Disorders characterized by defective transport of amino acids across cell membranes. These include deficits in transport across brush-border epithelial cell membranes of the small intestine (MICROVILLI) and KIDNEY TUBULES; transport across the basolateral membrane; and transport across the membranes of intracellular organelles. (From Nippon Rinsho 1992 Jul;50(7):1587-92)
Cellular proteins and protein complexes that transport amino acids across biological membranes.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid.
Amino acid transporter systems capable of transporting basic amino acids (AMINO ACIDS, BASIC).
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A sodium-dependent neutral amino acid transporter that accounts for most of the sodium-dependent neutral amino acid uptake by mammalian cells. The preferred substrates for this transporter system include ALANINE; SERINE; and GLUTAMINE.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
A sodium-independent neutral amino acid transporter system with specificity for large amino acids. One of the functions of the transporter system is to supply large neutral amino acids to the brain.

Expression of heteromeric amino acid transporters along the murine intestine. (1/5)

Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.  (+info)

Successful whole lung lavage in pulmonary alveolar proteinosis secondary to lysinuric protein intolerance: a case report. (2/5)

BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare disease characterised by accumulation of lipoproteinaceous material within alveoli, occurring in three clinically distinct forms: congenital, acquired and secondary. Among the latter, lysinuric protein intolerance (LPI) is a rare genetic disorder caused by defective transport of cationic amino acids. Whole Lung Lavage (WLL) is currently the gold standard therapy for severe cases of PAP. CASE PRESENTATION: We describe the case of an Italian boy affected by LPI who, by the age of 10, developed digital clubbing and, by the age of 16, a mild restrictive functional impairment associated with a high-resolution computed tomography (HRCT) pattern consistent with pulmonary alveolar proteinosis. After careful assessment, he underwent WLL. CONCLUSION: Two years after WLL, the patient has no clinical, radiological or functional evidence of pulmonary disease recurrence, thus suggesting that WLL may be helpful in the treatment of PAP secondary to LPI.  (+info)

Novel SLC7A7 large rearrangements in lysinuric protein intolerance patients involving the same AluY repeat. (3/5)

 (+info)

Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. (4/5)

 (+info)

Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. (5/5)

 (+info)

Amino acid transport disorders are a group of inherited metabolic disorders that affect the way in which amino acids (the building blocks of proteins) are transported into and out of cells in the body. These disorders occur when there is a defect in the genes responsible for producing the transporters that move amino acids across cell membranes.

There are several different types of amino acid transport disorders, each affecting a specific transporter or group of transporters. Some examples include:

* Cystinuria: This disorder affects the transporter that moves cystine and other basic amino acids (lysine, arginine, and ornithine) from the blood into the kidney cells. As a result, these amino acids accumulate in the urine and can form stones in the kidneys and bladder.
* Hartnup disorder: This disorder affects the transporter that moves neutral amino acids (such as tryptophan, alanine, serine, and glutamine) from the intestines into the bloodstream and from the kidney cells back into the bloodstream. As a result, these amino acids are not properly absorbed or reabsorbed, leading to symptoms such as skin rashes, ataxia, and cognitive impairment.
* Lysinuric protein intolerance: This disorder affects the transporter that moves basic amino acids (lysine, arginine, and ornithine) from the lysosomes (a type of organelle within cells) into the cytosol (the fluid inside the cell). As a result, these amino acids accumulate in the lysosomes and can cause damage to the cells.

Symptoms of amino acid transport disorders can vary widely depending on the specific disorder and the severity of the defect. Treatment may include dietary restrictions, supplements, and medications to help manage symptoms and prevent complications. In some cases, treatment may also involve replacing the missing or defective transporter with a functional one through gene therapy.

Amino acid transport systems refer to the various membrane transport proteins that are responsible for the active or passive translocation of amino acids across cell membranes in the body. These transport systems play a crucial role in maintaining amino acid homeostasis within cells and regulating their availability for protein synthesis, neurotransmission, and other physiological processes.

There are several distinct amino acid transport systems, each with its own specificity for particular types of amino acids or related molecules. These systems can be classified based on their energy requirements, substrate specificity, and membrane localization. Some of the major amino acid transport systems include:

1. System A - This is a sodium-dependent transport system that primarily transports small, neutral amino acids such as alanine, serine, and proline. It has several subtypes (ASC, A, and AN) with different substrate affinities and kinetic properties.
2. System L - This is a sodium-independent transport system that transports large, neutral amino acids such as leucine, isoleucine, valine, phenylalanine, and tryptophan. It has several subtypes (L1, L2, and y+L) with different substrate specificities and transport mechanisms.
3. System B0 - This is a sodium-dependent transport system that transports both neutral and basic amino acids such as arginine, lysine, and ornithine. It has several subtypes (B0,+, B0-, and b0,+) with different substrate affinities and kinetic properties.
4. System y+ - This is a sodium-independent transport system that transports primarily basic amino acids such as arginine, lysine, and ornithine. It has several subtypes (y+L, y+, b0,+) with different substrate specificities and transport mechanisms.
5. System X-AG - This is a sodium-independent antiporter system that exchanges glutamate and aspartate for neutral amino acids such as cystine, serine, and threonine. It plays an essential role in maintaining redox homeostasis by regulating the intracellular levels of cysteine, a precursor of glutathione.

