A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57)
Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue.
Microtubule-associated proteins that are mainly expressed in neurons. Tau proteins constitute several isoforms and play an important role in the assembly of tubulin monomers into microtubules and in maintaining the cytoskeleton and axonal transport. Aggregation of specific sets of tau proteins in filamentous inclusions is the common feature of intraneuronal and glial fibrillar lesions (NEUROFIBRILLARY TANGLES; NEUROPIL THREADS) in numerous neurodegenerative disorders (ALZHEIMER DISEASE; TAUOPATHIES).
A single-pass type I membrane protein. It is cleaved by AMYLOID PRECURSOR PROTEIN SECRETASES to produce peptides of varying amino acid lengths. A 39-42 amino acid peptide, AMYLOID BETA-PEPTIDES is a principal component of the extracellular amyloid in SENILE PLAQUES.
Abnormal structures located in various parts of the brain and composed of dense arrays of paired helical filaments (neurofilaments and microtubules). These double helical stacks of transverse subunits are twisted into left-handed ribbon-like filaments that likely incorporate the following proteins: (1) the intermediate filaments: medium- and high-molecular-weight neurofilaments; (2) the microtubule-associated proteins map-2 and tau; (3) actin; and (4) UBIQUITINS. As one of the hallmarks of ALZHEIMER DISEASE, the neurofibrillary tangles eventually occupy the whole of the cytoplasm in certain classes of cell in the neocortex, hippocampus, brain stem, and diencephalon. The number of these tangles, as seen in post mortem histology, correlates with the degree of dementia during life. Some studies suggest that tangle antigens leak into the systemic circulation both in the course of normal aging and in cases of Alzheimer disease.
Accumulations of extracellularly deposited AMYLOID FIBRILS within tissues.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
A major and the second most common isoform of apolipoprotein E. In humans, Apo E4 differs from APOLIPOPROTEIN E3 at only one residue 112 (cysteine is replaced by arginine), and exhibits a lower resistance to denaturation and greater propensity to form folded intermediates. Apo E4 is a risk factor for ALZHEIMER DISEASE and CARDIOVASCULAR DISEASES.
Endopeptidases that are specific for AMYLOID PROTEIN PRECURSOR. Three secretase subtypes referred to as alpha, beta, and gamma have been identified based upon the region of amyloid protein precursor they cleave.
Disturbances in mental processes related to learning, thinking, reasoning, and judgment.
An acquired organic mental disorder with loss of intellectual abilities of sufficient severity to interfere with social or occupational functioning. The dysfunction is multifaceted and involves memory, behavior, personality, judgment, attention, spatial relations, language, abstract thought, and other executive functions. The intellectual decline is usually progressive, and initially spares the level of consciousness.
Integral membrane protein of Golgi and endoplasmic reticulum. Its homodimer is an essential component of the gamma-secretase complex that catalyzes the cleavage of membrane proteins such as NOTCH RECEPTORS and AMYLOID BETA-PEPTIDES precursors. PSEN1 mutations cause early-onset ALZHEIMER DISEASE type 3 that may occur as early as 30 years of age in humans.
A fibrous protein complex that consists of proteins folded into a specific cross beta-pleated sheet structure. This fibrillar structure has been found as an alternative folding pattern for a variety of functional proteins. Deposits of amyloid in the form of AMYLOID PLAQUES are associated with a variety of degenerative diseases. The amyloid structure has also been found in a number of functional proteins that are unrelated to disease.
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
An imprecise term referring to dementia associated with CEREBROVASCULAR DISORDERS, including CEREBRAL INFARCTION (single or multiple), and conditions associated with chronic BRAIN ISCHEMIA. Diffuse, cortical, and subcortical subtypes have been described. (From Gerontol Geriatr 1998 Feb;31(1):36-44)
Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury.
The delicate interlacing threads, formed by aggregations of neurofilaments and neurotubules, coursing through the CYTOPLASM of the body of a NEURON and extending from one DENDRITE into another or into the AXON.
A prodromal phase of cognitive decline that may precede the emergence of ALZHEIMER DISEASE and other dementias. It may include impairment of cognition, such as impairments in language, visuospatial awareness, ATTENTION and MEMORY.
A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
Integral membrane protein of Golgi and endoplasmic reticulum. Its homodimer is an essential component of the gamma-secretase complex that catalyzes the cleavage of membrane proteins such as NOTCH RECEPTORS and AMYLOID BETA-PEPTIDES precursors. PSEN2 mutations cause ALZHEIMER DISEASE type 4.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Standardized clinical interview used to assess current psychopathology by scaling patient responses to the questions.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
Intellectual or mental process whereby an organism obtains knowledge.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
A neurodegenerative disease characterized by dementia, mild parkinsonism, and fluctuations in attention and alertness. The neuropsychiatric manifestations tend to precede the onset of bradykinesia, MUSCLE RIGIDITY, and other extrapyramidal signs. DELUSIONS and visual HALLUCINATIONS are relatively frequent in this condition. Histologic examination reveals LEWY BODIES in the CEREBRAL CORTEX and BRAIN STEM. SENILE PLAQUES and other pathologic features characteristic of ALZHEIMER DISEASE may also be present. (From Neurology 1997;48:376-380; Neurology 1996;47:1113-1124)
AMANTADINE derivative that has some dopaminergic effects. It has been proposed as an antiparkinson agent.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
Integral membrane proteins and essential components of the gamma-secretase complex that catalyzes the cleavage of membrane proteins such as NOTCH RECEPTORS and AMYLOID BETA-PEPTIDES precursors. Mutations of presenilins lead to presenile ALZHEIMER DISEASE with onset before age 65 years.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.
Aniline compounds, also known as aromatic amines, are organic chemicals derived from aniline (aminobenzene), characterized by the substitution of hydrogen atoms in the benzene ring with amino groups (-NH2).
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Component of the NATIONAL INSTITUTES OF HEALTH. Through basic and clinical biomedical research and training, it conducts and supports research into the nature of the aging process and diseases associated with the later stages of life. The Institute was established in 1974.
Tissue in the BASAL FOREBRAIN inferior to the anterior perforated substance, and anterior to the GLOBUS PALLIDUS and ansa lenticularis. It contains the BASAL NUCLEUS OF MEYNERT.
Disturbances in registering an impression, in the retention of an acquired impression, or in the recall of an impression. Memory impairments are associated with DEMENTIA; CRANIOCEREBRAL TRAUMA; ENCEPHALITIS; ALCOHOLISM (see also ALCOHOL AMNESTIC DISORDER); SCHIZOPHRENIA; and other conditions.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
A heterogeneous group of sporadic or familial disorders characterized by AMYLOID deposits in the walls of small and medium sized blood vessels of CEREBRAL CORTEX and MENINGES. Clinical features include multiple, small lobar CEREBRAL HEMORRHAGE; cerebral ischemia (BRAIN ISCHEMIA); and CEREBRAL INFARCTION. Cerebral amyloid angiopathy is unrelated to generalized AMYLOIDOSIS. Amyloidogenic peptides in this condition are nearly always the same ones found in ALZHEIMER DISEASE. (from Kumar: Robbins and Cotran: Pathologic Basis of Disease, 7th ed., 2005)
Studies in which variables relating to an individual or group of individuals are assessed over a period of time.
Proteins that form the core of amyloid fibrils. For example, the core of amyloid A is formed from amyloid A protein, also known as serum amyloid A protein or SAA protein.
Postmortem examination of the body.
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways.
Extracellular protease inhibitors that are secreted from FIBROBLASTS. They form a covalent complex with SERINE PROTEASES and can mediate their cellular internalization and degradation.
Clinical or physiological indicators that precede the onset of disease.
Phenyl esters of carbamic acid or of N-substituted carbamic acids. Structures are similar to PHENYLUREA COMPOUNDS with a carbamate in place of the urea.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Neurodegenerative disorders involving deposition of abnormal tau protein isoforms (TAU PROTEINS) in neurons and glial cells in the brain. Pathological aggregations of tau proteins are associated with mutation of the tau gene on chromosome 17 in patients with ALZHEIMER DISEASE; DEMENTIA; PARKINSONIAN DISORDERS; progressive supranuclear palsy (SUPRANUCLEAR PALSY, PROGRESSIVE); and corticobasal degeneration.
Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures.
Aryl CYCLOPENTANES that are a reduced (protonated) form of INDENES.
Drugs used to specifically facilitate learning or memory, particularly to prevent the cognitive deficits associated with dementias. These drugs act by a variety of mechanisms. While no potent nootropic drugs have yet been accepted for general use, several are being actively investigated.
A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
Intracytoplasmic, eosinophilic, round to elongated inclusions found in vacuoles of injured or fragmented neurons. The presence of Lewy bodies is the histological marker of the degenerative changes in LEWY BODY DISEASE and PARKINSON DISEASE but they may be seen in other neurological conditions. They are typically found in the substantia nigra and locus coeruleus but they are also seen in the basal forebrain, hypothalamic nuclei, and neocortex.
A potentially neurotoxic 8-hydroxyquinoline derivative long used as a topical anti-infective, intestinal antiamebic, and vaginal trichomonacide. The oral preparation has been shown to cause subacute myelo-optic neuropathy and has been banned worldwide.
Thiazoles are heterocyclic organic compounds containing a sulfur atom and a nitrogen atom, which are bound by two carbon atoms to form a five-membered ring, and are widely found in various natural and synthetic substances, including some pharmaceuticals and vitamins.
The most common clinical form of FRONTOTEMPORAL LOBAR DEGENERATION, this dementia presents with personality and behavioral changes often associated with disinhibition, apathy, and lack of insight.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Pathologic partial or complete loss of the ability to recall past experiences (AMNESIA, RETROGRADE) or to form new memories (AMNESIA, ANTEROGRADE). This condition may be of organic or psychologic origin. Organic forms of amnesia are usually associated with dysfunction of the DIENCEPHALON or HIPPOCAMPUS. (From Adams et al., Principles of Neurology, 6th ed, pp426-7)
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE.
A feeling of restlessness associated with increased motor activity. This may occur as a manifestation of nervous system drug toxicity or other conditions.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
Abnormal structures located chiefly in distal dendrites and, along with NEUROFIBRILLARY TANGLES and SENILE PLAQUES, constitute the three morphological hallmarks of ALZHEIMER DISEASE. Neuropil threads are made up of straight and paired helical filaments which consist of abnormally phosphorylated microtubule-associated tau proteins. It has been suggested that the threads have a major role in the cognitive impairment seen in Alzheimer disease.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
An enzyme the catalyzes the degradation of insulin, glucagon and other polypeptides. It is inhibited by bacitracin, chelating agents EDTA and 1,10-phenanthroline, and by thiol-blocking reagents such as N-ethylmaleimide, but not phosphoramidon. (Eur J Biochem 1994;223:1-5) EC 3.4.24.56.
A 34-kDa glycosylated protein. A major and most common isoform of apolipoprotein E. Therefore, it is also known as apolipoprotein E (ApoE). In human, Apo E3 is a 299-amino acid protein with a cysteine at the 112 and an arginine at the 158 position. It is involved with the transport of TRIGLYCERIDES; PHOSPHOLIPIDS; CHOLESTEROL; and CHOLESTERYL ESTERS in and out of the cells.
A cholinesterase inhibitor that crosses the blood-brain barrier. Tacrine has been used to counter the effects of muscle relaxants, as a respiratory stimulant, and in the treatment of Alzheimer's disease and other central nervous system disorders.
Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.
A subclass of clathrin assembly proteins that occur as monomers.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
One of three major isoforms of apolipoprotein E. In humans, Apo E2 differs from APOLIPOPROTEIN E3 at one residue 158 where arginine is replaced by cysteine (R158--C). In contrast to Apo E3, Apo E2 displays extremely low binding affinity for LDL receptors (RECEPTORS, LDL) which mediate the internalization and catabolism of lipoprotein particles in liver cells. ApoE2 allelic homozygosity is associated with HYPERLIPOPROTEINEMIA TYPE III.
A neurobehavioral syndrome associated with bilateral medial temporal lobe dysfunction. Clinical manifestations include oral exploratory behavior; tactile exploratory behavior; hypersexuality; BULIMIA; MEMORY DISORDERS; placidity; and an inability to recognize objects or faces. This disorder may result from a variety of conditions, including CRANIOCEREBRAL TRAUMA; infections; ALZHEIMER DISEASE; PICK DISEASE OF THE BRAIN; and CEREBROVASCULAR DISORDERS.
A benzazepine derived from norbelladine. It is found in GALANTHUS and other AMARYLLIDACEAE. It is a cholinesterase inhibitor that has been used to reverse the muscular effects of GALLAMINE TRIETHIODIDE and TUBOCURARINE and has been studied as a treatment for ALZHEIMER DISEASE and other central nervous system disorders.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Heterogeneous group of neurodegenerative disorders characterized by frontal and temporal lobe atrophy associated with neuronal loss, gliosis, and dementia. Patients exhibit progressive changes in social, behavioral, and/or language function. Multiple subtypes or forms are recognized based on presence or absence of TAU PROTEIN inclusions. FTLD includes three clinical syndromes: FRONTOTEMPORAL DEMENTIA, semantic dementia, and PRIMARY PROGRESSIVE NONFLUENT APHASIA.
Compounds with a benzene ring fused to a thiazole ring.
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
A neuronal calcium sensor protein that is expressed as several isoforms and can interact with ACTIN; TUBULIN; and CLATHRIN.
A group of sporadic, familial and/or inherited, degenerative, and infectious disease processes, linked by the common theme of abnormal protein folding and deposition of AMYLOID. As the amyloid deposits enlarge they displace normal tissue structures, causing disruption of function. Various signs and symptoms depend on the location and size of the deposits.
A family of proteins that share sequence similarity with the low density lipoprotein receptor (RECEPTORS, LDL).
A subsection of the hippocampus, described by Lorente de No, that is located between the HIPPOCAMPUS CA1 FIELD and the HIPPOCAMPUS CA3 FIELD.
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
A glycogen synthase kinase that was originally described as a key enzyme involved in glycogen metabolism. It regulates a diverse array of functions such as CELL DIVISION, microtubule function and APOPTOSIS.
Persons who provide care to those who need supervision or assistance in illness or disability. They may provide the care in the home, in a hospital, or in an institution. Although caregivers include trained medical, nursing, and other health personnel, the concept also refers to parents, spouses, or other family members, friends, members of the clergy, teachers, social workers, fellow patients.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
A serine-threonine kinase that plays important roles in CELL DIFFERENTIATION; CELL MIGRATION; and CELL DEATH of NERVE CELLS. It is closely related to other CYCLIN-DEPENDENT KINASES but does not seem to participate in CELL CYCLE regulation.
Physiological changes that occur in bodies after death.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Cerebral cortex region on the medial aspect of the PARAHIPPOCAMPAL GYRUS, immediately caudal to the OLFACTORY CORTEX of the uncus. The entorhinal cortex is the origin of the major neural fiber system afferent to the HIPPOCAMPAL FORMATION, the so-called PERFORANT PATHWAY.
A republic in the Greater Antilles in the West Indies. Its capital is Santo Domingo. With Haiti, it forms the island of Hispaniola - the Dominican Republic occupying the eastern two thirds, and Haiti, the western third. It was created in 1844 after a revolt against the rule of President Boyer over the entire island of Hispaniola, itself visited by Columbus in 1492 and settled the next year. Except for a brief period of annexation to Spain (1861-65), it has been independent, though closely associated with the United States. Its name comes from the Spanish Santo Domingo, Holy Sunday, with reference to its discovery on a Sunday. (From Webster's New Geographical Dictionary, 1988, p338, 506 & Room, Brewer's Dictionary of Names, 1992, p151)
The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus.
A highly conserved heterodimeric glycoprotein that is differentially expressed during many severe physiological disturbance states such as CANCER; APOPTOSIS; and various NEUROLOGICAL DISORDERS. Clusterin is ubiquitously expressed and appears to function as a secreted MOLECULAR CHAPERONE.
Standardized procedures utilizing rating scales or interview schedules carried out by health personnel for evaluating the degree of mental illness.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation.
A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury.
A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.
Learning the correct route through a maze to obtain reinforcement. It is used for human or animal populations. (Thesaurus of Psychological Index Terms, 6th ed)
The area that lies between continental North and South America and comprises the Caribbean Sea, the West Indies, and the adjacent mainland regions of southern Mexico, Central America, Colombia, and Venezuela.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
Normal cellular isoform of prion proteins (PRIONS) encoded by a chromosomal gene and found in normal and scrapie-infected brain tissue, and other normal tissue. PrPC are protease-sensitive proteins whose function is unknown. Posttranslational modification of PrPC into PrPSC leads to infectivity.
A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 7; CASPASE 8; and CASPASE 10. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
Vaccines or candidate vaccines used to prevent or treat ALZHEIMER DISEASE.
The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302)
A progressive form of dementia characterized by the global loss of language abilities and initial preservation of other cognitive functions. Fluent and nonfluent subtypes have been described. Eventually a pattern of global cognitive dysfunction, similar to ALZHEIMER DISEASE, emerges. Pathologically, there are no Alzheimer or PICK DISEASE like changes, however, spongiform changes of cortical layers II and III are present in the TEMPORAL LOBE and FRONTAL LOBE. (From Brain 1998 Jan;121(Pt 1):115-26)
Small proteinaceous infectious particles which resist inactivation by procedures that modify NUCLEIC ACIDS and contain an abnormal isoform of a cellular protein which is a major and necessary component. The abnormal (scrapie) isoform is PrPSc (PRPSC PROTEINS) and the cellular isoform PrPC (PRPC PROTEINS). The primary amino acid sequence of the two isoforms is identical. Human diseases caused by prions include CREUTZFELDT-JAKOB SYNDROME; GERSTMANN-STRAUSSLER SYNDROME; and INSOMNIA, FATAL FAMILIAL.
A genus of the family Lemuridae consisting of five species: L. catta (ring-tailed lemur), L. fulvus, L. macaco (acoumba or black lemur), L. mongoz (mongoose lemur), and L. variegatus (white lemur). Most members of this genus occur in forested areas on Madagascar and the Comoro Islands.
The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162)
The health status of the family as a unit including the impact of the health of one member of the family on the family as a unit and on individual family members; also, the impact of family organization or disorganization on the health status of its members.
The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS.
Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE).
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Cleavage of proteins into smaller peptides or amino acids either by PROTEASES or non-enzymatically (e.g., Hydrolysis). It does not include Protein Processing, Post-Translational.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Elements of limited time intervals, contributing to particular results or situations.
A convolution on the inferior surface of each cerebral hemisphere, lying between the hippocampal and collateral sulci.
An acid dye used in testing for hydrochloric acid in gastric contents. It is also used histologically to test for AMYLOIDOSIS.
An analysis comparing the allele frequencies of all available (or a whole GENOME representative set of) polymorphic markers in unrelated patients with a specific symptom or disease condition, and those of healthy controls to identify markers associated with a specific disease or condition.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Slow or diminished movement of body musculature. It may be associated with BASAL GANGLIA DISEASES; MENTAL DISORDERS; prolonged inactivity due to illness; and other conditions.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
A synuclein that is a major component of LEWY BODIES that plays a role in neurodegeneration and neuroprotection.
A form of compensated hydrocephalus characterized clinically by a slowly progressive gait disorder (see GAIT DISORDERS, NEUROLOGIC), progressive intellectual decline, and URINARY INCONTINENCE. Spinal fluid pressure tends to be in the high normal range. This condition may result from processes which interfere with the absorption of CSF including SUBARACHNOID HEMORRHAGE, chronic MENINGITIS, and other conditions. (From Adams et al., Principles of Neurology, 6th ed, pp631-3)
Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Established cell cultures that have the potential to propagate indefinitely.
Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue.
Methods to determine in patients the nature of a disease or disorder at its early stage of progression. Generally, early diagnosis improves PROGNOSIS and TREATMENT OUTCOME.
Licensed physicians trained in OSTEOPATHIC MEDICINE. An osteopathic physician, also known as D.O. (Doctor of Osteopathy), is able to perform surgery and prescribe medications.
A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4)
The circulation of blood through the BLOOD VESSELS of the BRAIN.
An ethylene compound with two hydroxy groups (-OH) located on adjacent carbons. They are viscous and colorless liquids. Some are used as anesthetics or hypnotics. However, the class is best known for their use as a coolant or antifreeze.
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.
Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT.
Uncrossed tracts of motor nerves from the brain to the anterior horns of the spinal cord, involved in reflexes, locomotion, complex movements, and postural control.
An individual having different alleles at one or more loci regarding a specific character.
Capacity that enables an individual to cope with and/or recover from the impact of a neural injury or a psychotic episode.
Active immunization where vaccine is administered for therapeutic or preventive purposes. This can include administration of immunopotentiating agents such as BCG vaccine and Corynebacterium parvum as well as biological response modifiers such as interferons, interleukins, and colony-stimulating factors in order to directly stimulate the immune system.
In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell.
A spectrum of pathological conditions of impaired blood flow in the brain. They can involve vessels (ARTERIES or VEINS) in the CEREBRUM, the CEREBELLUM, and the BRAIN STEM. Major categories include INTRACRANIAL ARTERIOVENOUS MALFORMATIONS; BRAIN ISCHEMIA; CEREBRAL HEMORRHAGE; and others.
A scale comprising 18 symptom constructs chosen to represent relatively independent dimensions of manifest psychopathology. The initial intended use was to provide more efficient assessment of treatment response in clinical psychopharmacology research; however, the scale was readily adapted to other uses. (From Hersen, M. and Bellack, A.S., Dictionary of Behavioral Assessment Techniques, p. 87)
An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.
Inflammation of the BRAIN due to infection, autoimmune processes, toxins, and other conditions. Viral infections (see ENCEPHALITIS, VIRAL) are a relatively frequent cause of this condition.

