A disease characterized by chronic hemolytic anemia, episodic painful crises, and pathologic involvement of many organs. It is the clinical expression of homozygosity for hemoglobin S.
The condition of being heterozygous for hemoglobin S.
A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN.
An abnormal hemoglobin resulting from the substitution of valine for glutamic acid at position 6 of the beta chain of the globin moiety. The heterozygous state results in sickle cell trait, the homozygous in sickle cell anemia.
Oxygen-carrying RED BLOOD CELLS in mammalian blood that are abnormal in structure or function.
Agents used to prevent or reverse the pathological events leading to sickling of erythrocytes in sickle cell conditions.
One of the sickle cell disorders characterized by the presence of both hemoglobin S and hemoglobin C. It is similar to, but less severe than sickle cell anemia.
The major component of hemoglobin in the fetus. This HEMOGLOBIN has two alpha and two gamma polypeptide subunits in comparison to normal adult hemoglobin, which has two alpha and two beta polypeptide subunits. Fetal hemoglobin concentrations can be elevated (usually above 0.5%) in children and adults affected by LEUKEMIA and several types of ANEMIA.
A condition of inadequate circulating red blood cells (ANEMIA) or insufficient HEMOGLOBIN due to premature destruction of red blood cells (ERYTHROCYTES).
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements.
Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=227650, August 20, 2004)
An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.
A group of hereditary hemolytic anemias in which there is decreased synthesis of one or more hemoglobin polypeptide chains. There are several genetic types with clinical pictures ranging from barely detectable hematologic abnormality to severe and fatal anemia.
Acquired hemolytic anemia due to the presence of AUTOANTIBODIES which agglutinate or lyse the patient's own RED BLOOD CELLS.
Anemia characterized by a decrease in the ratio of the weight of hemoglobin to the volume of the erythrocyte, i.e., the mean corpuscular hemoglobin concentration is less than normal. The individual cells contain less hemoglobin than they could have under optimal conditions. Hypochromic anemia may be caused by iron deficiency from a low iron intake, diminished iron absorption, or excessive iron loss. It can also be caused by infections or other diseases, therapeutic drugs, lead poisoning, and other conditions. (Stedman, 25th ed; from Miale, Laboratory Medicine: Hematology, 6th ed, p393)
A disorder characterized by reduced synthesis of the beta chains of hemoglobin. There is retardation of hemoglobin A synthesis in the heterozygous form (thalassemia minor), which is asymptomatic, while in the homozygous form (thalassemia major, Cooley's anemia, Mediterranean anemia, erythroblastic anemia), which can result in severe complications and even death, hemoglobin A synthesis is absent.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Anemia characterized by larger than normal erythrocytes, increased mean corpuscular volume (MCV) and increased mean corpuscular hemoglobin (MCH).
A megaloblastic anemia occurring in children but more commonly in later life, characterized by histamine-fast achlorhydria, in which the laboratory and clinical manifestations are based on malabsorption of vitamin B 12 due to a failure of the gastric mucosa to secrete adequate and potent intrinsic factor. (Dorland, 27th ed)
A group of inherited disorders characterized by structural alterations within the hemoglobin molecule.
An island in the Greater Antilles in the West Indies. Its capital is Kingston. It was discovered in 1494 by Columbus and was a Spanish colony 1509-1655 until captured by the English. Its flourishing slave trade was abolished in the 19th century. It was a British colony 1655-1958 and a territory of the West Indies Federation 1958-62. It achieved full independence in 1962. The name is from the Arawak Xaymaca, rich in springs or land of springs. (From Webster's New Geographical Dictionary, 1988, p564 & Room, Brewer's Dictionary of Names, 1992, p267)
Respiratory syndrome characterized by the appearance of a new pulmonary infiltrate on chest x-ray, accompanied by symptoms of fever, cough, chest pain, tachypnea, or DYSPNEA, often seen in patients with SICKLE CELL ANEMIA. Multiple factors (e.g., infection, and pulmonary FAT EMBOLISM) may contribute to the development of the syndrome.
A disorder characterized by reduced synthesis of the alpha chains of hemoglobin. The severity of this condition can vary from mild anemia to death, depending on the number of genes deleted.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
A disease characterized by compensated hemolysis with a normal hemoglobin level or a mild to moderate anemia. There may be intermittent abdominal discomfort, splenomegaly, and slight jaundice.
Anemia characterized by the presence of erythroblasts containing excessive deposits of iron in the marrow.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
Normal adult human hemoglobin. The globin moiety consists of two alpha and two beta chains.
A disorder characterized by the presence of ANEMIA, abnormally large red blood cells (megalocytes or macrocytes), and MEGALOBLASTS.
The number of RED BLOOD CELLS per unit volume in a sample of venous BLOOD.
A species of LENTIVIRUS, subgenus equine lentiviruses (LENTIVIRUSES, EQUINE), causing acute and chronic infection in horses. It is transmitted mechanically by biting flies, mosquitoes, and midges, and iatrogenically through unsterilized equipment. Chronic infection often consists of acute episodes with remissions.
A severe sometimes chronic anemia, usually macrocytic in type, that does not respond to ordinary antianemic therapy.
Hemolytic anemia due to various intrinsic defects of the erythrocyte.
ERYTHROCYTE size and HEMOGLOBIN content or concentration, usually derived from ERYTHROCYTE COUNT; BLOOD hemoglobin concentration; and HEMATOCRIT. The indices include the mean corpuscular volume (MCV), the mean corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC).
Hemoglobins characterized by structural alterations within the molecule. The alteration can be either absence, addition or substitution of one or more amino acids in the globin part of the molecule at selected positions in the polypeptide chains.
Ability of ERYTHROCYTES to change shape as they pass through narrow spaces, such as the microvasculature.
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
Repetitive withdrawal of small amounts of blood and replacement with donor blood until a large proportion of the blood volume has been exchanged. Used in treatment of fetal erythroblastosis, hepatic coma, sickle cell anemia, disseminated intravascular coagulation, septicemia, burns, thrombotic thrombopenic purpura, and fulminant malaria.
A commonly occurring abnormal hemoglobin in which lysine replaces a glutamic acid residue at the sixth position of the beta chains. It results in reduced plasticity of erythrocytes.
Ulceration of the skin and underlying structures of the lower extremity. About 90% of the cases are due to venous insufficiency (VARICOSE ULCER), 5% to arterial disease, and the remaining 5% to other causes.
A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.
The co-occurrence of pregnancy and a blood disease (HEMATOLOGIC DISEASES) which involves BLOOD CELLS or COAGULATION FACTORS. The hematologic disease may precede or follow FERTILIZATION and it may or may not have a deleterious effect on the pregnant woman or FETUS.
The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
The transfer of erythrocytes from a donor to a recipient or reinfusion to the donor.
Viral disease of horses caused by the equine infectious anemia virus (EIAV; INFECTIOUS ANEMIA VIRUS, EQUINE). It is characterized by intermittent fever, weakness, and anemia. Chronic infection consists of acute episodes with remissions.
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS.
Insufficiency of arterial or venous blood supply to the spleen due to emboli, thrombi, vascular torsion, or pressure that produces a macroscopic area of necrosis. (From Stedman, 25th ed)
The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS.
Measurement of hemoglobin concentration in blood.
The type species of GYROVIRUS, a small, non-enveloped DNA virus originally isolated from contaminated vaccines in Japan. It causes chicken infectious anemia and may possibly play a key role in hemorrhagic anemia syndrome, anemia dermatitis, and blue wing disease.
A familial disorder characterized by ANEMIA with multinuclear ERYTHROBLASTS, karyorrhexis, asynchrony of nuclear and cytoplasmic maturation, and various nuclear abnormalities of bone marrow erythrocyte precursors (ERYTHROID PRECURSOR CELLS). Type II is the most common of the 3 types; it is often referred to as HEMPAS, based on the Hereditary Erythroblast Multinuclearity with Positive Acidified Serum test.
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
A rare congenital hypoplastic anemia that usually presents early in infancy. The disease is characterized by a moderate to severe macrocytic anemia, occasional neutropenia or thrombocytosis, a normocellular bone marrow with erythroid hypoplasia, and an increased risk of developing leukemia. (Curr Opin Hematol 2000 Mar;7(2):85-94)
Pathological processes involving any of the BLOOD VESSELS in the cardiac or peripheral circulation. They include diseases of ARTERIES; VEINS; and rest of the vasculature system in the body.
The internal resistance of the BLOOD to shear forces. The in vitro measure of whole blood viscosity is of limited clinical utility because it bears little relationship to the actual viscosity within the circulation, but an increase in the viscosity of circulating blood can contribute to morbidity in patients suffering from disorders such as SICKLE CELL ANEMIA and POLYCYTHEMIA.
An individual in which both alleles at a given locus are identical.
A diverse group of proteins whose genetic MUTATIONS have been associated with the chromosomal instability syndrome FANCONI ANEMIA. Many of these proteins play important roles in protecting CELLS against OXIDATIVE STRESS.
An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989)
Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The formation of clumps of RED BLOOD CELLS under low or non-flow conditions, resulting from the attraction forces between the red blood cells. The cells adhere to each other in rouleaux aggregates. Slight mechanical force, such as occurs in the circulation, is enough to disperse these aggregates. Stronger or weaker than normal aggregation may result from a variety of effects in the ERYTHROCYTE MEMBRANE or in BLOOD PLASMA. The degree of aggregation is affected by ERYTHROCYTE DEFORMABILITY, erythrocyte membrane sialylation, masking of negative surface charge by plasma proteins, etc. BLOOD VISCOSITY and the ERYTHROCYTE SEDIMENTATION RATE are affected by the amount of erythrocyte aggregation and are parameters used to measure the aggregation.
Members of the beta-globin family. In humans, two non-allelic types of gamma-globin - A gamma and G gamma are encoded in the beta-globin gene cluster on CHROMOSOME 11. Two gamma-globin chains combine with two ZETA-GLOBIN chains to form the embryonic hemoglobin Portland. Fetal HEMOGLOBIN F is formed from two gamma-globin chains combined with two ALPHA-GLOBIN chains.
A republic in western Africa, south of NIGER between BENIN and CAMEROON. Its capital is Abuja.
The number of RETICULOCYTES per unit volume of BLOOD. The values are expressed as a percentage of the ERYTHROCYTE COUNT or in the form of an index ("corrected reticulocyte index"), which attempts to account for the number of circulating erythrocytes.
A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state.
The deformation and flow behavior of BLOOD and its elements i.e., PLASMA; ERYTHROCYTES; WHITE BLOOD CELLS; and BLOOD PLATELETS.
Members of the beta-globin family. In humans, they are encoded in a gene cluster on CHROMOSOME 11. They include epsilon-globin, gamma-globin, delta-globin and beta-globin. There is also a pseudogene of beta (theta-beta) in the gene cluster. Adult HEMOGLOBIN is comprised of two ALPHA-GLOBIN chains and two beta-globin chains.
Bifunctional cross-linking agent that links covalently free amino groups of proteins or polypeptides, including those in cell membranes. It is used as reagent or fixative in immunohistochemistry and is a proposed antisickling agent.
The mildest form of erythroblastosis fetalis in which anemia is the chief manifestation.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
'Splenic diseases' refer to a range of medical conditions that affect the structure, function, or integrity of the spleen, leading to various symptoms and potential complications such as anemia, infection, or abdominal pain.
A complex blood group system having pairs of alternate antigens and amorphic genes, but also subject to a dominant independently segregating repressor.
Agents which improve the quality of the blood, increasing the hemoglobin level and the number of erythrocytes. They are used in the treatment of anemias.
Chronic refractory anemia with granulocytopenia, and/or thrombocytopenia. Myeloblasts and progranulocytes constitute 5 to 40 percent of the nucleated marrow cells.
A complication of kidney diseases characterized by cell death involving KIDNEY PAPILLA in the KIDNEY MEDULLA. Damages to this area may hinder the kidney to concentrate urine resulting in POLYURIA. Sloughed off necrotic tissue may block KIDNEY PELVIS or URETER. Necrosis of multiple renal papillae can lead to KIDNEY FAILURE.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
A prolonged painful erection that may lasts hours and is not associated with sexual activity. It is seen in patients with SICKLE CELL ANEMIA, advanced malignancy, spinal trauma; and certain drug treatments.
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
Pathologic inclusions occurring in erythrocytes.
RED BLOOD CELL sensitivity to change in OSMOTIC PRESSURE. When exposed to a hypotonic concentration of sodium in a solution, red cells take in more water, swell until the capacity of the cell membrane is exceeded, and burst.
A highly anionic organic phosphate which is present in human red blood cells at about the same molar ratio as hemoglobin. It binds to deoxyhemoglobin but not the oxygenated form, therefore diminishing the oxygen affinity of hemoglobin. This is essential in enabling hemoglobin to unload oxygen in tissue capillaries. It is also an intermediate in the conversion of 3-phosphoglycerate to 2-phosphoglycerate by phosphoglycerate mutase (EC 5.4.2.1). (From Stryer Biochemistry, 4th ed, p160; Enzyme Nomenclature, 1992, p508)
The identification of selected parameters in newborn infants by various tests, examinations, or other procedures. Screening may be performed by clinical or laboratory measures. A screening test is designed to sort out healthy neonates (INFANT, NEWBORN) from those not well, but the screening test is not intended as a diagnostic device, rather instead as epidemiologic.
A Fanconi anemia complementation group protein that regulates the activities of CYTOCHROME P450 REDUCTASE and GLUTATHIONE S-TRANSFERASE. It is found predominately in the CYTOPLASM, but moves to the CELL NUCLEUS in response to FANCE PROTEIN.
A Fanconi anemia complementation group protein that undergoes mono-ubiquitination by FANCL PROTEIN in response to DNA DAMAGE. Also, in response to IONIZING RADIATION it can undergo PHOSPHORYLATION by ataxia telangiectasia mutated protein. Modified FANCD2 interacts with BRCA2 PROTEIN in a stable complex with CHROMATIN, and it is involved in DNA REPAIR by homologous RECOMBINATION.
Retinal diseases refer to a diverse group of vision-threatening disorders that affect the retina's structure and function, including age-related macular degeneration, diabetic retinopathy, retinal detachment, retinitis pigmentosa, and macular edema, among others.
A Fanconi anemia complementation group protein that is the most commonly mutated protein in FANCONI ANEMIA. It undergoes PHOSPHORYLATION by PROTEIN KINASE B and forms a complex with FANCC PROTEIN in the CELL NUCLEUS.
An adult hemoglobin component normally present in hemolysates from human erythrocytes in concentrations of about 3%. The hemoglobin is composed of two alpha chains and two delta chains. The percentage of HbA2 varies in some hematologic disorders, but is about double in beta-thalassemia.
Bleeding in the anterior chamber of the eye.
Surgical procedure involving either partial or entire removal of the spleen.
An infant during the first month after birth.
Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES.
Medical tests taken by couples planning to be married in order to determine presence of genetic and contagious diseases.
Abnormal intracellular inclusions, composed of denatured hemoglobin, found on the membrane of red blood cells. They are seen in thalassemias, enzymopathies, hemoglobinopathies, and after splenectomy.
Enlargement of the spleen.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Methemoglobin is a form of hemoglobin where the iron within the heme group is in the ferric (Fe3+) state, unable to bind oxygen and leading to impaired oxygen-carrying capacity of the blood.
2,3-Diphosphoglycerate (2,3-DPG) is a physiological modulator of hemoglobin oxygen affinity, reducing its attraction to oxygen in red blood cells, which facilitates the release of oxygen to tissues with lower oxygen concentrations.
Involuntary discharge of URINE after expected age of completed development of urinary control. This can happen during the daytime (DIURNAL ENURESIS) while one is awake or during sleep (NOCTURNAL ENURESIS). Enuresis can be in children or in adults (as persistent primary enuresis and secondary adult-onset enuresis).
Scattered islands in the Mediterranean Sea. The chief islands are the Balearic Islands (belong to Spain; Majorca and Minorca are among these), Corsica (belongs to France), Crete (belongs to Greece), CYPRUS (a republic), the Cyclades, Dodecanese and Ionian Islands (belong to Greece), MALTA (a republic), Sardinia and SICILY (belong to Italy). (From Webster's New Geographical Dictionary, 1988, p747)
A group of familial congenital hemolytic anemias characterized by numerous abnormally shaped erythrocytes which are generally spheroidal. The erythrocytes have increased osmotic fragility and are abnormally permeable to sodium ions.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Any one of a group of congenital hemolytic anemias in which there is no abnormal hemoglobin or spherocytosis and in which there is a defect of glycolysis in the erythrocyte. Common causes include deficiencies in GLUCOSE-6-PHOSPHATE ISOMERASE; PYRUVATE KINASE; and GLUCOSE-6-PHOSPHATE DEHYDROGENASE.
A clinical manifestation consisting of an unnatural paleness of the skin.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Tests used in the analysis of the hemic system.
The presence of free HEMOGLOBIN in the URINE, indicating hemolysis of ERYTHROCYTES within the vascular system. After saturating the hemoglobin-binding proteins (HAPTOGLOBINS), free hemoglobin begins to appear in the urine.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Backflow of blood from the RIGHT VENTRICLE into the RIGHT ATRIUM due to imperfect closure of the TRICUSPID VALVE.

Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. Effects of non-s hemoglobins and inhibitors. (1/2332)

Earlier observations indicated that volume exclusion by admixed non-hemoglobin macromolecules lowered the polymer solubility ("Csat") of deoxyhemoglobin (Hb) S, presumably by increasing its activity. In view of the potential usefulness of these observations for in vitro studies of sickling-related polymerization, we examined the ultrastructure, solubility behavior, and phase distributions of deoxygenated mixtures of Hb S with 70-kDa dextran, a relatively inert, low ionic strength space-filling macromolecule. Increasing admixture of dextran progressively lowered the Csat of deoxyHb S. With 12 g/dl dextran, a 5-fold decrease in apparent Csat ("dextran-Csat") was obtained together with acceptable sensitivity and proportionality with the standard Csat when assessing the effects of non-S Hb admixtures (A, C, and F) or polymerization inhibitors (alkylureas or phenylalanine). The volume fraction of dextran excluding Hb was 70-75% of total deoxyHb-dextran (12 g/dl) volumes. Electron microscopy showed polymer fibers and fiber-to-crystal transitions indistinguishable from those formed without dextran. Thus when Hb quantities are limited, as with genetically engineered recombinant Hbs or transgenic sickle mice, the dextran-Csat provides convenient and reliable screening of effects of Hb S modifications on polymerization under near-physiological conditions, avoiding problems of high ionic strength.  (+info)

Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. (2/2332)

High levels of fetal hemoglobin (Hb F) protect from many of the complications of sickle cell disease and lead to improved survival. Butyrate and other short chain fatty acids were previously shown to increase Hb F production in erythroid cells in vitro and in animal models in vivo. However, butyrates are also known to inhibit the proliferation of many cell types, including erythroid cells. Experience with the use of butyrate in animal models and in early clinical trials demonstrated that the Hb F response may be lost after prolonged administration of high doses of butyrate. We hypothesized that this loss of response may be a result of the antiproliferative effects of butyrate. We designed a regimen consisting of intermittent or pulse therapy in which butyrate was administered for 4 days followed by 10 to 24 days with no drug exposure. This pulse regimen induced fetal globin gene expression in 9 of 11 patients. The mean Hb F in this group increased from 7.2% to 21.0% (P <.002) after intermittent butyrate therapy for a mean duration of 29.9 weeks. This was associated with a parallel increase in the number of F cells and F reticulocytes. The total hemoglobin levels also increased from a mean of 7.8 g/dL to a mean of 8.8 g/dL (P <.006). The increased levels of Hb F were sustained in all responders, including 1 patient who has been on pulse butyrate therapy for more than 28 months. This regimen, which resulted in a marked and sustained increase in Hb F levels in more than two thirds of the adult sickle cell patients enrolled in this study, was well tolerated without adverse side effects. These encouraging results require confirmation along with an appropriate evaluation of clinical outcomes in a larger number of patients with sickle cell disease.  (+info)

In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse. (3/2332)

The accepted importance of circulatory impairment to sickle cell anemia remains to be verified by in vivo experimentation. Intravital microscopy studies of blood flow in patients are limited to circulations that can be viewed noninvasively and are restricted from deliberate perturbations of the circulation. Further knowledge of sickle blood flow abnormalities has awaited an animal model of human sickle cell disease. We compared blood flow in the mucosal-intestinal microvessels of normal mice with that in transgenic knockout sickle cell mice that have erythrocytes containing only human hemoglobin S and that exhibit a degree of hemolytic anemia and pathological complications similar to the human disease. In sickle cell mice, in addition to seeing blood flow abnormalities such as sludging in all microvessels, we detected decreased blood flow velocity in venules of all diameters. Flow responses to hyperoxia in both normal and sickle cell mice were dramatic, but opposite: Hyperoxia promptly slowed or halted flow in normal mice but markedly enhanced flow in sickle cell mice. Intravital microscopic studies of this murine model provide important insights into sickle cell blood flow abnormalities and suggest that this model can be used to evaluate the causes of abnormal flow and new approaches to therapy of sickle cell disease.  (+info)