These transport systems are critical for maintaining cellular homeostasis and regulating various physiological processes such as protein synthesis, neurotransmission, and immune function. Dysregulation of these transport systems has been implicated in several diseases, including cancer, neurological disorders, and cardiovascular disease. Therefore, understanding the molecular mechanisms underlying these transport systems is essential for developing novel therapeutic strategies to treat these conditions.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Aminoisobutyric acids are a type of compounds that contain an amino group (-NH2) and an isobutyric acid group. Isobutyric acid is a type of short-chain fatty acid with the chemical formula (CH3)2CHCO2H. Aminoisobutyric acids can be found in some natural sources, such as certain types of bacteria, and they can also be synthesized in the laboratory for use in research and other applications.

There are several different isomers of aminoisobutyric acid, depending on the position of the amino group relative to the carbon chain. The most common isomer is 2-aminoisobutyric acid, also known as 2-methylalanine or 2-methylpropionic acid. This compound is a naturally occurring amino acid that is found in some proteins and is used in research to study protein structure and function.

Other isomers of aminoisobutyric acid include 3-aminoisobutyric acid, which is also known as tert-leucine or 2-methylbutyric acid, and 4-aminoisobutyric acid, which is also known as neopentylamine or 2,2-dimethylpropionic acid. These compounds are less common than 2-aminoisobutyric acid and have different chemical properties and uses.

In general, aminoisobutyric acids are used in research to study a variety of biological processes, including protein folding, enzyme function, and cell signaling. They can also be used as building blocks for the synthesis of other chemicals and materials.

Amino acid transport systems are specialized cellular mechanisms responsible for the active transport of amino acids across cell membranes. These systems are essential for maintaining proper amino acid homeostasis within cells and organisms. They consist of several types of transporters that can be categorized based on their energy source, electrochemical gradient, substrate specificity, and functional characteristics.

The term 'basic' in this context typically refers to the fundamental understanding of these transport systems, including their structure, function, regulation, and physiological roles. Amino acid transport systems play a crucial role in various biological processes, such as protein synthesis, neurotransmission, cell signaling, and energy metabolism.

There are two primary types of amino acid transport systems:

1. **Na+-dependent transporters:** These transporters utilize the sodium gradient across the cell membrane to drive the uptake of amino acids. They can be further divided into subtypes based on their substrate specificity and functional properties, such as system A, system ASC, system B0, system B, system L, and system y+.
2. **Na+-independent transporters:** These transporters do not rely on the sodium gradient for amino acid transport. Instead, they use other energy sources like proton gradients or direct coupling to membrane potential. Examples of Na+-independent transporters include system L, system y+, and system x-AG.

Understanding the basic aspects of amino acid transport systems is essential for elucidating their roles in health and disease. Dysregulation of these systems has been implicated in various pathological conditions, such as neurological disorders, cancer, and metabolic diseases.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Amino acid transport system A, also known as system ASC or alanine-serine-cysteine transporter, is a type of amino acid transporter found in the membranes of cells. It is responsible for the uptake of small neutral amino acids, such as alanine, serine, and cysteine, into the cell. This transport system plays an important role in maintaining amino acid homeostasis within the body and is particularly important in tissues with high rates of protein turnover, such as the intestines and kidneys. It is also expressed in the brain, where it is involved in the regulation of neurotransmitter synthesis. Defects in this transport system have been implicated in various diseases, including neurological disorders and cancer.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

The amino acid transport system L is a type of membrane transport system that is responsible for the uptake of large neutral amino acids (LNAAs) into cells. This system is composed of several different proteins, including the light chain subunit LAT1 and the heavy chain subunit CD98hc, which form a heterodimer that functions as an amino acid transporter.

The transport system L primarily mediates the uptake of LNAAs such as leucine, isoleucine, valine, phenylalanine, tyrosine, and tryptophan into cells. It plays important roles in various physiological processes, including protein synthesis, neurotransmitter synthesis, and cell signaling.

The transport system L is also known as the L-type amino acid transporter (LAT) or the sodium-independent neutral amino acid transporter (SNAT). Mutations in genes encoding components of this transport system have been associated with various diseases, including neurological disorders and cancer.

No FAQ available that match "amino acid transport disorders inborn"

No images available that match "amino acid transport disorders inborn"