Alzheimer's disease: clues from flies and worms. (1/11292)

Presenilin mutations give rise to familial Alzheimer's disease and result in elevated production of amyloid beta peptide. Recent evidence that presenilins act in developmental signalling pathways may be the key to understanding how senile plaques, neurofibrillary tangles and apoptosis are all biochemically linked.  (+info)

Parametric mapping of cerebral blood flow deficits in Alzheimer's disease: a SPECT study using HMPAO and image standardization technique. (2/11292)

This study assessed the accuracy and reliability of Automated Image Registration (AIR) for standardization of brain SPECT images of patients with Alzheimer's disease (AD). Standardized cerebral blood flow (CBF) images of patients with AD and control subjects were then used for group comparison and covariance analyses. METHODS: Thirteen patients with AD at an early stage (age 69.8+/-7.1 y, Clinical Dementia Rating Score 0.5-1.0, Mini-Mental State Examination score 19-23) and 20 age-matched normal subjects (age 69.5+/-8.3 y) participated in this study. 99mTc-hexamethyl propylenamine oxime (HMPAO) brain SPECT and CT scans were acquired for each subject. SPECT images were transformed to a standard size and shape with the help of AIR. Accuracy of AIR for spatial normalization was evaluated by an index calculated on SPECT images. Anatomical variability of standardized target images was evaluated by measurements on corresponding CT scans, spatially normalized using transformations established by the SPECT images. Realigned brain SPECT images of patients and controls were used for group comparison with the help of statistical parameter mapping. Significant differences were displayed on the respective voxel to generate three-dimensional Z maps. CT scans of individual subjects were evaluated by a computer program for brain atrophy. Voxel-based covariance analysis was performed on standardized images with ages and atrophy indices as independent variables. RESULTS: Inaccuracy assessed by functional data was 2.3%. The maximum anatomical variability was 4.9 mm after standardization. Z maps showed significantly decreased regional CBF (rCBF) in the frontal, parietal and temporal regions in the patient group (P < 0.001). Covariance analysis revealed that the effects of aging on rCBF were more pronounced compared with atrophy, especially in intact cortical areas at an early stage of AD. Decrease in rCBF was partly due to senility and atrophy, however these two factors cannot explain all the deficits. CONCLUSION: AIR can transform SPECT images of AD patients with acceptable accuracy without any need for corresponding structural images. The frontal regions of the brain, in addition to parietal and temporal lobes, may show reduced CBF in patients with AD even at an early stage of dementia. The reduced rCBF in the cortical regions cannot be explained entirely by advanced atrophy and fast aging process.  (+info)

Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. (3/11292)

Alzheimer's disease is characterized by neurodegeneration and deposition of betaA4, a peptide that is proteolytically released from the amyloid precursor protein (APP). Missense mutations in the genes coding for APP and for the polytopic membrane proteins presenilin (PS) 1 and PS2 have been linked to familial forms of early-onset Alzheimer's disease. Overexpression of presenilins, especially that of PS2, induces increased susceptibility for apoptosis that is even more pronounced in cells expressing presenilin mutants. Additionally, presenilins themselves are targets for activated caspases in apoptotic cells. When we analyzed APP in COS-7 cells overexpressing PS2, we observed proteolytic processing close to the APP carboxyl terminus. Proteolytic conversion was increased in the presence of PS2-I, which encodes one of the known PS2 pathogenic mutations. The same proteolytic processing occurred in cells treated with chemical inducers of apoptosis, suggesting a participation of activated caspases in the carboxyl-terminal truncation of APP. This was confirmed by showing that specific caspase inhibitors blocked the apoptotic conversion of APP. Sequence analysis of the APP cytosolic domain revealed a consensus motif for group III caspases ((IVL)ExD). Mutation of the corresponding Asp664 residue abolished cleavage, thereby identifying APP as a target molecule for caspase-like proteases in the pathways of programmed cellular death.  (+info)

Microvessels from Alzheimer's disease brains kill neurons in vitro. (4/11292)

Understanding the pathogenesis of Alzheimer's disease is of widespread interest because it is an increasingly prevalent disorder that is progressive, fatal, and currently untreatable. The dementia of Alzheimer's disease is caused by neuronal cell death. We demonstrate for the first time that blood vessels isolated from the brains of Alzheimer's disease patients can directly kill neurons in vitro. Either direct co-culture of Alzheimer's disease microvessels with neurons or incubation of cultured neurons with conditioned medium from microvessels results in neuronal cell death. In contrast, vessels from elderly nondemented donors are significantly (P<0.001) less lethal and brain vessels from younger donors are not neurotoxic. Neuronal killing by either direct co-culture with Alzheimer's disease microvessels or conditioned medium is dose- and time-dependent. Neuronal death can occur by either apoptotic or necrotic mechanisms. The microvessel factor is neurospecific, killing primary cortical neurons, cerebellar granule neurons, and differentiated PC-12 cells, but not non-neuronal cell types or undifferentiated PC-12 cells. Appearance of the neurotoxic factor is decreased by blocking microvessel protein synthesis with cycloheximide. The neurotoxic factor is soluble and likely a protein, because its activity is heat labile and trypsin sensitive. These findings implicate a novel mechanism of vascular-mediated neuronal cell death in Alzheimer's disease.  (+info)

Specific regional transcription of apolipoprotein E in human brain neurons. (5/11292)

In central nervous system injury and disease, apolipoprotein E (APOE, gene; apoE, protein) might be involved in neuronal injury and death indirectly through extracellular effects and/or more directly through intracellular effects on neuronal metabolism. Although intracellular effects could clearly be mediated by neuronal uptake of extracellular apoE, recent experiments in injury models in normal rodents and in mice transgenic for the human APOE gene suggest the additional possibility of intraneuronal synthesis. To examine whether APOE might be synthesized by human neurons, we performed in situ hybridization on paraffin-embedded and frozen brain sections from three nondemented controls and five Alzheimer's disease (AD) patients using digoxigenin-labeled antisense and sense cRNA probes to human APOE. Using the antisense APOE probes, we found the expected strong hybridization signal in glial cells as well as a generally fainter signal in selected neurons in cerebral cortex and hippocampus. In hippocampus, many APOE mRNA-containing neurons were observed in sectors CA1 to CA4 and the granule cell layer of the dentate gyrus. In these regions, APOE mRNA containing neurons could be observed adjacent to nonhybridizing neurons of the same cell class. APOE mRNA transcription in neurons is regionally specific. In cerebellar cortex, APOE mRNA was seen only in Bergmann glial cells and scattered astrocytes but not in Purkinje cells or granule cell neurons. ApoE immunocytochemical localization in semi-adjacent sections supported the selectivity of APOE transcription. These results demonstrate the expected result that APOE mRNA is transcribed and expressed in glial cells in human brain. The important new finding is that APOE mRNA is also transcribed and expressed in many neurons in frontal cortex and human hippocampus but not in neurons of cerebellar cortex from the same brains. This regionally specific human APOE gene expression suggests that synthesis of apoE might play a role in regional vulnerability of neurons in AD. These results also provide a direct anatomical context for hypotheses proposing a role for apoE isoforms on neuronal cytoskeletal stability and metabolism.  (+info)

Increased phosphoglycerate kinase in the brains of patients with Down's syndrome but not with Alzheimer's disease. (6/11292)

Impaired glucose metabolism in Down's syndrome (DS) has been well-documented in vivo, although information on the underlying biochemical defect is limited and no biochemical studies on glucose handling enzymes have been carried out in the brain. Through gene hunting in fetal DS brain we found an overexpressed sequence homologous to the phosphoglycerate kinase (PGK) gene. This finding was studied further by investigating the activity levels of this key enzyme of carbohydrate metabolism in the brains of patients with DS. PGK activity was determined in five brain regions of nine patients with DS, nine patients with Alzheimer's disease and 14 controls. PGK activity was significantly elevated in the frontal, occipital and temporal lobe and in the cerebellum of patients with DS. PGK activity in corresponding brain regions of patients with Alzheimer's disease was comparable with controls. We conclude that our findings complement previously published data on impaired brain glucose metabolism in DS evaluated by positron emission tomography in clinical studies. Furthermore, we show that in DS, impaired glucose metabolism, represented by increased PGK activity, is a specific finding rather than a secondary phenomenon simply due to neurodegeneration or atrophy. These observations are also supported by data from subtractive hybridization, showing overexpressed PGK in DS brains at the transcriptional level early in life.  (+info)

Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. (7/11292)

The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.  (+info)

Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. (8/11292)

Transgenic mice overexpressing different forms of amyloid precursor protein (APP), i.e. wild type or clinical mutants, displayed an essentially comparable early phenotype in terms of behavior, differential glutamatergic responses, deficits in maintenance of long term potentiation, and premature death. The cognitive impairment, demonstrated in F1 hybrids of the different APP transgenic lines, was significantly different from nontransgenic littermates as early as 3 months of age. Biochemical analysis of secreted and membrane-bound APP, C-terminal "stubs," and Abeta(40) and Abeta(42) peptides in brain indicated that no single intermediate can be responsible for the complex of phenotypic dysfunctions. As expected, the Abeta(42) levels were most prominent in APP/London transgenic mice and correlated directly with the formation of amyloid plaques in older mice of this line. Plaques were associated with immunoreactivity for hyperphosphorylated tau, eventually signaling some form of tau pathology. In conclusion, the different APP transgenic mouse lines studied display cognitive deficits and phenotypic traits early in life that dissociated in time from the formation of amyloid plaques and will be good models for both early and late neuropathological and clinical aspects of Alzheimer's disease.  (+info)

Alzheimer's disease is a progressive disorder that causes brain cells to waste away (degenerate) and die. It's the most common cause of dementia — a continuous decline in thinking, behavioral and social skills that disrupts a person's ability to function independently.

The early signs of the disease include forgetting recent events or conversations. As the disease progresses, a person with Alzheimer's disease will develop severe memory impairment and lose the ability to carry out everyday tasks.

Currently, there's no cure for Alzheimer's disease. However, treatments can temporarily slow the worsening of dementia symptoms and improve quality of life.

Amyloid beta-peptides (Aβ) are small protein fragments that are crucially involved in the pathogenesis of Alzheimer's disease. They are derived from a larger transmembrane protein called the amyloid precursor protein (APP) through a series of proteolytic cleavage events.

The two primary forms of Aβ peptides are Aβ40 and Aβ42, which differ in length by two amino acids. While both forms can be harmful, Aβ42 is more prone to aggregation and is considered to be the more pathogenic form. These peptides have the tendency to misfold and accumulate into oligomers, fibrils, and eventually insoluble plaques that deposit in various areas of the brain, most notably the cerebral cortex and hippocampus.

The accumulation of Aβ peptides is believed to initiate a cascade of events leading to neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal death, which are all hallmarks of Alzheimer's disease. Although the exact role of Aβ in the onset and progression of Alzheimer's is still under investigation, it is widely accepted that they play a central part in the development of this debilitating neurodegenerative disorder.

Tau proteins are a type of microtubule-associated protein (MAP) found primarily in neurons of the central nervous system. They play a crucial role in maintaining the stability and structure of microtubules, which are essential components of the cell's cytoskeleton. Tau proteins bind to and stabilize microtubules, helping to regulate their assembly and disassembly.

In Alzheimer's disease and other neurodegenerative disorders known as tauopathies, tau proteins can become abnormally hyperphosphorylated, leading to the formation of insoluble aggregates called neurofibrillary tangles (NFTs) within neurons. These aggregates disrupt the normal function of microtubules and contribute to the degeneration and death of nerve cells, ultimately leading to cognitive decline and other symptoms associated with these disorders.

The Amyloid Beta-Protein Precursor (AβPP) is a type of transmembrane protein that is widely expressed in various tissues and organs, including the brain. It plays a crucial role in normal physiological processes, such as neuronal development, synaptic plasticity, and repair.

AβPP undergoes proteolytic processing by enzymes called secretases, resulting in the production of several protein fragments, including the amyloid-beta (Aβ) peptide. Aβ is a small peptide that can aggregate and form insoluble fibrils, which are the main component of amyloid plaques found in the brains of patients with Alzheimer's disease (AD).

The accumulation of Aβ plaques is believed to contribute to the neurodegeneration and cognitive decline observed in AD. Therefore, AβPP and its proteolytic processing have been the focus of extensive research aimed at understanding the pathogenesis of AD and developing potential therapies.

Neurofibrillary tangles are a pathological hallmark of several neurodegenerative disorders, most notably Alzheimer's disease. They are intracellular inclusions composed of abnormally phosphorylated and aggregated tau protein, which forms paired helical filaments. These tangles accumulate within the neurons, leading to their dysfunction and eventual death. The presence and density of neurofibrillary tangles are strongly associated with cognitive decline and disease progression in Alzheimer's disease and other related dementias.

Amyloid plaque is a pathological hallmark of several degenerative diseases, including Alzheimer's disease. It refers to extracellular deposits of misfolded proteins that accumulate in various tissues and organs, but are most commonly found in the brain. The main component of these plaques is an abnormally folded form of a protein called amyloid-beta (Aβ). This protein is produced through the normal processing of the amyloid precursor protein (APP), but in amyloid plaques, it aggregates into insoluble fibrils that form the core of the plaque.

The accumulation of amyloid plaques is thought to contribute to neurodegeneration and cognitive decline in Alzheimer's disease and other related disorders. The exact mechanisms by which this occurs are not fully understood, but it is believed that the aggregation of Aβ into plaques leads to the disruption of neuronal function and viability, as well as the activation of inflammatory responses that can further damage brain tissue.

It's important to note that while amyloid plaques are a key feature of Alzheimer's disease, they are not exclusive to this condition. Amyloid plaques have also been found in other neurodegenerative disorders, as well as in some normal aging brains, although their significance in these contexts is less clear.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Apolipoprotein E (APOE) is a gene that provides instructions for making a protein involved in the metabolism of fats called lipids. One variant of this gene, APOE4, is associated with an increased risk of developing Alzheimer's disease and other forms of dementia.

The APOE4 allele (variant) is less efficient at clearing beta-amyloid protein, a component of the amyloid plaques found in the brains of people with Alzheimer's disease. This can lead to an accumulation of beta-amyloid and an increased risk of developing Alzheimer's disease.

It is important to note that having one or two copies of the APOE4 allele does not mean that a person will definitely develop Alzheimer's disease, but it does increase the risk. Other factors, such as age, family history, and the presence of other genetic variants, also contribute to the development of this complex disorder.

Amyloid precursor protein (APP) secretases are enzymes that are responsible for cleaving the amyloid precursor protein into various smaller proteins. There are two types of APP secretases: α-secretase and β-secretase.

α-Secretase is a member of the ADAM (a disintegrin and metalloproteinase) family, specifically ADAM10 and ADAM17. When APP is cleaved by α-secretase, it produces a large ectodomain called sAPPα and a membrane-bound C-terminal fragment called C83. This pathway is known as the non-amyloidogenic pathway because it prevents the formation of amyloid-β (Aβ) peptides, which are associated with Alzheimer's disease.

β-Secretase, also known as β-site APP cleaving enzyme 1 (BACE1), is a type II transmembrane aspartic protease. When APP is cleaved by β-secretase, it produces a large ectodomain called sAPPβ and a membrane-bound C-terminal fragment called C99. Subsequently, C99 is further cleaved by γ-secretase to generate Aβ peptides, including the highly neurotoxic Aβ42. This pathway is known as the amyloidogenic pathway because it leads to the formation of Aβ peptides and the development of Alzheimer's disease.

Therefore, APP secretases play a crucial role in the regulation of APP processing and have been the focus of extensive research in the context of Alzheimer's disease and other neurodegenerative disorders.

Cognitive disorders are a category of mental health disorders that primarily affect cognitive abilities including learning, memory, perception, and problem-solving. These disorders can be caused by various factors such as brain injury, degenerative diseases, infection, substance abuse, or developmental disabilities. Examples of cognitive disorders include dementia, amnesia, delirium, and intellectual disability. It's important to note that the specific definition and diagnostic criteria for cognitive disorders may vary depending on the medical source or classification system being used.

Dementia is a broad term that describes a decline in cognitive functioning, including memory, language, problem-solving, and judgment, severe enough to interfere with daily life. It is not a specific disease but rather a group of symptoms that may be caused by various underlying diseases or conditions. Alzheimer's disease is the most common cause of dementia, accounting for 60-80% of cases. Other causes include vascular dementia, Lewy body dementia, frontotemporal dementia, and Huntington's disease.

The symptoms of dementia can vary widely depending on the cause and the specific areas of the brain that are affected. However, common early signs of dementia may include:

* Memory loss that affects daily life
* Difficulty with familiar tasks
* Problems with language or communication
* Difficulty with visual and spatial abilities
* Misplacing things and unable to retrace steps
* Decreased or poor judgment
* Withdrawal from work or social activities
* Changes in mood or behavior

Dementia is a progressive condition, meaning that symptoms will gradually worsen over time. While there is currently no cure for dementia, early diagnosis and treatment can help slow the progression of the disease and improve quality of life for those affected.

Presenilin-1 (PSEN1) is a gene that provides instructions for making one part of an enzyme complex called gamma-secretase. This enzyme is involved in the breakdown of certain proteins, most notably the amyloid precursor protein (APP), into smaller fragments called peptides. One of these peptides, called beta-amyloid, can accumulate and form clumps called plaques, which are a characteristic feature of Alzheimer's disease.

Mutations in the PSEN1 gene have been identified as a major cause of early-onset familial Alzheimer's disease (FAD), a rare, inherited form of the disorder that usually develops before age 65. These mutations result in an abnormal gamma-secretase enzyme that produces more toxic beta-amyloid peptides and fewer harmless ones, leading to the formation of amyloid plaques and neurodegeneration.

It's important to note that while mutations in PSEN1 are associated with early-onset FAD, most cases of Alzheimer's disease are sporadic and develop later in life, typically after age 65. The role of PSEN1 and other genes associated with FAD in the more common, late-onset form of Alzheimer's is still being researched.

Amyloid is a term used in medicine to describe abnormally folded protein deposits that can accumulate in various tissues and organs of the body. These misfolded proteins can form aggregates known as amyloid fibrils, which have a characteristic beta-pleated sheet structure. Amyloid deposits can be composed of different types of proteins, depending on the specific disease associated with the deposit.

In some cases, amyloid deposits can cause damage to organs and tissues, leading to various clinical symptoms. Some examples of diseases associated with amyloidosis include Alzheimer's disease (where amyloid-beta protein accumulates in the brain), systemic amyloidosis (where amyloid fibrils deposit in various organs such as the heart, kidneys, and liver), and type 2 diabetes (where amyloid deposits form in the pancreas).

It's important to note that not all amyloid deposits are harmful or associated with disease. However, when they do cause problems, treatment typically involves managing the underlying condition that is leading to the abnormal protein accumulation.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

Vascular dementia is a type of dementia that is caused by damage to the blood vessels that supply blood to the brain. This damage can result from conditions such as stroke, chronic high blood pressure, diabetes, or other diseases that affect the circulatory system. The interruption in blood flow to the brain can lead to damaged or dead brain cells, which can impair cognitive function and cause symptoms similar to those seen in other types of dementia, such as Alzheimer's disease.

The symptoms of vascular dementia can vary depending on the severity and location of the damage to the blood vessels. However, common symptoms include difficulties with memory, attention, and decision-making; problems with language and speech; changes in mood or behavior; and difficulty walking or performing other physical tasks. Vascular dementia is typically a progressive condition, meaning that the symptoms tend to worsen over time.

It's important to note that vascular dementia can coexist with other types of dementia, such as Alzheimer's disease, and this is known as mixed dementia. Proper diagnosis and management of underlying medical conditions that contribute to vascular dementia can help slow down the progression of cognitive decline and improve quality of life for individuals living with this condition.

Neuropsychological tests are a type of psychological assessment that measures cognitive functions, such as attention, memory, language, problem-solving, and perception. These tests are used to help diagnose and understand the cognitive impact of neurological conditions, including dementia, traumatic brain injury, stroke, Parkinson's disease, and other disorders that affect the brain.

The tests are typically administered by a trained neuropsychologist and can take several hours to complete. They may involve paper-and-pencil tasks, computerized tasks, or interactive activities. The results of the tests are compared to normative data to help identify any areas of cognitive weakness or strength.

Neuropsychological testing can provide valuable information for treatment planning, rehabilitation, and assessing response to treatment. It can also be used in research to better understand the neural basis of cognition and the impact of neurological conditions on cognitive function.

Neurofibrils are thin, thread-like structures found within the cytoplasm of nerve cells (neurons). They are primarily composed of various proteins and are involved in maintaining the structure and function of neurons. Neurofibrils include two types: neurofilaments and microtubule-associated protein tau (TAU) proteins.

Neurofilaments are intermediate filaments that provide structural support to neurons, while TAU proteins are involved in microtubule assembly, stability, and intracellular transport. Abnormal accumulation and aggregation of these proteins can lead to neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS).

Mild Cognitive Impairment (MCI) is a medical term used to describe a stage between the cognitive changes seen in normal aging and the more serious decline of dementia. It's characterized by a slight but noticeable decline in cognitive abilities, such as memory or thinking skills, that are greater than expected for an individual's age and education level, but not significant enough to interfere with daily life.

People with MCI have an increased risk of developing dementia, particularly Alzheimer's disease, compared to those without MCI. However, it's important to note that not everyone with MCI will develop dementia; some may remain stable, and others may even improve over time.

The diagnosis of MCI is typically made through a comprehensive medical evaluation, including a detailed medical history, cognitive testing, and sometimes brain imaging or laboratory tests.

Apolipoprotein E (ApoE) is a protein involved in the metabolism of lipids, particularly cholesterol. It is produced primarily by the liver and is a component of several types of lipoproteins, including very low-density lipoproteins (VLDL) and high-density lipoproteins (HDL).

ApoE plays a crucial role in the transport and uptake of lipids in the body. It binds to specific receptors on cell surfaces, facilitating the delivery of lipids to cells for energy metabolism or storage. ApoE also helps to clear cholesterol from the bloodstream and is involved in the repair and maintenance of tissues.

There are three major isoforms of ApoE, designated ApoE2, ApoE3, and ApoE4, which differ from each other by only a few amino acids. These genetic variations can have significant effects on an individual's risk for developing certain diseases, particularly cardiovascular disease and Alzheimer's disease. For example, individuals who inherit the ApoE4 allele have an increased risk of developing Alzheimer's disease, while those with the ApoE2 allele may have a reduced risk.

In summary, Apolipoprotein E is a protein involved in lipid metabolism and transport, and genetic variations in this protein can influence an individual's risk for certain diseases.

Presenilin-2 (PSEN2) is a protein that is encoded by the PSEN2 gene in humans. It is a member of the presenilin family, which are integral membrane proteins found in the endoplasmic reticulum and Golgi apparatus. Presenilin-2 is most well-known for its role in the processing of amyloid precursor protein (APP), which is implicated in the pathogenesis of Alzheimer's disease.

In the context of APP processing, presenilin-2 functions as a catalytic subunit of the gamma-secretase complex, which cleaves APP into smaller peptides, including the beta-amyloid peptide (Aβ). Mutations in the PSEN2 gene have been associated with early-onset familial Alzheimer's disease, suggesting that abnormal APP processing and Aβ accumulation play a significant role in the development of this disorder.

However, it is important to note that presenilin-2 has other functions beyond APP processing, including roles in cell signaling, calcium homeostasis, and autophagy. Dysregulation of these processes may also contribute to the pathogenesis of Alzheimer's disease and other neurodegenerative disorders.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

The Medical Definition of 'Mental Status Schedule' is:

A standardized interview and examination tool used by mental health professionals to assess an individual's cognitive, behavioral, and emotional status. The schedule typically covers areas such as orientation, attention, memory, language, visuospatial abilities, executive functions, and mood and affect. It is often used in research, clinical settings, and epidemiological studies to evaluate psychiatric and neurological conditions, as well as the effects of treatments or interventions. The specific version of the Mental Status Schedule may vary, but it generally includes a structured format with clear questions and response options to ensure standardization and reliability in the assessment process.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Cognition refers to the mental processes involved in acquiring, processing, and utilizing information. These processes include perception, attention, memory, language, problem-solving, and decision-making. Cognitive functions allow us to interact with our environment, understand and respond to stimuli, learn new skills, and remember experiences.

In a medical context, cognitive function is often assessed as part of a neurological or psychiatric evaluation. Impairments in cognition can be caused by various factors, such as brain injury, neurodegenerative diseases (e.g., Alzheimer's disease), infections, toxins, and mental health conditions. Assessing cognitive function helps healthcare professionals diagnose conditions, monitor disease progression, and develop treatment plans.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Lewy body disease, also known as dementia with Lewy bodies, is a type of progressive degenerative dementia that affects thinking, behavior, and movement. It's named after Dr. Friedrich Lewy, the scientist who discovered the abnormal protein deposits, called Lewy bodies, that are characteristic of this disease.

