A type II cAMP-dependent protein kinase regulatory subunit that plays a role in confering CYCLIC AMP activation of protein kinase activity. It has a higher affinity for cAMP than that of the CYCLIC-AMP-DEPENDENT PROTEIN KINASE RIIBETA SUBUNIT. Binding of this subunit by A KINASE ANCHOR PROTEINS may play a role in the cellular localization of type II protein kinase A.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
A cyclic AMP-dependent protein kinase subtype primarily found in particulate subcellular fractions. They are tetrameric proteins that contain two catalytic subunits and two type II-specific regulatory subunits.
Agents that inhibit PROTEIN KINASES.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE.
A type I cAMP-dependent protein kinase regulatory subunit that plays a role in confering CYCLIC AMP activation of protein kinase activity. It has a lower affinity for cAMP than the CYCLIC-AMP-DEPENDENT PROTEIN KINASE RIBETA SUBUNIT.
A monomeric calcium-calmodulin-dependent protein kinase subtype that is expressed in a broad variety of mammalian cell types. Its expression is regulated by the action of CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE. Several isoforms of this enzyme subtype are encoded by distinct genes.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
A group of cyclic GMP-dependent enzymes that catalyze the phosphorylation of SERINE or THREONINE residues of proteins.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A structurally-diverse family of intracellular-signaling adaptor proteins that selectively tether specific protein kinase A subtypes to distinct subcellular sites. They play a role in focusing the PROTEIN KINASE A activity toward relevant substrates. Over fifty members of this family exist, most of which bind specifically to regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASE TYPE II such as CAMP PROTEIN KINASE RIIALPHA or CAMP PROTEIN KINASE RIIBETA.
The rate dynamics in chemical or physical systems.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels.
Established cell cultures that have the potential to propagate indefinitely.
A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).
A type II cAMP-dependent protein kinase regulatory subunit that plays a role in confering CYCLIC AMP activation of protein kinase activity. It has a lower affinity for cAMP than the CYCLIC-AMP-DEPENDENT PROTEIN KINASE RIIALPHA SUBUNIT. Binding of this subunit by A KINASE ANCHOR PROTEINS may play a role in the cellular localization of type II protein kinase A.
A species of ciliate protozoa. It is used in biomedical research.
An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A dsRNA-activated cAMP-independent protein serine/threonine kinase that is induced by interferon. In the presence of dsRNA and ATP, the kinase autophosphorylates on several serine and threonine residues. The phosphorylated enzyme catalyzes the phosphorylation of the alpha subunit of EUKARYOTIC INITIATION FACTOR-2, leading to the inhibition of protein synthesis.
Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed)
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A cytoplasmic serine threonine kinase involved in regulating CELL DIFFERENTIATION and CELLULAR PROLIFERATION. Overexpression of this enzyme has been shown to promote PHOSPHORYLATION of BCL-2 PROTO-ONCOGENE PROTEINS and chemoresistance in human acute leukemia cells.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms.