A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94)
An oxidoreductase that catalyzes the reaction between superoxide anions and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. EC 1.15.1.1.
Diseases characterized by a selective degeneration of the motor neurons of the spinal cord, brainstem, or motor cortex. Clinical subtypes are distinguished by the major site of degeneration. In AMYOTROPHIC LATERAL SCLEROSIS there is involvement of upper, lower, and brainstem motor neurons. In progressive muscular atrophy and related syndromes (see MUSCULAR ATROPHY, SPINAL) the motor neurons in the spinal cord are primarily affected. With progressive bulbar palsy (BULBAR PALSY, PROGRESSIVE), the initial degeneration occurs in the brainstem. In primary lateral sclerosis, the cortical neurons are affected in isolation. (Adams et al., Principles of Neurology, 6th ed, p1089)
Neurons which activate MUSCLE CELLS.
A multifunctional heterogeneous-nuclear ribonucleoprotein that may play a role in homologous DNA pairing and recombination. The N-terminal portion of protein is a potent transcriptional activator, while the C terminus is required for RNA binding. The name FUS refers to the fact that genetic recombination events result in fusion oncogene proteins (ONCOGENE PROTEINS, FUSION) that contain the N-terminal region of this protein. These fusion proteins have been found in myxoid liposarcoma (LIPOSARCOMA, MYXOID) and acute myeloid leukemia.
An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903)
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
An increase number of repeats of a genomic, tandemly repeated DNA sequence from one generation to the next.
The most common clinical form of FRONTOTEMPORAL LOBAR DEGENERATION, this dementia presents with personality and behavioral changes often associated with disinhibition, apathy, and lack of insight.
An island in Micronesia, east of the Philippines, the largest and southernmost of the Marianas. Its capital is Agana. It was discovered by Magellan in 1521 and occupied by Spain in 1565. They ceded it to the United States in 1898. It is an unincorporated territory of the United States, administered by the Department of the Interior since 1950. The derivation of the name Guam is in dispute. (From Webster's New Geographical Dictionary, 1988, p471)
A glutamate antagonist (RECEPTORS, GLUTAMATE) used as an anticonvulsant (ANTICONVULSANTS) and to prolong the survival of patients with AMYOTROPHIC LATERAL SCLEROSIS.
Heterogeneous group of neurodegenerative disorders characterized by frontal and temporal lobe atrophy associated with neuronal loss, gliosis, and dementia. Patients exhibit progressive changes in social, behavioral, and/or language function. Multiple subtypes or forms are recognized based on presence or absence of TAU PROTEIN inclusions. FTLD includes three clinical syndromes: FRONTOTEMPORAL DEMENTIA, semantic dementia, and PRIMARY PROGRESSIVE NONFLUENT APHASIA.
A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed)
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Involuntary contraction of the muscle fibers innervated by a motor unit. Fasciculations can often by visualized and take the form of a muscle twitch or dimpling under the skin, but usually do not generate sufficient force to move a limb. They may represent a benign condition or occur as a manifestation of MOTOR NEURON DISEASE or PERIPHERAL NERVOUS SYSTEM DISEASES. (Adams et al., Principles of Neurology, 6th ed, p1294)
Diseases characterized by the presence of abnormally phosphorylated, ubiquitinated, and cleaved DNA-binding protein TDP-43 in affected brain and spinal cord. Inclusions of the pathologic protein in neurons and glia, without the presence of AMYLOID, is the major feature of these conditions, thus making these proteinopathies distinct from most other neurogenerative disorders in which protein misfolding leads to brain amyloidosis. Both frontotemporal lobar degeneration and AMYOTROPHIC LATERAL SCLEROSIS exhibit this common method of pathogenesis and thus they may represent two extremes of a continuous clinicopathological spectrum of one disease.
MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES.
A pathological process consisting of hardening or fibrosis of an anatomical structure, often a vessel or a nerve.
A motor neuron disease marked by progressive weakness of the muscles innervated by cranial nerves of the lower brain stem. Clinical manifestations include dysarthria, dysphagia, facial weakness, tongue weakness, and fasciculations of the tongue and facial muscles. The adult form of the disease is marked initially by bulbar weakness which progresses to involve motor neurons throughout the neuroaxis. Eventually this condition may become indistinguishable from AMYOTROPHIC LATERAL SCLEROSIS. Fazio-Londe syndrome is an inherited form of this illness which occurs in children and young adults. (Adams et al., Principles of Neurology, 6th ed, p1091; Brain 1992 Dec;115(Pt 6):1889-1900)
Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302)
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Laboratory rats that have been produced from a genetically manipulated rat EGG or rat EMBRYO, MAMMALIAN. They contain genes from another species.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease.
A lithium salt, classified as a mood-stabilizing agent. Lithium ion alters the metabolism of BIOGENIC MONOAMINES in the CENTRAL NERVOUS SYSTEM, and affects multiple neurotransmission systems.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
A plant genus of the family Cycadaceae, order Cycadales, class Cycadopsida, division CYCADOPHYTA of palm-like trees. It is a source of CYCASIN, the beta-D-glucoside of methylazoxymethanol.
A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids.
A glutamate plasma membrane transporter protein found in ASTROCYTES and in the LIVER.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling.
Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts.
A syndrome characterized by DYSARTHRIA, dysphagia, dysphonia, impairment of voluntary movements of tongue and facial muscles, and emotional lability. This condition is caused by diseases that affect the motor fibers that travel from the cerebral cortex to the lower BRAIN STEM (i.e., corticobulbar tracts); including MULTIPLE SCLEROSIS; MOTOR NEURON DISEASE; and CEREBROVASCULAR DISORDERS. (From Adams et al., Principles of Neurology, 6th ed, p489)
Proteins produced from GENES that have acquired MUTATIONS.
Increased salivary flow.
A performance test based on forced MOTOR ACTIVITY on a rotating rod, usually by a rodent. Parameters include the riding time (seconds) or endurance. Test is used to evaluate balance and coordination of the subjects, particular in experimental animal models for neurological disorders and drug effects.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
Techniques for administering artificial respiration without the need for INTRATRACHEAL INTUBATION.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
An enzyme that catalyzes the endonucleolytic cleavage of pancreatic ribonucleic acids to 3'-phosphomono- and oligonucleotides ending in cytidylic or uridylic acids with 2',3'-cyclic phosphate intermediates. EC 3.1.27.5.
The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3)
A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
ANIMALS whose GENOME has been altered by GENETIC ENGINEERING, or their offspring.
A vague complaint of debility, fatigue, or exhaustion attributable to weakness of various muscles. The weakness can be characterized as subacute or chronic, often progressive, and is a manifestation of many muscle and neuromuscular diseases. (From Wyngaarden et al., Cecil Textbook of Medicine, 19th ed, p2251)
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Diamino acids are a type of modified amino acids containing two amino groups, which can be found in various biological molecules and play important roles in various cellular processes, such as nitrogen fixation and protein synthesis.
The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability.
Type III intermediate filament proteins expressed mainly in neurons of the peripheral and CENTRAL NERVOUS SYSTEMS. Peripherins are implicated in neurite elongation during development and axonal regeneration after injury.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
A chronic multi-system disorder of CONNECTIVE TISSUE. It is characterized by SCLEROSIS in the SKIN, the LUNGS, the HEART, the GASTROINTESTINAL TRACT, the KIDNEYS, and the MUSCULOSKELETAL SYSTEM. Other important features include diseased small BLOOD VESSELS and AUTOANTIBODIES. The disorder is named for its most prominent feature (hard skin), and classified into subsets by the extent of skin thickening: LIMITED SCLERODERMA and DIFFUSE SCLERODERMA.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
An involuntary expression of merriment and pleasure; it includes the patterned motor responses as well as the inarticulate vocalization.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
An acquired organic mental disorder with loss of intellectual abilities of sufficient severity to interfere with social or occupational functioning. The dysfunction is multifaceted and involves memory, behavior, personality, judgment, attention, spatial relations, language, abstract thought, and other executive functions. The intellectual decline is usually progressive, and initially spares the level of consciousness.
The synapse between a neuron and a muscle.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A general term most often used to describe severe or complete loss of muscle strength due to motor system disease from the level of the cerebral cortex to the muscle fiber. This term may also occasionally refer to a loss of sensory function. (From Adams et al., Principles of Neurology, 6th ed, p45)
Equipment that provides mentally or physically disabled persons with a means of communication. The aids include display boards, typewriters, cathode ray tubes, computers, and speech synthesizers. The output of such aids includes written words, artificial speech, language signs, Morse code, and pictures.
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Surgical formation of an opening into the trachea through the neck, or the opening so created.
I'm sorry for any confusion, but "Italy" is not a medical term or concept, it's a country located in Southern Europe. If you have any questions related to medical topics, I'd be happy to help with those!
An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000.
The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
A specific pair of GROUP C CHROMSOMES of the human chromosome classification.
A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
Compounds with a five-membered heterocyclic ring with two nitrogens and a keto OXYGEN. Some are inhibitors of TNF-ALPHA production.
Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed)
A group of disorders marked by progressive degeneration of motor neurons in the spinal cord resulting in weakness and muscular atrophy, usually without evidence of injury to the corticospinal tracts. Diseases in this category include Werdnig-Hoffmann disease and later onset SPINAL MUSCULAR ATROPHIES OF CHILDHOOD, most of which are hereditary. (Adams et al., Principles of Neurology, 6th ed, p1089)
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
A form of multiple sclerosis characterized by a progressive deterioration in neurologic function which is in contrast to the more typical relapsing remitting form. If the clinical course is free of distinct remissions, it is referred to as primary progressive multiple sclerosis. When the progressive decline is punctuated by acute exacerbations, it is referred to as progressive relapsing multiple sclerosis. The term secondary progressive multiple sclerosis is used when relapsing remitting multiple sclerosis evolves into the chronic progressive form. (From Ann Neurol 1994;36 Suppl:S73-S79; Adams et al., Principles of Neurology, 6th ed, pp903-914)
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Elements of limited time intervals, contributing to particular results or situations.
Non-invasive methods of visualizing the CENTRAL NERVOUS SYSTEM, especially the brain, by various imaging modalities.
Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation.

A clinical study of motor evoked potentials using a triple stimulation technique. (1/1872)

Amplitudes of motor evoked potentials (MEPs) are usually much smaller than those of motor responses to maximal peripheral nerve stimulation, and show marked variation between normal subjects and from one stimulus to another. Consequently, amplitude measurements have low sensitivity to detect central motor conduction failures due to the broad range of normal values. Since these characteristics are mostly due to varying desynchronization of the descending action potentials, causing different degrees of phase cancellation, we applied the recently developed triple stimulation technique (TST) to study corticospinal conduction to 489 abductor digiti minimi muscles of 271 unselected patients referred for possible corticospinal dysfunction. The TST allows resynchronization of the MEP, and thereby a quantification of the proportion of motor units activated by the transcranial stimulus. TST results were compared with those of conventional MEPs. In 212 of 489 sides, abnormal TST responses suggested conduction failure of various degrees. By contrast, conventional MEPs detected conduction failures in only 77 of 489 sides. The TST was therefore 2.75 times more sensitive than conventional MEPs in disclosing corticospinal conduction failures. When the results of the TST and conventional MEPs were combined, 225 sides were abnormal: 145 sides showed central conduction failure, 13 sides central conduction slowing and 67 sides both conduction failure and slowing. It is concluded that the TST is a valuable addition to the study of MEPs, since it improves detection and gives quantitative information on central conduction failure, an abnormality which appears to be much more frequent than conduction slowing. This new technique will be useful in following the natural course and the benefit of treatments in disorders affecting central motor conduction.  (+info)

Nitric oxide, mitochondria and neurological disease. (2/1872)

Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke and amyotrophic lateral sclerosis. There is also a growing body of evidence to implicate excessive or inappropriate generation of nitric oxide (NO) in these disorders. It is now well documented that NO and its toxic metabolite, peroxynitrite (ONOO-), can inhibit components of the mitochondrial respiratory chain leading, if damage is severe enough, to a cellular energy deficiency state. Within the brain, the susceptibility of different brain cell types to NO and ONOO- exposure may be dependent on factors such as the intracellular reduced glutathione (GSH) concentration and an ability to increase glycolytic flux in the face of mitochondrial damage. Thus neurones, in contrast to astrocytes, appear particularly vulnerable to the action of these molecules. Following cytokine exposure, astrocytes can increase NO generation, due to de novo synthesis of the inducible form of nitric oxide synthase (NOS). Whilst the NO/ONOO- so formed may not affect astrocyte survival, these molecules may diffuse out to cause mitochondrial damage, and possibly cell death, to other cells, such as neurones, in close proximity. Evidence is now available to support this scenario for neurological disorders, such as multiple sclerosis. In other conditions, such as ischaemia, increased availability of glutamate may lead to an activation of a calcium-dependent nitric oxide synthase associated with neurones. Such increased/inappropriate NO formation may contribute to energy depletion and neuronal cell death. The evidence available for NO/ONOO--mediated mitochondrial damage in various neurological disorders is considered and potential therapeutic strategies are proposed.  (+info)

The role of immunophilins in mutant superoxide dismutase-1linked familial amyotrophic lateral sclerosis. (3/1872)

It has been reported that expression of familial amyotrophic lateral sclerosis (FALS)-associated mutant Cu/Zn superoxide dismutase-1 (SOD) induces apoptosis of neuronal cells in culture associated with an increase in reactive oxygen species. SOD recently has been shown to prevent calcineurin inactivation, initiating the present investigations examining the role of calcineurin in mutant SOD-induced cell death. Wild-type or mutant SOD was expressed in neuronal cells by infection with replication-deficient adenoviruses. PC12 cells overexpressing human wild-type SOD exhibited higher calcineurin activity than cells expressing FALS-related mutant SOD (SODV148G); however, cells expressing SODV148G had calcineurin activity equal to mock-infected cells, suggesting that cell death induced by mutant SOD was not related to a decrease in calcineurin activity. Calcineurin antagonists such as cyclosporin A and FK506, as well as nonimmunosuppressant analogs of cyclosporin A, significantly enhanced SODV148G- and SODA4V-induced cell death. Because both groups of drugs inhibit the rotamase activity of cyclophilins (CyP), but only the immunosuppressant analogs inhibit calcineurin activity, these data suggest that rotamase inhibition underlies the enhanced cell death after SODV148G expression. The importance of rotamase activity in mutant SOD-mediated apoptosis was supported by experiments showing that overexpressed wild-type cyclophilin A (CyPA), but not CyPA with a rotamase active site point mutation, protected cells from death after SODV148G expression. These data suggest that mutant SOD produces a greater need for rotamase and, also, highlights possible new therapeutic strategies in FALS.  (+info)

Release of copper ions from the familial amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutants. (4/1872)

Point mutations of Cu,Zn-superoxide dismutase (SOD) have been linked to familial amyotrophic lateral sclerosis (FALS). We reported that the Swedish FALS Cu,Zn-SOD mutant, D90A, exhibited an enhanced hydroxyl radical-generating activity, while its dismutation activity was identical to that of the wild-type enzyme (Kim et al. 1998a; 1998b). Transgenic mice that express a mutant Cu,Zn-SOD, Gly93 --> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the cDNA for the FALS G93A mutant, overexpressed the protein in E. coli cells, purified the protein, and studied its enzymic activities. Our results showed that the G93A, the D90A, and the wild-type enzymes have identical dismutation activity. However, the hydroxyl radical-generating activity of the G93A mutant was enhanced relative to those of the D90A and the wild-type enzyme (wild-type < D90A < G93A). These higher free radical-generating activities of mutants facilitated the release of copper ions from their own molecules (wild-type < D90A < G93A). The released copper ions can enhance the Fenton-like reaction to produce hydroxyl radicals and play a major role in the oxidative damage of macromolecules. Thus, the FALS symptoms may be associated with the enhancements in both the free radical-generating activity and the releasing of copper ions from the mutant enzyme.  (+info)

Amyotrophic lateral sclerosis: Lou Gehrig's disease. (5/1872)

Amyotrophic lateral sclerosis (ALS), commonly called Lou Gehrig's disease, is a progressive neuromuscular condition characterized by weakness, muscle wasting, fasciculations and increased reflexes. Approximately 30,000 Americans currently have the disease. The annual incidence rate is one to two cases per 100,000. The disease is most commonly diagnosed in middle age and affects more men than women. It usually presents with problems in dexterity or gait resulting from muscle weakness. Difficulty in speaking or swallowing is the initial symptom in the bulbar form of the disease. Over a period of months or years, patients with ALS develop severe, progressive muscular weakness and other symptoms caused by loss of function in both upper and lower motor neurons. Sphincter control, sensory function, intellectual abilities and skin integrity are preserved. Patients become completely disabled, often requiring ventilatory support and gastrostomy. Death usually occurs within five years of diagnosis and is attributed to respiratory failure or cachexia. The etiology of the disease is unknown. Current research is focused on abnormalities of neuronal cell metabolism involving glutamate and the role of potential neurotoxins and neurotrophic factors. New drugs are being developed based on these theories. Current management involves aggressive, individualized alleviation of symptoms and complications.  (+info)

Atypical form of amyotrophic lateral sclerosis. (6/1872)

OBJECTIVE: To investigate patients with an unusual type of muscular atrophy confined to the upper limbs (proximally dominant) and the shoulder girdle, while sparing the face and the legs until the terminal stage. METHODS: Eight patients (six men and two women) were clinically examined. The age at onset ranged from 42 to 73 years, and the clinical course varied from 28 to 81 months. There was no family history of motor neuron disease in any of these patients. Necropsy was performed in two of them. RESULTS: All eight patients basically showed a similar distribution of muscular weakness and atrophy. Subluxation of the shoulder joints was found in all patients. Reflexes were absent in the upper limbs in all patients, but were almost normal in the face and legs in most patients. Pathological reflexes could be elicited in only one patient. Electromyography showed typical neurogenic changes in the limbs of all patients. Cervical MRI disclosed moderate spondylotic changes in seven patients. Antiganglioside antibodies were negative in six patients tested. Abnormal trinucleotide (CAG) repeat expansion of androgen receptor gene was not recognised in five patients examined. Bulbar involvement developed in three patients during the course of the disease. At necropsy, one patient showed degeneration of the pyramidal tracts and motor cortex including Betz cells as well as loss of spinal anterior horn cells and brainstem motor neurons, which is consistent with ALS; in another patient there was neuronal loss of anterior horn cells at the spinal cord accompanied by astrogliosis, whereas the motor cortex and brainstem motor nuclei were relatively well preserved. Intracytoplasmic inclusions such as Bunina bodies, skein-like inclusions, and Lewy body-like inclusions were found in both patients. CONCLUSION: These patients with their peculiar pattern of muscular atrophy seem to have ALS or a subtype of ALS.  (+info)

Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. (7/1872)

Mutations in superoxide dismutase 1 (SOD1) polypeptides cause a form of familial amyotrophic lateral sclerosis (FALS). In different kindreds, harboring different mutations, the duration of illness tends to be similar for a given mutation. For example, patients inheriting a substitution of valine for alanine at position four (A4V) average a 1.5 year life expectancy after the onset of symptoms, whereas patients harboring a substitution of arginine for histidine at position 46 (H46R) average an 18 year life expectancy after disease onset. Here, we examine a number of biochemical and biophysical properties of nine different FALS variants of SOD1 polypeptides, including enzymatic activity (which relates indirectly to the affinity of the enzyme for copper), polypeptide half-life, resistance to proteolytic degradation and solubility, in an effort to determine whether a specific property of these enzymes correlates with clinical progression. We find that although all the mutants tested appear to be soluble, the different mutants show a remarkable degree of variation with respect to activity, polypeptide half-life and resistance to proteolysis. However, these variables do not stratify in a manner that correlates with clinical progression. We conclude that the basis for the different life expectancies of patients in different kindreds of sod1-linked FALS may result from an as yet unidentified property of these mutant enzymes.  (+info)

Extrapyramidal involvement in amyotrophic lateral sclerosis: backward falls and retropulsion. (8/1872)

Three patients with sporadic amyotrophic lateral sclerosis (ALS) presented with a history of backward falls. Impaired postural reflexes and retropulsion accompanied clinical features of ALS. Hypokinesia, decreased arm swing, and a positive glabellar tap were noted in two of these three patients. Cognitive impairment, tremor, axial rigidity, sphincter dysfunction, nuchal dystonia, dysautonomia, and oculomotor dysfunction were absent. Brain MRI disclosed bilateral T2 weighted hyperintensities in the internal capsule and globus pallidus in one patient. Necropsy studies performed late in the course of ALS have shown degeneration in extrapyramidal sites-for example, the globus pallidus, thalamus, and substantia nigra. Clinically, backward falls and retropulsion may occur early in ALS. This may reflect extrapyramidal involvement.  (+info)

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that affects nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movements, such as speaking, walking, breathing, and swallowing. The condition is characterized by the degeneration of motor neurons in the brain (upper motor neurons) and spinal cord (lower motor neurons), leading to their death.

The term "amyotrophic" comes from the Greek words "a" meaning no or negative, "myo" referring to muscle, and "trophic" relating to nutrition. When a motor neuron degenerates and can no longer send impulses to the muscle, the muscle becomes weak and eventually atrophies due to lack of use.

The term "lateral sclerosis" refers to the hardening or scarring (sclerosis) of the lateral columns of the spinal cord, which are primarily composed of nerve fibers that carry information from the brain to the muscles.

ALS is often called Lou Gehrig's disease, named after the famous American baseball player who was diagnosed with the condition in 1939. The exact cause of ALS remains unknown, but it is believed to involve a combination of genetic and environmental factors. There is currently no cure for ALS, and treatment primarily focuses on managing symptoms and maintaining quality of life.

The progression of ALS varies from person to person, with some individuals experiencing rapid decline over just a few years, while others may have a more slow-progressing form of the disease that lasts several decades. The majority of people with ALS die from respiratory failure within 3 to 5 years after the onset of symptoms. However, approximately 10% of those affected live for 10 or more years following diagnosis.

Medical Definition:

Superoxide dismutase (SOD) is an enzyme that catalyzes the dismutation of superoxide radicals (O2-) into oxygen (O2) and hydrogen peroxide (H2O2). This essential antioxidant defense mechanism helps protect the body's cells from damage caused by reactive oxygen species (ROS), which are produced during normal metabolic processes and can lead to oxidative stress when their levels become too high.

There are three main types of superoxide dismutase found in different cellular locations:
1. Copper-zinc superoxide dismutase (CuZnSOD or SOD1) - Present mainly in the cytoplasm of cells.
2. Manganese superoxide dismutase (MnSOD or SOD2) - Located within the mitochondrial matrix.
3. Extracellular superoxide dismutase (EcSOD or SOD3) - Found in the extracellular spaces, such as blood vessels and connective tissues.

Imbalances in SOD levels or activity have been linked to various pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Motor Neuron Disease (MND) is a progressive neurodegenerative disorder that affects the motor neurons, which are nerve cells in the brain and spinal cord responsible for controlling voluntary muscles involved in movement, speaking, breathing, and swallowing. As the motor neurons degenerate and die, they stop sending signals to the muscles, causing them to weaken, waste away (atrophy), and eventually lead to paralysis.

There are several types of MND, including:

1. Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is the most common form of MND. It affects both upper and lower motor neurons, causing muscle weakness, stiffness, twitching, and atrophy throughout the body.
2. Progressive Bulbar Palsy (PBP): This type primarily affects the bulbar muscles in the brainstem, which control speech, swallowing, and chewing. Patients with PBP experience difficulties with speaking, slurred speech, and problems swallowing and may also have weak facial muscles and limb weakness.
3. Primary Lateral Sclerosis (PLS): This form of MND affects only the upper motor neurons, causing muscle stiffness, spasticity, and weakness, primarily in the legs. PLS progresses more slowly than ALS, and patients usually maintain their ability to speak and swallow for a longer period.
4. Progressive Muscular Atrophy (PMA): This type of MND affects only the lower motor neurons, causing muscle wasting, weakness, and fasciculations (muscle twitches). PMA progresses more slowly than ALS but can still be severely disabling over time.
5. Spinal Muscular Atrophy (SMA): This is a genetic form of MND that typically presents in infancy or childhood, although adult-onset forms exist. SMA affects the lower motor neurons in the spinal cord, causing muscle weakness and atrophy, primarily in the legs and trunk.

The exact cause of Motor Neuron Disease is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors. There is currently no cure for MND, and treatment focuses on managing symptoms, maintaining quality of life, and slowing disease progression through various therapies and medications.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

FUS (Fused in Sarcoma) is a protein that in humans is encoded by the FUS gene. It is primarily located in the nucleus of the cell, but can also be found in the cytoplasm. FUS belongs to the family of RNA-binding proteins, which means it has the ability to bind to RNA molecules and play a role in post-transcriptional regulation of gene expression.

FUS has several functions, including:

1. Transcriptional regulation: FUS can interact with transcription factors and modulate the transcription of genes.
2. mRNA processing: FUS is involved in various aspects of mRNA processing, such as splicing, transport, localization, and stability.
3. DNA repair: FUS plays a role in DNA damage response and repair mechanisms.
4. Translational regulation: FUS can also regulate translation by interacting with ribosomes and other translational factors.

Mutations in the FUS gene have been associated with several neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). These mutations often lead to an abnormal cytoplasmic accumulation of FUS protein, which can form aggregates and contribute to the pathogenesis of these diseases.

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), which includes the brain, spinal cord, and optic nerves. In MS, the immune system mistakenly attacks the protective covering of nerve fibers, called myelin, leading to damage and scarring (sclerosis). This results in disrupted communication between the brain and the rest of the body, causing a variety of neurological symptoms that can vary widely from person to person.

The term "multiple" refers to the numerous areas of scarring that occur throughout the CNS in this condition. The progression, severity, and specific symptoms of MS are unpredictable and may include vision problems, muscle weakness, numbness or tingling, difficulty with balance and coordination, cognitive impairment, and mood changes. There is currently no cure for MS, but various treatments can help manage symptoms, modify the course of the disease, and improve quality of life for those affected.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

DNA repeat expansion is a genetic alteration in which a particular sequence of DNA base pairs is repeated multiple times. In normal genes, these repeats are relatively short and stable, but in certain diseases, the number of repeats can expand beyond a threshold, leading to changes in the structure or function of the gene. This type of mutation is often associated with neurological and neuromuscular disorders, such as Huntington's disease, myotonic dystrophy, and fragile X syndrome. The expanded repeats can also be unstable and may increase in size over generations, leading to more severe symptoms or earlier age of onset.

Frontotemporal dementia (FTD) is a group of disorders caused by progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are associated with personality, behavior, and language.

There are three main types of FTD:

1. Behavioral variant FTD (bvFTD): This type is characterized by changes in personality, behavior, and judgment. Individuals may become socially inappropriate, emotionally indifferent, or impulsive. They may lose interest in things they used to enjoy and have difficulty with tasks that require planning and organization.

2. Primary progressive aphasia (PPA): This type affects language abilities. There are two main subtypes of PPA: semantic dementia and progressive nonfluent aphasia. Semantic dementia is characterized by difficulty understanding words and objects, while progressive nonfluent aphasia is characterized by problems with speech production and articulation.

3. Motor neuron disease (MND) associated FTD: Some individuals with FTD may also develop motor neuron disease, which affects the nerves that control muscle movement. This can lead to weakness, stiffness, and wasting of muscles, as well as difficulty swallowing and speaking.

FTD is a degenerative disorder, meaning that symptoms get worse over time. There is no cure for FTD, but there are treatments available to help manage symptoms and improve quality of life. The exact cause of FTD is not known, but it is believed to be related to abnormalities in certain proteins in the brain. In some cases, FTD may run in families and be caused by genetic mutations.

I'm sorry for any confusion, but "Guam" is not a medical term. It is a territorial island in the Pacific Ocean and is an organized, unincorporated territory of the United States. Guam is known for its unique Chamorro culture, beautiful beaches, and historical sites. If you have any questions about medical terms or topics, I'd be happy to help with those instead!

Riluzole is a prescription medication that is primarily used in the treatment of amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. It is a benzothiazole derivative that acts as a glutamate antagonist, reducing the release of the neurotransmitter glutamate in the brain and spinal cord.

Glutamate is an important excitatory neurotransmitter in the central nervous system, but excessive levels of glutamate can lead to neuronal damage and death, which is believed to contribute to the progression of ALS. By reducing glutamate levels, Riluzole may help slow down the degeneration of motor neurons and prolong survival in people with ALS.

Riluzole is available as a tablet or liquid formulation and is typically taken twice daily. Common side effects include dizziness, gastrointestinal symptoms such as nausea and vomiting, and liver enzyme elevations. Riluzole should be used with caution in patients with liver impairment and should not be used in those with a history of hypersensitivity to the drug or its components.

Frontotemporal lobar degeneration (FTLD) is a group of disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are involved in decision-making, behavior, emotion, and language. FTLD can be divided into several subtypes based on the specific clinical features and the underlying protein abnormalities.

The three main subtypes of FTLD are:

1. Behavioral variant frontotemporal dementia (bvFTD): This subtype is characterized by changes in personality, behavior, and judgment. People with bvFTD may lose their social inhibitions, become impulsive, or develop compulsive behaviors. They may also have difficulty with emotional processing and empathy.
2. Primary progressive aphasia (PPA): This subtype is characterized by the gradual deterioration of language skills. People with PPA may have difficulty speaking, understanding spoken or written language, or both. There are three subtypes of PPA: nonfluent/agrammatic variant, semantic variant, and logopenic variant.
3. Motor neuron disease (MND) with FTLD: This subtype is characterized by the degeneration of motor neurons, which are the nerve cells responsible for controlling voluntary muscle movements. People with MND with FTLD may develop symptoms of amyotrophic lateral sclerosis (ALS), such as muscle weakness, stiffness, and twitching, as well as cognitive and behavioral changes associated with FTLD.

The underlying protein abnormalities in FTLD include:

1. Tau protein: In some forms of FTLD, the tau protein accumulates and forms clumps called tangles inside nerve cells. This is also seen in Alzheimer's disease.
2. TDP-43 protein: In other forms of FTLD, the TDP-43 protein accumulates and forms clumps inside nerve cells.
3. Fused in sarcoma (FUS) protein: In a small number of cases, the FUS protein accumulates and forms clumps inside nerve cells.

FTLD is typically a progressive disorder, meaning that symptoms worsen over time. There is currently no cure for FTLD, but there are treatments available to help manage symptoms and improve quality of life.

Inclusion bodies are abnormal, intracellular accumulations or aggregations of various misfolded proteins, protein complexes, or other materials within the cells of an organism. They can be found in various tissues and cell types and are often associated with several pathological conditions, including infectious diseases, neurodegenerative disorders, and genetic diseases.

Inclusion bodies can vary in size, shape, and location depending on the specific disease or condition. Some inclusion bodies have a characteristic appearance under the microscope, such as eosinophilic (pink) staining with hematoxylin and eosin (H&E) histological stain, while others may require specialized stains or immunohistochemical techniques to identify the specific misfolded proteins involved.

Examples of diseases associated with inclusion bodies include:

1. Infectious diseases: Some viral infections, such as HIV, hepatitis B and C, and herpes simplex virus, can lead to the formation of inclusion bodies within infected cells.
2. Neurodegenerative disorders: Several neurodegenerative diseases are characterized by the presence of inclusion bodies, including Alzheimer's disease (amyloid-beta plaques and tau tangles), Parkinson's disease (Lewy bodies), Huntington's disease (Huntingtin aggregates), and amyotrophic lateral sclerosis (TDP-43 and SOD1 inclusions).
3. Genetic diseases: Certain genetic disorders, such as Danon disease, neuronal intranuclear inclusion disease, and some lysosomal storage disorders, can also present with inclusion bodies due to the accumulation of abnormal proteins or metabolic products within cells.

The exact role of inclusion bodies in disease pathogenesis remains unclear; however, they are often associated with cellular dysfunction, oxidative stress, and increased inflammation, which can contribute to disease progression and neurodegeneration.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Nerve degeneration, also known as neurodegeneration, is the progressive loss of structure and function of neurons, which can lead to cognitive decline, motor impairment, and various other symptoms. This process occurs due to a variety of factors, including genetics, environmental influences, and aging. It is a key feature in several neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The degeneration can affect any part of the nervous system, leading to different symptoms depending on the location and extent of the damage.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Neurodegenerative diseases are a group of disorders characterized by progressive and persistent loss of neuronal structure and function, often leading to cognitive decline, functional impairment, and ultimately death. These conditions are associated with the accumulation of abnormal protein aggregates, mitochondrial dysfunction, oxidative stress, chronic inflammation, and genetic mutations in the brain. Examples of neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis (ALS), and Spinal Muscular Atrophy (SMA). The underlying causes and mechanisms of these diseases are not fully understood, and there is currently no cure for most neurodegenerative disorders. Treatment typically focuses on managing symptoms and slowing disease progression.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A fasciculation is an involuntary muscle contraction and relaxation that occurs randomly and spontaneously, causing a visible twitching of the muscle. Fasciculations can occur in any skeletal muscle of the body and are often described as feeling like a "mini-charley horse." They are generally harmless and can occur in people without any underlying neurological conditions. However, they can also be a symptom of certain neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS) or motor neuron disease. In these cases, fasciculations are often accompanied by other symptoms, such as muscle weakness, atrophy, and cramping. If you are experiencing persistent or frequent fasciculations, it is important to consult with a healthcare professional for further evaluation and diagnosis.

TDP-43 proteinopathies refer to a group of neurodegenerative disorders characterized by the abnormal accumulation and aggregation of the TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells. The accumulated TDP-43 forms inclusions that are rich in ubiquitin and are a hallmark of these disorders.

TDP-43 is a nuclear protein involved in various cellular processes, including transcription, splicing, and transport of RNA. In TDP-43 proteinopathies, the protein undergoes post-translational modifications that lead to its mislocalization from the nucleus to the cytoplasm, where it forms aggregates.

TDP-43 proteinopathies include several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). In ALS, TDP-43 pathology is present in almost all cases, while in FTLD, it is found in about half of the cases. In AD, TDP-43 pathology is less common but still significant, particularly in patients with coexisting dementia.

TDP-43 proteinopathies are associated with various clinical manifestations depending on the specific disorder and the extent and location of TDP-43 aggregation. These manifestations include motor neuron degeneration, cognitive decline, behavioral changes, and language impairments. The underlying mechanisms leading to TDP-43 mislocalization and aggregation are not fully understood but are thought to involve genetic, environmental, and aging factors.

Anterior horn cells, also known as motor neurons, are a type of nerve cell located in the anterior (ventral) horn of the spinal cord's gray matter. These cells play a crucial role in initiating and regulating voluntary muscle movement by transmitting signals from the brain to the muscles via the peripheral nervous system.

Damage or degeneration of the anterior horn cells can result in various neuromuscular disorders, such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). These conditions can lead to muscle weakness, atrophy, and paralysis.

Sclerosis is a medical term that refers to the abnormal hardening or scarring of body tissues, particularly in the context of various degenerative diseases affecting the nervous system. The term "sclerosis" comes from the Greek word "skleros," which means hard. In these conditions, the normally flexible and adaptable nerve cells or their protective coverings (myelin sheath) become rigid and inflexible due to the buildup of scar tissue or abnormal protein deposits.

There are several types of sclerosis, but one of the most well-known is multiple sclerosis (MS). In MS, the immune system mistakenly attacks the myelin sheath surrounding nerve fibers in the brain and spinal cord, leading to scarring and damage that disrupts communication between the brain and the rest of the body. This results in a wide range of symptoms, such as muscle weakness, numbness, vision problems, balance issues, and cognitive impairment.

Other conditions that involve sclerosis include:

1. Amyotrophic lateral sclerosis (ALS): Also known as Lou Gehrig's disease, ALS is a progressive neurodegenerative disorder affecting motor neurons in the brain and spinal cord, leading to muscle weakness, stiffness, and atrophy.
2. Systemic sclerosis: A rare autoimmune connective tissue disorder characterized by thickening and hardening of the skin and internal organs due to excessive collagen deposition.
3. Plaque psoriasis: A chronic inflammatory skin condition marked by red, scaly patches (plaques) resulting from rapid turnover and accumulation of skin cells.
4. Adhesive capsulitis: Also known as frozen shoulder, this condition involves stiffening and thickening of the shoulder joint's capsule due to scarring or inflammation, leading to limited mobility and pain.

Progressive bulbar palsy (PBP) is a form of motor neuron disease (MND), also known as Amyotrophic Lateral Sclerosis (ALS). It is characterized by the progressive degeneration of the motor neurons in the brainstem, which control vital functions such as swallowing, speaking, chewing, and breathing.

In PBP, these symptoms gradually worsen over time, often resulting in severe disability and ultimately death due to respiratory failure. The progression of the disease can vary from person to person, but it typically advances more slowly than other forms of ALS. There is currently no cure for PBP or any other form of MND, and treatment is focused on managing symptoms and maintaining quality of life.

Neurofilament proteins (NFs) are type IV intermediate filament proteins that are specific to neurons. They are the major structural components of the neuronal cytoskeleton and play crucial roles in maintaining the structural integrity, stability, and diameter of axons. Neurofilaments are composed of three subunits: light (NFL), medium (NFM), and heavy (NFH) neurofilament proteins, which differ in their molecular weights. These subunits assemble into heteropolymers to form the neurofilament core, while the C-terminal tails of NFH and NFM extend outward from the core, interacting with other cellular components and participating in various neuronal functions. Increased levels of neurofilament proteins, particularly NFL, in cerebrospinal fluid (CSF) and blood are considered biomarkers for axonal damage and neurodegeneration in several neurological disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Transgenic rats are genetically modified rats that have incorporated foreign DNA (transgene) into their own genome. This is typically done through the use of recombinant DNA techniques in the laboratory. The transgene can come from any species, including other mammals, plants, or even bacteria. Once the transgene is introduced into the rat's embryonic cells, it becomes a permanent part of the rat's genetic makeup and is passed on to its offspring.

Transgenic rats are used in biomedical research as models for studying human diseases, developing new therapies, and testing the safety and efficacy of drugs. They offer several advantages over traditional laboratory rats, including the ability to manipulate specific genes, study gene function and regulation, and investigate the underlying mechanisms of disease.

Some common applications of transgenic rats in research include:

1. Modeling human diseases: Transgenic rats can be engineered to develop symptoms and characteristics of human diseases, such as cancer, diabetes, Alzheimer's, and Parkinson's. This allows researchers to study the disease progression, test new treatments, and evaluate their effectiveness.
2. Gene function and regulation: By introducing specific genes into rats, scientists can investigate their role in various biological processes, such as development, aging, and metabolism. They can also study how genes are regulated and how they interact with each other.
3. Drug development and testing: Transgenic rats can be used to test the safety and efficacy of new drugs before they are tested in humans. By studying the effects of drugs on transgenic rats, researchers can gain insights into their potential benefits and risks.
4. Toxicology studies: Transgenic rats can be used to study the toxicity of chemicals, pollutants, and other substances. This helps ensure that new products and treatments are safe for human use.

In summary, transgenic rats are genetically modified rats that have incorporated foreign DNA into their own genome. They are widely used in biomedical research to model human diseases, study gene function and regulation, develop new therapies, and test the safety and efficacy of drugs.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes non-cancerous (benign) tumors to grow in many parts of the body. These tumors can affect the brain, skin, heart, kidneys, eyes, and lungs. The signs and symptoms of TSC can vary widely, depending on where the tumors develop and how severely a person is affected.

The condition is caused by mutations in either the TSC1 or TSC2 gene, which regulate a protein that helps control cell growth and division. When these genes are mutated, the protein is not produced correctly, leading to excessive cell growth and the development of tumors.

TSC is typically diagnosed based on clinical symptoms, medical imaging, and genetic testing. Treatment for TSC often involves a multidisciplinary approach, with specialists in neurology, dermatology, cardiology, nephrology, pulmonology, and ophthalmology working together to manage the various symptoms of the condition. Medications, surgery, and other therapies may be used to help control seizures, developmental delays, skin abnormalities, and other complications of TSC.

Lithium carbonate is a medical inorganic salt that is commonly used as a medication, particularly in the treatment of bipolar disorder. It works by stabilizing mood and reducing the severity and frequency of manic episodes. Lithium carbonate is available in immediate-release and extended-release forms, and it is typically taken orally in the form of tablets or capsules.

The medical definition of lithium carbonate is: "A white, crystalline powder used as a mood-stabilizing drug, primarily in the treatment of bipolar disorder. It acts by reducing the availability of sodium and potassium ions within nerve cells, which alters the electrical activity of the brain and helps to regulate mood. Lithium carbonate is also used in the treatment of cluster headaches and to reduce aggression in patients with behavioral disorders."

It's important to note that lithium carbonate requires careful medical supervision due to its narrow therapeutic index, meaning there is a small range between an effective dose and a toxic one. Regular monitoring of blood levels is necessary to ensure safe and effective treatment.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

I'm not aware of a medical definition for the term "Cycas." It is a genus name in botany, referring to a group of plants commonly known as cycads. Cycads are ancient seed plants that have been on Earth for millions of years. They are often grown as ornamental plants due to their unique appearance.

While there may not be a direct medical definition for "Cycas," it is worth noting that some parts of the cycad plant, particularly the seeds, contain toxic compounds that can cause serious health issues in both humans and animals if ingested. These toxins can affect the nervous system, liver, and kidneys, leading to symptoms such as vomiting, seizures, and even death in severe cases.

Therefore, while "Cycas" may not have a medical definition per se, it is still important to be aware of its potential health risks.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Neuroprotective agents are substances that protect neurons or nerve cells from damage, degeneration, or death caused by various factors such as trauma, inflammation, oxidative stress, or excitotoxicity. These agents work through different mechanisms, including reducing the production of free radicals, inhibiting the release of glutamate (a neurotransmitter that can cause cell damage in high concentrations), promoting the growth and survival of neurons, and preventing apoptosis (programmed cell death). Neuroprotective agents have been studied for their potential to treat various neurological disorders, including stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, and multiple sclerosis. However, more research is needed to fully understand their mechanisms of action and to develop effective therapies.

Excitatory Amino Acid Transporter 2 (EAAT2) is a type of glutamate transporter protein found in the membranes of glial cells in the central nervous system. Glutamate is the primary excitatory neurotransmitter in the brain, and its levels must be carefully regulated to maintain normal neuronal function and survival. EAAT2 plays a critical role in this regulation by removing excess glutamate from the synaptic cleft and returning it to glial cells for storage or breakdown.

EAAT2 is responsible for the majority of glutamate reuptake in the brain, and its expression and function are crucial for maintaining proper neuronal excitability and preventing excitotoxicity, a form of neurodegeneration that can occur when glutamate levels become too high. Mutations or dysfunction in EAAT2 have been implicated in several neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and epilepsy.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Microglia are a type of specialized immune cell found in the brain and spinal cord. They are part of the glial family, which provide support and protection to the neurons in the central nervous system (CNS). Microglia account for about 10-15% of all cells found in the CNS.

The primary role of microglia is to constantly survey their environment and eliminate any potentially harmful agents, such as pathogens, dead cells, or protein aggregates. They do this through a process called phagocytosis, where they engulf and digest foreign particles or cellular debris. In addition to their phagocytic function, microglia also release various cytokines, chemokines, and growth factors that help regulate the immune response in the CNS, promote neuronal survival, and contribute to synaptic plasticity.

Microglia can exist in different activation states depending on the nature of the stimuli they encounter. In a resting state, microglia have a small cell body with numerous branches that are constantly monitoring their surroundings. When activated by an injury, infection, or neurodegenerative process, microglia change their morphology and phenotype, retracting their processes and adopting an amoeboid shape to migrate towards the site of damage or inflammation. Based on the type of activation, microglia can release both pro-inflammatory and anti-inflammatory factors that contribute to either neuroprotection or neurotoxicity.

Dysregulation of microglial function has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Amyotrophic Lateral Sclerosis (ALS). Therefore, understanding the role of microglia in health and disease is crucial for developing novel therapeutic strategies to treat these conditions.

The pyramidal tracts, also known as the corticospinal tracts, are bundles of nerve fibers that run through the brainstem and spinal cord, originating from the cerebral cortex. These tracts are responsible for transmitting motor signals from the brain to the muscles, enabling voluntary movement and control of the body.

The pyramidal tracts originate from the primary motor cortex in the frontal lobe of the brain and decussate (cross over) in the lower medulla oblongata before continuing down the spinal cord. The left pyramidal tract controls muscles on the right side of the body, while the right pyramidal tract controls muscles on the left side of the body.

Damage to the pyramidal tracts can result in various motor impairments, such as weakness or paralysis, spasticity, and loss of fine motor control, depending on the location and extent of the damage.

Pseudobulbar palsy is a neurological condition that affects the control of voluntary muscles used for speaking, swallowing, and facial expressions. It is caused by damage to the brain's corticobulbar tracts, which transmit signals from the cerebral cortex to the brainstem.

The condition is characterized by emotional lability, inappropriate crying or laughing, difficulty speaking (dysarthria), weakness of the face and tongue, difficulty swallowing (dysphagia), and poor articulation. These symptoms can significantly impact a person's quality of life and ability to perform daily activities.

Pseudobulbar palsy is often seen in patients with neurological disorders such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson's disease, stroke, and brain injury. Treatment typically focuses on managing the underlying condition and providing supportive care to help improve communication and swallowing abilities. In some cases, medications may be used to help regulate emotional expression and reduce symptoms of pseudobulbar affect.

A mutant protein is a protein that has undergone a genetic mutation, resulting in an altered amino acid sequence and potentially changed structure and function. These changes can occur due to various reasons such as errors during DNA replication, exposure to mutagenic substances, or inherited genetic disorders. The alterations in the protein's structure and function may have no significant effects, lead to benign phenotypic variations, or cause diseases, depending on the type and location of the mutation. Some well-known examples of diseases caused by mutant proteins include cystic fibrosis, sickle cell anemia, and certain types of cancer.

Sialorrhea is the medical term for excessive drooling or saliva production. It's not necessarily a condition where the person produces too much saliva, but rather, they are unable to control the normal amount of saliva in their mouth due to various reasons such as neurological disorders, developmental disabilities, or structural issues that affect swallowing and oral motor function.

Common causes include cerebral palsy, Parkinson's disease, amyotrophic lateral sclerosis (ALS), Down syndrome, stroke, intellectual disability, and certain medications. Treatment options vary depending on the cause and severity of the condition and may include medication adjustments, behavioral interventions, oral devices, or even surgical procedures in severe cases.

The Rotarod performance test is not a medical diagnosis or condition, but rather a laboratory test used in both preclinical research and clinical settings to evaluate various aspects of motor function and balance in animals, including mice and rats. The test is often used to assess the neurological status, sensorimotor function, and coordination abilities of animals following drug treatments, surgical interventions, or in models of neurodegenerative diseases.

In this test, a rodent is placed on a rotating rod with a diameter that allows the animal to comfortably grip it. The rotation speed gradually increases over time, and the researcher records how long the animal can maintain its balance and stay on the rod without falling off. This duration is referred to as the "latency to fall" or "rotarod performance."

The Rotarod performance test offers several advantages, such as its sensitivity to various neurological impairments, ease of use, and ability to provide quantitative data for statistical analysis. It can help researchers evaluate potential therapeutic interventions, monitor disease progression, and investigate the underlying mechanisms of motor function and balance in health and disease.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Noninvasive ventilation (NIV) refers to the delivery of mechanical ventilation without using an invasive airway, such as an endotracheal tube or tracheostomy. It is a technique used to support patients with respiratory insufficiency or failure, while avoiding the potential complications associated with intubation and invasive ventilation.

NIV can be provided through various interfaces, including nasal masks, full-face masks, or mouthpieces. The most common modes of NIV are continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP), which provide a constant flow of pressurized air to maintain airway patency and support breathing efforts.

NIV is commonly used in the management of chronic respiratory conditions such as obstructive sleep apnea, COPD, and neuromuscular disorders, as well as acute respiratory failure due to causes such as pneumonia or exacerbation of chronic lung disease. However, it is not appropriate for all patients and should be used under the close supervision of a healthcare provider.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Ribonuclease, pancreatic (also known as RNase pancreatica or RNase 1) is a type of enzyme that belongs to the ribonuclease family. This enzyme is produced in the pancreas and is released into the small intestine during digestion. Its primary function is to help break down RNA (ribonucleic acid), which is present in ingested food, into smaller components called nucleotides. This process aids in the absorption of nutrients from the gastrointestinal tract.

Ribonuclease, pancreatic is a single-chain protein with a molecular weight of approximately 13.7 kDa. It has a specific affinity for single-stranded RNA and exhibits endonucleolytic activity, meaning it can cut the RNA chain at various internal points. This enzyme plays an essential role in the digestion and metabolism of RNA in the human body.

Axonal transport is the controlled movement of materials and organelles within axons, which are the nerve fibers of neurons (nerve cells). This intracellular transport system is essential for maintaining the structural and functional integrity of axons, particularly in neurons with long axonal processes. There are two types of axonal transport: anterograde transport, which moves materials from the cell body toward the synaptic terminals, and retrograde transport, which transports materials from the synaptic terminals back to the cell body. Anterograde transport is typically slower than retrograde transport and can be divided into fast and slow components based on velocity. Fast anterograde transport moves vesicles containing neurotransmitters and their receptors, as well as mitochondria and other organelles, at speeds of up to 400 mm/day. Slow anterograde transport moves cytoskeletal elements, proteins, and RNA at speeds of 1-10 mm/day. Retrograde transport is primarily responsible for recycling membrane components, removing damaged organelles, and transmitting signals from the axon terminal to the cell body. Dysfunctions in axonal transport have been implicated in various neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS).

Neuromuscular diseases are a group of disorders that involve the peripheral nervous system, which includes the nerves and muscles outside of the brain and spinal cord. These conditions can affect both children and adults, and they can be inherited or acquired. Neuromuscular diseases can cause a wide range of symptoms, including muscle weakness, numbness, tingling, pain, cramping, and twitching. Some common examples of neuromuscular diseases include muscular dystrophy, amyotrophic lateral sclerosis (ALS), peripheral neuropathy, and myasthenia gravis. The specific symptoms and severity of these conditions can vary widely depending on the underlying cause and the specific muscles and nerves that are affected. Treatment for neuromuscular diseases may include medications, physical therapy, assistive devices, or surgery, depending on the individual case.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Genetically modified animals (GMAs) are those whose genetic makeup has been altered using biotechnological techniques. This is typically done by introducing one or more genes from another species into the animal's genome, resulting in a new trait or characteristic that does not naturally occur in that species. The introduced gene is often referred to as a transgene.

The process of creating GMAs involves several steps:

1. Isolation: The desired gene is isolated from the DNA of another organism.
2. Transfer: The isolated gene is transferred into the target animal's cells, usually using a vector such as a virus or bacterium.
3. Integration: The transgene integrates into the animal's chromosome, becoming a permanent part of its genetic makeup.
4. Selection: The modified cells are allowed to multiply, and those that contain the transgene are selected for further growth and development.
5. Breeding: The genetically modified individuals are bred to produce offspring that carry the desired trait.

GMAs have various applications in research, agriculture, and medicine. In research, they can serve as models for studying human diseases or testing new therapies. In agriculture, GMAs can be developed to exhibit enhanced growth rates, improved disease resistance, or increased nutritional value. In medicine, GMAs may be used to produce pharmaceuticals or other therapeutic agents within their bodies.

Examples of genetically modified animals include mice with added genes for specific proteins that make them useful models for studying human diseases, goats that produce a human protein in their milk to treat hemophilia, and pigs with enhanced resistance to certain viruses that could potentially be used as organ donors for humans.

It is important to note that the use of genetically modified animals raises ethical concerns related to animal welfare, environmental impact, and potential risks to human health. These issues must be carefully considered and addressed when developing and implementing GMA technologies.

Muscle weakness is a condition in which muscles cannot develop the expected level of physical force or power. This results in reduced muscle function and can be caused by various factors, including nerve damage, muscle diseases, or hormonal imbalances. Muscle weakness may manifest as difficulty lifting objects, maintaining posture, or performing daily activities. It is essential to consult a healthcare professional for proper diagnosis and treatment of muscle weakness.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Diamino acids are a type of modified amino acids that contain two amino groups (-NH2) in their side chain. In regular amino acids, the side chain is composed of a specific arrangement of carbon, hydrogen, oxygen, and sometimes sulfur atoms. However, in diamino acids, one or both of the hydrogen atoms attached to the central carbon atom (alpha carbon) are replaced by amino groups.

There are two types of diamino acids: symmetric and asymmetric. Symmetric diamino acids have identical side chains on both sides of the alpha carbon atom, while asymmetric diamino acids have different side chains on each side.

Diamino acids play a crucial role in various biological processes, such as protein synthesis, cell signaling, and neurotransmission. They can be found naturally in some proteins or can be synthesized artificially for use in research and medical applications.

It is important to note that diamino acids are not one of the twenty standard amino acids that make up proteins. Instead, they are considered non-proteinogenic amino acids, which means they are not typically encoded by DNA and are not directly involved in protein synthesis. However, some modified forms of diamino acids can be found in certain proteins as a result of post-translational modifications.

Cell death is the process by which cells cease to function and eventually die. There are several ways that cells can die, but the two most well-known and well-studied forms of cell death are apoptosis and necrosis.

Apoptosis is a programmed form of cell death that occurs as a normal and necessary process in the development and maintenance of healthy tissues. During apoptosis, the cell's DNA is broken down into small fragments, the cell shrinks, and the membrane around the cell becomes fragmented, allowing the cell to be easily removed by phagocytic cells without causing an inflammatory response.

Necrosis, on the other hand, is a form of cell death that occurs as a result of acute tissue injury or overwhelming stress. During necrosis, the cell's membrane becomes damaged and the contents of the cell are released into the surrounding tissue, causing an inflammatory response.

There are also other forms of cell death, such as autophagy, which is a process by which cells break down their own organelles and proteins to recycle nutrients and maintain energy homeostasis, and pyroptosis, which is a form of programmed cell death that occurs in response to infection and involves the activation of inflammatory caspases.

Cell death is an important process in many physiological and pathological processes, including development, tissue homeostasis, and disease. Dysregulation of cell death can contribute to the development of various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.

Peripherins are a family of neuron-specific type III intermediate filament proteins that are expressed in the peripheral nervous system. They play crucial roles in maintaining the structural integrity and stability of nerve cells, particularly during development and regeneration. Peripherins have also been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Charcot-Marie-Tooth disease (CMT). There are several isoforms of peripherins, with peripherin 2 being the most widely studied. Mutations in the gene encoding peripherin 2 have been linked to certain forms of CMT.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

Systemic Scleroderma, also known as Systemic Sclerosis (SSc), is a rare, chronic autoimmune disease that involves the abnormal growth and accumulation of collagen in various connective tissues, blood vessels, and organs throughout the body. This excessive collagen production leads to fibrosis or scarring, which can cause thickening, hardening, and tightening of the skin and damage to internal organs such as the heart, lungs, kidneys, and gastrointestinal tract.

Systemic Scleroderma is characterized by two main features: small blood vessel abnormalities (Raynaud's phenomenon) and fibrosis. The disease can be further classified into two subsets based on the extent of skin involvement: limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc).

Limited cutaneous systemic sclerosis affects the skin distally, typically involving fingers, hands, forearms, feet, lower legs, and face. It is often associated with Raynaud's phenomenon, calcinosis, telangiectasias, and pulmonary arterial hypertension.

Diffuse cutaneous systemic sclerosis involves more extensive skin thickening and fibrosis that spreads proximally to affect the trunk, upper arms, thighs, and face. It is commonly associated with internal organ involvement, such as interstitial lung disease, heart disease, and kidney problems.

The exact cause of Systemic Scleroderma remains unknown; however, it is believed that genetic, environmental, and immunological factors contribute to its development. There is currently no cure for Systemic Scleroderma, but various treatments can help manage symptoms, slow disease progression, and improve quality of life.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

While I'm an assistant and not a doctor, I can share that laughter is not typically defined in a medical context. However, it's often studied in the field of psychology and health. Laughter is a human behavior characterized by involuntary vocalizations and facial expressions, often associated with positive emotions and humor.

From a physiological perspective, when we laugh, our bodies respond with a series of reactions. The diaphragm and abdominal muscles contract, causing us to breathe in and out rapidly, which can lead to increased heart rate and blood pressure. At the same time, the brain releases endorphins, which are chemicals associated with feelings of happiness and well-being.