Lewy bodies are made up of a protein called alpha-synuclein and are found in the brain cells of individuals with Lewy body disease. These abnormal protein deposits are also found in people with Parkinson's disease, but they are more widespread in Lewy body disease, affecting multiple areas of the brain.

The symptoms of Lewy body disease can vary from person to person, but they often include:

* Cognitive decline, such as memory loss, confusion, and difficulty with problem-solving
* Visual hallucinations and delusions
* Parkinsonian symptoms, such as stiffness, tremors, and difficulty walking or moving
* Fluctuations in alertness and attention
* REM sleep behavior disorder, where a person acts out their dreams during sleep

Lewy body disease is a progressive condition, which means that the symptoms get worse over time. Currently, there is no cure for Lewy body disease, but medications can help manage some of the symptoms.

Memantine is an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which is a type of glutamate receptor found in nerve cells. It is primarily used to treat moderate to severe Alzheimer's disease, as it can help slow down cognitive decline and improve symptoms such as memory loss, confusion, and problems with thinking and reasoning. Memantine works by blocking the excessive activation of NMDA receptors, which can contribute to the damage and death of nerve cells in the brain associated with Alzheimer's disease. It is available in oral formulations, including tablets, capsules, and oral solution.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Presenilins are a group of proteins that play a critical role in the development of early-onset Alzheimer's disease. They are part of the gamma-secretase complex, which is involved in the processing of amyloid precursor protein (APP). This process can result in the formation of beta-amyloid plaques, which are a hallmark of Alzheimer's disease.

Mutations in the presenilin genes (PSEN1 and PSEN2) have been identified as major genetic risk factors for early-onset familial Alzheimer's disease. These mutations can lead to increased production of toxic beta-amyloid fragments, which can accumulate in the brain and cause neuronal damage.

Presenilins also have other functions in the body, including roles in calcium homeostasis, cell signaling, and developmental processes. However, their most well-known function is related to their role in Alzheimer's disease pathogenesis.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

Aspartic acid endopeptidases are a type of enzyme that cleave peptide bonds within proteins. They are also known as aspartyl proteases or aspartic proteinases. These enzymes contain two catalytic aspartic acid residues in their active site, which work together to hydrolyze the peptide bond.

Aspartic acid endopeptidases play important roles in various biological processes, including protein degradation, processing, and activation. They are found in many organisms, including viruses, bacteria, fungi, plants, and animals. Some well-known examples of aspartic acid endopeptidases include pepsin, cathepsin D, and HIV protease.

Pepsin is a digestive enzyme found in the stomach that helps break down proteins in food. Cathepsin D is a lysosomal enzyme that plays a role in protein turnover and degradation within cells. HIV protease is an essential enzyme for the replication of the human immunodeficiency virus (HIV), which causes AIDS. Inhibitors of HIV protease are used as antiretroviral drugs to treat HIV infection.

Aniline compounds, also known as aromatic amines, are organic compounds that contain a benzene ring substituted with an amino group (-NH2). Aniline itself is the simplest and most common aniline compound, with the formula C6H5NH2.

Aniline compounds are important in the chemical industry and are used in the synthesis of a wide range of products, including dyes, pharmaceuticals, and rubber chemicals. They can be produced by reducing nitrobenzene or by directly substituting ammonia onto benzene in a process called amination.

It is important to note that aniline compounds are toxic and can cause serious health effects, including damage to the liver, kidneys, and central nervous system. They can also be absorbed through the skin and are known to have carcinogenic properties. Therefore, appropriate safety measures must be taken when handling aniline compounds.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Cholinesterase inhibitors are a class of drugs that work by blocking the action of cholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine in the body. By inhibiting this enzyme, the levels of acetylcholine in the brain increase, which can help to improve symptoms of cognitive decline and memory loss associated with conditions such as Alzheimer's disease and other forms of dementia.

Cholinesterase inhibitors are also used to treat other medical conditions, including myasthenia gravis, a neuromuscular disorder that causes muscle weakness, and glaucoma, a condition that affects the optic nerve and can lead to vision loss. Some examples of cholinesterase inhibitors include donepezil (Aricept), galantamine (Razadyne), and rivastigmine (Exelon).

It's important to note that while cholinesterase inhibitors can help to improve symptoms in some people with dementia, they do not cure the underlying condition or stop its progression. Side effects of these drugs may include nausea, vomiting, diarrhea, and increased salivation. In rare cases, they may also cause seizures, fainting, or cardiac arrhythmias.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

The Substantia Innominata is not a widely used medical term and it doesn't have a standardized anatomical or clinical definition. However, in historical neuroanatomy, it refers to a region of the brain located in the forebrain, specifically within the basal forebrain. It's a somewhat vague term that has been used to describe a collection of cell groups and nerve fibers that are not easily classified under other specific names.

These cell groups include the diagonal band of Broca, the medial septal nucleus, and the nucleus basalis of Meynert. The Substantia Innominata is known to be involved in various functions such as memory, learning, and regulation of the sleep-wake cycle. However, due to its complex and not well-defined nature, it's not commonly used in modern medical or scientific contexts.

Memory disorders are a category of cognitive impairments that affect an individual's ability to acquire, store, retain, and retrieve memories. These disorders can be caused by various underlying medical conditions, including neurological disorders, psychiatric illnesses, substance abuse, or even normal aging processes. Some common memory disorders include:

1. Alzheimer's disease: A progressive neurodegenerative disorder that primarily affects older adults and is characterized by a decline in cognitive abilities, including memory, language, problem-solving, and decision-making skills.
2. Dementia: A broader term used to describe a group of symptoms associated with a decline in cognitive function severe enough to interfere with daily life. Alzheimer's disease is the most common cause of dementia, but other causes include vascular dementia, Lewy body dementia, and frontotemporal dementia.
3. Amnesia: A memory disorder characterized by difficulties in forming new memories or recalling previously learned information due to brain damage or disease. Amnesia can be temporary or permanent and may result from head trauma, stroke, infection, or substance abuse.
4. Mild cognitive impairment (MCI): A condition where an individual experiences mild but noticeable memory or cognitive difficulties that are greater than expected for their age and education level. While some individuals with MCI may progress to dementia, others may remain stable or even improve over time.
5. Korsakoff's syndrome: A memory disorder often caused by alcohol abuse and thiamine deficiency, characterized by severe short-term memory loss, confabulation (making up stories to fill in memory gaps), and disorientation.

It is essential to consult a healthcare professional if you or someone you know experiences persistent memory difficulties, as early diagnosis and intervention can help manage symptoms and improve quality of life.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Cerebral amyloid angiopathy (CAA) is a medical condition characterized by the accumulation of beta-amyloid protein in the walls of small to medium-sized blood vessels in the brain. This protein buildup can cause damage to the vessel walls, leading to bleeding (cerebral hemorrhage), cognitive decline, and other neurological symptoms.

CAA is often associated with aging and is a common finding in older adults. It can also be seen in people with Alzheimer's disease and other forms of dementia. The exact cause of CAA is not fully understood, but it is believed to result from the abnormal processing and clearance of beta-amyloid protein in the brain.

The diagnosis of CAA typically involves a combination of clinical evaluation, imaging studies such as MRI or CT scans, and sometimes cerebrospinal fluid analysis. Treatment for CAA is generally supportive and focused on managing symptoms and preventing complications. There are currently no approved disease-modifying treatments for CAA.

Longitudinal studies are a type of research design where data is collected from the same subjects repeatedly over a period of time, often years or even decades. These studies are used to establish patterns of changes and events over time, and can help researchers identify causal relationships between variables. They are particularly useful in fields such as epidemiology, psychology, and sociology, where the focus is on understanding developmental trends and the long-term effects of various factors on health and behavior.

In medical research, longitudinal studies can be used to track the progression of diseases over time, identify risk factors for certain conditions, and evaluate the effectiveness of treatments or interventions. For example, a longitudinal study might follow a group of individuals over several decades to assess their exposure to certain environmental factors and their subsequent development of chronic diseases such as cancer or heart disease. By comparing data collected at multiple time points, researchers can identify trends and correlations that may not be apparent in shorter-term studies.

Longitudinal studies have several advantages over other research designs, including their ability to establish temporal relationships between variables, track changes over time, and reduce the impact of confounding factors. However, they also have some limitations, such as the potential for attrition (loss of participants over time), which can introduce bias and affect the validity of the results. Additionally, longitudinal studies can be expensive and time-consuming to conduct, requiring significant resources and a long-term commitment from both researchers and study participants.

Amyloidogenic proteins are misfolded proteins that can form amyloid fibrils, which are insoluble protein aggregates with a characteristic cross-beta sheet quaternary structure. These amyloid fibrils can accumulate in various tissues and organs, leading to the formation of amyloid deposits. The accumulation of amyloidogenic proteins and the resulting amyloid deposits have been associated with several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as systemic amyloidoses.

In Alzheimer's disease, for example, the amyloidogenic protein is beta-amyloid, which is produced from the proteolytic processing of the amyloid precursor protein (APP). In Parkinson's disease, the amyloidogenic protein is alpha-synuclein, which forms the main component of Lewy bodies.

It's important to note that not all misfolded proteins are necessarily amyloidogenic, and not all amyloid fibrils are associated with disease. Some amyloid fibrils can have functional roles in normal physiological processes.

An autopsy, also known as a post-mortem examination or obduction, is a medical procedure in which a qualified professional (usually a pathologist) examines a deceased person's body to determine the cause and manner of death. This process may involve various investigative techniques, such as incisions to study internal organs, tissue sampling, microscopic examination, toxicology testing, and other laboratory analyses. The primary purpose of an autopsy is to gather objective evidence about the medical conditions and factors contributing to the individual's demise, which can be essential for legal, insurance, or public health purposes. Additionally, autopsies can provide valuable insights into disease processes and aid in advancing medical knowledge.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Nerve degeneration, also known as neurodegeneration, is the progressive loss of structure and function of neurons, which can lead to cognitive decline, motor impairment, and various other symptoms. This process occurs due to a variety of factors, including genetics, environmental influences, and aging. It is a key feature in several neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The degeneration can affect any part of the nervous system, leading to different symptoms depending on the location and extent of the damage.

Protease nexins are a group of proteins that regulate the activity of proteases, which are enzymes that break down other proteins. Proteases play important roles in various biological processes, including blood clotting, immune response, and cell death. However, uncontrolled or excessive protease activity can lead to harmful effects, such as tissue damage and disease progression.

Protease nexins function by forming stable complexes with specific proteases, thereby inhibiting their activity. These complexes also serve as a reservoir of inactive proteases that can be rapidly activated when needed. Protease nexins are involved in various physiological and pathological processes, such as inflammation, neurodegeneration, and cancer.

One well-known example of a protease nexin is the tissue plasminogen activator (tPA) - neuroserpin complex. Neuroserpin is a serine protease inhibitor that forms a complex with tPA, an enzyme that plays a critical role in breaking down blood clots. By forming this complex, neuroserpin regulates the activity of tPA and prevents excessive fibrinolysis, which can lead to bleeding disorders. Mutations in the gene encoding neuroserpin have been associated with familial dementia with Lewy bodies, a form of neurodegenerative disorder.

Prodromal symptoms refer to the early, often nonspecific signs or symptoms that appear before the onset of a particular disease or condition. These symptoms can vary widely depending on the specific illness, and they may include things like fatigue, headache, muscle aches, or changes in appetite or sleep patterns.

In some cases, prodromal symptoms may be mild and easily dismissed as simply feeling "under the weather." However, they can also serve as important warning signs that a more serious condition is on the horizon. For example, prodromal symptoms of a migraine headache might include mood changes, food cravings, or neck stiffness in the days leading up to the actual headache.

It's worth noting that not everyone who experiences prodromal symptoms will go on to develop the full-blown illness. However, if you notice any unusual or persistent symptoms that concern you, it's always a good idea to speak with your healthcare provider for further evaluation and guidance.

Phenylcarbamates are a group of organic compounds that contain a phenyl group (a functional group consisting of a six-carbon ring, with the formula -C6H5) bonded to a carbamate group (-NHCOO-). Carbamates are compounds that contain a carbonyl (>C=O) group bonded to a nitrogen atom that is also bonded to two organic substituents.

In the medical field, phenylcarbamates have been used as drugs for various purposes. For example, some phenylcarbamates have been used as anticonvulsants, while others have been investigated for their potential as anti-cancer agents. However, it is important to note that many phenylcarbamates also have toxic properties and must be used with caution.

One well-known example of a phenylcarbamate is phenytoin, an anticonvulsant medication used to treat seizures. Phenytoin works by slowing down the transmission of nerve impulses in the brain, which can help prevent or reduce the severity of seizures.

It's worth noting that while phenylcarbamates have been studied for their potential therapeutic uses, they are not a widely used class of drugs and further research is needed to fully understand their mechanisms of action and potential side effects.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Tauopathies are a group of neurodegenerative disorders that are characterized by the abnormal accumulation and aggregation of the microtubule-associated protein Tau in neurons and glial cells. These misfolded Tau proteins form insoluble inclusions, such as neurofibrillary tangles (NFTs) and neuropil threads, which are associated with the degeneration and loss of neurons in specific regions of the brain.

Tauopathies include several well-known diseases, such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia with Parkinsonism-17 (FTDP-17). The exact cause of Tauopathies remains unclear, but genetic mutations, environmental factors, or a combination of both may contribute to the development and progression of these disorders.

The accumulation of abnormal Tau aggregates is believed to play a central role in the neurodegenerative process, leading to cognitive decline, motor impairment, and other neurological symptoms associated with Tauopathies. The diagnosis of Tauopathies typically involves clinical evaluation, imaging studies, and sometimes postmortem examination of brain tissue. Currently, there are no effective disease-modifying treatments for Tauopathies, but ongoing research is focused on developing therapies that target Tau aggregation and clearance to slow down or halt the progression of these debilitating disorders.

Neurodegenerative diseases are a group of disorders characterized by progressive and persistent loss of neuronal structure and function, often leading to cognitive decline, functional impairment, and ultimately death. These conditions are associated with the accumulation of abnormal protein aggregates, mitochondrial dysfunction, oxidative stress, chronic inflammation, and genetic mutations in the brain. Examples of neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis (ALS), and Spinal Muscular Atrophy (SMA). The underlying causes and mechanisms of these diseases are not fully understood, and there is currently no cure for most neurodegenerative disorders. Treatment typically focuses on managing symptoms and slowing disease progression.

"Indans" is not a recognized medical term or abbreviation in the field of medicine or pharmacology. It's possible that you may be referring to "indanes," which are chemical compounds that contain a indane ring structure, consisting of two benzene rings fused in an angular arrangement. Some indane derivatives have been studied for their potential medicinal properties, such as anti-inflammatory and analgesic effects. However, it's important to note that the medical use and efficacy of these compounds can vary widely and should be evaluated on a case-by-case basis under the guidance of a qualified healthcare professional.

Nootropic agents, also known as cognition enhancers or smart drugs, are substances that are believed to improve cognitive functions such as memory, motivation, creativity, and executive functions. The term "nootropic" is derived from the Greek words "nous," meaning mind, and "tropos," meaning a turn or bend.

Nootropics can be divided into several categories, including dietary supplements, prescription medications, and illicit substances. Some examples of nootropics include:

* Piracetam and other racetams
* Caffeine and other stimulants
* Nicotine and other cholinergic compounds
* Modafinil and other wakefulness-promoting agents
* Certain antidepressants, such as fluoxetine and bupropion
* Illicit substances, such as methylphenidate (Ritalin) and amphetamines (Adderall), which are sometimes used off-label for cognitive enhancement.

It is important to note that while some nootropic agents have been shown to have cognitive benefits in certain studies, their effectiveness and safety are not fully understood. Additionally, the long-term use of some nootropics can have potential risks and side effects. Therefore, it is recommended to consult with a healthcare professional before starting any new supplement or medication regimen for cognitive enhancement.

Down syndrome is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is characterized by intellectual and developmental disabilities, distinctive facial features, and sometimes physical growth delays and health problems. The condition affects approximately one in every 700 babies born in the United States.

Individuals with Down syndrome have varying degrees of cognitive impairment, ranging from mild to moderate or severe. They may also have delayed development, including late walking and talking, and may require additional support and education services throughout their lives.

People with Down syndrome are at increased risk for certain health conditions, such as congenital heart defects, respiratory infections, hearing loss, vision problems, gastrointestinal issues, and thyroid disorders. However, many individuals with Down syndrome live healthy and fulfilling lives with appropriate medical care and support.

The condition is named after John Langdon Down, an English physician who first described the syndrome in 1866.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Lewy bodies are abnormal aggregates of alpha-synuclein protein that develop in nerve cells (neurons) in the brain. They are named after Frederick Lewy, a German-American neurologist who discovered them while working with Dr. Alois Alzheimer. The presence of Lewy bodies is a hallmark feature of Lewy body dementia, which includes both Parkinson's disease dementia and dementia with Lewy bodies.

Lewy bodies can lead to the dysfunction and death of neurons in areas of the brain that control movement, cognition, and behavior. This can result in a range of symptoms, including motor impairments, cognitive decline, visual hallucinations, and mood changes. The exact role of Lewy bodies in the development and progression of these disorders is not fully understood, but they are believed to contribute to the neurodegenerative process that underlies these conditions.

Clioquinol is an antimicrobial drug that contains a combination of clioquinal and hydrocortisone acetate. It is used topically to treat various skin infections and inflammatory conditions. Clioquinol has antibacterial and antifungal properties, while hydrocortisone acetate is a corticosteroid that reduces inflammation and suppresses the immune response.

Clioquinol was first synthesized in the 1930s and was widely used as an antidiarrheal medication until it was banned in many countries due to its association with a neurological disorder called subacute myelooptic neuropathy (SMON). However, topical clioquinol is still available in some countries for the treatment of skin conditions.

It's important to note that topical clioquinol should be used with caution and under the supervision of a healthcare professional, as it can cause skin irritation and sensitization in some individuals. Additionally, prolonged or excessive use of corticosteroids like hydrocortisone acetate can lead to thinning of the skin, increased susceptibility to infection, and other adverse effects.

Thiazoles are organic compounds that contain a heterocyclic ring consisting of a nitrogen atom and a sulfur atom, along with two carbon atoms and two hydrogen atoms. They have the chemical formula C3H4NS. Thiazoles are present in various natural and synthetic substances, including some vitamins, drugs, and dyes. In the context of medicine, thiazole derivatives have been developed as pharmaceuticals for their diverse biological activities, such as anti-inflammatory, antifungal, antibacterial, and antihypertensive properties. Some well-known examples include thiazide diuretics (e.g., hydrochlorothiazide) used to treat high blood pressure and edema, and the antidiabetic drug pioglitazone.

Frontotemporal dementia (FTD) is a group of disorders caused by progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are associated with personality, behavior, and language.

There are three main types of FTD:

1. Behavioral variant FTD (bvFTD): This type is characterized by changes in personality, behavior, and judgment. Individuals may become socially inappropriate, emotionally indifferent, or impulsive. They may lose interest in things they used to enjoy and have difficulty with tasks that require planning and organization.

2. Primary progressive aphasia (PPA): This type affects language abilities. There are two main subtypes of PPA: semantic dementia and progressive nonfluent aphasia. Semantic dementia is characterized by difficulty understanding words and objects, while progressive nonfluent aphasia is characterized by problems with speech production and articulation.

3. Motor neuron disease (MND) associated FTD: Some individuals with FTD may also develop motor neuron disease, which affects the nerves that control muscle movement. This can lead to weakness, stiffness, and wasting of muscles, as well as difficulty swallowing and speaking.

FTD is a degenerative disorder, meaning that symptoms get worse over time. There is no cure for FTD, but there are treatments available to help manage symptoms and improve quality of life. The exact cause of FTD is not known, but it is believed to be related to abnormalities in certain proteins in the brain. In some cases, FTD may run in families and be caused by genetic mutations.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Amnesia is a condition characterized by memory loss, which can be temporary or permanent. It may result from brain damage or disease, and it can affect various aspects of memory, such as the ability to recall past events (retrograde amnesia), the ability to form new memories (anterograde amnesia), or both. Amnesia can also affect a person's sense of identity and their ability to learn new skills.

There are several types of amnesia, including:

1. Anterograde amnesia: This type of amnesia affects the ability to form new memories after an injury or trauma. People with anterograde amnesia may have difficulty learning new information and remembering recent events.
2. Retrograde amnesia: Retrograde amnesia affects the ability to recall memories that were formed before an injury or trauma. People with retrograde amnesia may have trouble remembering events, people, or facts from their past.
3. Transient global amnesia: This is a temporary form of amnesia that usually lasts for less than 24 hours. It is often caused by a lack of blood flow to the brain, and it can be triggered by emotional stress, physical exertion, or other factors.
4. Korsakoff's syndrome: This is a type of amnesia that is caused by alcohol abuse and malnutrition. It is characterized by severe memory loss, confusion, and disorientation.
5. Dissociative amnesia: This type of amnesia is caused by psychological factors, such as trauma or stress. People with dissociative amnesia may have trouble remembering important personal information or events that are emotionally charged.

The treatment for amnesia depends on the underlying cause. In some cases, memory may improve over time, while in other cases, it may be permanent. Treatment may involve medication, therapy, or rehabilitation to help people with amnesia cope with their memory loss and develop new skills to compensate for their memory impairments.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

The temporal lobe is one of the four main lobes of the cerebral cortex in the brain, located on each side of the head roughly level with the ears. It plays a major role in auditory processing, memory, and emotion. The temporal lobe contains several key structures including the primary auditory cortex, which is responsible for analyzing sounds, and the hippocampus, which is crucial for forming new memories. Damage to the temporal lobe can result in various neurological symptoms such as hearing loss, memory impairment, and changes in emotional behavior.

Psychomotor agitation is a state of increased physical activity and purposeless or semi-purposeful voluntary movements, usually associated with restlessness, irritability, and cognitive impairment. It can be a manifestation of various medical and neurological conditions such as delirium, dementia, bipolar disorder, schizophrenia, and substance withdrawal. Psychomotor agitation may also increase the risk of aggressive behavior and physical harm to oneself or others. Appropriate evaluation and management are necessary to address the underlying cause and alleviate symptoms.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Neuropil threads are abnormal, twisted protein filaments found in the neuropil region of the brain. The neuropil is the part of the brain composed of nerve cell processes (dendrites and axons) and their synapses. Neuropil threads are a pathological feature seen in several neurodegenerative disorders, including Alzheimer's disease and other forms of dementia.

These protein filaments are primarily composed of tau protein, which becomes abnormally modified and aggregates into twisted strands. The accumulation of neuropil threads is thought to contribute to the degeneration of nerve cells in these disorders, leading to cognitive decline and other neurological symptoms. However, it's important to note that the exact role of neuropil threads in neurodegenerative diseases is still an area of ongoing research.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

I believe there might be a slight confusion in your question. There is no medical definition for "Insulysin" as it seems to be a misspelling of the term "Insulinase" or "Insulysin." I will provide you with the medical definition of Insulinase.

