Factors that are involved in directing the cleavage and POLYADENYLATION of the of MESSENGER RNA near the site of the RNA 3' POLYADENYLATION SIGNALS.
The addition of a tail of polyadenylic acid (POLY A) to the 3' end of mRNA (RNA, MESSENGER). Polyadenylation involves recognizing the processing site signal, (AAUAAA), and cleaving of the mRNA to create a 3' OH terminal end to which poly A polymerase (POLYNUCLEOTIDE ADENYLYLTRANSFERASE) adds 60-200 adenylate residues. The 3' end processing of some messenger RNAs, such as histone mRNA, is carried out by a different process that does not include the addition of poly A as described here.
An RNA-binding protein that recognizes the AAUAAA RNA SEQUENCE at the 3' end of MRNA. It contains four subunits of 30, 73, 100 and 160 kDa molecular size and combines with CLEAVAGE STIMULATION FACTOR to form a stable complex with mRNA that directs the 3' cleavage and polyadenylation reaction.
The steps that generate the 3' ends of mature RNA molecules. For most mRNAs (RNA, MESSENGER), 3' end processing referred to as POLYADENYLATION includes the addition of POLY A.
An enzyme that catalyzes the synthesis of polyadenylic acid from ATP. May be due to the action of RNA polymerase (EC 2.7.7.6) or polynucleotide adenylyltransferase (EC 2.7.7.19). EC 2.7.7.19.
A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
A RNA-binding protein that stimulates the cleavage of the 3' end of MRNA near the POLYADENYLATION site. It is a heterotrimer of 55-, 64- and 77-kDa subunits and combines with CLEAVAGE STIMULATION FACTOR to form a stable complex with mRNA that directs the 3' cleavage and polyadenylation reaction.
Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein.
RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.
Sequences found near the 3' end of MESSENGER RNA that direct the cleavage and addition of multiple ADENINE NUCLEOTIDES to the 3' end of mRNA.
This ribonucleoprotein particle, composed of U7 snRNA, Sm core protein, and U7 snRNP-specific proteins, is involved in the 3'end processing of histone premessenger RNAs.
A reaction that severs one of the sugar-phosphate linkages of the phosphodiester backbone of RNA. It is catalyzed enzymatically, chemically, or by radiation. Cleavage may be exonucleolytic, or endonucleolytic.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The sequence at the 3' end of messenger RNA that does not code for product. This region contains transcription and translation regulating sequences.
Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A family of RNA-binding proteins that has specificity for MICRORNAS and SMALL INTERFERING RNA molecules. The proteins take part in RNA processing events as core components of RNA-induced silencing complex.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The extent to which an RNA molecule retains its structural integrity and resists degradation by RNASE, and base-catalyzed HYDROLYSIS, under changing in vivo or in vitro conditions.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A multicomponent, ribonucleoprotein complex comprised of one of the family of ARGONAUTE PROTEINS and the "guide strand" of the one of the 20- to 30-nucleotide small RNAs. RISC cleaves specific RNAs, which are targeted for degradation by homology to these small RNAs. Functions in regulating gene expression are determined by the specific argonaute protein and small RNA including siRNA (RNA, SMALL INTERFERING), miRNA (MICRORNA), or piRNA (PIWI-INTERACTING RNA).
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-.
Any codon that signals the termination of genetic translation (TRANSLATION, GENETIC). PEPTIDE TERMINATION FACTORS bind to the stop codon and trigger the hydrolysis of the aminoacyl bond connecting the completed polypeptide to the tRNA. Terminator codons do not specify amino acids.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing.
Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Components of the cytoplasm excluding the CYTOSOL.
Complexes of RNA-binding proteins with ribonucleic acids (RNA).
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
An endoribonuclease that is specific for double-stranded RNA. It plays a role in POST-TRANSCRIPTIONAL RNA PROCESSING of pre-RIBOSOMAL RNA and a variety of other RNA structures that contain double-stranded regions.
Proteins found in any species of fungus.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
Proteins obtained from ESCHERICHIA COLI.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
Established cell cultures that have the potential to propagate indefinitely.
RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
A reaction that severs one of the covalent sugar-phosphate linkages between NUCLEOTIDES that compose the sugar phosphate backbone of DNA. It is catalyzed enzymatically, chemically or by radiation. Cleavage may be exonucleolytic - removing the end nucleotide, or endonucleolytic - splitting the strand in two.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
Ribonucleic acid that makes up the genetic material of viruses.
Nucleic acid sequences involved in regulating the expression of genes.
A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U1 snRNP along with other small nuclear ribonucleoproteins (U2, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U1 snRNA forms base pairs with conserved sequence motifs at the 5'-splice site and recognizes both the 5'- and 3'-splice sites and may have a fundamental role in aligning the two sites for the splicing reaction.
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases.
A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different.
The different gene transcripts generated from a single gene by RNA EDITING or ALTERNATIVE SPLICING of RNA PRECURSORS.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Interruption or suppression of the expression of a gene at transcriptional or translational levels.
Retrovirus-associated DNA sequences (mos) originally isolated from the Moloney murine sarcoma virus (Mo-MSV). The proto-oncogene mos (c-mos) codes for a protein which is a member of the serine kinase family. There is no evidence as yet that human c-mos can become transformed or has a role in human cancer. However, in mice, activation can occur when the retrovirus-like intracisternal A-particle inserts itself near the c-mos sequence. The human c-mos gene is located at 8q22 on the long arm of chromosome 8.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Use for nucleic acid precursors in general or for which there is no specific heading.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
A family of enzymes that catalyze the exonucleolytic cleavage of RNA. It includes EC 3.1.13.-, EC 3.1.14.-, EC 3.1.15.-, and EC 3.1.16.-. EC 3.1.-
The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA.
Sequences within RNA that regulate the processing, stability (RNA STABILITY) or translation (TRANSLATION, GENETIC) of RNA.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.