Candida dubliniensis candidemia in patients with chemotherapy-induced neutropenia and bone marrow transplantation. (4/2332)

The recently described species Candida dubliniensis has been recovered primarily from superficial oral candidiasis in HIV-infected patients. No clinically documented invasive infections were reported until now in this patient group or in other immunocompromised patients. We report three cases of candidemia due to this newly emerging Candida species in HIV-negative patients with chemotherapy-induced immunosuppression and bone marrow transplantation.  (+info)

Development of viral vectors for gene therapy of beta-chain hemoglobinopathies: optimization of a gamma-globin gene expression cassette. (5/2332)

Progress toward gene therapy of beta-chain hemoglobinopathies has been limited in part by poor expression of globin genes in virus vectors. To derive an optimal expression cassette, we systematically analyzed the sequence requirements and relative strengths of the Agamma- and beta-globin promoters, the activities of various erythroid-specific enhancers, and the importance of flanking and intronic sequences. Expression was analyzed by RNase protection after stable plasmid transfection of the murine erythroleukemia cell line, MEL585. Promoter truncation studies showed that the Agamma-globin promoter could be deleted to -159 without affecting expression, while deleting the beta-globin promoter to -127 actually increased expression compared with longer fragments. Expression from the optimal beta-globin gene promoter was consistently higher than that from the optimal Agamma-globin promoter, regardless of the enhancer used. Enhancers tested included a 2.5-kb composite of the beta-globin locus control region (termed a muLCR), a combination of the HS2 and HS3 core elements of the LCR, and the HS-40 core element of the alpha-globin locus. All three enhancers increased expression from the beta-globin gene to roughly the same extent, while the HS-40 element was notably less effective with the Agamma-globin gene. However, the HS-40 element was able to efficiently enhance expression of a Agamma-globin gene linked to the beta-globin promoter. Inclusion of extended 3' sequences from either the beta-globin or the Agamma-globin genes had no significant effect on expression. A 714-bp internal deletion of Agamma-globin intron 2 unexpectedly increased expression more than twofold. With the combination of a -127 beta-globin promoter, an Agamma-globin gene with the internal deletion of intron 2, and a single copy of the HS-40 enhancer, gamma-globin expression averaged 166% of murine alpha-globin mRNA per copy in six pools and 105% in nine clones. When placed in a retrovirus vector, this cassette was also expressed at high levels in MEL585 cells (averaging 75% of murine alpha-globin mRNA per copy) without reducing virus titers. However, recombined provirus or aberrant splicing was observed in 5 of 12 clones, indicating a significant degree of genetic instability. Taken together, these data demonstrate the development of an optimal expression cassette for gamma-globin capable of efficient expression in a retrovirus vector and form the basis for further refinement of vectors containing this cassette.  (+info)

Osteonecrosis of the hip in sickle-cell disease associated with tuberculous arthritis. A review of 15 cases. (6/2332)

We report a study of 15 cases of tuberculous hips with sickle-cell disease who presented during 1991-1993. Although the osteonecrosis was long-standing, biopsy was nearly always required to reveal the more recent tuberculous infection. Management consisted of 6 months of anti-tuberculous chemotherapy with appropriate palliative surgery 5-8 weeks after the start of drug treatment. The operative techniques which we used are described. The results were good both post-operatively, and in 12 patients followed-up at an average of 3 years. We recommend this combined management for the treatment of secondary tuberculous infections of hips previously damaged by sickle-cell disease.  (+info)

Large cerebral vessel disease in sickle cell anaemia. (7/2332)

An 18 year old male with documented sickle cell disease was admitted to the hospital for the final time in coma. Cerebral angiography revealed multiple stenotic lesions of the large cerebral vessels. The pathology of this large vessel involvement is demonstrated and the potential contribution of large as opposed to small cerebral vessel disease in the neurological manifestations of sickle cell anaemia is discussed.  (+info)

Perceived stress factors and coping mechanisms among mothers of children with sickle cell disease in western Nigeria. (8/2332)

While many studies have looked at the stressful effects of chronic illness of those who suffer such conditions, less is known about the effects on caregivers, especially in developing countries. Mothers in particular must bear the brunt of care and stress for children who have sickle cell disease (SCD). A sample of 200 mothers attending six SCD clinics in both public and private hospitals in the Ibadan-Ibarapa Health Zone of Oyo State, Nigeria, were interviewed. Stress levels were measured using an instrument comprised of stressors listed by mothers themselves in focus group discussions that preceded the survey. Higher levels of stress were associated with less educated and older women, as well as non-married women and those in polygamous households. Stress levels were also greater when there was more than one child with SCD in the family and when the index child was of school age. Coping mechanisms varied according to the category of stressor. Financial stress and disease factors were met with confrontation while family sources of stress were either complained about, accepted or avoided. Knowledge of the different types of mothers who experience more stress and of their preferred coping mechanisms can be useful in designing clinic-based counseling.  (+info)

Sickle cell anemia is a genetic disorder that affects the hemoglobin in red blood cells. Hemoglobin is responsible for carrying oxygen throughout the body. In sickle cell anemia, the hemoglobin is abnormal and causes the red blood cells to take on a sickle shape, rather than the normal disc shape. These sickled cells are stiff and sticky, and they can block blood vessels, causing tissue damage and pain. They also die more quickly than normal red blood cells, leading to anemia.

People with sickle cell anemia often experience fatigue, chronic pain, and jaundice. They may also have a higher risk of infections and complications such as stroke, acute chest syndrome, and priapism. The disease is inherited from both parents, who must both be carriers of the sickle cell gene. It primarily affects people of African descent, but it can also affect people from other ethnic backgrounds.

There is no cure for sickle cell anemia, but treatments such as blood transfusions, medications to manage pain and prevent complications, and bone marrow transplantation can help improve quality of life for affected individuals. Regular medical care and monitoring are essential for managing the disease effectively.

Sickle cell trait is a genetic condition where an individual inherits one abnormal gene for hemoglobin S (HbS) from one parent and one normal gene for hemoglobin A (HbA) from the other parent. Hemoglobin is a protein in red blood cells that carries oxygen throughout the body.

People with sickle cell trait do not have sickle cell disease, but they can pass the abnormal HbS gene on to their children. In certain situations, such as high altitude, low oxygen levels, or intense physical exertion, individuals with sickle cell trait may experience symptoms similar to those of sickle cell disease, such as fatigue, pain, and shortness of breath. However, these symptoms are typically milder and less frequent than in people with sickle cell disease.

It is important for individuals who know they have sickle cell trait to inform their healthcare providers, especially if they become pregnant or plan to engage in activities that may cause low oxygen levels, such as scuba diving or high-altitude climbing.

Anemia is a medical condition characterized by a lower than normal number of red blood cells or lower than normal levels of hemoglobin in the blood. Hemoglobin is an important protein in red blood cells that carries oxygen from the lungs to the rest of the body. Anemia can cause fatigue, weakness, shortness of breath, and a pale complexion because the body's tissues are not getting enough oxygen.

Anemia can be caused by various factors, including nutritional deficiencies (such as iron, vitamin B12, or folate deficiency), blood loss, chronic diseases (such as kidney disease or rheumatoid arthritis), inherited genetic disorders (such as sickle cell anemia or thalassemia), and certain medications.

There are different types of anemia, classified based on the underlying cause, size and shape of red blood cells, and the level of hemoglobin in the blood. Treatment for anemia depends on the underlying cause and may include dietary changes, supplements, medication, or blood transfusions.

Hemoglobin S (HbS) is a genetic variant of hemoglobin, which is the oxygen-carrying protein in red blood cells. This abnormal form of hemogllobin results from a mutation in the beta-globin gene, leading to the substitution of valine for glutamic acid at position six of the beta-globin chain.

In individuals with sickle cell disease (a group of inherited red blood cell disorders), both copies of their beta-globin genes carry this mutation, causing the majority of their hemoglobin to be HbS. When deoxygenated, HbS molecules have a tendency to polymerize and form long, rigid rods within the red blood cells, distorting their shape into a characteristic sickle or crescent form.

These sickled red blood cells are less flexible and more prone to rupture (hemolysis), leading to chronic anemia, vaso-occlusive crises, and other disease complications. Sickle cell disease primarily affects people of African, Mediterranean, Middle Eastern, and Indian ancestry, but it can also be found in other populations worldwide.

Abnormal erythrocytes refer to red blood cells that have an abnormal shape, size, or other characteristics. This can include various types of abnormalities such as:

1. Anisocytosis: Variation in the size of erythrocytes.
2. Poikilocytosis: Variation in the shape of erythrocytes, including but not limited to teardrop-shaped cells (dacrocytes), crescent-shaped cells (sickle cells), and spherical cells (spherocytes).
3. Anemia: A decrease in the total number of erythrocytes or a reduction in hemoglobin concentration, which can result from various underlying conditions such as iron deficiency, chronic disease, or blood loss.
4. Hemoglobinopathies: Abnormalities in the structure or function of hemoglobin, the protein responsible for carrying oxygen in erythrocytes, such as sickle cell anemia and thalassemia.
5. Inclusion bodies: Abnormal structures within erythrocytes, such as Heinz bodies (denatured hemoglobin) or Howell-Jolly bodies (nuclear remnants).

These abnormalities can be detected through a complete blood count (CBC) and peripheral blood smear examination. The presence of abnormal erythrocytes may indicate an underlying medical condition, and further evaluation is often necessary to determine the cause and appropriate treatment.

Antisickling agents are medications or substances that help prevent or reduce the sickling of red blood cells in individuals with sickle cell disease. Sickling is a pathological process where the normally disc-shaped red blood cells become crescent-shaped due to abnormal hemoglobin (HbS). This change in shape can lead to blockages in small blood vessels, causing tissue damage and various complications such as pain crises, acute chest syndrome, and stroke.

Antisickling agents work by either inhibiting the polymerization of HbS or improving the oxygen-carrying capacity of red blood cells. The most commonly used antisickling agent is hydroxyurea, which increases the production of fetal hemoglobin (HbF) in red blood cells. HbF has a higher affinity for oxygen than HbS and can prevent the polymerization of HbS, thereby reducing sickling. Other antisickling agents include:

1. L-glutamine: An amino acid that helps maintain the structural integrity of red blood cells and reduces oxidative stress.
2. Arginate: A salt of arginine, an amino acid that helps improve nitric oxide production and vasodilation, reducing sickling.
3. Senicapoc: A drug that inhibits the formation of HbS polymers by blocking the interaction between HbS molecules.
4. Voxelotor (Oxbryta): A medication that binds to HbS and stabilizes it in its oxygenated state, reducing sickling.