Insulinase, also known as Insulin-degrading enzyme (IDE), is a zinc metalloproteinase found in various tissues, including the liver, brain, and muscle. It is responsible for the intracellular degradation of insulin and other regulatory proteins like amyloid-beta peptide, glucagon, and atrial natriuretic peptide. Insulinase helps regulate blood glucose levels by controlling insulin concentrations in the body. Dysregulation of this enzyme has been implicated in diabetes, Alzheimer's disease, and other neurodegenerative disorders.

Apolipoprotein E3 (ApoE3) is one of the three major isoforms of apolipoprotein E (ApoE), a protein involved in the metabolism of lipids, particularly cholesterol. ApoE is produced by the APOE gene, which has three common alleles: ε2, ε3, and ε4. These alleles result in three main isoforms of the protein: ApoE2, ApoE3, and ApoE4.

ApoE3 is the most common isoform, found in approximately 77-78% of the population. It has a slightly different amino acid sequence compared to ApoE2 and ApoE4, which can affect its function. ApoE3 is thought to play a neutral or protective role in the risk of developing Alzheimer's disease and cardiovascular diseases, although some studies suggest that it may have a mildly favorable effect on lipid metabolism compared to ApoE4.

Tacrine is a parasympathomimetic alkaloid, which was used in the treatment of Alzheimer's disease. It works by increasing the levels of acetylcholine, a neurotransmitter in the brain that is important for memory and thinking. Tacrine was an inhibitor of acetylcholinesterase, the enzyme responsible for breaking down acetylcholine.

However, due to its significant hepatotoxicity (liver toxicity) and limited efficacy, tacrine is rarely used today. Other cholinesterase inhibitors, such as donepezil, rivastigmine, and galantamine, have largely replaced tacrine in the treatment of Alzheimer's disease.

In the context of medical and clinical neuroscience, memory is defined as the brain's ability to encode, store, retain, and recall information or experiences. Memory is a complex cognitive process that involves several interconnected regions of the brain and can be categorized into different types based on various factors such as duration and the nature of the information being remembered.

The major types of memory include:

1. Sensory memory: The shortest form of memory, responsible for holding incoming sensory information for a brief period (less than a second to several seconds) before it is either transferred to short-term memory or discarded.
2. Short-term memory (also called working memory): A temporary storage system that allows the brain to hold and manipulate information for approximately 20-30 seconds, although this duration can be extended through rehearsal strategies. Short-term memory has a limited capacity, typically thought to be around 7±2 items.
3. Long-term memory: The memory system responsible for storing large amounts of information over extended periods, ranging from minutes to a lifetime. Long-term memory has a much larger capacity compared to short-term memory and is divided into two main categories: explicit (declarative) memory and implicit (non-declarative) memory.

Explicit (declarative) memory can be further divided into episodic memory, which involves the recollection of specific events or episodes, including their temporal and spatial contexts, and semantic memory, which refers to the storage and retrieval of general knowledge, facts, concepts, and vocabulary, independent of personal experience or context.

Implicit (non-declarative) memory encompasses various forms of learning that do not require conscious awareness or intention, such as procedural memory (skills and habits), priming (facilitated processing of related stimuli), classical conditioning (associative learning), and habituation (reduced responsiveness to repeated stimuli).

Memory is a crucial aspect of human cognition and plays a significant role in various aspects of daily life, including learning, problem-solving, decision-making, social interactions, and personal identity. Memory dysfunction can result from various neurological and psychiatric conditions, such as dementia, Alzheimer's disease, stroke, traumatic brain injury, and depression.

Human chromosome pair 21 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and they are identical to each other. Chromosomes are made up of DNA, which contains genetic information that determines many of an individual's traits and characteristics.

Chromosome pair 21 is one of the 23 pairs of human autosomal chromosomes, meaning they are not sex chromosomes (X or Y). Chromosome pair 21 is the smallest of the human chromosomes, and it contains approximately 48 million base pairs of DNA. It contains around 200-300 genes that provide instructions for making proteins and regulating various cellular processes.

Down syndrome, a genetic disorder characterized by intellectual disability, developmental delays, distinct facial features, and sometimes heart defects, is caused by an extra copy of chromosome pair 21 or a part of it. This additional genetic material can lead to abnormalities in brain development and function, resulting in the characteristic symptoms of Down syndrome.

Monomeric Clathrin Assembly Proteins (also known as Clathrin Terminal Domain Proteins or CTD proteins) refer to a group of proteins that play a crucial role in the assembly and disassembly of clathrin-coated vesicles, which are involved in intracellular trafficking processes such as endocytosis and recycling of membrane receptors.

Clathrin is a triskelion-shaped protein made up of three heavy chains and three light chains. The monomeric clathrin assembly proteins, including CTD-associated proteins (CAPs) and serine kinases such as Clathrin Kinase (CLK), interact with the terminal domains of clathrin's heavy chains to regulate the formation and stability of clathrin lattices.

These proteins facilitate the self-assembly of clathrin molecules into polyhedral cages, which then deform the membrane and form vesicles that bud off from the plasma membrane or intracellular organelles. The monomeric clathrin assembly proteins also play a role in regulating the disassembly of these structures during the uncoating process, allowing for the recycling of clathrin molecules and the release of cargo.

In summary, Monomeric Clathrin Assembly Proteins are essential components of the clathrin-mediated trafficking pathway, facilitating the formation, stability, and disassembly of clathrin-coated vesicles.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Apolipoprotein E2 (ApoE2) is one of the three major isoforms of the apolipoprotein E (ApoE) protein, which is a component of lipoproteins that are involved in the transport and metabolism of cholesterol and other fats in the body. ApoE is produced by the APOE gene, which has three common alleles: ε2, ε3, and ε4.

The ApoE2 protein is encoded by the ε2 allele of the APOE gene. Compared to the other two isoforms (ApoE3 and ApoE4), ApoE2 has a different amino acid at position 112, where it has a cysteine instead of an arginine. This difference affects the protein's ability to interact with other molecules involved in lipid metabolism, such as the low-density lipoprotein receptor (LDLR).

Individuals who inherit two copies of the ε2 allele (ε2/ε2) have a higher risk of developing type III hyperlipoproteinemia, also known as dysbetalipoproteinemia, which is characterized by elevated levels of cholesterol and triglycerides in the blood due to impaired clearance of remnant lipoproteins. However, not all people with the ε2/ε2 genotype develop type III hyperlipoproteinemia, and other genetic and environmental factors may contribute to the development of this condition.

It's worth noting that having one or two copies of the ε2 allele has been associated with a reduced risk of developing Alzheimer's disease, although the mechanism by which ApoE2 protects against Alzheimer's is not fully understood.

Kluver-Bucy Syndrome is a rare and complex neurobehavioral disorder, typically caused by damage to the temporal lobes and surrounding structures in the brain, particularly the amygdala and hippocampus. The syndrome is characterized by a range of symptoms that may include:

1. Hyperorality (excessive exploration of objects with the mouth)
2. Visual agnosia (inability to recognize familiar objects despite intact vision)
3. Hypermetamorphosis (compulsively looking at and exploring new objects)
4. Dietary changes, such as increased appetite and food preference changes
5. Emotional changes, including decreased emotional responsiveness and loss of fear or anxiety
6. Memory impairment
7. Increased sexual behavior
8. Hyperactivity and decreased initiative
9. Altered sleep-wake cycle
10. Inability to recognize faces (prosopagnosia)

It's important to note that the presence and severity of these symptoms can vary widely between individuals with Kluver-Bucy Syndrome, depending on the extent and location of brain damage. The syndrome is often associated with conditions such as herpes encephalitis, traumatic brain injury, or neurodegenerative diseases like Alzheimer's disease.

Galantamine is a medication that belongs to a class of drugs known as cholinesterase inhibitors. It works by increasing the levels of a chemical called acetylcholine in the brain, which is important for memory and thinking skills.

Galantamine is primarily used to treat mild to moderate Alzheimer's disease, a type of dementia that affects memory, thinking, and behavior. By increasing the levels of acetylcholine, galantamine can help improve symptoms such as memory loss, confusion, and problems with speaking, writing, and understanding language.

Galantamine is available in immediate-release and extended-release tablets, as well as an oral solution. It is usually taken twice a day, typically in the morning and evening, with meals. Common side effects of galantamine include nausea, vomiting, diarrhea, and dizziness.

It's important to note that while galantamine can help improve symptoms of Alzheimer's disease, it does not cure or slow down the progression of the condition. It should only be used under the supervision of a healthcare provider.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Frontotemporal lobar degeneration (FTLD) is a group of disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are involved in decision-making, behavior, emotion, and language. FTLD can be divided into several subtypes based on the specific clinical features and the underlying protein abnormalities.

The three main subtypes of FTLD are:

1. Behavioral variant frontotemporal dementia (bvFTD): This subtype is characterized by changes in personality, behavior, and judgment. People with bvFTD may lose their social inhibitions, become impulsive, or develop compulsive behaviors. They may also have difficulty with emotional processing and empathy.
2. Primary progressive aphasia (PPA): This subtype is characterized by the gradual deterioration of language skills. People with PPA may have difficulty speaking, understanding spoken or written language, or both. There are three subtypes of PPA: nonfluent/agrammatic variant, semantic variant, and logopenic variant.
3. Motor neuron disease (MND) with FTLD: This subtype is characterized by the degeneration of motor neurons, which are the nerve cells responsible for controlling voluntary muscle movements. People with MND with FTLD may develop symptoms of amyotrophic lateral sclerosis (ALS), such as muscle weakness, stiffness, and twitching, as well as cognitive and behavioral changes associated with FTLD.

The underlying protein abnormalities in FTLD include:

1. Tau protein: In some forms of FTLD, the tau protein accumulates and forms clumps called tangles inside nerve cells. This is also seen in Alzheimer's disease.
2. TDP-43 protein: In other forms of FTLD, the TDP-43 protein accumulates and forms clumps inside nerve cells.
3. Fused in sarcoma (FUS) protein: In a small number of cases, the FUS protein accumulates and forms clumps inside nerve cells.

FTLD is typically a progressive disorder, meaning that symptoms worsen over time. There is currently no cure for FTLD, but there are treatments available to help manage symptoms and improve quality of life.

Benzothiazoles are a class of heterocyclic organic compounds that contain a benzene fused to a thiazole ring. They have the chemical formula C7H5NS. Benzothiazoles and their derivatives have a wide range of applications in various industries, including pharmaceuticals, agrochemicals, dyes, and materials science.

In the medical field, benzothiazoles have been studied for their potential therapeutic properties. Some benzothiazole derivatives have shown promising results as anti-inflammatory, antimicrobial, antiviral, and anticancer agents. However, more research is needed to fully understand the medical potential of these compounds and to develop safe and effective drugs based on them.

It's important to note that while benzothiazoles themselves have some biological activity, most of the medical applications come from their derivatives, which are modified versions of the basic benzothiazole structure. These modifications can significantly alter the properties of the compound, leading to new therapeutic possibilities.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

Neurocalcin, also known as Neurocalcin delta or NCALD, is a protein that belongs to the family of neuronal calcium sensor proteins. It is primarily expressed in the nervous system and plays a role in regulating intracellular calcium levels, which are critical for various cellular functions such as neurotransmitter release, gene expression, and cell survival. Neurocalcin has been found to interact with other proteins involved in neuronal signaling pathways and may be associated with certain neurological disorders, including Alzheimer's disease and epilepsy. However, further research is needed to fully understand its functions and clinical significance.

Amyloidosis is a medical condition characterized by the abnormal accumulation of insoluble proteins called amyloid in various tissues and organs throughout the body. These misfolded protein deposits can disrupt the normal function of affected organs, leading to a range of symptoms depending on the location and extent of the amyloid deposition.

There are different types of amyloidosis, classified based on the specific proteins involved:

1. Primary (AL) Amyloidosis: This is the most common form, accounting for around 80% of cases. It results from the overproduction and misfolding of immunoglobulin light chains, typically by clonal plasma cells in the bone marrow. The amyloid deposits can affect various organs, including the heart, kidneys, liver, and nervous system.
2. Secondary (AA) Amyloidosis: This form is associated with chronic inflammatory diseases, such as rheumatoid arthritis, tuberculosis, or familial Mediterranean fever. The amyloid fibrils are composed of serum amyloid A protein (SAA), an acute-phase reactant produced during the inflammatory response. The kidneys are commonly affected in this type of amyloidosis.
3. Hereditary or Familial Amyloidosis: These forms are caused by genetic mutations that result in the production of abnormal proteins prone to misfolding and amyloid formation. Examples include transthyretin (TTR) amyloidosis, fibrinogen amyloidosis, and apolipoprotein AI amyloidosis. These forms can affect various organs, including the heart, nerves, and kidneys.
4. Dialysis-Related Amyloidosis: This form is seen in patients undergoing long-term dialysis for chronic kidney disease. The amyloid fibrils are composed of beta-2 microglobulin, a protein that accumulates due to impaired clearance during dialysis. The joints and bones are commonly affected in this type of amyloidosis.

The diagnosis of amyloidosis typically involves a combination of clinical evaluation, imaging studies, and tissue biopsy with the demonstration of amyloid deposition using special stains (e.g., Congo red). Treatment depends on the specific type and extent of organ involvement and may include supportive care, medications to target the underlying cause (e.g., chemotherapy, immunomodulatory agents), and organ transplantation in some cases.

LDL-Receptor Related Proteins (LRP) are a family of single transmembrane domain receptors that play important roles in various cellular processes, including endocytosis, intracellular signaling, and protein degradation. They are named after their structural and functional similarities to the low-density lipoprotein (LDL) receptor.

The LDL-Receptor Related Proteins consist of several members, including LRP1, LRP2 (also known as Megalin), LRP3, LRP4, LRP5, and LRP6. These proteins are widely expressed in various tissues, such as the brain, liver, kidney, and muscle.

LRP1 is a large receptor that is involved in the clearance of several ligands, including LDL, apolipoprotein E (apoE), and α2-macroglobulin. It also plays a role in intracellular signaling pathways related to cell survival, differentiation, and migration.

LRP2 is primarily expressed in the kidney and the brain, where it functions as a scavenger receptor that mediates the endocytosis of various ligands, including lipoproteins, vitamin-binding proteins, and enzymes.

LRP3 is involved in the clearance of apoE-containing lipoproteins and has been implicated in the regulation of cholesterol metabolism.

LRP4 is a critical regulator of neuromuscular junction formation and function, and it interacts with several ligands, including agrin and LDL.

LRP5 and LRP6 are involved in the Wnt signaling pathway, which plays important roles in embryonic development, tissue homeostasis, and cancer. They act as co-receptors for Wnt proteins and modulate intracellular signaling pathways that regulate gene expression and cell behavior.

Overall, LDL-Receptor Related Proteins play diverse and critical roles in various physiological processes, and their dysfunction has been implicated in several diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

The CA2 region, also known as the hippocampal field CA2, is a subfield within the hippocampus, which is a complex brain structure crucial for learning and memory. The hippocampus consists of several interconnected subfields, including CA1, CA2, CA3, and the dentate gyrus (DG).

The CA2 region is located between the CA1 and CA3 regions and has distinct anatomical, molecular, and electrophysiological properties. It contains pyramidal neurons that are smaller than those found in the CA1 and CA3 areas. The CA2 region plays a significant role in social memory, spatial navigation, and neurogenesis.

Recent research highlights the importance of the CA2 region in various neurological conditions such as Alzheimer's disease, epilepsy, and schizophrenia. In Alzheimer's disease, for example, this area is one of the first to exhibit pathological changes like tau protein accumulation, making it a potential target for early diagnosis and therapeutic interventions.

Myelinated nerve fibers are neuronal processes that are surrounded by a myelin sheath, a fatty insulating substance that is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. This myelin sheath helps to increase the speed of electrical impulse transmission, also known as action potentials, along the nerve fiber. The myelin sheath has gaps called nodes of Ranvier where the electrical impulses can jump from one node to the next, which also contributes to the rapid conduction of signals. Myelinated nerve fibers are typically found in the peripheral nerves and the optic nerve, but not in the central nervous system (CNS) tracts that are located within the brain and spinal cord.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Glycogen Synthase Kinase 3 (GSK-3) is a serine/threonine protein kinase that plays a crucial role in the regulation of several cellular processes, including glycogen metabolism, cell signaling, gene transcription, and apoptosis. It was initially discovered as a key enzyme involved in glycogen metabolism due to its ability to phosphorylate and inhibit glycogen synthase, an enzyme responsible for the synthesis of glycogen from glucose.

GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which share a high degree of sequence similarity and are widely expressed in various tissues. Both isoforms are constitutively active under normal conditions and are regulated through inhibitory phosphorylation by several upstream signaling pathways, such as insulin, Wnt, and Hedgehog signaling.

Dysregulation of GSK-3 has been implicated in the pathogenesis of various diseases, including diabetes, neurodegenerative disorders, and cancer. In recent years, GSK-3 has emerged as an attractive therapeutic target for the development of novel drugs to treat these conditions.

A caregiver is an individual who provides assistance and support to another person who is unable to meet their own needs for activities of daily living due to illness, disability, frailty, or other reasons. Caregiving can take many forms, including providing physical care, emotional support, managing medications, assisting with mobility, and helping with household tasks and errands. Caregivers may be family members, friends, or professional providers, and the level of care they provide can range from a few hours a week to round-the-clock assistance. In medical contexts, caregivers are often referred to as informal or family caregivers when they are unpaid relatives or friends, and professional or paid caregivers when they are hired to provide care.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Cyclin-Dependent Kinase 5 (CDK5) is a type of protein kinase that plays crucial roles in the regulation of various cellular processes, particularly in neurons. Unlike other cyclin-dependent kinases, CDK5 is activated by associating with regulatory subunits called cyclins, specifically cyclin I and cyclin D1, but not during the cell cycle.

CDK5 activity is primarily involved in the development and functioning of the nervous system, where it regulates neuronal migration, differentiation, and synaptic plasticity. It has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and various neurodevelopmental conditions.

CDK5 activity is tightly regulated by phosphorylation and interacting partners. Dysregulation of CDK5 can lead to abnormal neuronal function and contribute to the pathogenesis of neurological disorders.

"Postmortem changes," also known as "autolysis" or "decomposition," refer to the natural biological processes that occur in a deceased body after death. These changes include various chemical, physical, and biological alterations such as livor mortis (pooling of blood), algor mortis (drop in body temperature), rigor mortis (stiffening of muscles), putrefaction (breakdown by microorganisms), and decomposition by insects and other animals. These changes help forensic experts estimate the time since death, known as the postmortem interval.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

The entorhinal cortex is a region in the brain that is located in the medial temporal lobe and is part of the limbic system. It plays a crucial role in memory, navigation, and the processing of sensory information. The entorhinal cortex is closely connected to the hippocampus, which is another important structure for memory and spatial cognition.

The entorhinal cortex can be divided into several subregions, including the lateral, medial, and posterior sections. These subregions have distinct connectivity patterns and may contribute differently to various cognitive functions. One of the most well-known features of the entorhinal cortex is the presence of "grid cells," which are neurons that fire in response to specific spatial locations and help to form a cognitive map of the environment.

Damage to the entorhinal cortex has been linked to several neurological and psychiatric conditions, including Alzheimer's disease, epilepsy, and schizophrenia.

The Dominican Republic is not a medical term or concept. It's the name of a country located in the Caribbean region, which shares the island of Hispaniola with Haiti. The Dominican Republic is known for its beautiful beaches, tropical climate, and diverse culture. If you have any questions about travel medicine or health-related issues related to the Dominican Republic, I would be happy to try to help answer them!

The frontal lobe is the largest lobes of the human brain, located at the front part of each cerebral hemisphere and situated in front of the parietal and temporal lobes. It plays a crucial role in higher cognitive functions such as decision making, problem solving, planning, parts of social behavior, emotional expressions, physical reactions, and motor function. The frontal lobe is also responsible for what's known as "executive functions," which include the ability to focus attention, understand rules, switch focus, plan actions, and inhibit inappropriate behaviors. It is divided into five areas, each with its own specific functions: the primary motor cortex, premotor cortex, Broca's area, prefrontal cortex, and orbitofrontal cortex. Damage to the frontal lobe can result in a wide range of impairments, depending on the location and extent of the injury.

Clusterin is a protein that is widely expressed in many tissues and body fluids, including the tears, blood plasma, seminal fluid, milk, and cerebrospinal fluid. It is also known as apolipoprotein J or sulfated glycoprotein 2. Clusterin has diverse functions, including cell-cell communication, lipid transport, and protection against oxidative stress.

In the context of medicine and disease, clusterin has been studied for its potential role in several pathological processes, such as neurodegeneration, inflammation, cancer, and aging. In particular, clusterin has been implicated in the development and progression of various types of cancer, including prostate, breast, ovarian, and lung cancer. It is thought to contribute to tumor growth, invasion, and metastasis by promoting cell survival, angiogenesis, and resistance to chemotherapy.

Therefore, clusterin has been considered as a potential therapeutic target for cancer treatment, and several strategies have been developed to inhibit its expression or activity. However, more research is needed to fully understand the molecular mechanisms of clusterin in health and disease, and to translate these findings into effective clinical interventions.

Psychiatric Status Rating Scales are standardized assessment tools used by mental health professionals to evaluate and rate the severity of a person's psychiatric symptoms and functioning. These scales provide a systematic and structured approach to measuring various aspects of an individual's mental health, such as mood, anxiety, psychosis, behavior, and cognitive abilities.

The purpose of using Psychiatric Status Rating Scales is to:

1. Assess the severity and improvement of psychiatric symptoms over time.
2. Aid in diagnostic decision-making and treatment planning.
3. Monitor treatment response and adjust interventions accordingly.
4. Facilitate communication among mental health professionals about a patient's status.
5. Provide an objective basis for research and epidemiological studies.

Examples of Psychiatric Status Rating Scales include:

1. Clinical Global Impression (CGI): A brief, subjective rating scale that measures overall illness severity, treatment response, and improvement.
2. Positive and Negative Syndrome Scale (PANSS): A comprehensive scale used to assess the symptoms of psychosis, including positive, negative, and general psychopathology domains.
3. Hamilton Rating Scale for Depression (HRSD) or Montgomery-Ã…sberg Depression Rating Scale (MADRS): Scales used to evaluate the severity of depressive symptoms.
4. Young Mania Rating Scale (YMRS): A scale used to assess the severity of manic or hypomanic symptoms.
5. Brief Psychiatric Rating Scale (BPRS) or Symptom Checklist-90 Revised (SCL-90-R): Scales that measure a broad range of psychiatric symptoms and psychopathology.
6. Global Assessment of Functioning (GAF): A scale used to rate an individual's overall psychological, social, and occupational functioning on a hypothetical continuum of mental health-illness.

It is important to note that Psychiatric Status Rating Scales should be administered by trained mental health professionals to ensure accurate and reliable results.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Microglia are a type of specialized immune cell found in the brain and spinal cord. They are part of the glial family, which provide support and protection to the neurons in the central nervous system (CNS). Microglia account for about 10-15% of all cells found in the CNS.

The primary role of microglia is to constantly survey their environment and eliminate any potentially harmful agents, such as pathogens, dead cells, or protein aggregates. They do this through a process called phagocytosis, where they engulf and digest foreign particles or cellular debris. In addition to their phagocytic function, microglia also release various cytokines, chemokines, and growth factors that help regulate the immune response in the CNS, promote neuronal survival, and contribute to synaptic plasticity.