In a medical context, laughter is sometimes used as a therapeutic tool. Laughter therapy, for instance, is used to promote physical and emotional health through intentional laughter exercises. It's believed that laughter can help reduce stress, improve mood, boost the immune system, and alleviate pain.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Dementia is a broad term that describes a decline in cognitive functioning, including memory, language, problem-solving, and judgment, severe enough to interfere with daily life. It is not a specific disease but rather a group of symptoms that may be caused by various underlying diseases or conditions. Alzheimer's disease is the most common cause of dementia, accounting for 60-80% of cases. Other causes include vascular dementia, Lewy body dementia, frontotemporal dementia, and Huntington's disease.

The symptoms of dementia can vary widely depending on the cause and the specific areas of the brain that are affected. However, common early signs of dementia may include:

* Memory loss that affects daily life
* Difficulty with familiar tasks
* Problems with language or communication
* Difficulty with visual and spatial abilities
* Misplacing things and unable to retrace steps
* Decreased or poor judgment
* Withdrawal from work or social activities
* Changes in mood or behavior

Dementia is a progressive condition, meaning that symptoms will gradually worsen over time. While there is currently no cure for dementia, early diagnosis and treatment can help slow the progression of the disease and improve quality of life for those affected.

The neuromuscular junction (NMJ) is the specialized synapse or chemical communication point, where the motor neuron's nerve terminal (presynaptic element) meets the muscle fiber's motor end plate (postsynaptic element). This junction plays a crucial role in controlling muscle contraction and relaxation.

At the NMJ, the neurotransmitter acetylcholine is released from the presynaptic nerve terminal into the synaptic cleft, following an action potential. Acetylcholine then binds to nicotinic acetylcholine receptors on the postsynaptic membrane of the muscle fiber, leading to the generation of an end-plate potential. If sufficient end-plate potentials are generated and summate, they will trigger an action potential in the muscle fiber, ultimately causing muscle contraction.

Dysfunction at the neuromuscular junction can result in various neuromuscular disorders, such as myasthenia gravis, where autoantibodies attack acetylcholine receptors, leading to muscle weakness and fatigue.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Paralysis is a loss of muscle function in part or all of your body. It can be localized, affecting only one specific area, or generalized, impacting multiple areas or even the entire body. Paralysis often occurs when something goes wrong with the way messages pass between your brain and muscles. In most cases, paralysis is caused by damage to the nervous system, especially the spinal cord. Other causes include stroke, trauma, infections, and various neurological disorders.

It's important to note that paralysis doesn't always mean a total loss of movement or feeling. Sometimes, it may just cause weakness or numbness in the affected area. The severity and extent of paralysis depend on the underlying cause and the location of the damage in the nervous system.

Communication aids for disabled are devices or tools that help individuals with disabilities to communicate effectively. These aids can be low-tech, such as communication boards with pictures and words, or high-tech, such as computer-based systems with synthesized speech output. The goal of these aids is to enhance the individual's ability to express their needs, wants, thoughts, and feelings, thereby improving their quality of life and promoting greater independence.

Some examples of communication aids for disabled include:

1. Augmentative and Alternative Communication (AAC) devices - These are electronic devices that produce speech or text output based on user selection. They can be operated through touch screens, eye-tracking technology, or switches.
2. Speech-generating devices - Similar to AAC devices, these tools generate spoken language for individuals who have difficulty speaking.
3. Adaptive keyboards and mice - These are specialized input devices that allow users with motor impairments to type and navigate computer interfaces more easily.
4. Communication software - Computer programs designed to facilitate communication for individuals with disabilities, such as text-to-speech software or visual scene displays.
5. Picture communication symbols - Graphic representations of objects, actions, or concepts that can be used to create communication boards or books.
6. Eye-tracking technology - Devices that track eye movements to enable users to control a computer or communicate through selection of on-screen options.

These aids are often customized to meet the unique needs and abilities of each individual, allowing them to participate more fully in social interactions, education, and employment opportunities.

Copper is a chemical element with the symbol Cu (from Latin: *cuprum*) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. Copper is found as a free element in nature, and it is also a constituent of many minerals such as chalcopyrite and bornite.

In the human body, copper is an essential trace element that plays a role in various physiological processes, including iron metabolism, energy production, antioxidant defense, and connective tissue synthesis. Copper is found in a variety of foods, such as shellfish, nuts, seeds, whole grains, and organ meats. The recommended daily intake of copper for adults is 900 micrograms (mcg) per day.

Copper deficiency can lead to anemia, neutropenia, impaired immune function, and abnormal bone development. Copper toxicity, on the other hand, can cause nausea, vomiting, abdominal pain, diarrhea, and in severe cases, liver damage and neurological symptoms. Therefore, it is important to maintain a balanced copper intake through diet and supplements if necessary.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A tracheostomy is a surgically created opening through the neck into the trachea (windpipe). It is performed to provide an airway in cases where the upper airway is obstructed or access to the lower airway is required, such as in prolonged intubation, severe trauma, or chronic lung diseases. The procedure involves making an incision in the front of the neck and creating a direct opening into the trachea, through which a tracheostomy tube is inserted to maintain the patency of the airway. This allows for direct ventilation of the lungs, suctioning of secretions, and prevention of complications associated with upper airway obstruction.

I'm sorry for any confusion, but "Italy" is not a medical term or concept. It is a country located in Southern Europe. If you have any questions related to medical terminology or health-related topics, I would be happy to try and help answer those for you.

Glial Fibrillary Acidic Protein (GFAP) is a type of intermediate filament protein that is primarily found in astrocytes, which are a type of star-shaped glial cells in the central nervous system (CNS). These proteins play an essential role in maintaining the structural integrity and stability of astrocytes. They also participate in various cellular processes such as responding to injury, providing support to neurons, and regulating the extracellular environment.

GFAP is often used as a marker for astrocytic activation or reactivity, which can occur in response to CNS injuries, neuroinflammation, or neurodegenerative diseases. Elevated GFAP levels in cerebrospinal fluid (CSF) or blood can indicate astrocyte damage or dysfunction and are associated with several neurological conditions, including traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease, and Alexander's disease.

Gliosis is a term used in histopathology and neuroscience to describe the reaction of support cells in the brain, called glial cells, to injury or disease. This response includes an increase in the number and size of glial cells, as well as changes in their shape and function. The most common types of glial cells involved in gliosis are astrocytes and microglia.

Gliosis can be triggered by a variety of factors, including trauma, infection, inflammation, neurodegenerative diseases, and stroke. In response to injury or disease, astrocytes become hypertrophied (enlarged) and undergo changes in their gene expression profile that can lead to the production of various proteins, such as glial fibrillary acidic protein (GFAP). These changes can result in the formation of a dense network of astrocytic processes, which can contribute to the formation of a glial scar.

Microglia, another type of glial cell, become activated during gliosis and play a role in the immune response in the central nervous system (CNS). They can release pro-inflammatory cytokines, chemokines, and reactive oxygen species that contribute to the inflammatory response.

While gliosis is a protective response aimed at containing damage and promoting tissue repair, it can also have negative consequences. For example, the formation of glial scars can impede axonal regeneration and contribute to neurological deficits. Additionally, chronic activation of microglia has been implicated in various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Human chromosome pair 9 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each member of the pair contains thousands of genes and other genetic material, encoded in the form of DNA molecules. The two chromosomes in a pair are identical or very similar to each other in terms of their size, shape, and genetic makeup.

Chromosome 9 is one of the autosomal chromosomes, meaning that it is not a sex chromosome (X or Y) and is present in two copies in all cells of the body, regardless of sex. Chromosome 9 is a medium-sized chromosome, and it is estimated to contain around 135 million base pairs of DNA and approximately 1200 genes.

Chromosome 9 contains several important genes that are associated with various human traits and diseases. For example, mutations in the gene that encodes the protein APOE on chromosome 9 have been linked to an increased risk of developing Alzheimer's disease. Additionally, variations in the gene that encodes the protein EGFR on chromosome 9 have been associated with an increased risk of developing certain types of cancer.

Overall, human chromosome pair 9 plays a critical role in the development and function of the human body, and variations in its genetic makeup can contribute to a wide range of traits and diseases.

Ubiquitin is a small protein that is present in all eukaryotic cells and plays a crucial role in the regulation of various cellular processes, such as protein degradation, DNA repair, and stress response. It is involved in marking proteins for destruction by attaching to them, a process known as ubiquitination. This modification can target proteins for degradation by the proteasome, a large protein complex that breaks down unneeded or damaged proteins in the cell. Ubiquitin also has other functions, such as regulating the localization and activity of certain proteins. The ability of ubiquitin to modify many different proteins and play a role in multiple cellular processes makes it an essential player in maintaining cellular homeostasis.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Pyrazolones are a group of non-steroidal anti-inflammatory drugs (NSAIDs) that contain a pyrazole ring in their chemical structure. They have analgesic, antipyretic, and anti-inflammatory properties. Pyrazolones include drugs such as phenylbutazone, oxyphenbutazone, and aminopyrine. However, due to their potential for serious side effects, including agranulocytosis (a severe decrease in white blood cells), pyrazolones are rarely used in modern clinical practice.

Respiratory insufficiency is a condition characterized by the inability of the respiratory system to maintain adequate gas exchange, resulting in an inadequate supply of oxygen and/or removal of carbon dioxide from the body. This can occur due to various causes, such as lung diseases (e.g., chronic obstructive pulmonary disease, pneumonia), neuromuscular disorders (e.g., muscular dystrophy, spinal cord injury), or other medical conditions that affect breathing mechanics and/or gas exchange.

Respiratory insufficiency can manifest as hypoxemia (low oxygen levels in the blood) and/or hypercapnia (high carbon dioxide levels in the blood). Symptoms of respiratory insufficiency may include shortness of breath, rapid breathing, fatigue, confusion, and in severe cases, loss of consciousness or even death. Treatment depends on the underlying cause and severity of the condition and may include oxygen therapy, mechanical ventilation, medications, and/or other supportive measures.

Spinal muscular atrophy (SMA) is a genetic disorder that affects the motor neurons in the spinal cord, leading to muscle weakness and atrophy. It is caused by a mutation in the survival motor neuron 1 (SMN1) gene, which results in a deficiency of SMN protein necessary for the survival of motor neurons.

There are several types of SMA, classified based on the age of onset and severity of symptoms. The most common type is type 1, also known as Werdnig-Hoffmann disease, which presents in infancy and is characterized by severe muscle weakness, hypotonia, and feeding difficulties. Other types include type 2 (intermediate SMA), type 3 (Kugelberg-Welander disease), and type 4 (adult-onset SMA).

The symptoms of SMA may include muscle wasting, fasciculations, weakness, hypotonia, respiratory difficulties, and mobility impairment. The diagnosis of SMA typically involves genetic testing to confirm the presence of a mutation in the SMN1 gene. Treatment options for SMA may include medications, physical therapy, assistive devices, and respiratory support.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Nervous system diseases, also known as neurological disorders, refer to a group of conditions that affect the nervous system, which includes the brain, spinal cord, nerves, and muscles. These diseases can affect various functions of the body, such as movement, sensation, cognition, and behavior. They can be caused by genetics, infections, injuries, degeneration, or tumors. Examples of nervous system diseases include Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, migraine, stroke, and neuroinfections like meningitis and encephalitis. The symptoms and severity of these disorders can vary widely, ranging from mild to severe and debilitating.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

Multiple Sclerosis (MS), Chronic Progressive is a form of Multiple Sclerosis, a chronic autoimmune disease that affects the central nervous system (CNS). In this form, the disease follows a steady progression with no distinct relapses or remissions. The symptoms worsen over time, leading to a decline in physical functioning and increased disability.