These antisickling agents can help alleviate symptoms, decrease the frequency of pain crises, and improve the quality of life for individuals with sickle cell disease. However, they should be used under the supervision of a healthcare professional, as each has its benefits, risks, and potential side effects.

Hemoglobin SC disease, also known as sickle cell-C disease or SC disorder, is a genetic blood disorder that is a variant of sickle cell anemia. It is caused by the presence of both hemoglobin S (HbS) and hemoglobin C (HbC) in the red blood cells.

Hemoglobin is the protein in red blood cells that carries oxygen throughout the body. In Hemoglobin SC disease, the abnormal HbS and HbC proteins can cause the red blood cells to become rigid, sticky, and C-shaped (sickled), which can lead to blockages in small blood vessels.

Symptoms of Hemoglibin SC disease may include anemia, fatigue, jaundice, episodes of pain (known as sickle cell crises), and an increased risk of infection. The severity of the symptoms can vary widely from person to person. Treatment typically focuses on managing symptoms and preventing complications, and may include medications, blood transfusions, and sometimes a bone marrow transplant.

Fetal hemoglobin (HbF) is a type of hemoglobin that is produced in the fetus and newborn babies. It is composed of two alpha-like globin chains and two gamma-globin chains, designated as α2γ2. HbF is the primary form of hemoglobin during fetal development, replacing the embryonic hemoglobin (HbG) around the eighth week of gestation.

The unique property of HbF is its higher affinity for oxygen compared to adult hemoglobin (HbA), which helps ensure adequate oxygen supply from the mother to the developing fetus. After birth, as the newborn starts breathing on its own and begins to receive oxygen directly, the production of HbF gradually decreases and is usually replaced by HbA within the first year of life.

In some genetic disorders like sickle cell disease and beta-thalassemia, persistence of HbF into adulthood can be beneficial as it reduces the severity of symptoms due to its higher oxygen-carrying capacity and less polymerization tendency compared to HbS (in sickle cell disease) or unpaired alpha chains (in beta-thalassemia). Treatments like hydroxyurea are used to induce HbF production in these patients as a therapeutic approach.

Hemolytic anemia is a type of anemia that occurs when red blood cells are destroyed (hemolysis) faster than they can be produced. Red blood cells are essential for carrying oxygen throughout the body. When they are destroyed, hemoglobin and other cellular components are released into the bloodstream, which can lead to complications such as kidney damage and gallstones.

Hemolytic anemia can be inherited or acquired. Inherited forms of the condition may result from genetic defects that affect the structure or function of red blood cells. Acquired forms of hemolytic anemia can be caused by various factors, including infections, medications, autoimmune disorders, and certain medical conditions such as cancer or blood disorders.

Symptoms of hemolytic anemia may include fatigue, weakness, shortness of breath, pale skin, jaundice (yellowing of the skin and eyes), dark urine, and a rapid heartbeat. Treatment for hemolytic anemia depends on the underlying cause and may include medications, blood transfusions, or surgery.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

Hemoglobin (Hb or Hgb) is the main oxygen-carrying protein in the red blood cells, which are responsible for delivering oxygen throughout the body. It is a complex molecule made up of four globin proteins and four heme groups. Each heme group contains an iron atom that binds to one molecule of oxygen. Hemoglobin plays a crucial role in the transport of oxygen from the lungs to the body's tissues, and also helps to carry carbon dioxide back to the lungs for exhalation.

There are several types of hemoglobin present in the human body, including:

* Hemoglobin A (HbA): This is the most common type of hemoglobin, making up about 95-98% of total hemoglobin in adults. It consists of two alpha and two beta globin chains.
* Hemoglobin A2 (HbA2): This makes up about 1.5-3.5% of total hemoglobin in adults. It consists of two alpha and two delta globin chains.
* Hemoglobin F (HbF): This is the main type of hemoglobin present in fetal life, but it persists at low levels in adults. It consists of two alpha and two gamma globin chains.
* Hemoglobin S (HbS): This is an abnormal form of hemoglobin that can cause sickle cell disease when it occurs in the homozygous state (i.e., both copies of the gene are affected). It results from a single amino acid substitution in the beta globin chain.
* Hemoglobin C (HbC): This is another abnormal form of hemoglobin that can cause mild to moderate hemolytic anemia when it occurs in the homozygous state. It results from a different single amino acid substitution in the beta globin chain than HbS.

Abnormal forms of hemoglobin, such as HbS and HbC, can lead to various clinical disorders, including sickle cell disease, thalassemia, and other hemoglobinopathies.

Fanconi anemia is a rare, inherited disorder that affects the body's ability to produce healthy blood cells. It is characterized by bone marrow failure, congenital abnormalities, and an increased risk of developing certain types of cancer. The condition is caused by mutations in genes responsible for repairing damaged DNA, leading to chromosomal instability and cell death.

The classic form of Fanconi anemia (type A) is typically diagnosed in childhood and is associated with various physical abnormalities such as short stature, skin pigmentation changes, thumb and radial ray anomalies, kidney and genitourinary malformations, and developmental delays. Other types of Fanconi anemia (B-G) may have different clinical presentations but share the common feature of bone marrow failure and cancer predisposition.

Bone marrow failure in Fanconi anemia results in decreased production of all three types of blood cells: red blood cells, white blood cells, and platelets. This can lead to anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). These conditions increase the risk of infections, fatigue, and bleeding.

Individuals with Fanconi anemia have a significantly higher risk of developing various types of cancer, particularly acute myeloid leukemia (AML) and solid tumors such as squamous cell carcinomas of the head, neck, esophagus, and anogenital region.

Treatment for Fanconi anemia typically involves managing symptoms related to bone marrow failure, such as transfusions, growth factors, and antibiotics. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment option for bone marrow failure but carries risks of its own, including graft-versus-host disease and transplant-related mortality. Regular cancer surveillance is essential due to the increased risk of malignancies in these patients.

Hydroxyurea is an antimetabolite drug that is primarily used in the treatment of myeloproliferative disorders such as chronic myelogenous leukemia (CML), essential thrombocythemia, and polycythemia vera. It works by interfering with the synthesis of DNA, which inhibits the growth of cancer cells.

In addition to its use in cancer therapy, hydroxyurea is also used off-label for the management of sickle cell disease. In this context, it helps to reduce the frequency and severity of painful vaso-occlusive crises by increasing the production of fetal hemoglobin (HbF), which decreases the formation of sickled red blood cells.

The medical definition of hydroxyurea is:

A hydantoin derivative and antimetabolite that inhibits ribonucleoside diphosphate reductase, thereby interfering with DNA synthesis. It has been used as an antineoplastic agent, particularly in the treatment of myeloproliferative disorders, and more recently for the management of sickle cell disease to reduce the frequency and severity of painful vaso-occlusive crises by increasing fetal hemoglobin production.

Thalassemia is a group of inherited genetic disorders that affect the production of hemoglobin, a protein in red blood cells responsible for carrying oxygen throughout the body. The disorder results in less efficient or abnormal hemoglobin, which can lead to anemia, an insufficient supply of oxygen-rich red blood cells.

There are two main types of Thalassemia: alpha and beta. Alpha thalassemia occurs when there is a problem with the alpha globin chain production, while beta thalassemia results from issues in beta globin chain synthesis. These disorders can range from mild to severe, depending on the number of genes affected and their specific mutations.

Severe forms of Thalassemia may require regular blood transfusions, iron chelation therapy, or even a bone marrow transplant to manage symptoms and prevent complications.

Hemolytic anemia, autoimmune is a type of anemia characterized by the premature destruction of red blood cells (RBCs) in which the immune system mistakenly attacks and destroys its own RBCs. This occurs when the body produces autoantibodies that bind to the surface of RBCs, leading to their rupture (hemolysis). The symptoms may include fatigue, weakness, shortness of breath, and dark colored urine. The diagnosis is made through blood tests that measure the number and size of RBCs, reticulocyte count, and the presence of autoantibodies. Treatment typically involves suppressing the immune system with medications such as corticosteroids or immunosuppressive drugs, and sometimes removal of the spleen (splenectomy) may be necessary.

Hypochromic anemia is a type of anemia characterized by the presence of red blood cells that have lower than normal levels of hemoglobin and appear paler in color than normal. Hemoglobin is a protein in red blood cells that carries oxygen from the lungs to the rest of the body. In hypochromic anemia, there may be a decrease in the production or increased destruction of red blood cells, leading to a reduced number of red blood cells and insufficient oxygen supply to the tissues.

Hypochromic anemia can result from various underlying medical conditions, including iron deficiency, thalassemia, chronic inflammation, lead poisoning, and certain infections or chronic diseases. Treatment for hypochromic anemia depends on the underlying cause and may include iron supplements, dietary changes, medications, or blood transfusions.

Beta-thalassemia is a genetic blood disorder that affects the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. Specifically, beta-thalassemia is caused by mutations in the beta-globin gene, which leads to reduced or absent production of the beta-globin component of hemoglobin.

There are two main types of beta-thalassemia:

1. Beta-thalassemia major (also known as Cooley's anemia): This is a severe form of the disorder that typically becomes apparent in early childhood. It is characterized by a significant reduction or absence of beta-globin production, leading to anemia, enlarged spleen and liver, jaundice, and growth retardation.
2. Beta-thalassemia intermedia: This is a milder form of the disorder that may not become apparent until later in childhood or even adulthood. It is characterized by a variable reduction in beta-globin production, leading to mild to moderate anemia and other symptoms that can range from nonexistent to severe.

Treatment for beta-thalassemia depends on the severity of the disorder and may include blood transfusions, iron chelation therapy, and/or bone marrow transplantation. In some cases, genetic counseling and prenatal diagnosis may also be recommended for families with a history of the disorder.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Macrocytic anemia is a type of anemia in which the red blood cells are larger than normal in size (macrocytic). This condition can be caused by various factors such as deficiency of vitamin B12 or folate, alcohol abuse, certain medications, bone marrow disorders, and some inherited genetic conditions.

The large red blood cells may not function properly, leading to symptoms such as fatigue, weakness, shortness of breath, pale skin, and a rapid heartbeat. Macrocytic anemia can be diagnosed through a complete blood count (CBC) test, which measures the size and number of red blood cells in the blood.