Microglia can exist in different activation states depending on the nature of the stimuli they encounter. In a resting state, microglia have a small cell body with numerous branches that are constantly monitoring their surroundings. When activated by an injury, infection, or neurodegenerative process, microglia change their morphology and phenotype, retracting their processes and adopting an amoeboid shape to migrate towards the site of damage or inflammation. Based on the type of activation, microglia can release both pro-inflammatory and anti-inflammatory factors that contribute to either neuroprotection or neurotoxicity.

Dysregulation of microglial function has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Amyotrophic Lateral Sclerosis (ALS). Therefore, understanding the role of microglia in health and disease is crucial for developing novel therapeutic strategies to treat these conditions.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

PC12 cells are a type of rat pheochromocytoma cell line, which are commonly used in scientific research. Pheochromocytomas are tumors that develop from the chromaffin cells of the adrenal gland, and PC12 cells are a subtype of these cells.

PC12 cells have several characteristics that make them useful for research purposes. They can be grown in culture and can be differentiated into a neuron-like phenotype when treated with nerve growth factor (NGF). This makes them a popular choice for studies involving neuroscience, neurotoxicity, and neurodegenerative disorders.

PC12 cells are also known to express various neurotransmitter receptors, ion channels, and other proteins that are relevant to neuronal function, making them useful for studying the mechanisms of drug action and toxicity. Additionally, PC12 cells can be used to study the regulation of cell growth and differentiation, as well as the molecular basis of cancer.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Single Nucleotide Polymorphism (SNP) is a type of genetic variation that occurs when a single nucleotide (A, T, C, or G) in the DNA sequence is altered. This alteration must occur in at least 1% of the population to be considered a SNP. These variations can help explain why some people are more susceptible to certain diseases than others and can also influence how an individual responds to certain medications. SNPs can serve as biological markers, helping scientists locate genes that are associated with disease. They can also provide information about an individual's ancestry and ethnic background.

Maze learning is not a medical term per se, but it is a concept that is often used in the field of neuroscience and psychology. It refers to the process by which an animal or human learns to navigate through a complex environment, such as a maze, in order to find its way to a goal or target.

Maze learning involves several cognitive processes, including spatial memory, learning, and problem-solving. As animals or humans navigate through the maze, they encode information about the location of the goal and the various landmarks within the environment. This information is then used to form a cognitive map that allows them to navigate more efficiently in subsequent trials.

Maze learning has been widely used as a tool for studying learning and memory processes in both animals and humans. For example, researchers may use maze learning tasks to investigate the effects of brain damage or disease on cognitive function, or to evaluate the efficacy of various drugs or interventions for improving cognitive performance.

The Caribbean Region, also known as the Caribbean Basin or simply the Caribbean, is a geographical area that includes the Caribbean Sea and its surrounding islands and coasts. It is located in the tropical waters of the Atlantic Ocean, southeast of the Gulf of Mexico and North America, east of Central America, and south of the Greater Antilles.

The region consists of more than 7,000 islands, islets, reefs, and cays, which are divided into three main groups: the Greater Antilles, the Lesser Antilles, and the Lucayan Archipelago (which includes the Bahamas and the Turks and Caicos Islands). The Caribbean Region also includes the coasts of several countries in North, Central, and South America that border the Caribbean Sea.

The Caribbean Region is known for its diverse cultures, rich history, and unique biodiversity. It is home to a wide range of ecosystems, including coral reefs, mangroves, seagrass beds, rainforests, and dry forests, which support a variety of plant and animal species, many of which are found nowhere else in the world.

The Caribbean Region is also an important economic and political area, with several countries and territories that have strong ties to each other and to the United States, Canada, and Europe. Tourism, fishing, agriculture, and shipping are major industries in the region, and many of its islands serve as popular destinations for travelers from around the world.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

PrPc proteins, also known as cellular prion proteins, are a type of protein found on the surface of many types of cells in the body, including neurons in the brain. The normal function of PrPc proteins is not entirely clear, but they are believed to play a role in various physiological processes such as protecting nerve cells from damage, regulating metal ion homeostasis, and participating in cell signaling pathways.

PrPc proteins are composed of 253 amino acids and have a molecular weight of approximately 35 kDa. They contain a highly conserved domain called the prion protein domain (PRD), which is rich in alpha-helices and contains a copper-binding site. The PRD is necessary for the normal function of PrPc proteins, but it is also the region that undergoes conformational changes to form the abnormal, disease-associated form of the protein called PrPSc.

PrPSc proteins are misfolded and aggregated forms of PrPc proteins that are associated with a group of neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs), including bovine spongiform encephalopathy (BSE or "mad cow disease"), scrapie in sheep, and variant Creutzfeldt-Jakob disease (vCJD) in humans. The misfolded PrPSc proteins can cause other normal PrPc proteins to also misfold and aggregate, leading to the formation of amyloid fibrils that accumulate in the brain and cause neurodegeneration.

Caspase-6 is a type of protease enzyme that plays a crucial role in programmed cell death, also known as apoptosis. It is a member of the cysteine-aspartic acid protease (caspase) family, which are characterized by their ability to cleave proteins at specific aspartic acid residues. Caspase-6 is activated during the execution phase of apoptosis and contributes to the dismantling of cellular structures. It is involved in the cleavage of several structural and regulatory proteins, including lamins, nuclear lamina-associated proteins, actin, and sterol regulatory element-binding proteins (SREBPs). Dysregulation of caspase-6 activity has been implicated in various neurological disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

There is currently no medical definition for "Alzheimer vaccines" as there are no vaccines that have been approved for use in preventing or curing Alzheimer's disease. However, there are several experimental immunotherapy treatments being investigated in clinical trials. These therapies aim to stimulate the immune system to target and clear beta-amyloid plaques, which are a hallmark pathological feature of Alzheimer's disease.

One type of experimental immunotherapy is known as an active immunization approach, where a vaccine is used to stimulate the patient's own immune system to produce antibodies against beta-amyloid. An example of this approach is the AN1792 vaccine, which was tested in clinical trials but unfortunately showed significant side effects and did not demonstrate clinical benefits.

Another type of experimental immunotherapy is known as a passive immunization approach, where pre-made antibodies are given to the patient through infusions. Several monoclonal antibodies targeting beta-amyloid have been tested in clinical trials, with some showing promise in reducing beta-amyloid levels and slowing cognitive decline. However, further research is needed to determine their safety and efficacy before they can be approved for use as a treatment or prevention for Alzheimer's disease.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Gliosis is a term used in histopathology and neuroscience to describe the reaction of support cells in the brain, called glial cells, to injury or disease. This response includes an increase in the number and size of glial cells, as well as changes in their shape and function. The most common types of glial cells involved in gliosis are astrocytes and microglia.

Gliosis can be triggered by a variety of factors, including trauma, infection, inflammation, neurodegenerative diseases, and stroke. In response to injury or disease, astrocytes become hypertrophied (enlarged) and undergo changes in their gene expression profile that can lead to the production of various proteins, such as glial fibrillary acidic protein (GFAP). These changes can result in the formation of a dense network of astrocytic processes, which can contribute to the formation of a glial scar.

Microglia, another type of glial cell, become activated during gliosis and play a role in the immune response in the central nervous system (CNS). They can release pro-inflammatory cytokines, chemokines, and reactive oxygen species that contribute to the inflammatory response.

While gliosis is a protective response aimed at containing damage and promoting tissue repair, it can also have negative consequences. For example, the formation of glial scars can impede axonal regeneration and contribute to neurological deficits. Additionally, chronic activation of microglia has been implicated in various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Neurofilament proteins (NFs) are type IV intermediate filament proteins that are specific to neurons. They are the major structural components of the neuronal cytoskeleton and play crucial roles in maintaining the structural integrity, stability, and diameter of axons. Neurofilaments are composed of three subunits: light (NFL), medium (NFM), and heavy (NFH) neurofilament proteins, which differ in their molecular weights. These subunits assemble into heteropolymers to form the neurofilament core, while the C-terminal tails of NFH and NFM extend outward from the core, interacting with other cellular components and participating in various neuronal functions. Increased levels of neurofilament proteins, particularly NFL, in cerebrospinal fluid (CSF) and blood are considered biomarkers for axonal damage and neurodegeneration in several neurological disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Primary Progressive Aphasia (PPA) is a neurological disorder characterized by progressive loss of language capabilities, while other cognitive abilities remain preserved. It is a type of dementia that primarily affects speech and language. Unlike other forms of aphasia that result from stroke or head injury, PPA is degenerative and gets worse over time.

There are three main types of PPA:

1. Semantic Variant PPA (svPPA): This type is characterized by difficulty in understanding words and objects, despite having no trouble with the mechanics of speech or writing. Over time, people with svPPA may lose their ability to understand spoken or written language, as well as to recognize objects and faces.

2. Nonfluent/Agrammatic Variant PPA (nfvPPA): This type is characterized by difficulty with speaking and writing, including producing grammatical sentences and articulating words. People with nfvPPA may also have problems with understanding spoken language, particularly when it comes to complex sentences or ambiguous phrases.

3. Logopenic Variant PPA (lvPPA): This type is characterized by difficulty with word-finding and sentence repetition, while speech remains fluent. People with lvPPA may also have problems with understanding spoken language, particularly when it comes to complex sentences or ambiguous phrases.

The exact cause of PPA is not known, but it is believed to be related to degeneration of specific areas of the brain involved in language processing, such as Broca's area and Wernicke's area. There is currently no cure for PPA, but speech and language therapy can help to slow down the progression of the disorder and improve communication skills.

Prions are misfolded proteins that can induce other normal proteins to also adopt the misfolded shape, leading to the formation of aggregates. These abnormal prion protein aggregates are associated with a group of progressive neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). Examples of TSEs include bovine spongiform encephalopathy (BSE or "mad cow disease") in cattle, variant Creutzfeldt-Jakob disease (vCJD) in humans, and scrapie in sheep. The misfolded prion proteins are resistant to degradation by proteases, which contributes to their accumulation and subsequent neuronal damage, ultimately resulting in spongiform degeneration of the brain and other neurological symptoms associated with TSEs.

I'm sorry for any confusion, but the term "Lemur" is not typically used in medical definitions. It is a common name that refers to primates belonging to the infraorder Lemuriformes. They are native to Madagascar and are divided into five families: Cheirogaleidae (dwarf lemurs), Daubentoniidae (aye-aye), Indriidae (indris, sifakas, and avahis), Lepilemuridae (sportive lemurs), and Lemuridae (true lemurs). If you have any questions related to medical terminology or health concerns, I would be happy to help!

Fluorodeoxyglucose F18 (FDG-18) is not a medical condition, but a radiopharmaceutical used in medical imaging. It is a type of glucose (a simple sugar) that has been chemically combined with a small amount of a radioactive isotope called fluorine-18.

FDG-18 is used in positron emission tomography (PET) scans to help identify areas of the body where cells are using more energy than normal, such as cancerous tumors. The FDG-18 is injected into the patient's vein and travels throughout the body. Because cancer cells often use more glucose than normal cells, they tend to absorb more FDG-18.

Once inside the body, the FDG-18 emits positrons, which interact with electrons in nearby tissue, producing gamma rays that can be detected by a PET scanner. The resulting images can help doctors locate and assess the size and activity of cancerous tumors, as well as monitor the effectiveness of treatment.

"Family Health" is not a term that has a single, widely accepted medical definition. However, in the context of healthcare and public health, "family health" often refers to the physical, mental, and social well-being of all members of a family unit. It includes the assessment, promotion, and prevention of health conditions that affect individual family members as well as the family as a whole.

Family health may also encompass interventions and programs that aim to strengthen family relationships, communication, and functioning, as these factors can have a significant impact on overall health outcomes. Additionally, family health may involve addressing social determinants of health, such as poverty, housing, and access to healthcare, which can affect the health of families and communities.

Overall, family health is a holistic approach to healthcare that recognizes the importance of considering the needs and experiences of all family members in promoting and maintaining good health.

Protein multimerization refers to the process where multiple protein subunits assemble together to form a complex, repetitive structure called a multimer or oligomer. This can involve the association of identical or similar protein subunits through non-covalent interactions such as hydrogen bonding, ionic bonding, and van der Waals forces. The resulting multimeric structures can have various shapes, sizes, and functions, including enzymatic activity, transport, or structural support. Protein multimerization plays a crucial role in many biological processes and is often necessary for the proper functioning of proteins within cells.

The cerebral ventricles are a system of interconnected fluid-filled cavities within the brain. They are located in the center of the brain and are filled with cerebrospinal fluid (CSF), which provides protection to the brain by cushioning it from impacts and helping to maintain its stability within the skull.

There are four ventricles in total: two lateral ventricles, one third ventricle, and one fourth ventricle. The lateral ventricles are located in each cerebral hemisphere, while the third ventricle is located between the thalami of the two hemispheres. The fourth ventricle is located at the base of the brain, above the spinal cord.

CSF flows from the lateral ventricles into the third ventricle through narrow passageways called the interventricular foramen. From there, it flows into the fourth ventricle through another narrow passageway called the cerebral aqueduct. CSF then leaves the fourth ventricle and enters the subarachnoid space surrounding the brain and spinal cord, where it can be absorbed into the bloodstream.

Abnormalities in the size or shape of the cerebral ventricles can indicate underlying neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or atrophy (shrinkage) of brain tissue. Imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), are often used to assess the size and shape of the cerebral ventricles in clinical settings.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Proteolysis is the biological process of breaking down proteins into smaller polypeptides or individual amino acids by the action of enzymes called proteases. This process is essential for various physiological functions, including digestion, protein catabolism, cell signaling, and regulation of numerous biological activities. Dysregulation of proteolysis can contribute to several pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

The parahippocampal gyrus is a region within the brain's temporal lobe that plays a significant role in memory encoding and retrieval, as well as in the processing of spatial navigation and visual perception. It is located next to the hippocampus, which is another crucial structure for long-term memory formation. The parahippocampal gyrus contains several subregions, including the entorhinal cortex, perirhinal cortex, and the posterior cingulate cortex, all of which contribute to various aspects of learning and memory. Damage to this area can lead to memory impairments, particularly in the context of recognizing places or objects (source: Nieuwenhuis & De Dreu, 2016).

Congo Red is a synthetic diazo dye that is commonly used in histology and pathology for stainings and tests. It is particularly useful in identifying amyloid deposits in tissues, which are associated with various diseases such as Alzheimer's disease, type 2 diabetes, and systemic amyloidosis.

When Congo Red binds to amyloid fibrils, it exhibits a characteristic apple-green birefringence under polarized light microscopy. Additionally, Congo Red stained amyloid deposits show a shift in their emission spectrum when excited with circularly polarized light, a phenomenon known as dichroism. These properties make Congo Red a valuable tool for the diagnosis and study of amyloidosis and other protein misfolding disorders.

It is important to note that Congo Red staining should be performed with care, as it can be toxic and carcinogenic if not handled properly.

A Genome-Wide Association Study (GWAS) is an analytical approach used in genetic research to identify associations between genetic variants, typically Single Nucleotide Polymorphisms (SNPs), and specific traits or diseases across the entire genome. This method involves scanning the genomes of many individuals, usually thousands, to find genetic markers that occur more frequently in people with a particular disease or trait than in those without it.

The goal of a GWAS is to identify genetic loci (positions on chromosomes) associated with a trait or disease, which can help researchers understand the underlying genetic architecture and biological mechanisms contributing to the condition. It's important to note that while GWAS can identify associations between genetic variants and traits/diseases, these studies do not necessarily prove causation. Further functional validation studies are often required to confirm the role of identified genetic variants in the development or progression of a trait or disease.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Endopeptidases are a type of enzyme that breaks down proteins by cleaving peptide bonds inside the polypeptide chain. They are also known as proteinases or endoproteinases. These enzymes work within the interior of the protein molecule, cutting it at specific points along its length, as opposed to exopeptidases, which remove individual amino acids from the ends of the protein chain.

Endopeptidases play a crucial role in various biological processes, such as digestion, blood coagulation, and programmed cell death (apoptosis). They are classified based on their catalytic mechanism and the structure of their active site. Some examples of endopeptidase families include serine proteases, cysteine proteases, aspartic proteases, and metalloproteases.

It is important to note that while endopeptidases are essential for normal physiological functions, they can also contribute to disease processes when their activity is unregulated or misdirected. For instance, excessive endopeptidase activity has been implicated in the pathogenesis of neurodegenerative disorders, cancer, and inflammatory conditions.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Hypokinesia is a term used in medicine to describe decreased or reduced mobility and amplitude of movements. It can be seen in various medical conditions, most notably in Parkinson's disease. In this condition, hypokinesia manifests as bradykinesia (slowness of movement), akinesia (absence of movement), or both. Hypokinesia can also affect facial expressions, leading to a mask-like appearance. Other causes of hypokinesia include certain medications, stroke, and other neurological disorders.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Alpha-synuclein is a protein that is primarily found in neurons (nerve cells) in the brain. It is encoded by the SNCA gene and is abundantly expressed in presynaptic terminals, where it is believed to play a role in the regulation of neurotransmitter release.

In certain neurological disorders, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, alpha-synuclein can form aggregates known as Lewy bodies and Lewy neurites. These aggregates are a pathological hallmark of these diseases and are believed to contribute to the death of nerve cells, leading to the symptoms associated with these disorders.

The precise function of alpha-synuclein is not fully understood, but it is thought to be involved in various cellular processes such as maintaining the structure of the presynaptic terminal, regulating synaptic vesicle trafficking and neurotransmitter release, and protecting neurons from stress.

Normal pressure hydrocephalus (NPH) is a type of hydrocephalus that occurs in older adults and is characterized by the accumulation of cerebrospinal fluid (CSF) in the brain's ventricles, leading to enlargement of the ventricles while maintaining normal or near-normal CSF pressure. This condition can cause a triad of symptoms including gait disturbance, cognitive impairment, and urinary incontinence.

The exact cause of NPH is not well understood, but it may be associated with conditions such as previous meningitis, subarachnoid hemorrhage, or head trauma. In some cases, the cause may be idiopathic, meaning there is no known underlying condition.

Diagnosis of NPH typically involves a combination of clinical evaluation, imaging studies (such as CT or MRI scans), and sometimes lumbar puncture to measure CSF pressure and assess the patient's response to removal of CSF. Treatment usually involves surgical implantation of a shunt system that diverts excess CSF from the ventricles to another part of the body where it can be absorbed, such as the abdominal cavity. This procedure can help alleviate symptoms and improve quality of life for some patients with NPH.

Neuroprotective agents are substances that protect neurons or nerve cells from damage, degeneration, or death caused by various factors such as trauma, inflammation, oxidative stress, or excitotoxicity. These agents work through different mechanisms, including reducing the production of free radicals, inhibiting the release of glutamate (a neurotransmitter that can cause cell damage in high concentrations), promoting the growth and survival of neurons, and preventing apoptosis (programmed cell death). Neuroprotective agents have been studied for their potential to treat various neurological disorders, including stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, and multiple sclerosis. However, more research is needed to fully understand their mechanisms of action and to develop effective therapies.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

The Blood-Brain Barrier (BBB) is a highly specialized, selective interface between the central nervous system (CNS) and the circulating blood. It is formed by unique endothelial cells that line the brain's capillaries, along with tight junctions, astrocytic foot processes, and pericytes, which together restrict the passage of substances from the bloodstream into the CNS. This barrier serves to protect the brain from harmful agents and maintain a stable environment for proper neural function. However, it also poses a challenge in delivering therapeutics to the CNS, as most large and hydrophilic molecules cannot cross the BBB.

Early diagnosis refers to the identification and detection of a medical condition or disease in its initial stages, before the appearance of significant symptoms or complications. This is typically accomplished through various screening methods, such as medical history reviews, physical examinations, laboratory tests, and imaging studies. Early diagnosis can allow for more effective treatment interventions, potentially improving outcomes and quality of life for patients, while also reducing the overall burden on healthcare systems.

Osteopathic physicians, also known as osteopaths or DOs (Doctors of Osteopathic Medicine), are licensed healthcare professionals who practice a form of medicine that combines the principles of traditional medicine with manual therapy and a focus on the whole-body approach to health and wellness. They are trained to diagnose, treat, and manage a wide range of medical conditions and diseases, using all the conventional medical tools available to other physicians (such as prescription medications, surgery, and lifestyle modifications), but with additional training in osteopathic manipulative medicine (OMM).

OMM is a hands-on approach that utilizes various techniques, including stretching, gentle pressure, and resistance, to diagnose and treat illnesses and injuries. Osteopathic physicians use OMM to help restore the normal function and balance of the body's interconnected systems, such as the musculoskeletal, nervous, and circulatory systems. This holistic approach allows osteopathic physicians to address the root causes of medical issues, rather than just treating symptoms, and often results in improved overall health and well-being for their patients.

Osteopathic physicians can be found in various medical specialties, including primary care, family medicine, internal medicine, emergency medicine, surgery, psychiatry, and pediatrics, among others. They are trained through a rigorous four-year doctoral program that includes classroom instruction, clinical rotations, and hands-on training in OMM. Upon completion of their education, osteopathic physicians must pass licensing exams and meet state-specific requirements to practice medicine.

Huntington Disease (HD) is a genetic neurodegenerative disorder that affects both cognitive and motor functions. It is characterized by the progressive loss of neurons in various areas of the brain, particularly in the striatum and cortex. The disease is caused by an autosomal dominant mutation in the HTT gene, which codes for the huntingtin protein. The most common mutation is a CAG repeat expansion in this gene, leading to the production of an abnormal form of the huntingtin protein that is toxic to nerve cells.

The symptoms of HD typically appear between the ages of 30 and 50, but they can start earlier or later in life. The early signs of HD may include subtle changes in mood, cognition, and coordination. As the disease progresses, individuals with HD experience uncontrolled movements (chorea), emotional disturbances, cognitive decline, and difficulties with communication and swallowing. Eventually, they become dependent on others for their daily needs and lose their ability to walk, talk, and care for themselves.

There is currently no cure for HD, but medications and therapies can help manage the symptoms of the disease and improve quality of life. Genetic testing is available to confirm the diagnosis and provide information about the risk of passing the disease on to future generations.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

Ethylene glycols are a class of synthetic chemical compounds that are commonly used as automotive antifreeze, de-icing agents, and as raw materials in the manufacture of polyester fibers and resins. The two most common types of ethylene glycol are ethylene glycol monoethyl ether (also known as ethylene glycol monomethyl ether or EGME) and diethylene glycol (DEG).

Ethylene glycols are colorless, odorless liquids with a sweet taste. They are highly toxic to humans and animals if ingested, inhaled, or absorbed through the skin. Exposure can cause a range of symptoms, including nausea, vomiting, abdominal pain, dizziness, confusion, seizures, coma, and even death.

