Purinergic agents are substances that act on purinergic receptors, which are a type of cell surface receptor that bind to purines such as adenosine and ATP (adenosine triphosphate). These receptors play important roles in many physiological processes, including neurotransmission, cardiovascular function, and immune response. Purinergic agents can be either agonists or antagonists of these receptors, depending on whether they activate or block the receptor's activity. Examples of purinergic agents include drugs such as theophylline (a non-selective adenosine receptor antagonist) and dipyridamole (an adenosine uptake inhibitor), as well as naturally occurring compounds such as ATP and adenosine.
Purinergic receivers är en typ av receptor som binder signalmolekyler kända som puriner, inklusive adenosin och ATP (Adenosintrifosfat). Dessa receptorer spelar en viktig roll i regleringen av olika cellulära processer såsom excitation, transmission av nervimpulser, immunresponser och celldöd. Purinergic receivers delas in i två huvudgrupper: P1-receptorer som primarily binds adenosin och P2-receptorer som binder ATP och dess nedbrytningsprodukter.
P2-receptorer är en typ av receptorer som binder adenosintrifosfat (ATP) och andra nukleotider. De är G-proteinkopplade receptorer och delas in i två undergrupper, P2Y-receptorer och P2X-receptorer. P2Y-receptorerna är metaboliskt sensitiva och aktiveras av nukleotider som ATP, ADP, UTP och UDP, medan P2X-receptorerna är jonkanaler som aktiveras av ATP. P2-receptorer spelar en viktig roll i regleringen av flera fysiologiska processer, såsom smärta, inflammation, blodtryck och excitation-kontraktionskoppling i hjärtat och skelettmusklerna.
Purinergic agonists are chemical substances that bind and activate purinergic receptors, which are a type of cell surface receptor found in many organs and tissues throughout the body. These receptors are involved in a variety of physiological processes, including neurotransmission, inflammation, and cellular signaling.
Purinergic P2X receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular ATP (adenosine triphosphate) and other purinerglic agonists. These receptors play important roles in various physiological processes, including neurotransmission, pain perception, and immune response. Upon activation, P2X receptors allow for the flow of cations such as calcium, sodium, and potassium across the cell membrane, which can lead to changes in membrane potential and downstream signaling events. There are seven subtypes of P2X receptors (P2X1-7) that differ in their pharmacological properties, distribution, and functions.
Purinergic P2X7 receptor (P2X7R) är ett transmembrant protein som fungerar som en jonkanal för kationer och utgör en del av signalsystemet som kontrollerar cellers aktivitet och kommunikation. Det aktiveras främst av extracellulära ATP (adenosintrifosfat) och är involverat i en rad fysiologiska processer såsom immunresponser, inflammation och smärta. Överaktivering eller störningar i P2X7R har också visats vara relaterade till patofysiologiska tillstånd som neurodegenerativa sjukdomar, cancer och autoimmuna sjukdomar.
Purinergic P2Y2 receptors are a type of G-protein coupled receptor that bind to and are activated by extracellular nucleotides such as ATP and UTP. They play a role in various physiological processes, including regulation of inflammation, wound healing, and fluid secretion. These receptors have been found to be widely expressed in various tissues, including the respiratory, gastrointestinal, and urinary tracts, as well as the skin and central nervous system. They are also known to be involved in the development of certain diseases such as cancer and fibrosis.
Purinergic P2Y1 receptors are a type of G protein-coupled receptor that bind to and are activated by extracellular nucleotides such as adenosine triphosphate (ATP) and related compounds. These receptors play important roles in various physiological processes, including platelet activation, smooth muscle contraction, and neurotransmission. Specifically, the P2Y1 receptor is known to mediate platelet aggregation and vascular smooth muscle contraction, among other functions. It should be noted that the function of these receptors can vary depending on the cell type and context in which they are expressed.
Purinergic antagonists are a class of drugs that block the activity of purinergic receptors, which are proteins found on the surface of cells that respond to purines such as ATP and adenosine. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and cellular signaling.
'Purinergic P2X Receptor Antagonists' are a class of pharmaceutical compounds that block the activation of P2X receptors, which are ligand-gated ion channels found in various tissues throughout the body. These receptors are activated by purinergic signaling molecules such as ATP and ADP, and play important roles in a variety of physiological processes, including neurotransmission, inflammation, and pain perception.
Purinergic P2X3 receptors are a type of ligand-gated ion channel that is activated by the binding of adenosine triphosphate (ATP) and related nucleotides. These receptors are widely expressed in the nervous system, including sensory neurons, where they play important roles in pain transmission and modulation. P2X3 receptors are selectively activated by the binding of extracellular ATP, which leads to the opening of the ion channel and an influx of cations such as calcium and sodium ions. This ion flux can trigger a variety of cellular responses, including the initiation or enhancement of pain signals. P2X3 receptors have been implicated in various pain conditions, making them a potential target for the development of new analgesic drugs.
'Purinergic P2 receptor antagonists' are a class of pharmaceutical compounds that block the activity of P2 receptors, which are proteins on the surface of cells that bind purinergic signaling molecules such as ATP and ADP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and cardiovascular function. By blocking the activity of these receptors, P2 receptor antagonists can be used to treat a variety of medical conditions, such as chronic pain, inflammatory diseases, and neurological disorders.
Purinergic P2X4 receptors are a type of ionotropic receptor that are activated by the binding of adenosine triphosphate (ATP) and related purines. These receptors are widely expressed in various tissues, including the central and peripheral nervous systems, immune cells, and smooth muscle cells. The P2X4 receptor is a trimeric protein composed of three subunits that form a ion channel permeable to cations such as calcium, sodium, and potassium. Activation of P2X4 receptors leads to the opening of the ion channel, resulting in the influx of cations and an increase in intracellular calcium concentration. This can lead to a variety of cellular responses, including neurotransmitter release, regulation of immune function, and modulation of pain perception.
'Purinergic P2 receptor agonists' are substances that bind and activate purinergic P2 receptors, which are a type of cell surface receptor that respond to extracellular nucleotides such as ATP and ADP. These agents are used in medical research and therapy to stimulate various physiological responses, including smooth muscle contraction, platelet aggregation, and neurotransmission, depending on the specific P2 receptor subtype they target.
Purinergic P2X receptor agonists are substances that bind and activate P2X receptors, which are ligand-gated ion channels found in the cell membrane of various cell types, including excitable cells such as neurons and smooth muscle cells. These receptors are activated by purinergic signaling molecules called ATP (adenosine triphosphate) and its analogs. Activation of P2X receptors leads to the opening of the ion channel, allowing the flow of cations such as calcium, sodium, and potassium across the cell membrane, which can subsequently trigger a range of physiological responses.
Purinergic P2Y receptors are a subtype of membrane receptors that bind extracellular purines and pyrimidines, such as ATP, ADP, UTP, and UDP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and cell proliferation.
Purinergic P2X2 receptors are a type of ligand-gated ion channel that is activated by the binding of adenosine diphosphate (ADP) and adenosine triphosphate (ATP). These receptors play a role in various physiological processes, including neurotransmission, pain perception, and smooth muscle contraction. The P2X2 receptor is specifically known for its involvement in the transmission of sensory information in the peripheral nervous system. It is widely expressed in both the central and peripheral nervous systems, as well as in non-neuronal tissues such as the lungs, kidneys, and blood vessels. Once activated, P2X2 receptors allow the flow of cations (such as calcium, sodium, and potassium) across the cell membrane, which can lead to changes in membrane potential and the initiation of downstream signaling pathways.