Treatment for macrocytic anemia depends on the underlying cause. In cases of vitamin B12 or folate deficiency, supplements or dietary changes may be recommended. If the anemia is caused by medication, a different medication may be prescribed. In severe cases, blood transfusions or injections of vitamin B12 may be necessary.

Pernicious anemia is a specific type of vitamin B12 deficiency anemia that is caused by a lack of intrinsic factor, a protein made in the stomach that is needed to absorb vitamin B12. The absence of intrinsic factor leads to poor absorption of vitamin B12 from food and results in its deficiency.

Vitamin B12 is essential for the production of healthy red blood cells, which carry oxygen throughout the body. Without enough vitamin B12, the body cannot produce enough red blood cells, leading to anemia. Pernicious anemia typically develops slowly over several years and can cause symptoms such as fatigue, weakness, pale skin, shortness of breath, and a decreased appetite.

Pernicious anemia is an autoimmune disorder, which means that the body's immune system mistakenly attacks healthy cells in the stomach lining, leading to a loss of intrinsic factor production. It is more common in older adults, particularly those over 60 years old, and can also be associated with other autoimmune disorders such as type 1 diabetes, Hashimoto's thyroiditis, and Addison's disease.

Treatment for pernicious anemia typically involves vitamin B12 replacement therapy, either through oral supplements or injections of the vitamin. In some cases, dietary changes may also be recommended to ensure adequate intake of vitamin B12-rich foods such as meat, fish, poultry, and dairy products.

Hemoglobinopathies are a group of genetic disorders characterized by structural or functional abnormalities of the hemoglobin molecule in red blood cells. Hemoglobin is a complex protein that plays a crucial role in carrying oxygen throughout the body. The two most common types of hemoglobinopathies are sickle cell disease and thalassemia.

In sickle cell disease, a single mutation in the beta-globin gene results in the production of an abnormal form of hemoglobin called hemoglobin S (HbS). When deoxygenated, HbS molecules tend to aggregate and form long polymers, causing the red blood cells to become sickle-shaped, rigid, and fragile. These abnormally shaped cells can block small blood vessels, leading to tissue damage, chronic pain, organ dysfunction, and other serious complications.

Thalassemias are a heterogeneous group of disorders caused by mutations in the genes that regulate the production of alpha- or beta-globin chains. These mutations result in reduced or absent synthesis of one or more globin chains, leading to an imbalance in hemoglobin composition and structure. This imbalance can cause premature destruction of red blood cells (hemolysis), resulting in anemia, jaundice, splenomegaly, and other symptoms.

Hemoglobinopathies are typically inherited in an autosomal recessive manner, meaning that affected individuals have two copies of the abnormal gene – one from each parent. Carriers of a single abnormal gene usually do not show any signs or symptoms of the disorder but can pass the abnormal gene on to their offspring.

Early diagnosis and appropriate management of hemoglobinopathies are essential for improving quality of life, reducing complications, and increasing survival rates. Treatment options may include blood transfusions, iron chelation therapy, antibiotics, pain management, and, in some cases, bone marrow transplantation or gene therapy.

I'm sorry for any confusion, but "Jamaica" is not a medical term. It is a country located in the Caribbean Sea, known for its beautiful beaches, vibrant culture, and as the birthplace of reggae music. If you have any questions about medical terms or concepts, I would be happy to help answer those!

Acute chest syndrome (ACS) is a serious complication of sickle cell disease, characterized by the presence of new infiltrates on chest X-ray and at least one other clinical symptom such as fever, cough, chest pain, or difficulty breathing. It is often caused by infection, fat embolism, or lung tissue inflammation, leading to respiratory distress, hypoxemia, and potentially respiratory failure. Prompt diagnosis and treatment with antibiotics, analgesics, and sometimes blood transfusions or exchange transfusions are essential for managing ACS.

Alpha-thalassemia is a genetic disorder that affects the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. It is caused by deletions or mutations in the genes that produce the alpha-globin chains of hemoglobin.

There are several types of alpha-thalassemia, ranging from mild to severe. The most severe form, called hydrops fetalis, occurs when all four alpha-globin genes are deleted or mutated. This can cause stillbirth or death shortly after birth due to heart failure and severe anemia.

Less severe forms of alpha-thalassemia can cause mild to moderate anemia, which may be asymptomatic or associated with symptoms such as fatigue, weakness, and jaundice. These forms of the disorder are more common in people from Mediterranean, Southeast Asian, and African backgrounds.

Treatment for alpha-thalassemia depends on the severity of the condition and may include blood transfusions, iron chelation therapy, or occasionally stem cell transplantation.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

Hemoglobin C disease is a genetic disorder that affects the structure and function of hemoglobin, a protein in red blood cells responsible for carrying oxygen throughout the body. The disease is caused by a mutation in the gene that produces the beta-globin chain of hemoglobin, resulting in the production of an abnormal form of hemoglobin called Hemoglobin C (HbC).

People with Hemoglobin C disease inherit one copy of the HbC gene from each parent. This means they have two copies of the mutated gene and produce mostly Hemoglobin C, instead of the normal Hemoglobin A. The presence of Hemoglobin C can cause the red blood cells to become rigid and fragile, leading to a condition called hemolytic anemia.

Symptoms of Hemoglobin C disease may include fatigue, weakness, shortness of breath, pale skin, jaundice, and dark urine. The severity of the symptoms can vary widely from person to person, with some individuals experiencing mild symptoms and others having more severe complications.

Hemoglobin C disease is a chronic condition that requires ongoing medical management, including regular monitoring of hemoglobin levels, iron status, and other blood parameters. Treatment may include blood transfusions, folic acid supplementation, and medications to manage symptoms such as anemia and pain.

It's important to note that Hemoglobin C disease is not the same as sickle cell disease, which is another genetic disorder that affects hemoglobin structure and function. While both conditions can cause hemolytic anemia, they are caused by different mutations in the beta-globin gene and have distinct clinical features and management approaches.

Sideroblastic anemia is a type of anemia characterized by the presence of ringed sideroblasts in the bone marrow. Ringed sideroblasts are red blood cell precursors that have an abnormal amount of iron accumulated in their mitochondria, which forms a ring around the nucleus. This results in the production of abnormal hemoglobin and impaired oxygen transport.

Sideroblastic anemia can be classified as congenital or acquired. Congenital sideroblastic anemias are caused by genetic defects that affect heme synthesis or mitochondrial function, while acquired sideroblastic anemias are associated with various conditions such as myelodysplastic syndromes, chronic alcoholism, lead toxicity, and certain medications.

Symptoms of sideroblastic anemia may include fatigue, weakness, shortness of breath, and pallor. Diagnosis is typically made through a bone marrow aspiration and biopsy, which can identify the presence of ringed sideroblasts. Treatment depends on the underlying cause but may include iron chelation therapy, vitamin B6 supplementation, or blood transfusions.

Hemolysis is the destruction or breakdown of red blood cells, resulting in the release of hemoglobin into the surrounding fluid (plasma). This process can occur due to various reasons such as chemical agents, infections, autoimmune disorders, mechanical trauma, or genetic abnormalities. Hemolysis may lead to anemia and jaundice, among other complications. It is essential to monitor hemolysis levels in patients undergoing medical treatments that might cause this condition.

Hemoglobin A is the most common form of hemoglobin, which is the oxygen-carrying protein in red blood cells. Hemoglobin A is a tetramer composed of two alpha and two beta globin chains, each containing a heme group that binds to oxygen. It is typically measured in laboratory tests to assess for various medical conditions such as anemia or diabetes. In the context of diabetes, the measurement of hemoglobin A1c (a form of hemoglobin A that is glycated or bound to glucose) is used to monitor long-term blood sugar control.

Megaloblastic anemia is a type of macrocytic anemia, which is characterized by the presence of large, structurally abnormal, and immature red blood cells called megaloblasts in the bone marrow. This condition arises due to impaired DNA synthesis during erythropoiesis (the process of red blood cell production), often as a result of deficiencies in vitamin B12 or folate, or from the use of certain medications that interfere with DNA synthesis.

The hallmark feature of megaloblastic anemia is the presence of megaloblasts in the bone marrow, which exhibit an asynchrony between nuclear and cytoplasmic maturation. This means that although the cytoplasm of these cells may appear well-developed, their nuclei remain underdeveloped and fragmented. As a result, the peripheral blood shows an increase in mean corpuscular volume (MCV), reflecting the larger size of the red blood cells.

Additional hematological findings include decreased reticulocyte counts, neutrophil hypersegmentation, and occasionally thrombocytopenia or leukopenia. Neurological symptoms may also be present due to the involvement of the nervous system in vitamin B12 deficiency.

Megaloblastic anemia is typically treated with supplementation of the deficient vitamin (B12 or folate), which helps restore normal erythropoiesis and alleviate symptoms over time.

Erythrocyte count, also known as red blood cell (RBC) count, is a laboratory test that measures the number of red blood cells in a sample of blood. Red blood cells are important because they carry oxygen from the lungs to the rest of the body. A low erythrocyte count may indicate anemia, while a high count may be a sign of certain medical conditions such as polycythemia. The normal range for erythrocyte count varies depending on a person's age, sex, and other factors.

Equine Infectious Anemia (EIA) is a viral disease that affects horses and other equine animals. The causative agent of this disease is the Equine Infectious Anemia Virus (EIAV), which belongs to the family Retroviridae and genus Lentivirus. This virus is primarily transmitted through the transfer of infected blood, most commonly through biting insects such as horseflies and deerflies.

The EIAV attacks the immune system of the infected animal, causing a variety of symptoms including fever, weakness, weight loss, anemia, and edema. The virus has a unique ability to integrate its genetic material into the host's DNA, which can lead to a lifelong infection. Some animals may become chronic carriers of the virus, showing no signs of disease but remaining infectious to others.

There is currently no cure for EIA, and infected animals must be isolated to prevent the spread of the disease. Vaccines are available in some countries, but they do not provide complete protection against infection and may only help reduce the severity of the disease. Regular testing and monitoring of equine populations are essential to control the spread of this virus.

Refractory anemia is a type of anemia that does not respond to typical treatments, such as iron supplements or hormonal therapy. It is often associated with various bone marrow disorders, including myelodysplastic syndromes (MDS), a group of conditions characterized by abnormal blood cell production in the bone marrow.

In refractory anemia, the bone marrow fails to produce enough healthy red blood cells, leading to symptoms such as fatigue, weakness, shortness of breath, and pale skin. The condition can be difficult to treat, and treatment options may include more aggressive therapies such as immunosuppressive drugs, chemotherapy, or stem cell transplantation.

