Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic.
Arthropods of the order Scorpiones, of which 1500 to 2000 species have been described. The most common live in tropical or subtropical areas. They are nocturnal and feed principally on insects and other arthropods. They are large arachnids but do not attack man spontaneously. They have a venomous sting. Their medical significance varies considerably and is dependent on their habits and venom potency rather than on their size. At most, the sting is equivalent to that of a hornet but certain species possess a highly toxic venom potentially fatal to humans. (From Dorland, 27th ed; Smith, Insects and Other Arthropods of Medical Importance, 1973, p417; Barnes, Invertebrate Zoology, 5th ed, p503)
The effects, both local and systemic, caused by the bite of SCORPIONS.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept.
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS.
Venoms obtained from Apis mellifera (honey bee) and related species. They contain various enzymes, polypeptide toxins, and other substances, some of which are allergenic or immunogenic or both. These venoms were formerly used in rheumatism to stimulate the pituitary-adrenal system.
A benzoate-cevane found in VERATRUM and Schoenocaulon. It activates SODIUM CHANNELS to stay open longer than normal.
Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates.
Conformational transitions of a protein from unfolded states to a more folded state.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.
Venoms produced by the wasp (Vespid) family of stinging insects, including hornets; the venoms contain enzymes, biogenic amines, histamine releasing factors, kinins, toxic polypeptides, etc., and are similar to bee venoms.
Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL.
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Antisera used to counteract poisoning by animal VENOMS, especially SNAKE VENOMS.
Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized.
Venoms from animals of the phylum Arthropoda. Those most investigated are from scorpions and spiders of the class Arachnidae and from ant, bee, and wasp families of the Insecta order Hymenoptera. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.
Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits.
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.
A genus of poisonous snakes of the VIPERIDAE family. About 50 species are known and all are found in tropical America and southern South America. Bothrops atrox is the fer-de-lance and B. jararaca is the jararaca. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Venoms produced by FISHES, including SHARKS and sting rays, usually delivered by spines. They contain various substances, including very labile toxins that affect the HEART specifically and all MUSCLES generally.
Venoms from the superfamily Formicoidea, Ants. They may contain protein factors and toxins, histamine, enzymes, and alkaloids and are often allergenic or immunogenic.
A family of extremely venomous snakes, comprising coral snakes, cobras, mambas, kraits, and sea snakes. They are widely distributed, being found in the southern United States, South America, Africa, southern Asia, Australia, and the Pacific Islands. The elapids include three subfamilies: Elapinae, Hydrophiinae, and Lauticaudinae. Like the viperids, they have venom fangs in the front part of the upper jaw. The mambas of Africa are the most dangerous of all snakes by virtue of their size, speed, and highly toxic venom. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p329-33)
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine.
Venoms from jellyfish; CORALS; SEA ANEMONES; etc. They contain hemo-, cardio-, dermo- , and neuro-toxic substances and probably ENZYMES. They include palytoxin, sarcophine, and anthopleurine.
Proteins obtained from species of REPTILES.