An enzyme that catalyzes the conversion of L-aspartate 4-semialdehyde, orthophosphate, and NADP+ to yield L-4-aspartyl phosphate and NADPH. EC 1.2.1.11.
An enzyme that catalyzes the formation of beta-aspartyl phosphate from aspartic acid and ATP. Threonine serves as an allosteric regulator of this enzyme to control the biosynthetic pathway from aspartic acid to threonine. EC 2.7.2.4.
An enzyme that catalyzes the reduction of aspartic beta-semialdehyde to homoserine, which is the branch point in biosynthesis of methionine, lysine, threonine and leucine from aspartic acid. EC 1.1.1.3.
An enzyme that plays a role in the GLUTAMATE and butanoate metabolism pathways by catalyzing the oxidation of succinate semialdehyde to SUCCINATE using NAD+ as a coenzyme. Deficiency of this enzyme, causes 4-hydroxybutyricaciduria, a rare inborn error in the metabolism of the neurotransmitter 4-aminobutyric acid (GABA).
An enzyme that plays a role in the VALINE; LEUCINE; and ISOLEUCINE catabolic pathways by catalyzing the oxidation of 2-methyl-3-oxopropanate to propanoyl-CoA using NAD+ as a coenzyme. Methylmalonate semialdehyde dehydrogenase deficiency is characterized by elevated BETA-ALANINE and 3-hydropropionic acid.
Oxidoreductases that are specific for ALDEHYDES.
Brain disorders resulting from inborn metabolic errors, primarily from enzymatic defects which lead to substrate accumulation, product reduction, or increase in toxic metabolites through alternate pathways. The majority of these conditions are familial, however spontaneous mutation may also occur in utero.
An enzyme that converts brain gamma-aminobutyric acid (GAMMA-AMINOBUTYRIC ACID) into succinate semialdehyde, which can be converted to succinic acid and enter the citric acid cycle. It also acts on beta-alanine. EC 2.6.1.19.
Hydroxybutyrate Dehydrogenase is an enzyme involved in the metabolism of certain acids, specifically catalyzing the reversible conversion of D-3-hydroxybutyrate to acetoacetate.
An NAD+ dependent enzyme that catalyzes the oxidation of 2-aminomuconate 6-semialdehyde to 2-aminomuconate.
The sodium salt of 4-hydroxybutyric acid. It is used for both induction and maintenance of ANESTHESIA.
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.
An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
Salts and esters of hydroxybutyric acid.
An NADP+ dependent enzyme that catalyzes the oxidation of L-glutamate 5-semialdehyde to L-glutamyl 5-phosphate. It plays a role in the urea cycle and metabolism of amino groups.
Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
Glutarates are organic compounds, specifically carboxylic acids, that contain a five-carbon chain with two terminal carboxyl groups and a central methyl group, playing a role in various metabolic processes, including the breakdown of certain amino acids. They can also refer to their salts or esters. Please note that this definition is concise and may not cover all aspects of glutarates in depth.