It is important to note that the term "refractory" in this context refers specifically to the lack of response to initial treatments, rather than a specific severity or type of anemia.

Hemolytic anemia, congenital is a type of anemia that is present at birth and characterized by the abnormal breakdown (hemolysis) of red blood cells. This can occur due to various genetic defects that affect the structure or function of the red blood cells, making them more susceptible to damage and destruction.

There are several types of congenital hemolytic anemias, including:

1. Congenital spherocytosis: A condition caused by mutations in genes that affect the shape and stability of red blood cells, leading to the formation of abnormally shaped and fragile cells that are prone to hemolysis.
2. G6PD deficiency: A genetic disorder that affects the enzyme glucose-6-phosphate dehydrogenase (G6PD), which is essential for protecting red blood cells from damage. People with this condition have low levels of G6PD, making their red blood cells more susceptible to hemolysis when exposed to certain triggers such as infections or certain medications.
3. Hereditary elliptocytosis: A condition caused by mutations in genes that affect the structure and flexibility of red blood cells, leading to the formation of abnormally shaped and fragile cells that are prone to hemolysis.
4. Pyruvate kinase deficiency: A rare genetic disorder that affects an enzyme called pyruvate kinase, which is essential for the production of energy in red blood cells. People with this condition have low levels of pyruvate kinase, leading to the formation of fragile and abnormally shaped red blood cells that are prone to hemolysis.

Symptoms of congenital hemolytic anemia can vary depending on the severity of the condition but may include fatigue, weakness, pale skin, jaundice, dark urine, and an enlarged spleen. Treatment may involve blood transfusions, medications to manage symptoms, and in some cases, surgery to remove the spleen.

Erythrocyte indices are a set of calculated values that provide information about the size and hemoglobin content of red blood cells (erythrocytes). These indices are commonly used in the complete blood count (CBC) test to help diagnose various types of anemia and other conditions affecting the red blood cells.

The three main erythrocyte indices are:

1. Mean Corpuscular Volume (MCV): This is the average volume of a single red blood cell, measured in femtoliters (fL). MCV helps to differentiate between microcytic, normocytic, and macrocytic anemia. Microcytic anemia is characterized by low MCV values (100 fL).
2. Mean Corpuscular Hemoglobin (MCH): This is the average amount of hemoglobin present in a single red blood cell, measured in picograms (pg). MCH helps to assess the oxygen-carrying capacity of red blood cells. Low MCH values may indicate hypochromic anemia, where the red blood cells have reduced hemoglobin content.
3. Mean Corpuscular Hemoglobin Concentration (MCHC): This is the average concentration of hemoglobin in a single red blood cell, measured as a percentage. MCHC reflects the hemoglobin concentration relative to the size of the red blood cells. Low MCHC values may indicate hypochromic anemia, while high MCHC values could suggest spherocytosis or other conditions affecting red blood cell shape and integrity.

These erythrocyte indices are calculated based on the red blood cell count, hemoglobin concentration, and hematocrit results obtained from a CBC test. They provide valuable information for healthcare professionals to diagnose and manage various hematological conditions.

Abnormal hemoglobins refer to variants of the oxygen-carrying protein found in red blood cells, which differ from the normal adult hemoglobin (HbA) in terms of their structure and function. These variations can result from genetic mutations that affect the composition of the globin chains in the hemoglobin molecule. Some abnormal hemoglobins are clinically insignificant, while others can lead to various medical conditions such as hemolytic anemia, thalassemia, or sickle cell disease. Examples of abnormal hemoglobins include HbS (associated with sickle cell anemia), HbC, HbE, and HbF (fetal hemoglobin). These variants can be detected through specialized laboratory tests, such as hemoglobin electrophoresis or high-performance liquid chromatography (HPLC).

Erythrocyte deformability refers to the ability of red blood cells (erythrocytes) to change shape and bend without rupturing, which is crucial for their efficient movement through narrow blood vessels. This deformability is influenced by several factors including the cell membrane structure, hemoglobin concentration, and intracellular viscosity. A decrease in erythrocyte deformability can negatively impact blood flow and oxygen delivery to tissues, potentially contributing to various pathological conditions such as sickle cell disease, diabetes, and cardiovascular diseases.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

An exchange transfusion of whole blood is a medical procedure in which a patient's blood is gradually replaced with donor whole blood. This procedure is typically performed in newborns or infants who have severe jaundice caused by excessive levels of bilirubin, a yellowish pigment that forms when hemoglobin from red blood cells breaks down.

During an exchange transfusion, the baby's blood is removed through a vein or artery and replaced with donor whole blood through another vein or artery. The process is repeated several times until a significant portion of the baby's blood has been exchanged with donor blood. This helps to reduce the levels of bilirubin in the baby's blood, which can help prevent or treat brain damage caused by excessive bilirubin.

Exchange transfusions are typically performed in a neonatal intensive care unit (NICU) and require close monitoring by a team of healthcare professionals. The procedure carries some risks, including infection, bleeding, and changes in blood pressure or heart rate. However, it can be a lifesaving treatment for newborns with severe jaundice who are at risk of developing serious complications.

Hemoglobin C is a type of hemoglobin variant, which is the oxygen-carrying protein in red blood cells. Hemoglobin C is caused by a specific genetic mutation that results in the substitution of lysine for glutamic acid at position 6 on the beta globin chain of the hemoglobin molecule.

This variant is often associated with a benign condition known as hemoglobin C trait, where an individual inherits one copy of the mutated gene from one parent and one normal gene from the other parent. People with this trait usually have no symptoms or only mild anemia, if any. However, if an individual inherits two copies of the Hemoglobin C gene (one from each parent), they will have a more severe form of hemoglobin disorder called Hemoglobin CC disease, which can cause mild to moderate hemolytic anemia and other complications.

It's important to note that Hemoglobin C is most commonly found in people of West African descent, but it can also occur in other populations with African ancestry.

A leg ulcer is a chronic wound that occurs on the lower extremities, typically on the inner or outer ankle. It's often caused by poor circulation, venous insufficiency, or diabetes. Leg ulcers can also result from injury, infection, or inflammatory diseases such as rheumatoid arthritis or lupus. These ulcers can be painful, and they may take a long time to heal, making them prone to infection. Proper diagnosis, treatment, and wound care are essential for healing leg ulcers and preventing complications.

Globins are a group of proteins that contain a heme prosthetic group, which binds and transports oxygen in the blood. The most well-known globin is hemoglobin, which is found in red blood cells and is responsible for carrying oxygen from the lungs to the body's tissues. Other members of the globin family include myoglobin, which is found in muscle tissue and stores oxygen, and neuroglobin and cytoglobin, which are found in the brain and other organs and may have roles in protecting against oxidative stress and hypoxia (low oxygen levels). Globins share a similar structure, with a folded protein surrounding a central heme group. Mutations in globin genes can lead to various diseases, such as sickle cell anemia and thalassemia.

Hematologic pregnancy complications refer to disorders related to the blood and blood-forming tissues that occur during pregnancy. These complications can have serious consequences for both the mother and the fetus if not properly managed. Some common hematologic pregnancy complications include:

1. Anemia: A condition characterized by a decrease in the number of red blood cells or hemoglobin in the blood, which can lead to fatigue, weakness, and shortness of breath. Iron-deficiency anemia is the most common type of anemia during pregnancy.
2. Thrombocytopenia: A condition characterized by a decrease in the number of platelets (cells that help blood clot) in the blood. Mild thrombocytopenia is relatively common during pregnancy, but severe thrombocytopenia can increase the risk of bleeding during delivery.
3. Gestational thrombotic thrombocytopenic purpura (GTTP): A rare but serious disorder that can cause blood clots to form in small blood vessels throughout the body, leading to a decrease in the number of platelets and red blood cells. GTTP can cause serious complications such as stroke, kidney failure, and even death if not promptly diagnosed and treated.
4. Disseminated intravascular coagulation (DIC): A condition characterized by abnormal clotting and bleeding throughout the body. DIC can be triggered by various conditions such as severe infections, pregnancy complications, or cancer.
5. Hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome: A serious complication of pregnancy that can cause damage to the liver and lead to bleeding. HELLP syndrome is often associated with preeclampsia, a condition characterized by high blood pressure and damage to organs such as the liver and kidneys.

It's important for pregnant women to receive regular prenatal care to monitor for these and other potential complications, and to seek prompt medical attention if any concerning symptoms arise.

Erythrocyte aging, also known as red cell aging, is the natural process of changes and senescence that occur in red blood cells (erythrocytes) over time. In humans, mature erythrocytes are devoid of nuclei and organelles, and have a lifespan of approximately 120 days.

During aging, several biochemical and structural modifications take place in the erythrocyte, including:

1. Loss of membrane phospholipids and proteins, leading to increased rigidity and decreased deformability.
2. Oxidative damage to hemoglobin, resulting in the formation of methemoglobin and heinz bodies.
3. Accumulation of denatured proteins and aggregates, which can impair cellular functions.
4. Changes in the cytoskeleton, affecting the shape and stability of the erythrocyte.
5. Increased expression of surface markers, such as Band 3 and CD47, that signal the spleen to remove aged erythrocytes from circulation.

The spleen plays a crucial role in removing senescent erythrocytes by recognizing and phagocytosing those with altered membrane composition or increased expression of surface markers. This process helps maintain the overall health and functionality of the circulatory system.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

An erythrocyte transfusion, also known as a red blood cell (RBC) transfusion, is the process of transferring compatible red blood cells from a donor to a recipient. This procedure is typically performed to increase the recipient's oxygen-carrying capacity, usually in situations where there is significant blood loss, anemia, or impaired red blood cell production.

During the transfusion, the donor's red blood cells are collected, typed, and tested for compatibility with the recipient's blood to minimize the risk of a transfusion reaction. Once compatible units are identified, they are infused into the recipient's circulation through a sterile intravenous (IV) line. The recipient's body will eventually eliminate the donated red blood cells within 100-120 days as part of its normal turnover process.

Erythrocyte transfusions can be lifesaving in various clinical scenarios, such as trauma, surgery, severe anemia due to chronic diseases, and hematologic disorders. However, they should only be used when necessary, as there are potential risks associated with the procedure, including allergic reactions, transmission of infectious diseases, transfusion-related acute lung injury (TRALI), and iron overload in cases of multiple transfusions.

Equine infectious anemia (EIA) is a viral disease that affects horses and other equine animals. It is caused by the Equine Infectious Anemia Virus (EIAV), which is transmitted through the bloodstream of infected animals, often through biting insects such as horseflies and deerflies.