The term "chronic progressive" is used to describe the course of the disease, which is characterized by a continuous worsening of neurological functions from the onset, or after an initial relapsing-remitting phase. There are two types of chronic progressive MS: primary and secondary.

1. Primary Chronic Progressive MS (PCP): This form of MS shows a steady progression of symptoms from the beginning, with no distinct remissions or relapses. The disability accumulates gradually over time, and the person may experience varying degrees of physical and cognitive impairment.

2. Secondary Chronic Progressive MS (SCP): In this form, an individual initially has a relapsing-remitting course of MS (RRMS), characterized by unpredictable relapses followed by periods of partial or complete recovery (remissions). However, after some time, the disease transitions to a steady progression of symptoms and disability, even without distinct relapses. This is known as secondary chronic progressive MS.

The exact cause of Multiple Sclerosis remains unknown; however, it is believed to be influenced by genetic, environmental, and immunological factors. The disease involves the immune system attacking the myelin sheath, a protective covering surrounding nerve fibers in the CNS. This results in lesions or scars (scleroses) that disrupt communication between the brain, spinal cord, and other parts of the body, leading to various physical, cognitive, and sensory symptoms.

Management of Chronic Progressive MS typically involves a multidisciplinary approach, focusing on symptom management, rehabilitation, and maintaining quality of life. Currently, there are no approved disease-modifying therapies specifically for chronic progressive MS; however, some medications used to treat relapsing-remitting MS may help slow the progression of disability in certain individuals with secondary chronic progressive MS.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Neuroimaging is a medical term that refers to the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. It includes techniques such as computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and diffusion tensor imaging (DTI). These techniques are used to diagnose and monitor various neurological and psychiatric conditions, as well as to understand the underlying mechanisms of brain function in health and disease.

Muscular atrophy is a condition characterized by a decrease in the size and mass of muscles due to lack of use, disease, or injury. This occurs when there is a disruption in the balance between muscle protein synthesis and degradation, leading to a net loss of muscle proteins. There are two main types of muscular atrophy:

1. Disuse atrophy: This type of atrophy occurs when muscles are not used or are immobilized for an extended period, such as after an injury, surgery, or prolonged bed rest. In this case, the nerves that control the muscles may still be functioning properly, but the muscles themselves waste away due to lack of use.
2. Neurogenic atrophy: This type of atrophy is caused by damage to the nerves that supply the muscles, leading to muscle weakness and wasting. Conditions such as amyotrophic lateral sclerosis (ALS), spinal cord injuries, and peripheral neuropathies can cause neurogenic atrophy.

In both cases, the affected muscles may become weak, shrink in size, and lose their tone and mass. Treatment for muscular atrophy depends on the underlying cause and may include physical therapy, exercise, and medication to manage symptoms and improve muscle strength and function.