In medical terms, ethylene glycols are often referred to as "toxic alcohols" or "antifreeze poisoning" when they cause toxicity in humans. Treatment typically involves supportive care, such as fluid replacement and kidney dialysis, as well as the use of specific antidotes, such as fomepizole or ethanol, to prevent further absorption and metabolism of the toxic alcohol.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

Protein isoforms are different forms or variants of a protein that are produced from a single gene through the process of alternative splicing, where different exons (or parts of exons) are included in the mature mRNA molecule. This results in the production of multiple, slightly different proteins that share a common core structure but have distinct sequences and functions. Protein isoforms can also arise from genetic variations such as single nucleotide polymorphisms or mutations that alter the protein-coding sequence of a gene. These differences in protein sequence can affect the stability, localization, activity, or interaction partners of the protein isoform, leading to functional diversity and specialization within cells and organisms.

Neprilysin (NEP), also known as membrane metallo-endopeptidase or CD10, is a type II transmembrane glycoprotein that functions as a zinc-dependent metalloprotease. It is widely expressed in various tissues, including the kidney, brain, heart, and vasculature. Neprilysin plays a crucial role in the breakdown and regulation of several endogenous bioactive peptides, such as natriuretic peptides, bradykinin, substance P, and angiotensin II. By degrading these peptides, neprilysin helps maintain cardiovascular homeostasis, modulate inflammation, and regulate neurotransmission. In the context of heart failure, neprilysin inhibitors have been developed to increase natriuretic peptide levels, promoting diuresis and vasodilation, ultimately improving cardiac function.

Extrapyramidal tracts are a part of the motor system that lies outside of the pyramidal tracts, which are responsible for controlling voluntary movements. These extrapyramidal tracts consist of several different pathways in the brain and spinal cord that work together to regulate and coordinate involuntary movements, muscle tone, and posture.

The extrapyramidal system includes structures such as the basal ganglia, cerebellum, and brainstem, and it helps to modulate and fine-tune motor activity. Disorders of the extrapyramidal tracts can result in a variety of symptoms, including rigidity, tremors, involuntary movements, and difficulty with coordination and balance.

Some common conditions that affect the extrapyramidal system include Parkinson's disease, Huntington's disease, and drug-induced movement disorders. Treatment for these conditions may involve medications that target specific components of the extrapyramidal system to help alleviate symptoms and improve function.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Cognitive reserve refers to the ability of the brain to compensate for cognitive decline or damage by using alternative neural pathways or strategies. It is a theoretical construct used in neuropsychology and neurology to explain why some individuals with similar levels of brain damage or disease progression show greater preservation of cognitive function than others.

Cognitive reserve is thought to be influenced by factors such as education, intelligence, occupational complexity, and engagement in cognitively stimulating activities throughout the lifespan. These factors contribute to the development of a more extensive and efficient neural network that can help maintain cognitive function despite brain changes associated with aging or neurological disorders like Alzheimer's disease.

It is important to note that cognitive reserve does not prevent cognitive decline but rather delays its onset or reduces its severity. Additionally, while cognitive reserve may provide some protection against cognitive impairment, it does not guarantee immunity from it.

Active immunotherapy, also known as active immunization or vaccination, is a type of medical treatment that stimulates the immune system to develop an adaptive response against specific antigens, thereby providing protection against future exposures to those antigens. This is typically achieved through the administration of vaccines, which contain either weakened or inactivated pathogens, or components of pathogens (such as proteins or sugars), along with adjuvants that enhance the immune response. The goal of active immunotherapy is to induce long-term immunity by generating memory T and B cells, which can quickly recognize and respond to subsequent infections or reinfections with the targeted pathogen.

In contrast to passive immunotherapy, where preformed antibodies or immune cells are directly administered to a patient for immediate but temporary protection, active immunotherapy relies on the recipient's own immune system to mount a specific and durable response against the antigen of interest. This approach has been instrumental in preventing and controlling various infectious diseases, such as measles, mumps, rubella, polio, hepatitis B, and influenza, among others. Additionally, active immunotherapy is being explored as a potential strategy for treating cancer and other chronic diseases by targeting disease-specific antigens or modulating the immune system to enhance its ability to recognize and eliminate abnormal cells.

Neurites are extensions of a neuron (a type of cell in the nervous system) that can be either an axon or a dendrite. An axon is a thin, cable-like extension that carries signals away from the cell body, while a dendrite is a branching extension that receives signals from other neurons. Neurites play a crucial role in the communication between neurons and the formation of neural networks. They are involved in the transmission of electrical and chemical signals, as well as in the growth and development of the nervous system.

Cerebrovascular disorders are a group of medical conditions that affect the blood vessels of the brain. These disorders can be caused by narrowing, blockage, or rupture of the blood vessels, leading to decreased blood flow and oxygen supply to the brain. The most common types of cerebrovascular disorders include:

1. Stroke: A stroke occurs when a blood vessel in the brain becomes blocked or bursts, causing a lack of oxygen and nutrients to reach brain cells. This can lead to permanent damage or death of brain tissue.
2. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA occurs when blood flow to the brain is temporarily blocked, often by a blood clot. Symptoms may last only a few minutes to a few hours and typically resolve on their own. However, a TIA is a serious warning sign that a full-blown stroke may occur in the future.
3. Aneurysm: An aneurysm is a weakened or bulging area in the wall of a blood vessel. If left untreated, an aneurysm can rupture and cause bleeding in the brain.
4. Arteriovenous malformation (AVM): An AVM is a tangled mass of abnormal blood vessels that connect arteries and veins. This can lead to bleeding in the brain or stroke.
5. Carotid stenosis: Carotid stenosis occurs when the carotid arteries, which supply blood to the brain, become narrowed or blocked due to plaque buildup. This can increase the risk of stroke.
6. Vertebrobasilar insufficiency: This condition occurs when the vertebral and basilar arteries, which supply blood to the back of the brain, become narrowed or blocked. This can lead to symptoms such as dizziness, vertigo, and difficulty swallowing.

Cerebrovascular disorders are a leading cause of disability and death worldwide. Risk factors for these conditions include age, high blood pressure, smoking, diabetes, high cholesterol, and family history. Treatment may involve medications, surgery, or lifestyle changes to reduce the risk of further complications.

The Brief Psychiatric Rating Scale (BPRS) is a widely used clinician-rated scale for assessing the severity of psychopathology in individuals with mental illness. It consists of 18 items, each rated on a 7-point scale (1=not present to 7=extremely severe), that measure various symptoms such as depression, anxiety, hostility, hallucinations, and unusual thoughts. The BPRS is often used in research and clinical settings to monitor treatment response and symptom changes over time.

Acetylcholinesterase (AChE) is an enzyme that catalyzes the hydrolysis of acetylcholine (ACh), a neurotransmitter, into choline and acetic acid. This enzyme plays a crucial role in regulating the transmission of nerve impulses across the synapse, the junction between two neurons or between a neuron and a muscle fiber.

Acetylcholinesterase is located in the synaptic cleft, the narrow gap between the presynaptic and postsynaptic membranes. When ACh is released from the presynaptic membrane and binds to receptors on the postsynaptic membrane, it triggers a response in the target cell. Acetylcholinesterase rapidly breaks down ACh, terminating its action and allowing for rapid cycling of neurotransmission.

Inhibition of acetylcholinesterase leads to an accumulation of ACh in the synaptic cleft, prolonging its effects on the postsynaptic membrane. This can result in excessive stimulation of cholinergic receptors and overactivation of the cholinergic system, which may cause a range of symptoms, including muscle weakness, fasciculations, sweating, salivation, lacrimation, urination, defecation, bradycardia, and bronchoconstriction.

Acetylcholinesterase inhibitors are used in the treatment of various medical conditions, such as Alzheimer's disease, myasthenia gravis, and glaucoma. However, they can also be used as chemical weapons, such as nerve agents, due to their ability to disrupt the nervous system and cause severe toxicity.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