The symptoms of EIA can vary widely, but often include fever, weakness, weight loss, anemia, and edema. In severe cases, the disease can cause death. There is no cure for EIA, and infected animals must be isolated to prevent the spread of the virus.

EIA is diagnosed through blood tests that detect the presence of antibodies to the virus. Horses that test positive for EIA are typically euthanized or permanently quarantined. Prevention measures include testing horses before they are bought, sold, or moved, as well as controlling insect populations and using insect repellents. Vaccines are not available for EIA in most countries.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. It is a complex phenomenon that can result from various stimuli, such as thermal, mechanical, or chemical irritation, and it can be acute or chronic. The perception of pain involves the activation of specialized nerve cells called nociceptors, which transmit signals to the brain via the spinal cord. These signals are then processed in different regions of the brain, leading to the conscious experience of pain. It's important to note that pain is a highly individual and subjective experience, and its perception can vary widely among individuals.

Splenic infarction is the death of splenic tissue due to blockage of its arterial supply or, less commonly, its venous drainage. This results in ischemia and necrosis of the affected portion of the spleen. The most common cause is embolism from a distant source such as atrial fibrillation, infective endocarditis, or malignancy. Other causes include splenic artery thrombosis, sickle cell disease, hematologic disorders, and trauma. Clinical presentation can vary widely, ranging from being asymptomatic to acute abdominal pain, nausea, vomiting, and fever. Diagnosis is often made with imaging studies such as ultrasound or CT scan. Treatment depends on the underlying cause and severity of symptoms, but may include anticoagulation, antibiotics, or surgical intervention in severe cases.

An erythrocyte, also known as a red blood cell, is a type of cell that circulates in the blood and is responsible for transporting oxygen throughout the body. The erythrocyte membrane refers to the thin, flexible barrier that surrounds the erythrocyte and helps to maintain its shape and stability.

The erythrocyte membrane is composed of a lipid bilayer, which contains various proteins and carbohydrates. These components help to regulate the movement of molecules into and out of the erythrocyte, as well as provide structural support and protection for the cell.

The main lipids found in the erythrocyte membrane are phospholipids and cholesterol, which are arranged in a bilayer structure with the hydrophilic (water-loving) heads facing outward and the hydrophobic (water-fearing) tails facing inward. This arrangement helps to maintain the integrity of the membrane and prevent the leakage of cellular components.

The proteins found in the erythrocyte membrane include integral proteins, which span the entire width of the membrane, and peripheral proteins, which are attached to the inner or outer surface of the membrane. These proteins play a variety of roles, such as transporting molecules across the membrane, maintaining the shape of the erythrocyte, and interacting with other cells and proteins in the body.

The carbohydrates found in the erythrocyte membrane are attached to the outer surface of the membrane and help to identify the cell as part of the body's own immune system. They also play a role in cell-cell recognition and adhesion.

Overall, the erythrocyte membrane is a complex and dynamic structure that plays a critical role in maintaining the function and integrity of red blood cells.

Hemoglobinometry is a method used to measure the amount or concentration of hemoglobin (Hb) in blood. Hemoglobin is a protein in red blood cells that carries oxygen throughout the body. Hemoglobinometry is typically performed on a sample of whole blood and can be done using various methods, including spectrophotometry, colorimetry, or automated analyzers.

The results of hemoglobinometry are reported in units of grams per deciliter (g/dL) or grams per liter (g/L). Normal values for hemoglobin concentration vary depending on factors such as age, sex, and altitude, but in general, a healthy adult male should have a hemoglobin level between 13.5 and 17.5 g/dL, while a healthy adult female should have a level between 12.0 and 15.5 g/dL.

Hemoglobinometry is an important diagnostic tool in the evaluation of various medical conditions, including anemia, polycythemia, and respiratory disorders. It can help identify the cause of symptoms such as fatigue, shortness of breath, or dizziness and guide treatment decisions.

Chicken anemia virus (CAV) is a small, non-enveloped DNA virus that belongs to the family *Circoviridae* and genus *Gyrovirus*. It primarily infects chickens and causes a variety of clinical signs, including severe anemia, immunosuppression, and runting in young birds.

The virus is highly contagious and can be spread through horizontal transmission via feces, contaminated equipment, or vertically from infected breeder hens to their offspring. CAV infection can lead to significant economic losses in the poultry industry due to decreased growth rates, increased mortality, and reduced egg production.

In addition to its impact on the poultry industry, CAV has also been used as a vector for gene delivery in biomedical research. Its small genome size and ability to infect a wide range of avian species make it an attractive candidate for vaccine development and gene therapy applications.

Dyserythropoietic anemia, congenital is a rare type of inherited anemia characterized by ineffective red blood cell production (erythropoiesis) in the bone marrow. This means that the body has difficulty producing healthy and fully mature red blood cells. The condition is caused by mutations in genes responsible for the development and maturation of red blood cells, leading to the production of abnormally shaped and dysfunctional red blood cells.

There are two main types of congenital dyserythropoietic anemia (CDA), type I and type II, each caused by different genetic mutations:

1. CDA Type I (HEMPAS): This form is caused by a mutation in the SEC23B gene. It typically presents in early childhood with mild to moderate anemia, jaundice, and splenomegaly (enlarged spleen). The severity of the condition can vary widely among affected individuals.
2. CDA Type II (HIEM): This form is caused by a mutation in the KIF23 gene or, less commonly, the TCIRG1 gene. It typically presents in infancy with moderate to severe anemia, hepatomegaly (enlarged liver), and splenomegaly. The condition can lead to iron overload due to repeated blood transfusions, which may require chelation therapy to manage.

Both types of congenital dyserythropoietic anemia are characterized by ineffective erythropoiesis, abnormal red blood cell morphology, and increased destruction of red blood cells (hemolysis). Treatment typically involves supportive care, such as blood transfusions to manage anemia, and occasionally chelation therapy to address iron overload. In some cases, bone marrow transplantation may be considered as a curative option.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

Diamond-Blackfan anemia is a rare, congenital bone marrow failure disorder characterized by a decreased production of red blood cells (erythroblasts) in the bone marrow. This results in a reduced number of circulating red blood cells, leading to anemia and related symptoms such as fatigue, weakness, and pallor. The disorder is typically diagnosed in infancy or early childhood and can also be associated with physical abnormalities.

The exact cause of Diamond-Blackfan anemia is not fully understood, but it is believed to involve genetic mutations that affect the development and function of the bone marrow. In many cases, the disorder is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the mutated gene from an affected parent. However, some cases may arise spontaneously due to new genetic mutations.

Treatment for Diamond-Blackfan anemia typically involves regular blood transfusions to maintain adequate red blood cell levels and alleviate symptoms. Corticosteroid therapy may also be used to stimulate red blood cell production in some cases. In severe or refractory cases, stem cell transplantation may be considered as a curative treatment option.

Vascular diseases are medical conditions that affect the circulatory system, specifically the blood vessels (arteries, veins, and capillaries). These diseases can include conditions such as:

1. Atherosclerosis: The buildup of fats, cholesterol, and other substances in and on the walls of the arteries, which can restrict blood flow.
2. Peripheral Artery Disease (PAD): A condition caused by atherosclerosis where there is narrowing or blockage of the peripheral arteries, most commonly in the legs. This can lead to pain, numbness, and cramping.
3. Coronary Artery Disease (CAD): Atherosclerosis of the coronary arteries that supply blood to the heart muscle. This can lead to chest pain, shortness of breath, or a heart attack.
4. Carotid Artery Disease: Atherosclerosis of the carotid arteries in the neck that supply blood to the brain. This can increase the risk of stroke.
5. Cerebrovascular Disease: Conditions that affect blood flow to the brain, including stroke and transient ischemic attack (TIA or "mini-stroke").
6. Aneurysm: A weakened area in the wall of a blood vessel that causes it to bulge outward and potentially rupture.
7. Deep Vein Thrombosis (DVT): A blood clot that forms in the deep veins, usually in the legs, which can cause pain, swelling, and increased risk of pulmonary embolism if the clot travels to the lungs.
8. Varicose Veins: Swollen, twisted, and often painful veins that have filled with an abnormal collection of blood, usually appearing in the legs.
9. Vasculitis: Inflammation of the blood vessels, which can cause damage and narrowing, leading to reduced blood flow.
10. Raynaud's Phenomenon: A condition where the small arteries that supply blood to the skin become narrowed, causing decreased blood flow, typically in response to cold temperatures or stress.

These are just a few examples of vascular conditions that fall under the umbrella term "cerebrovascular disease." Early diagnosis and treatment can significantly improve outcomes for many of these conditions.

Blood viscosity is a measure of the thickness or flow resistance of blood. It is defined as the ratio of shear stress to shear rate within the flowing blood, which reflects the internal friction or resistance to flow. Blood viscosity is primarily determined by the concentration and size of red blood cells (hematocrit), plasma proteins, and other blood constituents. An increase in any of these components can raise blood viscosity, leading to impaired blood flow, reduced oxygen delivery to tissues, and potential cardiovascular complications if not managed appropriately.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Fanconi anemia (FA) is a genetic disorder characterized by various developmental abnormalities, bone marrow failure, and increased risk of malignancies. It is caused by mutations in genes involved in the FA complementation group, which are responsible for repairing damaged DNA.

The FA complementation group proteins include FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ/BRIP1, FANCL, FANCM, and FAAP100. These proteins work together to form the FA core complex, which is responsible for monoubiquitinating FANCD2 and FANCI in response to DNA damage. This modification allows for the recruitment of downstream effectors that facilitate DNA repair and maintain genomic stability.

Defects in any of these FA complementation group proteins can lead to Fanconi anemia, with varying clinical manifestations depending on the specific gene involved and the severity of the mutation.

Iron overload is a condition characterized by an excessive accumulation of iron in the body's tissues and organs, particularly in the liver, heart, and pancreas. This occurs when the body absorbs more iron than it can use or eliminate, leading to iron levels that are higher than normal.

Iron overload can result from various factors, including hereditary hemochromatosis, a genetic disorder that affects how the body absorbs iron from food; frequent blood transfusions, which can cause iron buildup in people with certain chronic diseases such as sickle cell anemia or thalassemia; and excessive consumption of iron supplements or iron-rich foods.

Symptoms of iron overload may include fatigue, joint pain, abdominal discomfort, irregular heartbeat, and liver dysfunction. If left untreated, it can lead to serious complications such as cirrhosis, liver failure, diabetes, heart problems, and even certain types of cancer. Treatment typically involves regular phlebotomy (removal of blood) to reduce iron levels in the body, along with dietary modifications and monitoring by a healthcare professional.

