutants was determined based on remaining activity after heat treatment and first-order rate constant of thermal unfolding, which showed gradual increases in thermal stability as more mutations were included.  (+info)

Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. (2/111)

The XPR2 gene from Yarrowia lipolytica encodes an inducible alkaline extracellular protease. Its complex regulation involves pH, carbon, nitrogen and peptones. Two previously identified upstream activating sequence (UAS) regions were analysed in a reporter system, outside the XPR2 context. Fragments from the UAS regions were inserted upstream of a minimal LEU2 promoter directing the expression of a reporter gene. The activity of the hybrid promoters was assessed following integration into the Y. lipolytica genome. This study confirmed the presence of two UASs composed of several interacting elements. Within the distal UAS (UAS1), a TUF/RAP1 binding site exhibited a UAS activity, which was enhanced by the presence of two adjacent repeats, overlapping sites similar to the CAR1 upstream repressing sequence from Saccharomyces cerevisiae. Within the proximal UAS (UAS2), the UAS activity required the interaction of both an ABF1-like binding site and a decameric repeat, containing Aspergillus nidulans PacC site consensus sequences. This decameric repeat was able to mediate repression due to carbon and/or nitrogen sources as well as pH-dependent activation. A study in the context of trans-regulatory mutations in the Y. lipolytica RIM101 gene showed that the PacC-like sites, potential binding sites for YlRim101p, were implicated in the derepression of UAS2-driven expression at neutral-alkaline pH. The in vivo response of the PacC-like decamers to external pH was dependent on the status of the pH-regulated activator YlRim101p, which is homologous to the A. nidulans PacC regulator. The carbon/nitrogen regulation imposed on the decamers was shown to be independent of YlRim101p and to override its effects.  (+info)

Escherichia coli Lrp (leucine-responsive regulatory protein) does not directly regulate expression of the leu operon promoter. (3/111)

Studies by R. Lin et al. (J. Bacteriol. 174:1948-1955, 1992) suggested that the Escherichia coli leu operon might be a member of the Lrp regulon. Their results were obtained with a leucine auxotroph; in leucine prototrophs grown in a medium lacking leucine, there was little difference in leu operon expression between lrp(+) and lrp strains. Furthermore, when leuP-lacZ transcriptional fusions that lacked the leu attenuator were used, expression from the leu promoter varied less than twofold between lrp(+) and lrp strains, irrespective of whether or not excess leucine was added to the medium. The simplest explanation of the observations of Lin et al. is that the known elevated leucine transport capacity of lrp strains (S. A. Haney et al., J. Bacteriol. 174:108-115, 1992) leads to very high intracellular levels of leucine for strains grown with leucine, resulting in the superattenuation of leu operon expression.  (+info)

Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. (4/111)

The comparison of the three-dimensional structures of thermophilic (Thermus thermophilus) and mesophilic (Escherichia coli) 3-isopropylmalate dehydrogenases (IPMDH, EC 1.1.1.85) suggested that the existence of extra ion pairs in the thermophilic enzyme found in the intersubunit region may be an important factor for thermostability. As a test of our assumption, glutamine 200 in the E. coli enzyme was turned into glutamate (Q200E mutant) to mimic the thermophilic enzyme at this site by creating an intersubunit ion pair which can join existing ion clusters. At the same site in the thermophilic enzyme we changed glutamate 190 into glutamine (E190Q), hereby removing the corresponding ion pair. These single amino acid replacements resulted in increased thermostability of the mesophilic and decreased thermostability of the thermophilic enzyme, as measured by spectropolarimetry and differential scanning microcalorimetry.  (+info)

Crystal structures of 3-isopropylmalate dehydrogenases with mutations at the C-terminus: crystallographic analyses of structure-stability relationships. (5/111)

Thermal stability of the Thermus thermophilus isopropylmalate dehydrogenase enzyme was substantially lost upon the deletion of three residues from the C-terminus. However, the stability was partly recovered by the addition of two, four and seven amino acid residues (called HD177, HD708 and HD711, respectively) to the C-terminal region of the truncated enzyme. Three structures of these mutant enzymes were determined by an X-ray diffraction method. All protein crystals belong to space group P2(1) and their structures were solved by a standard molecular replacement method where the original dimer structure of the A172L mutant was used as a search model. Thermal stability of these mutant enzymes is discussed based on the 3D structure with special attention to the width of the active-site groove and the minor groove, distortion of beta-sheet pillar structure and size of cavity in the domain-domain interface around the C-terminus. Our previous studies revealed that the thermal stability of isopropylmalate dehydrogenase increases when the active-site cleft is closed (the closed form). In the present study it is shown that the active-site cleft can be regulated by open-close movement of the minor groove located at the opposite side to the active-site groove on the same subunit, through a paperclip-like motion.  (+info)

Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. (6/111)

Two putative Methanococcus jannaschii isocitrate dehydrogenase genes, MJ1596 and MJ0720, were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze the NAD- and NADP-dependent oxidative decarboxylation of DL-threo-3-isopropylmalic acid, threo-isocitrate, erythro-isocitrate, and homologs of threo-isocitrate. Neither enzyme was found to use any of the isomers of isocitrate as a substrate. The protein product of the MJ1596 gene, designated AksF, catalyzed the NAD-dependent decarboxylation of intermediates in the biosynthesis of 7-mercaptoheptanoic acid, a moiety of methanoarchaeal coenzyme B (7-mercaptoheptanylthreonine phosphate). These intermediates included (-)-threo-isohomocitrate [(-)-threo-1-hydroxy-1,2, 4-butanetricarboxylic acid], (-)-threo-iso(homo)(2)citrate [(-)-threo-1-hydroxy-1,2,5-pentanetricarboxylic acid], and (-)-threo-iso(homo)(3)citrate [(-)-threo-1-hydroxy-1,2, 6-hexanetricarboxylic acid]. The protein product of MJ0720 was found to be alpha-isopropylmalate dehydrogenase (LeuB) and was found to catalyze the NAD-dependent decarboxylation of one isomer of DL-threo-isopropylmalate to 2-ketoisocaproate; thus, it is involved in the biosynthesis of leucine. The AksF enzyme proved to be thermostable, losing only 10% of its enzymatic activity after heating at 100 degrees C for 10 min, whereas the LeuB enzyme lost 50% of its enzymatic activity after heating at 80 degrees C for 10 min.  (+info)

The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase detected by the temperature-jump Laue method. (7/111)

A temperature-jump (T-jump) time-resolved X-ray crystallographic technique using the Laue method was developed to detect small, localized structural changes of proteins in crystals exposed to a temperature increase induced by laser irradiation. In a chimeric protein between thermophilic and mesophilic 3-isopropylmalate dehydrogenases (2T2M6T), the initial structural change upon T-jump to a denaturing temperature (approximately 90 degrees C) was found to be localized at a region which includes a beta-turn and a loop located between the two domains of the enzyme. A mutant, 2T2M6T-E110P/S111G/S113E, having amino acid replacements in this beta-turn region with the corresponding residues of the thermophilic enzyme, showed greater stability than the original chimera (increase of T:(m) by approximately 10 degrees C) and no T-jump-induced structural change in this region was detected by our method. These results indicate that thermal unfolding of the original chimeric enzyme, 2T2M6T, is triggered in this beta-turn region.  (+info)

Functional prediction: identification of protein orthologs and paralogs. (8/111)

Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families.  (+info)