A mitochondrial protein consisting of four alpha-subunits and four beta-subunits. It contains enoyl-CoA hydratase, long-chain-3-hydroxyacyl-CoA dehydrogenase, and acetyl-CoA C-acyltransferase activities and plays an important role in the metabolism of long chain FATTY ACIDS.
The alpha subunit of mitochondrial trifunctional protein. It contains both enoyl-CoA hydratase activity (EC 4.2.1.17) and long-chain-3-hydroxyacyl-CoA dehydrogenase activity (EC 1.1.1.211). There are four of these alpha subunits in each mitochondrial trifunctional protein molecule.
The beta subunit of mitochondrial trifunctional protein that contains acetyl-CoA C-acyltransferase activity. There are four of these beta subunits in each trifunctional protein complex.
An NAD-dependent 3-hydroxyacyl CoA dehydrogenase that has specificity for acyl chains containing 8 and 10 carbons.
Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
Heterotrimeric GTP-binding protein subunits that tightly associate with GTP-BINDING PROTEIN GAMMA SUBUNITS. A dimer of beta and gamma subunits is formed when the GTP-BINDING PROTEIN ALPHA SUBUNIT dissociates from the GTP-binding protein heterotrimeric complex. The beta-gamma dimer can play an important role in signal transduction by interacting with a variety of second messengers.
An enzyme that catalyzes reversibly the hydration of unsaturated fatty acyl-CoA to yield beta-hydroxyacyl-CoA. It plays a role in the oxidation of fatty acids and in mitochondrial fatty acid synthesis, has broad specificity, and is most active with crotonyl-CoA. EC 4.2.1.17.
Enzyme that catalyzes the final step of fatty acid oxidation in which ACETYL COA is released and the CoA ester of a fatty acid two carbons shorter is formed.
A phosphoinositide phospholipase C subtype that is primarily regulated by its association with HETEROTRIMERIC G-PROTEINS. It is structurally related to PHOSPHOLIPASE C DELTA with the addition of C-terminal extension of 400 residues.
Errors in the metabolism of LIPIDS resulting from inborn genetic MUTATIONS that are heritable.
GTP-BINDING PROTEINS that contain three non-identical subunits. They are found associated with members of the seven transmembrane domain superfamily of G-PROTEIN-COUPLED RECEPTORS. Upon activation the GTP-BINDING PROTEIN ALPHA SUBUNIT of the complex dissociates leaving a dimer of a GTP-BINDING PROTEIN BETA SUBUNIT bound to a GTP-BINDING PROTEIN GAMMA SUBUNIT.
A carbon-nitrogen ligase that catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate in the presence of ATP. In higher eukaryotes the enzyme also contains METHYLENETETRAHYDROFOLATE DEHYDROGENASE (NADP+) and METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE activity.
A large family of evolutionarily conserved proteins that function as negative regulators of HETEROTRIMERIC GTP-BINDING PROTEINS. RGS PROTEINS act by increasing the GTPase activity of the G alpha subunit of a heterotrimeric GTP-binding protein, causing it to revert to its inactive (GDP-bound) form.
A flavoprotein oxidoreductase that has specificity for long-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.
Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)