"Alzheimer's Disease Research Timeline - Alzforum". www.alzforum.org. "Alzheimer's Disease Brain Cell Atlas- brain-map.org". ... Lewy bodies are not rare in the brains of people with Alzheimer's disease. Alzheimer's disease has been identified as a protein ... In possible Alzheimer's disease dementia, another causal disease such as cerebrovascular disease is present. Neuropsychological ... Excitotoxicity occurs not only in Alzheimer's disease, but also in other neurological diseases such as Parkinson's disease and ...
... (24 May 2023). "From Plan to Impact VI: Making every step count". Alzheimer's Disease ... Alzheimer's Disease International (21 September 2023). "ADI Conference". Alzheimer's Disease International (ADI) (CS1 errors: ... "Alzheimer's Disease International". NCD Alliance. 2019-02-22. Retrieved 2023-02-15. "Alzheimer's Disease International - ... Alzheimer's Disease International (ADI) is a not-for-profit, international federation of Alzheimer and dementia associations ...
The Alzheimer's disease biomarkers are neurochemical indicators used to assess the risk or presence of the disease. The ... will provide not only future early diagnosis of Alzheimer's disease but also possible therapy for Alzheimer's disease. An open ... It was concluded that elevated BACE 1 activity may contribute to the amyloidgenic process in Alzheimer's disease. CSF BACE1 ... Currently, there are many biomarkers for diagnosis of Alzheimer's disease. However, most of them do not provide consistent data ...
"Rush Alzheimer's Disease Center". Rush University Medical Center. "Alzheimer's Disease Research Centers". National Institute on ... The Rush Alzheimer's Disease Center is one of 29 Alzheimer's centers in the U.S. designated and funded by the National ... Alzheimer's disease research, Alzheimer's and dementia organizations, National Institutes of Health, Rush Medical College, Rush ... The Rush Alzheimer's Disease Center (RADC) is a research center located in Rush University Medical Center. ...
Depression is one of the most common psychiatric symptoms in Alzheimer's disease, occurring at all stages of the disease, but ... The symptoms of dAD can arise at any point during the course of Alzheimer's disease, often at a stage quite late in cognitive ... "Depression in Alzheimer's Disease-2 (DIADS-2)". ClinicalTrials.gov. U.S. National Library of Medicine. Munro, CA; Longmire, CF ... A clinical trial testing sertraline (Zoloft) for depression of Alzheimer disease, launched by the NIMH in 2004, was due to be ...
... (EOAD), also called younger-onset Alzheimer's disease (YOAD), is Alzheimer's disease diagnosed ... "Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease ... Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia; it usually occurs in old age. ... Familial Alzheimer's disease is an inherited and uncommon form of AD. Familial AD usually strikes earlier in life, defined as ...
The Alzheimer's Disease Cooperative Study (ADCS) was founded at University of California San Diego in 1991 and coordinates ... "Paul Aisen, MD, Joins Faculty of UCSD and is Appointed New Director of the Alzheimer's Disease Cooperative Study". Journal of ... clinical trials of candidate treatments for Alzheimer's disease. It is funded by the National Institutes of Health as well as ... Fikes, Bradley J. (2 August 2015). "Next steps for scientist in eye of UCSD-USC Alzheimer's spat". San Diego Tribune. Wang, ...
The Journal of Alzheimer's Disease is a peer-reviewed medical journal published by IOS Press covering the etiology, ... "Journal of Alzheimer's Disease". 2020 Journal Citation Reports. Web of Science (Science ed.). Clarivate Analytics. 2020. ... The awardee is presented the Alzheimer Medal, a 3" bronze medal with the likeness of Alois Alzheimer. This yearly award is ... Alzheimer's disease journals, Academic journals established in 1998, Quarterly journals, English-language journals, IOS Press ...
Rafii, Michael S. (2014-01-01). "Preclinical Alzheimer's disease therapeutics". Journal of Alzheimer's Disease. 42 Suppl 4: ... "Alzheimer Disease Biomarkers as Outcome Measures for Clinical Trials in MCI". Alzheimer Disease and Associated Disorders. 29 (2 ... Alzheimer's Disease Neuroimaging Initiative (2015-07-01). "The Alzheimer's Disease Neuroimaging Initiative phase 2: Increasing ... Alzheimer's Disease Neuroimaging Initiative (2015-01-01). "Empowering imaging biomarkers of Alzheimer's disease". Neurobiology ...
... a genetic risk factor for Alzheimer's disease), as well as in inherited forms of Alzheimer's disease. Given that DCGM occurs ... which can discourage amyloid-beta proteins deposition in brain of patients with Alzheimer's disease. Alzheimer's disease has ... the paired helical filament and Alzheimer's disease". Journal of Alzheimer's Disease. 9 (3 Suppl): 195-207. doi:10.3233/JAD- ... "Diet Associated with Inflammation and Alzheimer's Disease". Journal of Alzheimer's Disease Reports. 3 (1): 299-309. doi:10.3233 ...
... and Activities of Daily Living in Patients with Alzheimer's Disease". Journal of Alzheimer's Disease. 64 (4): 1347-1358. doi: ... and Activities of Daily Living in Patients with Alzheimer's Disease". Journal of Alzheimer's Disease. 64 (4): 1347-1358. doi: ... Alzheimer's Disease has been discussed in popular media outlets. The 2014 film Alive Inside follows patients with Alzheimer's ... "Music, Art and Alzheimer's , Caregiver Center , Alzheimer's Association". Alzheimer's Association. Retrieved February 26, 2018 ...
Common symptoms associated with Alzheimer's disease include: memory loss, confusion, and mood changes. As Alzheimer's disease ... like Alzheimer's disease. While these cultures have some limitations, many fundamental discoveries about Alzheimer's disease ... "10 Early Signs and Symptoms of Alzheimer's". Alzheimer's Association. Retrieved 2022-12-05. "Investing in Alzheimer's Research ... "Understanding Genetics and Alzheimer's Disease" (PDF). Alzheimer Society of Canada. 2018. "Dementia". www.who.int. Retrieved ...
"What is Alzheimer's Disease?". "What Happens to the Brain in Alzheimer's Disease?". National Institute on Aging. Retrieved 2022 ... Corey-Bloom, Jody (2002). "The ABC of Alzheimer's disease: cognitive changes and their management in Alzheimer's disease and ... CDC (2022-09-27). "Disease of the Week - Alzheimer's Disease". Centers for Disease Control and Prevention. Retrieved 2022-12-05 ... Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease and it is the leading cause of dementia. ...
Alzheimer's Disease International Alzheimer Research Forum Alzheimer's Research UK Alzheimer's Society Dementia Research Centre ... UCL Institut of Neurology Alzheimer Society of Canada Alzheimer Society of Ontario Alzheimer's Association Research, education ... This is a list of different Alzheimer's disease organizations in different countries around the world. ... utilizing a venture philanthropy approach National Institute on Aging Fisher Center for Alzheimer's Research Foundation Memory ...
I Know A Song: A Journey With Alzheimer's Disease This documentary shows that Alzheimer's disease need not be the end of a ... with Kajol Devgan playing an Alzheimer's disease patient. Ruth's Locket Alzheimer's Short Film, Summer 2008 The Alzheimer Sea ... A Powerful Short Film About Alzheimer's Disease , ePluribus Media". "Maria Shriver highlights Alzheimer's disease". "Quick ... A Portrait of Alzheimer's is an Emmy award winner. (2006?) My Name Is Lisa A Short Film About Alzheimer's Disease Grandpa, Do ...
"About the Journal". Alzheimer Disease & Associated Disorders. Retrieved 14 October 2020. Official website v t e (Articles with ... Alzheimer Disease and Associated Disorders is a quarterly peer-reviewed medical journal publishing original research findings ... Alzheimer's disease journals, All stub articles, Neurology journal stubs). ... and new approaches to diagnosis and treatment for Alzheimer's disease and related disorders. Articles published emphasize ...
... the cell-cycle hypothesis of Alzheimer's disease considers AD as a disease of deregulation of the cell cycle in neurons.[ ... Oxidative imbalance in Alzheimer's disease.*J Cell Biochem. 1995 Jun;58(2):160-74. Apoptosis and the cell cycle. Vincent et al ... Alzheimer's disease (AD) is a neurodegenerative condition characterized by two hallmarks: senile plaques and the ... 1998 Dec;87(4):731-9. The cell division cycle and the pathophysiology of Alzheimer's disease. Nagy et al., 1998. J Cell Biochem ...
... is a major health issue. Alzheimer's disease is the most common type of dementia ... In 2017, dementia and Alzheimer's disease remained the second leading cause of mortality or death and ischaemic heart diseases ... of the dementia and Alzheimer's disease burden. In 2011, chronic kidney disease, physical inactivity, stroke and high blood ... Alzheimer's disease, Dementia, Diseases and disorders in Australia). ...
"The amyloid beta ion channel hypothesis of Alzheimer's disease". Neuropsychiatric Disease and Treatment. 3 (5): 597-612. ISSN ... prion diseases, Parkinson's disease, and Huntington's disease. Consistent with Aβ channels, other amyloid channels have also ... The ion channel hypothesis of Alzheimer's disease (AD), also known as the channel hypothesis or the amyloid beta ion channel ... Arispe, N; Rojas, E; Pollard, H B (1993-01-15). "Alzheimer disease amyloid beta protein forms calcium channels in bilayer ...
The American Journal of Alzheimer's Disease & Other Dementias is a peer-reviewed academic journal that publishes papers in the ... The American Journal of Alzheimer's Disease & Other Dementias is abstracted and indexed in, among other databases: SCOPUS, and ... The American Journal of Alzheimer's Disease & Other Dementias is aimed primarily at professionals on the frontline of ... Alzheimer's disease journals, Academic journals established in 1986, Monthly journals, All stub articles, Neurology journal ...
Alzheimer's Disease". MetLife. Retrieved 18 October 2018. "2016 Metlife Foundation Awards for Medical Research in Alzheimer's ... The Metlife Foundation Award for Medical Research in Alzheimer's Disease were awarded annually from 1986 to 2016 to recognize ... and treatments of Alzheimer's disease. The awards were endowed by the Metlife Foundation and administered by The American ... Disease" (PDF). Metlife Foundation. Retrieved 18 October 2018. (Articles with short description, Short description matches ...
The Report of the Alzheimer's Study Group' that the 'national effort to address Alzheimer's disease has lacked coordination and ... "A National Alzheimer's Strategic Plan: The Report of the Alzheimer's Study Group" (PDF). The Alzheimer's Association. Retrieved ... In 2017, a bill was approved to boost government funding for Alzheimer's disease to almost $1.4 billion for the fiscal year. In ... "Dementia plans , Alzheimer's Disease International". www.alz.co.uk. 2018-05-13. Retrieved 2019-11-05. Cahill, Suzanne (2019-01- ...
"Prague: What say you, Alois - Should it be 'Alzheimer-Fischer' disease?". Journal of Alzheimer's Disease. 17 (3). "Tuebingen: ... "Alzheimer's disease". Random House Webster's Unabridged Dictionary. Berrios, G. E. (1 November 1990). "Alzheimer's disease: A ... The disease would not become known as Alzheimer's disease until 1910, when Kraepelin named it so in the chapter on "Presenile ... Alzheimer and Fischer had different interpretations of the disease, but owing to Alzheimer's short life, they never had the ...
The organization's mission is to "understand the causes of Alzheimer's disease, improve the care of people living with it, and ... When his wife, Elizabeth Fisher, was diagnosed with Alzheimer's disease, her husband, New York City real estate developer and ... ". "Charity Navigator - Rating for Fisher Center for Alzheimer's Research Foundation". "Fisher Center for Alzheimer's Disease ... developed Alzheimer's disease. He teamed up with philanthropist David Rockefeller to establish the Zachary and Elizabeth M. ...
"Alzheimer's Disease Research - Alzheimer's Drug Discovery Foundation". www.alzdiscovery.org. "What new Alzheimer's treatments ... "Developing novel blood-based biomarkers for Alzheimer's disease". Alzheimer's & Dementia. 10: 109-14. doi:10.1016/j.jalz. ... "20th International Conference on Alzheimer's Drug Discovery , Alzheimer's Drug Discovery Foundation , Alzheimer's Drug ... From 2000 to 2004, the ADDF provided seed funding for Amyvid, the first FDA-approved diagnostic test for Alzheimer's disease. ...
The charity does not exclusively help people with Alzheimer's disease. There are many types of dementia, which is an umbrella ... Alzheimer's Society (UK) "Home - Alzheimer Society of Ireland". "The Alzheimer Society of Ireland - Irish Company Info - ... The Alzheimer Society of Ireland provides services such as the Alzheimer National Helpline, Social Clubs, Support Groups, Day ... The Alzheimer Society of Ireland also operates the Alzheimer National Helpline, offering information and support to anyone ...
Definite Alzheimer's disease: The patient meets the criteria for probable Alzheimer's disease and has histopathologic evidence ... but no co-morbid diseases capable of producing dementia are believed to be in the origin of it. Unlikely Alzheimer's disease: ... now known as the Alzheimer's Association) and are among the most used in the diagnosis of Alzheimer's disease (AD). These ... Possible Alzheimer's disease: There is a dementia syndrome with an atypical onset, presentation or progression; and without a ...
Of particular note are the AlzGene database of genetic studies of Alzheimer's disease, which has been cited more than 1,200 ... Kinoshita, J. & Clark, T., (2007) Alzforum: E-Science for Alzheimer Disease. From Methods in Molecular Biology: ... Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics 39, 17 - 23 ( ... 2006) Alzheimer Research Forum: A Knowledge Base and e-Community for AD Research," Alzheimer: 100 Years and Beyond. Eds. Jucker ...
The Alzheimer's Association, Central New York Chapter, incorporated on August 1, 1982, as the Alzheimer's Disease and Related ... The vision of the Association is "a world without Alzheimer's disease." The Alzheimer's Association, Central New York Chapter ... The mission of the Alzheimer's Association is: To eliminate Alzheimer's disease through the advancement of research; to provide ... Alzheimer's Association, Central New York Chapter National Alzheimer's Association Alzheimer's Association, Central New York ...
"Leaders Engaged on Alzheimer's Disease (LEAD Coalition)". Leaders Engaged on Alzheimer's Disease. 24 November 2017. "FoNIA ... Experts believe that an estimated 5.5 million Americans have Alzheimer's disease. The number of people with Alzheimer's disease ... halt or reverse the course of Alzheimer's disease. In May 2012, HHS released its "National Plan to Address Alzheimer's Disease ... The Alzheimer's Foundation of America is a member of Leaders Engaged on Alzheimer's Disease (LEAD), and an Executive Committee ...
Alzheimers disease is a brain disease and the most common form of a group of brain diseases called dementias, accounting for ... What is Alzheimers Disease?. Alzheimers disease is the most common form of a group of brain diseases called dementias. ... Nearly 6 million Americans are living with Alzheimers disease. Alzheimers disease destroys brain cells causing problems with ... What is known about caregiving for a person with Alzheimers disease or another form of dementia?. People with Alzheimers ...
Alzheimers disease is a progressive form of dementia that affects memory, thinking, and behavior. Learn about the causes, ... Alzheimers disease has a large impact in the United States.. *According to the Centers for Disease Control and Prevention (CDC ... Alzheimers is an expensive disease. According to the CDC, about $355 billion. was spent on Alzheimers and dementia care costs ... Who Is More Likely to Get Alzheimers - Females or Males?. Females are more likely to develop Alzheimers disease, live longer ...
Stephen Salloway digs into what it means for patients and for the diseases future. ... The FDA has approved the first new Alzheimers drug in nearly 20 years. ... That is going to be a key focus of the new Center for Alzheimers Disease Research at Brown. Were building a new fluid ... Thats the type of discovery research that we plan to carry out at the Center for Alzheimers Disease Research, and were now ...
Alzheimers disease is a brain disorder that slowly destroys memory and thinking skills. Its the most common cause of dementia ... Alzheimers Disease Genetics (National Institute on Aging) * If a Family Member Has Alzheimers Disease, Will I Have It, Too? ( ... Alzheimers Disease (National Institute on Aging) Also in Spanish * Alzheimers Disease (National Institute of Neurological ... Alzheimers and Dementia Testing for Earlier Diagnosis (Alzheimers Association) * Alzheimers Disease Facts and Figures ( ...
Alzheimers disease biomarkers can be skewed in the presence of chronic kidney disease, but using ratios of these biomarkers ... Diseases & Conditions Alzheimer Disease Imaging * 2001/viewarticle/defining-difficult-treat-inflammatory-bowel-disease- ... I Forget Names All the Time: Could This Be Alzheimers Disease? * Neuroscientist Alleges Irregularities in Alzheimers Research ... New research provides more evidence that tau plasma biomarkers associated with Alzheimers disease (AD) can be skewed by ...
It is an incurable disease with a long and progressive course. ... Alzheimer disease (AD) is an acquired disorder of cognitive and ... encoded search term (Alzheimer Disease) and Alzheimer Disease What to Read Next on Medscape ... A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimers disease. The Alzheimers Disease ... Mild Alzheimer disease. The disease begins to affect the cerebral cortex, memory loss continues, and changes in other cognitive ...
"Alzheimers Disease Research Timeline - Alzforum". www.alzforum.org. "Alzheimers Disease Brain Cell Atlas- brain-map.org". ... Lewy bodies are not rare in the brains of people with Alzheimers disease. Alzheimers disease has been identified as a protein ... In possible Alzheimers disease dementia, another causal disease such as cerebrovascular disease is present. Neuropsychological ... Excitotoxicity occurs not only in Alzheimers disease, but also in other neurological diseases such as Parkinsons disease and ...
The UW Alzheimers Disease Research Center seeks to advance research in genetic risk, develop neuroimaging biomarkers for ... Alzheimers Disease Research Center (ADRC), University of Washington. Welcome. The UW Alzheimers Disease Research Center (ADRC ... Alzheimers Disease Research Center - University of Washington An NIH-funded research resource center, associated with the UW ... ADRCs are major sources of discovery into the nature of Alzheimers disease and related dementias and into the development of ...
alzheimers disease How gullible are older Americans to scams? Very, says a new study September 22, 2023 , 11:00am A recent ... "For the first time we get a clue to how and why neurons die in Alzheimers disease. Theres been a lot of speculation for 30-40 ... Drew Sidora announces fathers death after battle with Alzheimers disease: I was a daddys girl August 15, 2023 , 5:22pm " ... Crystal Glover, a health equity in aging researcher at the Rush Alzheimers Disease Center in Chicago, wondered if the new ...
Alzheimers disease can cause symptoms besides cognitive issues that may be dangerous. Find out which additional, or adjunct, ... National Institute on Aging: "What Happens to the Brain in Alzheimers Disease?" "How Is Alzheimers Disease Treated?" ... Most treatments for Alzheimers disease work on the symptoms, rather than the disease itself. Several drugs are approved to ... Adjunct Treatments for Alzheimers Disease Medically Reviewed by Sabrina Felson, MD on August 17, 2022 ...
Boston University Alzheimers Disease Research Center 73 E Concord St., Boston, MA 02118. ... He is an acting neuropathologist involved with the brain banks for the Boston University Alzheimers Disease Research Center, ... Brain Banks and the Brain Banks for the Alzheimers Disease Research Center, Center for the Study of Traumatic Encephalopathy, ... Alvarezs research interests center on the relationship between neurotrauma and neurodegenerative diseases. Much of his current ...
... information on Alzheimers disease and dementia symptoms, diagnosis, stages, treatment, care and support resources. ... Understanding Alzheimers Disease. Alzheimers is the most common form of dementia. It causes problems with memory, thinking ... The Alzheimers Association leads the way to end Alzheimers and all other dementia. But we cant do it without your support.. ... Together, we are stronger! Explore the many ways to join the fight against Alzheimers disease and all other dementia. ...
... there is no evidence that Alzheimers disease can be transmitted in humans, nor is there any evidence that Alzheimers Disease ... "No way is this suggesting that Alzheimers is a contagious disease," he said. "You cant catch it by living with someone who ... Brains of 116 patients with prion diseases who had not received pituitary growth hormone did not have the Alzheimers hallmark. ... of a mechanism for the propagation of Alzheimers disease that we already know exists from experimental studies in mice." ...
Study finds obesity-related neurodegeneration mimics Alzheimers disease Published: 31 January 2023 ... A non-invasive method to detect Alzheimers disease Published: 19 December 2017 ... Microglia, critical to Alzheimers research, can now be produced artificially.... *Read more about Turning skin cells into ... AI-analyzed blood test can predict the progression of neurodegenerative disease Published: 28 January 2020 ...
Early symptoms of Alzheimers disease are mild memory loss, problems in thinking, occasional disorientation, and difficulties ... Learn about the seven stages and symptoms of each stage of Alzheimers disease. ... Top Alzheimers Disease Symptoms and Stages Related Articles. *. Alzheimers Disease. Alzheimers disease is a common cause of ... Alzheimers disease (also termed Alzheimer disease) is a progressive mental deterioration that can occur in middle-aged ...
In Alzheimers Disease, Healthy Lifestyle Reduces Risk This population-based cohort study examined the impact of healthy ... About 10% of individuals with preclinical Alzheimers disease exhibit significant tau in the cortex, highlighting the need to ... Preclinical Alzheimers may be Marked by Heterogeneous Cortical Tau Deposition ... study of 1808 brains to assess the association between neuropathology and neuropsychiatric symptoms in Alzheimers disease. ...
... with varying degrees of Alzheimers disease pathology demonstrates that gene-expression changes in Alzheimers disease are both ... suggesting that myelination has a key role in Alzheimers disease pathophysiology. Our single-cell transcriptomic resource ... The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas ... 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimers disease ...
... that carriers of a memory-enhancing flavor of the KIBRA gene had a 25 percent lower risk of developing Alzheimers disease. ... A link has been announced between the brain protein KIBRA and Alzheimers disease, a discovery that could lead to promising new ... Disrupted Sleep in Ones 50s, 60s Raises Risk of Alzheimers Disease. June 27, 2019 PET brain scans of healthy older adults ... Brain Protein Linked To Alzheimers Disease. Date:. September 16, 2008. Source:. The Translational Genomics Research Institute ...
People with poor oral hygiene or gum disease could be at higher risk of developing Alzheimers compared with those who have ... A study has found that people with poor oral hygiene or gum disease could be at higher risk of developing Alzheimers compared ... Hidden belly fat in midlife linked to Alzheimers disease. Researchers say belly fat in midlife may be a precursor to the ... The bug is usually associated with chronic periodontal (gum) disease. For the study, published in the Journal of Alzheimers ...
Understanding the affects of Alzheimers can be a difficult process and caring for someone suffering from the disease often ... Alzheimers Disease, Dementia, and Incontinence. By Nancy Weikel. See all Articles by Nancy WeikelGet Updates on AlzheimersGet ... Incontinence can be a severe problem for people with Alzheimers, especially in the advanced stages of the disease. Since they ... What is Alzheimers?. Alzheimers is the most common form of dementia. It develops slowly over time, often so gradually it is ...
... and screening for the disease could become part of an eye exam. ... shows differences in the retinas of people with Alzheimers ... "We may then be able to find a medication to delay the onset of, prevent the development of or even reverse Alzheimers disease ... "The goal is to one day be able to diagnose Alzheimers disease in the very early stages, before clinical symptoms start. And we ... inexpensive and quick way to screen large numbers of people for Alzheimers disease and enter these individuals into clinical ...
... including Alzheimers disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while ... diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of ... Activated microglia represent a common pathological feature of several neurodegenerative diseases, ...
Border Infectious Disease Surveillance - Mosquito-borne-diseases. *Border Infetious Disease Surveillance - Rocky Mountain ... Communicable Diseases. *. Diabetes. *. Disease Reporting. *. Mpox. *. Problem Gambling. *. ... Center for Chronic Disease Prevention and Health PromotionCurrently selected *Division of Chronic Disease and Injury Control * ... Center for Infectious Diseases. *. HIV/AIDS. *. Binational Border Health. *. Communicable Disease Control. * ...
Event details at UW Alzheimers Disease Research Center (ADRC) ... Alzheimers Disease Training T32 Program * Cognition in Primary ... Alzheimers Disease Research Center - University of Washington An NIH-funded research resource center, associated with the UW ... Examination by trained medical personnel is required to ensure proper diagnosis and treatment of Alzheimers disease and other ... UW Alzheimers Disease Research Center. Phone: 206.744.0588. Toll Free: 855.744.0588 ...
WebMD provides an overview of Alzheimers disease and what causes it. ... What Causes Alzheimers Disease?. People who get Alzheimers disease are usually older, but the disease isnt a normal part of ... What Is Alzheimers Disease?. Alzheimers is a disease that robs people of their memory. At first, people have a hard time ... but its clear that the biggest risks linked to Alzheimers disease are being older and having Alzheimers in your family. ...
Toxic versions of the protein tau are believed to cause death of neurons of the brain in Alzheimers disease. A new study shows ... 18, 2022 Alzheimers disease is the most common and best known of the tauopathies, a set of neurodegenerative brain diseases ... How toxic protein spreads in Alzheimers disease. Date:. May 29, 2020. Source:. Lund University. Summary:. Toxic versions of ... Toxic versions of the protein tau are believed to cause death of neurons of the brain in Alzheimers disease. A new study ...
... prevents the formation of tangles of fibrous protein that are a hallmark of Alzheimers disease. ... Alzheimers disease is a progressive disease that eventually causes severe symptoms. Learn whether Alzheimers is a disability ... In Alzheimers disease, these tau molecules break away from the microtubules and begin to stick together to form threads and, ... Could an asthma drug help in the fight against Alzheimers disease?. About 50 million people worldwide have dementia, and every ...
Alzheimers Disease Clinical Research Trial Listings in Neurology Family Medicine on CenterWatch ... RB-ADSC for Treatment of Mild to Moderate Alzheimers Disease into an effective "whole brain" treatment for Alzheimer. disease ... Alzheimers Disease Clinical Trials. A listing of Alzheimers Disease medical research trials actively recruiting patient ... A Long-term Extension Study to Evaluate Safety, Tolerability, and Efficacy of AL002 in Alzheimers Disease A long-term ...
It is an incurable disease with a long and progressive course. ... Alzheimer disease (AD) is an acquired disorder of cognitive and ... For patient education information, see the Dementia Center ,as well as Alzheimer Disease, Alzheimer Disease in Individuals With ... encoded search term (Alzheimer Disease) and Alzheimer Disease What to Read Next on Medscape ... A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimers disease. The Alzheimers Disease ...
  • Alzheimer's disease accounts for 60% to 80% of dementia cases. (cdc.gov)
  • What is known about caregiving for a person with Alzheimer's disease or another form of dementia? (cdc.gov)
  • Alzheimer's disease is a progressive form of dementia, which is a broader term for conditions that negatively affect memory, thinking, and behavior. (healthline.com)
  • Dementia can have a range of causes, such as brain injuries or diseases. (healthline.com)
  • Alzheimer's disease is a type of dementia . (healthline.com)
  • Alzheimer's disease (AD) is the most common form of dementia among older people. (medlineplus.gov)
  • Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens, and is the cause of 60-70% of cases of dementia. (wikipedia.org)
  • Our outreach team is influential in promoting strengths-based reframing of Alzheimer's disease and dementia-friendly communities, and they organize and promote educational talks and events and research seminars. (washington.edu)
  • The disgraced lawyer was diagnosed with late-onset Alzheimer's disease and dementia in March 2021 amid claims he embezzled millions of dollars from clients. (nypost.com)
  • Explore the many ways to join the fight against Alzheimer's disease and all other dementia. (alz.org)
  • For the study, published in the Journal of Alzheimer's Disease , 10 brain samples from patients with dementia were donated for analysis by a scheme called Brains for Dementia Research, alongside 10 brain samples from people who had not had the disease. (medicalnewstoday.com)
  • Whereas previous studies have indicated a link between dementia and other bacteria and viruses such as the Herpes simplex virus type 1, this new research indicates a possible association between gum disease and individuals who may be susceptible to developing Alzheimer's disease, if exposed to the appropriate trigger. (medicalnewstoday.com)
  • The spread is restricted during normal aging, but in Alzheimer's disease the spread may be facilitated by beta-amyloid, and likely leads to widespread neuronal death and eventually dementia," says lead author Jacob Vogel from McGill University. (sciencedaily.com)
  • They note that the most common form of dementia is Alzheimer's disease, which accounts for 60-70% of all cases. (medicalnewstoday.com)
  • According to the Alzheimer Society of Canada, 564,000 Canadians currently have Alzheimer's disease or another form of dementia. (mcgill.ca)
  • Alzheimer's disease (AD), the most common form of dementia, is a neurodegenerative disorder characterized by a multitude of pathological and clinical hallmarks such as a progressive decline in cognitive function and the buildup of toxic β-amyloid and tau proteins 1 , 2 . (nature.com)
  • Treatment was initiated in patients with mild cognitive impairment or mild dementia stage of disease and confirmed presence of amyloid beta pathology. (fda.gov)
  • Participants were enrolled in longitudinal studies on aging and dementia at the Washington University Knight Alzheimer Disease Research Center in St. Louis and drove at least weekly on average. (medpagetoday.com)
  • The research could mean patients will receive more timely treatment that is more effective in slowing down the devastating symptoms of Alzheimer's disease (AD) and other forms of dementia. (nottingham.ac.uk)
  • Alzheimer's disease and other forms of dementia have been found to give rise to unique profiles of proteins which we can detect in the blood. (nottingham.ac.uk)
  • Alzheimer's disease is a complex brain disorder that triggers the most common form of dementia. (medindia.net)
  • Dementia is a term that covers several diseases that affect memory, cognition and daily activities, including Alzheimer's disease. (who.int)
  • laboratory and imaging tests are usually done to look for specific findings that suggest Alzheimer disease and to identify other treatable causes of dementia. (msdmanuals.com)
  • [ 1 ] Around 60-80% of all dementia cases are caused by Alzheimer's disease [ 2 ] and two-thirds of those diagnosed with Alzheimer's disease are women ( https://www.dementiastatistics.org/statistics/prevalence-by-gender-in-the-uk/ ). (medscape.com)
  • Alzheimer's disease is the most prevalent form of dementia that affects elderly people and it is defined as a progressive and persistent loss of multiple areas of intellectual functions. (bvsalud.org)
  • Alzheimer's disease is the most common cause of dementia, which contributes to a decline in memory, thinking, and social. (medlineplus.gov)
  • The experience of meaning in the care of patients in the terminal stage of dementia of the Alzheimer type : interpretation of non-verbal communication and ethical demands / by Kenneth Asplund. (who.int)
  • Alzheimer's disease is the most common form of a group of brain diseases called dementias. (cdc.gov)
  • Alzheimer's disease destroys brain cells causing problems with memory, thinking, and behavior that can be severe enough to affect work, lifelong hobbies, and social life. (cdc.gov)
  • The only definitive way to diagnose someone with Alzheimer's disease is to examine their brain tissue after death. (healthline.com)
  • they alter different chemicals in the brain to help improve functioning, but they don't really address the underlying pathology of the disease. (futurity.org)
  • More recently, progressive degenerative brain disease (chronic traumatic encephalopathy [CTE]) has been recognized in athletes with a history of multiple concussions, as well as milder blows to the head that do not cause concussion. (medscape.com)
  • The disease process is largely associated with amyloid plaques, neurofibrillary tangles, and loss of neuronal connections in the brain. (wikipedia.org)
  • As the disease progresses, it destroys nerve cells in different parts of your brain. (webmd.com)
  • He is a member of the New England Veterans Administration Medical Centers (VISN-1) Brain Banks and the Brain Banks for the Alzheimer's Disease Research Center, Center for the Study of Traumatic Encephalopathy, and Framingham Heart Study. (bu.edu)
  • He is an acting neuropathologist involved with the brain banks for the Boston University Alzheimer's Disease Research Center, CTE Center, Framingham Heart Study, as well as the PTSD brain bank. (bu.edu)
  • Learn how Alzheimer's disease affects the brain. (alz.org)