Research on amyotrophic lateral sclerosis (ALS) has focused on animal models of the disease, its mechanisms, ways to diagnose ... Kim, Changsung; Lee, Hee Chul; Sung, Jung-Joon (2014-09-01). "Amyotrophic Lateral Sclerosis - Cell Based Therapy and Novel ... 2019). "Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach". Scientific Reports. 5562 (9): 690 ... Mitsumoto H, Brooks BR, Silani V (November 2014). "Clinical trials in amyotrophic lateral sclerosis: why so many negative ...
... models and biomarkers in amyotrophic lateral sclerosis". Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration. 14 (1): ... "Amyotrophic Lateral Sclerosis (ALS) Fact Sheet , National Institute of Neurological Disorders and Stroke". www.ninds.nih.gov. ... There are more than 25 genes known to be associated with amyotrophic lateral sclerosis (ALS) as of June 2018, which ... Al-Saif A, Al-Mohanna F, Bohlega S (2011). "A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis". ...
"Differentiation Between Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis". Archives of Neurology. 64 (2): 232-6. doi ... "Progression in primary lateral sclerosis: A prospective analysis". Amyotrophic Lateral Sclerosis. 10 (5-6): 339-46. doi:10.3109 ... "Clinical Differentiation Between Primary Lateral Sclerosis and Upper Motor Neuron Predominant Amyotrophic Lateral Sclerosis". ... "Primary lateral sclerosis (PLS) - Symptoms and causes". Mayo Clinic. "Primary Lateral Sclerosis Information Page". National ...
Amyotrophic Lateral Sclerosis. 10: 74-78. doi:10.3109/17482960903272942. PMID 19929737. S2CID 41880444. Stewart I, Seawright AA ... cyanobacteria neurotoxin BMAA may be an environmental cause of neurodegenerative diseases such as amyotrophic lateral sclerosis ...
Amyotrophic lateral sclerosis Creutzfeldt-Jakob disease Frontotemporal Dementia Dementia with Lewy bodies Corticobasal ... Aging is also associated with many neurological and neurodegenerative disease such as amyotrophic lateral sclerosis, dementia, ... "Amyotrophic lateral sclerosis". Lancet. 377 (9769): 942-55. doi:10.1016/s0140-6736(10)61156-7. PMID 21296405. S2CID 14354178. ...
"Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis". Amyotrophic ... "Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis". Brain. 131 (Pt 12): ... phase IIb and several clinical pilot studies are published for other neurological disease such as amyotrophic lateral sclerosis ... Lateral Sclerosis. 10 (5-6): 430-1. doi:10.3109/17482960802588059. PMID 19922135. S2CID 43087598. Acosta SA, Tajiri N, ...
Rowland, Lewis P.; Shneider, Neil A. (31 May 2001). "Amyotrophic Lateral Sclerosis". New England Journal of Medicine. 344 (22 ... In some rare cases, acquired neuromyotonia has been misdiagnosed as amyotrophic lateral sclerosis (ALS) particularly if ... "Complex fasciculations and their origin in amyotrophic lateral sclerosis and Kennedy's disease". Muscle & Nerve. 23 (12): 1872- ... Similarly, multiple sclerosis has been the initial misdiagnosis in some NMT patients. In order to get an accurate diagnosis see ...
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's Disease is a progressive neurodegenerative disease that affects ... which is used for the treatment of amyotrophic lateral sclerosis (Lou Gehrig's disease). It is similar in action to mecasermin ... Amyotrophic Lateral Sclerosis. 10 (4): 248-50. 2009. doi:10.1080/17482960903208599. PMID 19701824.{{cite journal}}: CS1 maint: ... 2009 the FDA announced that mecasermin rinfabate would be made available to Americans with amyotrophic lateral sclerosis (ALS ...
"A new editor for the "Black but not bleak" journal - ALS research is coming of age". Amyotrophic Lateral Sclerosis. 9: 3. 2008 ... She leads a team of thirty researchers focusing on clinical and translational aspects of amyotrophic lateral sclerosis and ... Since 2008 she has been the editor in chief of the field journal "Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration ... Her main research interests are amyotrophic lateral sclerosis (motor neurone disease) and related motor neuron degenerations, ...
"A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms". Amyotrophic ... 2009) suggested that bioaerosls from cyanobacteria blooms could play a role in high incidences of amyotrophic lateral sclerosis ... Lateral Sclerosis. 10 (sup2): 101-108. doi:10.3109/17482960903278485. ISSN 1748-2968. PMID 19929741. S2CID 35250897. Backer, ...
"A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms". Amyotrophic ... Amyotrophic Lateral Sclerosis. 10 (Suppl 2): 109-117. doi:10.3109/17482960903286066. PMID 19929742. S2CID 1748627. Main DC ( ... that significant exposure to high levels of cyanobacteria producing toxins such as BMAA can cause amyotrophic lateral sclerosis ... Lateral Sclerosis. 10 (Suppl 2): 101-108. doi:10.3109/17482960903278485. PMID 19929741. S2CID 35250897. Cox PA, Richer R, ...
Amyotrophic Lateral Sclerosis. 10 (5-6): 436-40. doi:10.3109/17482960902759162. PMID 19922137. S2CID 2326464. Tiziano FD, Pinto ...
"A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms". Amyotrophic ... that significant exposure to high levels of cyanobacteria producing toxins such as BMAA can cause amyotrophic lateral sclerosis ... Lateral Sclerosis. 10 (Suppl 2): 101-08. doi:10.3109/17482960903278485. PMID 19929741. S2CID 35250897. State Issues ...
Rowland LP, Shneider NA (May 2001). "Amyotrophic lateral sclerosis". The New England Journal of Medicine. 344 (22): 1688-700. ... "Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis". Brain and Behavior. 3 (2): ...
"Differential gene expression in patients with amyotrophic lateral sclerosis". Amyotrophic Lateral Sclerosis. 12 (4): 250-6. doi ... PRR32 (CXorf64) seems to be involved with a group of genes over-expressed in ALS (Amyotrophic lateral sclerosis), evident from ... An experiment analyzed gene expression pattern in muscles from patients with amyotrophic lateral sclerosis (ALS) and multifocal ... a study aiming to study gene expression patterns in muscles from patients with amyotrophic lateral sclerosis and multifocal ...
Amyotrophic Lateral Sclerosis. 9 (2): 120-1. doi:10.1080/17482960701855864. PMID 18428004. S2CID 43321868. Perrotta G (2019). " ... needle electromyography and clinical observation in the detection of fasciculation in people with amyotrophic lateral sclerosis ...
"Senataxin mutations and amyotrophic lateral sclerosis". Amyotrophic Lateral Sclerosis. 12 (3): 223-7. doi:10.3109/17482968.2010 ...
In 2008, Scott was lead author of a landmark publication in the journal, Amyotrophic Lateral Sclerosis that described ... the world's largest amyotrophic lateral sclerosis research center. Scott himself was diagnosed with ALS in 2008 at the age of ... Amyotrophic Lateral Sclerosis. 9 (1): 4-15. doi:10.1080/17482960701856300. PMID 18273714. S2CID 21962544. Schnabel, Jim (2008- ...
... multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). It has been reported as a symptom ... A study designed specifically to survey for prevalence found that 49% of patients with amyotrophic lateral sclerosis (ALS) also ... McCullagh S, Moore M, Gawel M, Feinstein A (1999). "Pathological laughing and crying in amyotrophic lateral sclerosis: an ... Caroscio JT, Mulvihill MN, Sterling R, Abrams B (1987). "Amyotrophic lateral sclerosis". Neurologic Clinics. 5 (1): 1-8. doi: ...
May 2010). "A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis". Amyotrophic Lateral Sclerosis. 11 ( ... and amyotrophic lateral sclerosis (ALS). As of May 2010, results from the trial for ALS have been found negative. Talampanel is ...
Amyotrophic Lateral Sclerosis. CRC Press. p. 9. ISBN 978-0824729240. Gordon PH (October 2013). "Amyotrophic Lateral Sclerosis: ... Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) or Lou Gehrig's disease, is a rare and terminal ... Wikimedia Commons has media related to Amyotrophic lateral sclerosis. ALS Association Official Website ALS Therapy Development ... who in 1874 began using the term amyotrophic lateral sclerosis. ALS is a motor neuron disease, which is a group of neurological ...
Pete Duranko, 67, American football player (Denver Broncos), amyotrophic lateral sclerosis. Mary Fenech Adami, 77, Maltese ... amyotrophic lateral sclerosis. Sir John Rawlins, 89, British naval officer, pioneer of diving medicine. Eduard Rozovsky, 84, ...
The culmination of this work is a paper published in the journal "Amyotrophic Lateral Sclerosis" that identified crucial errors ... Clark JE, Brennan A, Ramesh TM, Heywood JA (2002). "Novel trends in orphan market drug discovery: amyotrophic lateral sclerosis ... when his younger brother Stephen Heywood was diagnosed with amyotrophic lateral sclerosis (ALS) in December 1998. He is ... Amyotrophic Lateral Sclerosis. 9 (1): 4-15. doi:10.1080/17482960701856300. PMID 18273714. S2CID 21962544. "Technology Review: ...
March 5 Abril Campillo (58), actress; breast cancer (b. 1958). Tony Flores (67), comedian; Amyotrophic Lateral Sclerosis. ...
It has been studied for its potential use in the treatment of amyotrophic lateral sclerosis (ALS), but a study showed lithium ... Ludolph AC, Brettschneider J, Weishaupt JH (October 2012). "Amyotrophic lateral sclerosis". Current Opinion in Neurology. 25 (5 ...
Chronic dietary exposure to BMAA is now considered to be a cause of the amyotrophic lateral sclerosis/parkinsonism-dementia ... Kurland, LK; Mulder, DW (1954). "Epidemiologic investigations of amyotrophic lateral sclerosis". Neurology. 4 (5): 355-78. doi: ... amyotrophic lateral sclerosis (ALS), progressive supranuclear palsy (PSP), and Lewy body disease. In vitro research has shown ... Amyotrophic Lateral Sclerosis. 10: 7-20. doi:10.3109/17482960903286009. PMID 19929726. S2CID 41622254. Banack SA, Caller TA, ...
"Clinical Manifestation and Management of Amyotrophic Lateral Sclerosis". Amyotrophic Lateral Sclerosis. Exon Publications. pp. ... and Amyotrophic Lateral Sclerosis (ALS). Pridopidine works by binding and activating an intracellular protein called the Sigma- ...
Amyotrophic Lateral Sclerosis. 11 (5): 449-55. doi:10.3109/17482961003777470. PMID 20583947. S2CID 4713118. Ajiboye AB, Willett ... "Home treatment against fatigue in multiple sclerosis by a personalized, bilateral whole-body somatosensory cortex stimulation ... "Parietal dysfunctional connectivity in depression in multiple sclerosis". Mult Scler. 27 (9): 1468-1469. doi:10.1177/ ...
Ludolph AC, Brettschneider J, Weishaupt JH (October 2012). "Amyotrophic lateral sclerosis". Current Opinion in Neurology. 25 (5 ... and in amyotrophic lateral sclerosis / frontotemporal lobar degeneration (FTLD), certain gene-regulating proteins ... suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis". PLOS ONE. 5 (5): e10627. doi:10.1371/journal. ... prion-like mechanisms in amyotrophic lateral sclerosis". Neurobiology of Disease. 77: 257-65. doi:10.1016/j.nbd.2015.02.009. ...
Amyotrophic Lateral Sclerosis. 10 (sup2): 7-20. doi:10.3109/17482960903286009. PMID 19929726. S2CID 41622254. Cox PA, Banack SA ... occurs exclusively in the Chamorro people of the island of Guam that has characteristics of both amyotrophic lateral sclerosis ... The Lytico-bodig disease, also known as lateral sclerosis-parkinsonism-dementia, is a neurodegenerative disease of unknown ... It is clinically characterized by weight loss followed by lateral swaying of the hind quarters, with weakness, ataxia, and ...
This warning banner provides privacy and security notices consistent with applicable federal laws, directives, and other federal guidance for accessing this Government system, which includes (1) this computer network, (2) all computers connected to this network, and (3) all devices and storage media attached to this network or to a computer on this network. •This system is provided for Government-authorized use only. •Unauthorized or improper use of this system is prohibited and may result in disciplinary action and/or civil and criminal penalties. •Personal use of social media and networking sites on this system is limited as to not interfere with official work duties and is subject to monitoring. •By using this system, you understand and consent to the following: ◦The Government may monitor, record, and audit your system usage, including usage of personal devices and email systems for official duties or to conduct HHS business. Therefore, you have no reasonable expectation of privacy ...
Amyotrophic lateral sclerosis (ALS) is a progressive disease that affects motor neurons, which are specialized nerve cells that ... AMYOTROPHIC LATERAL SCLEROSIS 15 WITH OR WITHOUT FRONTOTEMPORAL DEMENTIA; ALS15. *AMYOTROPHIC LATERAL SCLEROSIS 4, JUVENILE; ... AMYOTROPHIC LATERAL SCLEROSIS 16, JUVENILE; ALS16. *AMYOTROPHIC LATERAL SCLEROSIS 12 WITH OR WITHOUT FRONTOTEMPORAL DEMENTIA; ... AMYOTROPHIC LATERAL SCLEROSIS-PARKINSONISM/DEMENTIA COMPLEX 1. *FRONTOTEMPORAL DEMENTIA AND/OR AMYOTROPHIC LATERAL SCLEROSIS 1 ...
This group is for caregivers and loved ones of those living with ALS. If you wish to discuss, obtain information or be in the company of others who know what youre going through, please join us!".... ...
Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord 1, 293- ... Paré, B., Lehmann, M., Beaudin, M. et al. Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis. Sci Rep 8, 14223 ... Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. ... Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat. Genet. ...
Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motor neuron system. The disorder is named ... encoded search term (Amyotrophic Lateral Sclerosis) and Amyotrophic Lateral Sclerosis What to Read Next on Medscape ... Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations ... Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet ...
... virus-like protein may play a key role in amyotrophic lateral sclerosis (ALS), a fatal and incurable condition. The finding may ... Primary lateral sclerosis (PLS) vs. amyotrophic lateral sclerosis (ALS): What to know. Medically reviewed by Heidi Moawad, MD ... receive a diagnosis of amyotrophic lateral sclerosis (ALS), a progressive disease that affects the nervous system by damaging ... and the development of amyotrophic lateral sclerosis (ALS).. *PEG10, primarily known for its role in placental development, has ...
See how 14452 people just like you are living with amyotrophic lateral sclerosis. Learn from their data and experience. ... 2,007 amyotrophic lateral sclerosis patients report mild pain (34%). * 2,170 amyotrophic lateral sclerosis patients report no ... 27 amyotrophic lateral sclerosis patients report mild falls (16%). * 64 amyotrophic lateral sclerosis patients report no falls ... 1,995 amyotrophic lateral sclerosis patients report mild fatigue (33%). * 550 amyotrophic lateral sclerosis patients report no ...
Tag Archives: Amyotrophic Lateral Sclerosis Is Celine Dion Now Forced To Use A Wheelchair?! Leave a reply ... Kathy Poirier suffers from amyotrophic lateral sclerosis (ALS), which is also known as Lou Gehrigs disease. It is a ... Editorials and tagged Amyotrophic Lateral Sclerosis, Celebrity, Celine Dion, Dance, Disabled, Disease, Entertainment, Fact, ...
There is no cure for amyotrophic lateral sclerosis (ALS)-aka Lou Gehrigs disease. But recent advances offer some hope. Learn ... But his career was tragically cut short when he was diagnosed with amyotrophic lateral sclerosis (ALS), a progressive ... What doctors wish patients knew about amyotrophic lateral sclerosis. Oct 4, 2023 ...
ALS is a rare disease, as a result, epidemiological research on ALS has been rather scarce. As the first group in Sweden, we started to conduct a series of epidemiological studies on ALS in 2005.
Also known as Lou Gehrigs disease, this neurodegenerative disease results in the death of brain cells that control the muscles.. ...
... revised criteria for the diagnosis of amyotrophic lateral sclerosis ... El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis Amyotroph Lateral Scler Other Motor ...
Amyotrophic lateral sclerosis (ALS), also known as Charcots disease and Lou Gehrigs disease, is a disease of unknown cause ... How is amyotrophic lateral sclerosis (ALS) diagnosed?. How is amyotrophic lateral sclerosis (ALS) differentiated from stroke or ... Emergent Treatment of Amyotrophic Lateral Sclerosis) and Emergent Treatment of Amyotrophic Lateral Sclerosis What to Read Next ... What are the bulbar symptoms of amyotrophic lateral sclerosis (ALS)?. What are the muscular symptoms of amyotrophic lateral ...
Amyotrophic lateral sclerosis. Disease definition A neurodegenerative disease characterized by progressive muscular paralysis ...
ALS, formally known as amyotrophic lateral sclerosis and informally as Lou Gehrigs disease, occurs in both a less common ... Retrieved from "https://www.SNPedia.com/index.php?title=Amyotrophic_Lateral_Sclerosis&oldid=1610604" ...
Amyotrophic lateral sclerosis ... DEMENTIA AND/OR AMYOTROPHIC LATERAL SCLEROSIS 1; FTDALS1 AMYOTROPHIC LATERAL SCLEROSIS 5, ... Amyotrophic Lateral Sclerosis/Start Here ... Amyotrophic Lateral ... ... Amyotrophic Lateral Sclerosis (ALS) (National Institute of Neurological Disorders and Stroke) National Institute of ... People with CMT2 may develop amyotrophic lateral sclerosis ... as intermediate type, the nerve impulses are both slowed and ...
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrigs disease, is characterized by a progressive degeneration of ... As a result of these developments, enthusiasm for the potential of VEGF as a therapeutic target Amyotrophic lateral sclerosis ( ... Amyotrophic Lateral Sclerosis. ...
Diaphragmatic dysfunction and dyspnoea in amyotrophic lateral sclerosis. T Similowski, V Attali, G Bensimon, F Salachas, S ... Diaphragmatic dysfunction and dyspnoea in amyotrophic lateral sclerosis. T Similowski, V Attali, G Bensimon, F Salachas, S ... Diaphragmatic dysfunction and dyspnoea in amyotrophic lateral sclerosis. T Similowski, V Attali, G Bensimon, F Salachas, S ... Amyotrophic lateral sclerosis (ALS) is a progressive disorder of unknown origin. Respiratory involvement is the principal cause ...
MDA is the #1 health nonprofit advancing research, care and advocacy for people living with muscular dystrophy, ALS, and related neuromuscular diseases.
... die in amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disease of unknown etiology. In human ... die in amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disease of unknown aetiology. In human ... Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model. Matthew J. Fogarty1† Erica W. H. ... In amyotrophic lateral sclerosis (ALS) both upper and lower motor neurons (MNs), as well as the corticospinal tract, undergo ...
What is Amyotropohic Lateral Sclerosis (ALS)? ALS, also known as Lou Gehrigs disease, affects the nerve cells that make ...
Amyotrophic Lateral Sclerosis Articles Case Reports Symptoms Treatment, Singapore. ...
Occupational exposures and the risk of amyotrophic lateral sclerosis. Tracy L Peters Freya Kamel Cecilia Lundholm Maria ... including amyotrophic lateral sclerosis (ALS) (also commonly known as motor neuron disease) which have not yet been discovered ...
The onset of amyotrophic lateral sclerosis (ALS) is conventionally considered as commencing with the recognition of clinical ...
Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis or ALS (also known as motor neurone disease) is a progressive ...
... elemental biodynamics in neurologically healthy cases and subjects that were later diagnosed with amyotrophic lateral sclerosis ...

No FAQ available that match "amyotrophic lateral sclerosis"

No images available that match "amyotrophic lateral sclerosis"