  • When liquified brain tissue from deceased Alzheimer's patients was injected into the central nervous systems of the animals, they developed the brain changes associated with the disease. (telegraph.co.uk)
  • Work will tell us how loneliness interacts with brain structure and function in normal aging and pre-symptomatic Alzheimer's disease. (mcgill.ca)
  • Alzheimer's disease is a generalized deterioration of brain function that progresses in individuals. (medicinenet.com)
  • The disease is due to generalized deterioration of brain function related to plaques that develop in the brain tissue. (medicinenet.com)
  • Learn how Alzheimer's disease affects a person's memory and other brain functions in our interactive online tour. (alz.org)
  • About 10% of individuals with preclinical Alzheimer's disease exhibit significant tau in the cortex, highlighting the need to think beyond just the medial temporal lobe and consider the whole brain, even when patients are still cognitively normal. (medpagetoday.com)
  • A link has been announced between the brain protein KIBRA and Alzheimer's disease, a discovery that could lead to promising new treatments for this memory-robbing disorder. (sciencedaily.com)
  • The brain tissue samples were provided by three Alzheimer's disease centers: Washington University in St. Louis, Mo. (sciencedaily.com)
  • KIBRA, and a subset of other molecules directly interacting with it, were significantly altered in regions of the brain involved in Alzheimer's disease pathology. (sciencedaily.com)
  • The researchers hope that continued donation of brain tissue will enable examination of more samples from people with and without Alzheimer's disease who have relevant dental records. (medicalnewstoday.com)
  • It is a progressive, degenerative brain disease. (selfgrowth.com)
  • The study of more than 200 people - 39 of whom had the brain disease - used a new noninvasive technology called optical coherence tomography angiography (OCTA) that is able to see blood flow in all the layers of the retina. (aarp.org)
  • The disease makes brain tissue break down over time. (webmd.com)
  • Toxic versions of the protein tau are believed to cause death of neurons of the brain in Alzheimer's disease. (sciencedaily.com)
  • Our research suggests that toxic tau may spread across different brain regions through direct neuronal connections, much like infectious diseases may spread to different cities through different transportation pathways. (sciencedaily.com)
  • There are two proteins that are known to be linked to Alzheimer's disease -- beta-amyloid, which forms what is known as a plaque in the brain, and tau, which forms tangles within brain cells. (sciencedaily.com)
  • Intense research is ongoing to better understand how toxic tau spreads in the brain, in order to develop new therapies that can stop the spread and thereby stop the disease. (sciencedaily.com)
  • Mar. 18, 2022 Alzheimer's disease is the most common and best known of the tauopathies, a set of neurodegenerative brain diseases caused by toxic tangles of the protein tau. (sciencedaily.com)
  • Feb. 6, 2020 The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases. (sciencedaily.com)
  • The disease is a neurological disorder in which the death of brain cells results in progressive memory loss and cognitive decline. (medicalnewstoday.com)
  • Also, the number of tangles in the brain appears to be a much better indicator of the severity of the disease than the number of amyloid plaques. (medicalnewstoday.com)
  • In patients with certain neurodegenerative diseases , including Alzheimer's, a protein called tau forms stringy blobs known as "tangles" inside brain cells. (livescience.com)
  • These tangles, along with brain plaques , are thought to contribute to the development of the disease. (livescience.com)
  • A growing body of evidence suggests that dysbiosis of the human gut microbiota is associated with neurodegenerative diseases like Alzheimer's disease (AD) via neuroinflammatory processes across the microbiota-gut-brain axis. (nature.com)
  • The drug works by reducing amyloid plaques that form in the brain, a defining pathophysiological feature of the disease. (fda.gov)
  • Alzheimer's disease is an irreversible, progressive brain disorder affecting more than 6.5 million Americans. (fda.gov)
  • The researchers on the team have extensive expertise in bioinformatics, brain MRI data analysis, and genome-wide association study in Alzheimer's disease, and deep learning," Zhi said. (newswise.com)
  • An in-depth look at the different stages of Alzheimer's disease, a condition that causes brain cells to malfunction and die, and affects more than 5 million people in the U.S. (qualityhealth.com)
  • Researchers at Ohio State University believe they may be able to reverse some of the damage left by Alzheimer's disease by implanting tiny electrodes in a patient's brain and then hooking those wires up to a sort of pacemaker. (qualityhealth.com)
  • Our results add merit to the idea that concussion and Alzheimer's disease brain pathology may be related," said Mielke. (scienceblog.com)
  • Alzheimer's disease is a degenerative brain disorder that is found in older adults. (bartleby.com)
  • This disease is characterized by the destruction of nerve cells and neural connections in the cerebral cortex of the brain and by a large loss of brain mass. (bartleby.com)
  • Alzheimer 's disease (AD) is a progressive degenerative disease of the brain from which there is no recovery. (bartleby.com)
  • There are three brain abnormalities that are the hallmarks of the Alzheimer's disease is initially caused by plaques buildup in the brain's neurons as illustrated in figure 1. (bartleby.com)
  • Alzheimer's disease is a brain disease with many different stages that slows one's lifestyle and has no real cure. (bartleby.com)
  • Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers. (hopkinsmedicine.org)
  • To clarify the link between intestinal flora and the occurrence of the disease, the researchers transferred intestinal bacteria from diseased mice to germ-free mice, and discovered that the mice developed more beta-amyloid plaques in the brain compared to if they had received bacteria from healthy mice. (lu.se)
  • Scientists are still studying many of these theories, but it's clear that the biggest risks linked to Alzheimer's disease are being older and having Alzheimer's in your family. (webmd.com)
  • Nearly 6 million Americans are living with Alzheimer's disease. (cdc.gov)
  • The educational packages developed for people living with Alzheimer's disease and autism spectrum disorder and their caregivers offer a wealth of information in various formats. (who.int)
  • The study was published online March 29 in JAMA Neurology to coincide with a presentation at the International Conference on Alzheimer's and Parkinson's Diseases (AD/PD 2023) in Gothenburg, Sweden. (medscape.com)
  • September 08, 2023 - The UW ADRC offers one-year development projects that use its resources to advance the understanding, diagnosis, and/or treatment of Alzheimer's disease and related degenerative dementias. (washington.edu)
  • May 15, 2023 - The William H. Gates, Sr. Fellowship from the AD Date Initiative is now accepting applications for a two-year fellowship program ($100,000 support) to explore data from human studies and make new discoveries in the Alzheimer's disease and related dementias field. (washington.edu)
  • Mayo Clinic Minute: Reducing risk of Alzheimer's disease in families Nov. 13, 2023, 04:02 p.m. (mayoclinic.org)
  • Fast Five Quiz: Alzheimer's Disease Biomarkers - Medscape - Aug 29, 2023. (medscape.com)
  • There's no cure for Alzheimer's, but there are treatments that can slow the progression of the disease. (healthline.com)
  • Some people live a long time with mild cognitive damage, while others experience a more rapid onset of symptoms and quicker disease progression. (healthline.com)
  • There's no cure for Alzheimer's yet, but treatment can help slow the progression of the disease and may improve quality of life. (healthline.com)
  • However, your doctor can recommend medications and other treatments to help ease your symptoms and delay the progression of the disease for as long as possible. (healthline.com)
  • The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. (nature.com)
  • I think these findings have implications for therapies aiming at stopping the spread of tau and thereby halting the disease progression in Alzheimer's," says Oskar Hansson, professor of neurology at Lund University and co-lead investigator of the study. (sciencedaily.com)
  • Specifically, the results suggest that therapies that limit uptake of tau into the neurons or transportation or excretion of tau, could limit disease progression," says Oskar Hansson. (sciencedaily.com)
  • While existing drug treatments help reduce the symptoms of Alzheimer's disease and improve people's quality of life, they neither slow its progression nor cure it. (medicalnewstoday.com)
  • Salbutamol has already undergone extensive human safety reviews, and if follow-up research reveals an ability to impede Alzheimer's disease progression in cellular and animal models, this drug could offer a step forward, whilst drastically reducing the cost and time associated with typical drug development. (medicalnewstoday.com)
  • These findings have led to studies on interventions that optimize lifestyle factors with the goal of preventing Alzheimer's disease or slowing its rate of progression. (psychologytoday.com)
  • In experiments described in the May 11 issue of the journal Circulation Research , the investigators report identifying in diseased hearts the form of the protein that tends to clump, and visualizing it in the heart using a noninvasive positron emission tomography (PET) scan could, they say, lead to advances in monitoring disease progression and testing new therapies. (hopkinsmedicine.org)
  • Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. (lu.se)
  • It is well-established that innate immunity plays a significant role in responding to and influencing the progression of Alzheimer's disease (AD) (Heneka et al. (lu.se)
  • New research provides more evidence that tau plasma biomarkers associated with Alzheimer's disease (AD) can be skewed by chronic kidney disease (CKD) and suggests that using ratios of these biomarkers can attenuate the skewed results. (medscape.com)
  • Before these tests can be used more broadly in the clinic, we need to understand all of the variables that may impact the results of various blood biomarkers, including differences that may be driven by race, ethnicity, sex, and underlying health conditions, such as chronic kidney disease. (medscape.com)
  • There is urgent need for non-invasive diagnostic biomarkers in the preclinical phase of Alzheimer's Disease (AD). (nih.gov)
  • We have found a very high prevalence of OSA in the World Trade Center responder population, and the present work will evaluate the impact of OSA on early markers of Alzheimer 's Disease using plasma biomarkers, PET/MR and cognition using a visual-spatial memory test. (cdc.gov)
  • For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. (lu.se)
  • This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias. (lu.se)
  • Thinking About Your Risk for Alzheimer's Disease? (medlineplus.gov)
  • Can exercise slow or prevent cognitive decline in older people who are at increased risk for Alzheimer's disease? (medlineplus.gov)
  • Life expectancy varies for each person with Alzheimer's disease. (bartleby.com)
  • Additionally, the older a person with Alzheimer's disease becomes, the more likely he or she is to decline rapidly. (healthyplace.com)
  • I really believe this kicks off a new era in the fight against Alzheimer's disease," says Stephen Salloway. (futurity.org)
  • I really believe this kicks off a new era in the fight against Alzheimer's disease," says Stephen Salloway , professor of neurology and psychiatry at Brown University who has been closely involved with the drug's clinical development since the beginning. (futurity.org)
  • It is an incurable disease with a long preclinical period and progressive course. (medscape.com)
  • Driving behavior captured with a global positioning system (GPS) device discerned whether cognitively normal older drivers had preclinical Alzheimer's disease, an early stage when Alzheimer's pathology has developed but cognitive changes aren't apparent. (medpagetoday.com)
  • APOE4 status and age were the two most important features for predicting preclinical Alzheimer's disease. (medpagetoday.com)
  • Neuroscientist Professor John Hardy, from University College London, said: "With the previous mouse data, I think we can be relatively sure that it is possible to transmit amyloid pathology by the injection of human tissues, which contain the amyloid of Alzheimer's disease. (telegraph.co.uk)
  • Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer's disease pathology. (nature.com)
  • However, how functionality is relevant to Gal-3+ microglia and how these microglia contribute to Aβ pathology across various stages of the disease are unknown. (lu.se)
  • Can an Eye Exam Detect Alzheimer's Disease? (aarp.org)
  • A recent study has revealed that insulin can help restore memory and cognition in people affected by Alzheimer s disease. (qualityhealth.com)
  • We searched electronically for articles, reviews and meta-analyses published between 1/2016 and 12/2017 and identified 298 articles on sex differences in cognition in Alzheimer's disease. (medscape.com)
  • AD is a severe progressive neurodegenerative disease, which induces decreasing memory capacity and cognition. (bvsalud.org)
  • Conducted among more than 170 subjects at various stages of Alzheimer's disease, the study by the team led by Salah El Mestikawy (Douglas Mental Health University Institute, Canada) and Stéphanie Daumas (Université Pierre et Marie Curie, France) has shown instead that the disease is accompanied by a minor decline in neuronal and synaptic markers. (mcgill.ca)
  • Our study therefore suggests that, contrary to what was believed, neuronal and synaptic loss is relatively limited in Alzheimer's disease. (mcgill.ca)
  • This review focuses on the evidence supporting a clear association between amyloid- β toxicity, mitochondrial dysfunction, oxidative stress and neuronal damage/death in Alzheimer's disease. (scirp.org)
  • Alzheimer's disease, like all dementias, gets worse over time and there is no known cure. (cdc.gov)
  • People with Alzheimer's disease and related dementias are usually cared for by family members or friends. (cdc.gov)
  • The majority (80%) of people with Alzheimer's disease and related dementias are receiving care in their homes. (cdc.gov)
  • Each year, more than 16 million Americans provide more than 17 billion hours of unpaid care for family and friends with Alzheimer's disease and related dementias. (cdc.gov)
  • ADRCs are major sources of discovery into the nature of Alzheimer's disease and related dementias and into the development of more effective approaches to prevention, diagnosis, care, and therapy. (washington.edu)
  • This population-based cohort study examined the impact of healthy lifestyle factors on risk of Alzheimer's disease and related dementias in disadvantaged populations. (medpagetoday.com)
  • AD@UW is a monthly 90-minute lunch-time meeting for ADRC REC trainees held 12:00 pm - 1:30 pm on 4th Fridays that is intended to provide a basic understanding of Alzheimer's disease and related dementias as well as research resources available through the UW ADRC. (washington.edu)
  • Funding from the Medical Research Council (MRC) will be used to develop a new diagnostic test that will pick up the presence of Alzheimer's disease and other dementias much sooner than is currently possible - so patients can receive more effective treatment. (nottingham.ac.uk)
  • There is a lot of valuable information and many resources available on dementias, especially Alzheimer's disease, and new research is happening on an ongoing basis. (ihs.gov)
  • Meta-analytic evidence from large population studies derived from the United States, Europe, and Asia indicates that women are at significantly greater risk of developing Alzheimer's disease, though not other dementias [ 3 ] and this increased incidence is not due to women having a longer life-span. (medscape.com)
  • Centers for Disease Control and Prevention. (cdc.gov)
  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website. (cdc.gov)
  • About 5.7 million people in the U.S. have heart failure, and about half of people diagnosed will die within five years, according to the U.S. Centers for Disease Control and Prevention. (hopkinsmedicine.org)
  • Alzheimer's disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. (nature.com)
  • Alzheimer disease (AD) is a neurodegenerative disorder marked by cognitive and behavioral impairment that significantly interferes with social and occupational functioning. (medscape.com)
  • Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive loss of basal forebrain cholinergic neurons, leading to reduction in transmission through cholinergic fibers involved in processes of attention, learning, and memory. (scirp.org)
  • Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer's disease pathophysiology. (nature.com)
  • This research suggests that KIBRA, and possibly some of the proteins with which it interacts, may play a role in Alzheimer's disease,'' said Dr. Matthew Huentelman, an investigator in TGen's Neurogenomics Division and the paper's senior author. (sciencedaily.com)
  • Dr. Crystal Glover, a health equity in aging researcher at the Rush Alzheimer's Disease Center in Chicago, wondered if the new treatments are relevant to the groups who are most at risk. (nypost.com)
  • The snRNA-seq data are available on The Rush Alzheimer's Disease Center (RADC) Research Resource Sharing Hub at https://www.radc.rush.edu/docs/omics.htm (snRNA-seq PFC) or at Synapse ( https://www.synapse.org/#!Synapse:syn18485175 ) under the doi 10.7303/syn18485175. (nature.com)
  • The researchers say that this activity could lead to symptoms such as confusion and deteriorating memory - typical symptoms of Alzheimer's disease . (medicalnewstoday.com)
  • Detailed neuropsychological testing can reveal mild cognitive difficulties up to eight years before a person fulfills the clinical criteria for diagnosis of Alzheimer's disease. (wikipedia.org)
  • Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. (nature.com)
  • The scientists ruled out dobutamine as a practical treatment for Alzheimer's disease because it requires injection, and its effects are very short-lived. (medicalnewstoday.com)
  • Asthma Treatment for Alzheimer's Disease? (qualityhealth.com)
  • The article entitled "Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer's disease at various cognitive stages" was published in Scientific Reports on January 17, 2018. (mcgill.ca)
  • Today, the U.S. Food and Drug Administration converted Leqembi (lecanemab-irmb), indicated to treat adult patients with Alzheimer's Disease, to traditional approval following a determination that a confirmatory trial verified clinical benefit. (fda.gov)
  • This confirmatory study verified that it is a safe and effective treatment for patients with Alzheimer's disease. (fda.gov)
  • They add that future research will involve determining whether the Porphyromonas gingivalis could be used as a marker for a blood test that predicts the development of Alzheimer's disease in patients who are at higher risk. (medicalnewstoday.com)
  • Researchers say belly fat in midlife may be a precursor to the development of Alzheimer's disease. (medicalnewstoday.com)
  • New research from Lund University in Sweden has shown that intestinal bacteria can accelerate the development of Alzheimer's disease. (lu.se)
  • The researchers will continue to study the role of bacteria in the development of Alzheimer's disease, and test entirely new types of preventive and therapeutic strategies based on the modulation of the gut microbiota through diet and new types of probiotics. (lu.se)
  • Alzheimer's disease puts a tremendous burden and increasing demand on patients, caregivers, and health care resources," said Zhi. (newswise.com)
  • The Alzheimer's disease and autism spectrum disorder training packages are designed to empower individuals and caregivers with vital knowledge and skills. (who.int)
  • The Iranian Ministry of Health and Medical Education, in collaboration with its national and international partners, is committed to enhance the lives of people with Alzheimer's disease and autism and their caregivers through these invaluable self-care training packages. (who.int)
  • Most treatments for Alzheimer's disease work on the symptoms, rather than the disease itself. (webmd.com)
  • Most adjunct treatments aren't approved specifically for use in Alzheimer's disease. (webmd.com)
  • The scientists from Lancaster University believe that compounds that prevent tau molecules from aggregating in this way could make promising treatments for Alzheimer's disease. (medicalnewstoday.com)
  • Identifying this dysfunction could lead to the development of effective treatments for this disease. (mcgill.ca)
  • Researchers study risk factors, predictors, diagnostic techniques, and potential treatments for Alzheimer's disease and other conditions. (mayoclinic.org)
  • This post begins with a short review of the limitations of available pharmacologic treatments then reviews findings on multi-modal approaches aimed at reducing inflammation and metabolic risk factors known to increase risk of Alzheimer's disease, and optimizing lifestyle factors known to reduce risk. (psychologytoday.com)
  • With the MRC award, the Nottingham researchers are well placed to advance the diagnosis and understanding of this group of diseases and provide valuable information on the effectiveness of current and new treatments. (nottingham.ac.uk)
  • It's important to know that this is the first drug that targets a core component of Alzheimer's disease: the amyloid plaques that play a key role in memory loss. (futurity.org)
  • Beta-amyloid plaques are the lumps that form at the nerve fibres in cases of Alzheimer's disease. (lu.se)
  • The ADRC links the Seattle community with information and opportunities to participate in clinical trials and studies of Alzheimer's disease and related disorders. (washington.edu)
  • Ongoing clinical trials are currently evaluating whether antibodies developed to bind to tau might stop the disease. (sciencedaily.com)
  • However, our results justify further testing of salbutamol and similar drugs in animal models of the disease and, eventually, if successful, in clinical trials. (medicalnewstoday.com)
  • Read more about Mayo Clinic Alzheimer's disease clinical trials opportunities here . (mayoclinic.org)
  • Alzheimer disease causes progressive cognitive deterioration and is characterized by beta-amyloid deposits and neurofibrillary tangles in the cerebral cortex and subcortical gray matter. (msdmanuals.com)
  • Women are more impacted by Alzheimer's disease than men - they are at significantly greater risk of developing Alzheimer's disease, and recent research shows that they also appear to suffer a greater cognitive deterioration than men at the same disease stage. (medscape.com)
  • Recent case reports have been published of dramatic improvement in individuals diagnosed with early Alzheimer's disease who adhere to multi-modal life style changes ( Bredesen 2014 ) aimed at enhancing cognitive performance and reducing metabolic risk factors associated with inflammation. (psychologytoday.com)
  • These findings show that, in at least some cases, symptoms of early Alzheimer's disease can be reversed within 6 months after initiating a comprehensive lifestyle regimen ( Bredesen 2014 ). (psychologytoday.com)
  • It is for this reason that Alzheimer's Disease International has written to Member States prior to this agenda item to request a 4-year extension to the Global Action Plan. (who.int)
  • endorsed by ADI, Alzheimer's Disease International. (who.int)
  • If it's diagnosed before then, it's generally referred to as "younger onset" or "early onset" Alzheimer's disease. (healthline.com)
  • In 214, as many as 5 million Americans age 65 and older had Alzheimer's and approximately 200,000 individuals have younger or early onset Alzheimer's disease. (medicinenet.com)
  • Most cases of Alzheimer disease are sporadic, with late onset ( ≥ 65 years) and unclear etiology. (msdmanuals.com)
  • Mutations in genes for the amyloid precursor protein, presenilin I, and presenilin II may lead to autosomal dominant forms of Alzheimer disease, typically with early onset. (msdmanuals.com)
  • "The results mean that we can now begin researching ways to prevent the disease and delay the onset. (lu.se)
  • Mayo Clinic Minute: Family risk of Alzheimer's disease Nov. 14, 2022, 04:25 p.m. (mayoclinic.org)
  • 2022 Alzheimer's Disease Facts and Figures. (msdmanuals.com)
  • People with Alzheimer's disease, family members, and others are often told that the affected person has mild, moderate or severe disease. (medicinenet.com)
  • Incontinence can be a severe problem for people with Alzheimer's, especially in the advanced stages of the disease. (selfgrowth.com)
  • Do Statins Have an Effect on Severe Disease in People With Noncirrhotic Chronic Liver Disease? (medscape.com)
  • Our findings have implications for understanding the disease, but more importantly for the development of therapies against Alzheimer's, which are directed against either beta-amyloid or tau. (sciencedaily.com)
  • To date, the beta amyloid (A β ) cascade hypothesis still remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is uncertain. (scirp.org)
  • This hypothesis promotes mutations in mitochondrial DNA (mtDNA) as the basis for Alzheimer's disease. (scirp.org)
  • Most people with the disease get a diagnosis after age 65. (healthline.com)
  • Anyone can get Alzheimer's disease, but certain people are at higher risk for it. (healthline.com)
  • But people with Alzheimer's disease display certain ongoing behaviors and symptoms that worsen over time. (healthline.com)
  • As of 2020, there were approximately 50 million people worldwide with Alzheimer's disease. (wikipedia.org)
  • In people with Alzheimer's disease, the increasing impairment of learning and memory eventually leads to a definitive diagnosis. (wikipedia.org)
  • Many people have trouble sleeping as they get older, but it's an especially common problem with Alzheimer's disease. (webmd.com)
  • I enjoy knowledge for its own sake, but what gets me out of bed is that what we learn is going to help people fight some really difficult diseases. (mcgill.ca)
  • Statisticians predict by 2060 about 14 million people will have Alzheimer's disease. (medicinenet.com)
  • Unfortunately, some people with Alzheimer's disease may have some symptoms that may cross over stages. (medicinenet.com)
  • Consequently, people can be confused if they hear about various 'stages' of Alzheimer's disease. (medicinenet.com)
  • Using TGen's powerful analytic tools to find a genetic association between the KIBRA gene and Alzheimer's disease, comparing more than 1,700 living and deceased people, with and without the disorder. (sciencedaily.com)
  • Using gene expression tools to find that KIBRA, and genes for other molecules that interact with KIBRA, were significantly altered in the neurons of people who had Alzheimer's disease, but not in individuals without the disorder. (sciencedaily.com)
  • A study has found that people with poor oral hygiene or gum disease could be at higher risk of developing Alzheimer's compared with those who have healthy teeth. (medicalnewstoday.com)
  • Alzheimer's is a disease that robs people of their memory. (webmd.com)
  • About 1 in 8 people aged 65 and over has the disease. (webmd.com)
  • People who get Alzheimer's disease are usually older, but the disease isn't a normal part of aging. (webmd.com)
  • Mar. 3, 2020 The toxic protein tau is a key biological feature in the brains of people with Alzheimer's disease. (sciencedaily.com)
  • In the United States, the National Institute on Aging estimate that more than 5.5 million people have Alzheimer's disease. (medicalnewstoday.com)
  • In this regard, Alzheimer's disease (AD) currently affects nearly one million people in the UK at an annual cost of over £23 billion. (nottingham.ac.uk)
  • People with the disease can survive for many years, however. (healthyplace.com)
  • Some people decline steadily during their disease, while others reach major plateaus where their symptoms advance quite slowly. (healthyplace.com)
  • In the US, an estimated 10% of people ≥ 65 have Alzheimer disease. (msdmanuals.com)
  • Risk of Alzheimer disease is substantially increased in people with two epsilon-4 alleles and may be decreased in those who have the epsilon-2 allele. (msdmanuals.com)
  • For people with two epsilon-4 alleles, risk of developing Alzheimer disease by age 75 is about 10 to 30 times that for people without the allele. (msdmanuals.com)
  • and advancements in science in developed countries have made it possible for people affected by this syndrome to live longer, but an extended life span has brought with it Alzheimer's disease (AD), which exacerbates the cognitive decline in these individuals. (bvsalud.org)
  • Alzheimer's disease (also termed Alzheimer disease) is a progressive mental deterioration that can occur in middle-aged individuals, but usually occurs in individuals that are about 60 to 65 years old or older. (medicinenet.com)
  • Examination by trained medical personnel is required to ensure proper diagnosis and treatment of Alzheimer's disease and other related disorders. (washington.edu)
  • As the disease progresses so does the degree of memory impairment. (wikipedia.org)
  • the disease naturally progresses and worsens over time. (healthyplace.com)
  • Alzheimer's disease is a chronic (long-term), ongoing condition. (healthline.com)
  • This study corroborates other research suggesting that some Alzheimer's-associated markers can be affected by chronic kidney disease, but by using ratios of amyloid or tau markers, we may be able to minimize these differences in results caused by underlying disease," Edelmayer said. (medscape.com)
  • The bug is usually associated with chronic periodontal (gum) disease. (medicalnewstoday.com)
  • In a cross-sectional study of adults with and without cognitive impairment, chronic kidney disease (CKD) was associated with increased plasma concentrations of p-tau 217 and 181. (medscape.com)
  • Other tests your doctor may do include blood tests to check for genes that may indicate you have a higher risk of Alzheimer's disease. (healthline.com)
  • Dr. Eric Reiman, clinical director of TGen's Neurogenomics Division and executive director of the Banner Alzheimer's Institute, said, "This study suggests a link between the inherited genes involved in normal human memory and the predisposition to Alzheimer's disease. (sciencedaily.com)
  • Whether or not ApoE partly causes Alzheimer's, genes almost certainly play a role in the disease. (webmd.com)
  • With their approach, Zhi and his colleagues expect to discover new genes relevant to Alzheimer's disease. (newswise.com)
  • Our goal is to use state-of-the-art deep neural networks to discover intricate patterns from large volumetric neuroimaging data that link genes with Alzheimer's disease," Zhi said. (newswise.com)
  • In both mice with Alzheimer's and humans with Alzheimer's, levels of this destruction-proof tau protein were elevated at early and middle stages of the disease before the tangles appeared. (livescience.com)
  • The UW Alzheimer's Disease Research Center (ADRC) is one of 33 research resource centers funded by the National Institute on Aging. (washington.edu)
  • Dr. Alvarez's research interests center on the relationship between neurotrauma and neurodegenerative diseases. (bu.edu)
  • New research from Duke Eye Center published in the journal Ophthalmology Retina found a significant difference in the retinas of individuals with healthy brains compared to those with Alzheimer's disease, a disease that currently impacts 5.6 million Americans age 65 and older. (aarp.org)
  • The Alzheimer's Disease Research Center is jointly based in Rochester, Minnesota, and Jacksonville, Florida. (mayoclinic.org)
  • Today's action is the first verification that a drug targeting the underlying disease process of Alzheimer's disease has shown clinical benefit in this devastating disease," said Teresa Buracchio, acting director of the Office of Neuroscience in the FDA's Center for Drug Evaluation and Research. (fda.gov)
  • Only one large multi-center study has investigated multi-modal interventions aimed at preventing Alzheimer's disease in elderly at-risk individuals ( Ngandu 2015 ). (psychologytoday.com)
  • Newswise - A five-year, nearly $6 million grant from the National Institute on Aging will allow investigators with The University of Texas Health Science Center at Houston ( UTHealth ) School of Biomedical Informatics to use artificial intelligence (AI) to advance Alzheimer's disease research. (newswise.com)
  • According to the Center for Disease Control, there are over five million Americans with Alzheimer's disease. (bartleby.com)
  • One of these changes included donating to the Alzheimer's Disease Research Center at Stanford, since that was my dad's alma mater. (stanford.edu)
  • This study has the potential to identify the mechanisms by which sleep disruption contributes to Alzheimer's Disease neurodegeneration and guide therapeutic interventions in the future in the aging WTC responder population. (cdc.gov)
  • Three of the drugs are in human trials for the treatment of specific illnesses such as type 2 diabetes and inflammatory bowel disease, the University of New South Wales geneticist said. (medindia.net)
  • The disease slowly destroys memory and thinking skills and eventually, the ability to carry out simple tasks. (fda.gov)
  • Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. (nature.com)
  • Improved diagnostic procedures that are simple and cheap to implement will promote early disease detection. (nottingham.ac.uk)
  • Researchers at Mayo Clinic study Alzheimer's disease, mild cognitive impairment , and other conditions that affect memory and thinking skills. (mayoclinic.org)
  • Also watch Dr. Petersen discuss a Mayo Clinic mild cognitive impairment study and a Mayo Clinic study regarding the most effective methods to predict Alzheimer's disease on YouTube. (mayoclinic.org)
  • Statistically significant differences between treatment groups were also demonstrated on all secondary endpoints, which included the Alzheimer's Disease Assessment Scale Cognitive Subscale 14, and the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment. (fda.gov)
  • For the first time we get a clue to how and why neurons die in Alzheimer's disease. (nypost.com)
  • Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. (mcgill.ca)