Ferritin is a protein in iron-metabolizing cells that stores iron in a water-soluble form. It is found inside the cells (intracellular) and is released into the bloodstream when the cells break down or die. Measuring the level of ferritin in the blood can help determine the amount of iron stored in the body. High levels of ferritin may indicate hemochromatosis, inflammation, liver disease, or other conditions. Low levels of ferritin may indicate anemia, iron deficiency, or other conditions.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Erythrocyte aggregation, also known as rouleaux formation, is the clumping together of red blood cells (erythrocytes) in a way that resembles a stack of coins. This phenomenon is typically observed under low-shear conditions, such as those found in small blood vessels and capillaries.

The aggregation of erythrocytes is influenced by several factors, including the concentration of plasma proteins, the charge and shape of the red blood cells, and the flow characteristics of the blood. One of the most important proteins involved in this process is fibrinogen, a large plasma protein that can bridge between adjacent red blood cells and cause them to stick together.

Erythrocyte aggregation can have significant effects on blood flow and rheology (the study of how blood flows), particularly in diseases such as diabetes, sickle cell disease, and certain types of anemia. Increased erythrocyte aggregation can lead to reduced oxygen delivery to tissues, increased blood viscosity, and impaired microcirculatory flow, all of which can contribute to tissue damage and organ dysfunction.

Gamma-globulins are a type of globulin, which are proteins found in the blood plasma. More specifically, gamma-globulins are a class of immunoglobulins, also known as antibodies, that play a crucial role in the immune system's response to foreign substances and infectious agents.

Immunoglobulins are divided into several classes based on their structure and function. Gamma-globulins include IgG, IgA, and IgD isotypes of immunoglobulins. Among these, IgG is the most abundant type found in the blood and other body fluids, responsible for providing protection against bacterial and viral infections.

Gamma-globulins are produced by B cells, a type of white blood cell involved in the immune response. They can be measured in the blood as part of a complete blood count (CBC) or specific protein electrophoresis tests to assess immune system function or diagnose various medical conditions such as infections, inflammation, and autoimmune disorders.

I'm sorry for any confusion, but "Nigeria" is not a medical term. It is a country located in West Africa, and it is the most populous country in Africa. If you have any questions about medical conditions or terms, I would be happy to help clarify those for you.

A reticulocyte count is a laboratory test that measures the percentage of reticulocytes in the peripheral blood. Reticulocytes are immature red blood cells produced in the bone marrow and released into the bloodstream. They contain residual ribosomal RNA, which gives them a reticular or net-like appearance under a microscope when stained with certain dyes.

The reticulocyte count is often used as an indicator of the rate of red blood cell production in the bone marrow. A higher than normal reticulocyte count may indicate an increased production of red blood cells, which can be seen in conditions such as hemolysis, blood loss, or response to treatment of anemia. A lower than normal reticulocyte count may suggest a decreased production of red blood cells, which can be seen in conditions such as bone marrow suppression, aplastic anemia, or vitamin deficiencies.

The reticulocyte count is usually expressed as a percentage of the total number of red blood cells, but it can also be reported as an absolute reticulocyte count (the actual number of reticulocytes per microliter of blood). The normal range for the reticulocyte count varies depending on the laboratory and the population studied.

Oxyhemoglobin is the form of hemoglobin that is combined with oxygen in red blood cells. It's created when oxygen molecules bind to the iron-containing heme groups of the hemoglobin protein inside the lungs, allowing for the transportation of oxygen from the lungs to body tissues. The affinity of hemoglobin for oxygen is influenced by factors such as pH, carbon dioxide concentration, and temperature, which can affect the release of oxygen from oxyhemoglobin in different parts of the body based on their specific needs.

Hemorheology is the study of the flow properties of blood and its components, including red blood cells, white blood cells, platelets, and plasma. Specifically, it examines how these components interact with each other and with the walls of blood vessels to affect the flow characteristics of blood under different conditions. Hemorheological factors can influence blood viscosity, which is a major determinant of peripheral vascular resistance and cardiac workload. Abnormalities in hemorheology have been implicated in various diseases such as atherosclerosis, hypertension, diabetes, and sickle cell disease.

Beta-globins are the type of globin proteins that make up the beta-chain of hemoglobin, the oxygen-carrying protein in red blood cells. Hemoglobin is composed of four polypeptide chains, two alpha-globin and two beta-globin chains, arranged in a specific structure. The beta-globin gene is located on chromosome 11, and mutations in this gene can lead to various forms of hemoglobin disorders such as sickle cell anemia and beta-thalassemia.

Dimethyl adipimidate is a chemical compound that is used as a cross-linking agent in various biochemical and medical applications. It is an imidate ester of adipic acid, which contains two reactive dimethylamino groups. These groups can react with amino groups on proteins or other molecules to form covalent bonds, creating a cross-linked network.

In the context of medical research and diagnostics, dimethyl adipimidate is sometimes used to modify proteins in order to study their structure and function. For example, it can be used to create stable, cross-linked complexes between different proteins or protein domains, which can then be analyzed using various biochemical techniques.

It's important to note that dimethyl adipimidate is not a drug or therapeutic agent itself, but rather a tool used in laboratory research and diagnostics. As with any chemical compound, it should be handled with care and used only by trained professionals in a controlled environment.

Neonatal anemia is a condition characterized by a lower-than-normal number of red blood cells or lower-than-normal levels of hemoglobin in the blood of a newborn infant. Hemoglobin is the protein in red blood cells that carries oxygen to the body's tissues.

There are several types and causes of neonatal anemia, including:

1. Anemia of prematurity: This is the most common type of anemia in newborns, especially those born before 34 weeks of gestation. It occurs due to a decrease in red blood cell production and a shorter lifespan of red blood cells in premature infants.
2. Hemolytic anemia: This type of anemia is caused by the destruction of red blood cells at a faster rate than they can be produced. It can result from various factors, such as incompatibility between the mother's and baby's blood types, genetic disorders like G6PD deficiency, or infections.
3. Fetomaternal hemorrhage: This condition occurs when there is a significant transfer of fetal blood into the maternal circulation during pregnancy or childbirth, leading to anemia in the newborn.
4. Iron-deficiency anemia: Although rare in newborns, iron-deficiency anemia can occur if the mother has low iron levels during pregnancy, and the infant does not receive adequate iron supplementation after birth.
5. Anemia due to nutritional deficiencies: Rarely, neonatal anemia may result from a lack of essential vitamins or minerals like folate, vitamin B12, or copper in the newborn's diet.

Symptoms of neonatal anemia can vary but may include pallor, lethargy, poor feeding, rapid heartbeat, and difficulty breathing. Diagnosis typically involves a complete blood count (CBC) to measure red blood cell count, hemoglobin levels, and other parameters. Treatment depends on the underlying cause of anemia and may include iron supplementation, transfusions, or management of any underlying conditions.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Splenic diseases refer to a range of medical conditions that affect the structure, function, or health of the spleen. The spleen is an organ located in the upper left quadrant of the abdomen, which plays a vital role in filtering the blood and fighting infections. Some common splenic diseases include:

1. Splenomegaly: Enlargement of the spleen due to various causes such as infections, liver disease, blood disorders, or cancer.
2. Hypersplenism: Overactivity of the spleen leading to excessive removal of blood cells from circulation, causing anemia, leukopenia, or thrombocytopenia.
3. Splenic infarction: Partial or complete blockage of the splenic artery or its branches, resulting in tissue death and potential organ dysfunction.
4. Splenic rupture: Traumatic or spontaneous tearing of the spleen capsule, causing internal bleeding and potentially life-threatening conditions.
5. Infections: Bacterial (e.g., sepsis, tuberculosis), viral (e.g., mononucleosis, cytomegalovirus), fungal (e.g., histoplasmosis), or parasitic (e.g., malaria) infections can affect the spleen and cause various symptoms.
6. Hematologic disorders: Conditions such as sickle cell disease, thalassemia, hemolytic anemias, lymphomas, leukemias, or myeloproliferative neoplasms can involve the spleen and lead to its enlargement or dysfunction.
7. Autoimmune diseases: Conditions like rheumatoid arthritis, systemic lupus erythematosus, or vasculitis can affect the spleen and cause various symptoms.
8. Cancers: Primary (e.g., splenic tumors) or secondary (e.g., metastatic cancer from other organs) malignancies can involve the spleen and lead to its enlargement, dysfunction, or rupture.
9. Vascular abnormalities: Conditions such as portal hypertension, Budd-Chiari syndrome, or splenic vein thrombosis can affect the spleen and cause various symptoms.
10. Trauma: Accidental or intentional injuries to the spleen can lead to bleeding, infection, or organ dysfunction.

The Lutheran blood group system is a relatively less known and rare blood group system, discovered by Dr. Karl Landsteiner and Dr. Wiener in 1940. It is named after the Lutheran Church in Brooklyn where the serum that led to its discovery was obtained. The Lutheran blood group system consists of four main antigens: Lu^a, Lu^b, Lu^a/b, and In(Lu). These antigens are found on the surface of red blood cells (RBCs) and can cause an immune response when foreign antigens are introduced into the body.

The Lutheran system is inherited in an autosomal dominant manner, which means that a person needs only one copy of the gene to express the antigen. Approximately 98% of the population expresses the Lu(a-b-) phenotype, which lacks both Lu^a and Lu^b antigens. The other common phenotypes include Lu(a+b-) and Lu(a-b+), while the rarest is Lu(a+b+).

Individuals with the Lu(a-b-) phenotype can produce antibodies against both Lu^a and Lu^b antigens, which can cause transfusion reactions or hemolytic disease of the newborn (HDN) if they receive blood from a donor with either Lu^a or Lu^b antigens. Therefore, it is essential to consider the Lutheran blood group system during blood transfusions and pregnancy to ensure compatibility and prevent adverse effects.

In summary, the Lutheran blood group system consists of four main antigens (Lu^a, Lu^b, Lu^a/b, and In(Lu)) found on RBCs, which can cause an immune response in some individuals. Proper identification and matching of these antigens are crucial to prevent transfusion reactions and HDN.

Hematinics are a class of medications and dietary supplements that are used to enhance the production of red blood cells or hemoglobin in the body. They typically contain iron, vitamin B12, folic acid, or other nutrients that are essential for the synthesis of hemoglobin and the formation of red blood cells.

Iron is a critical component of hematinics because it plays a central role in the production of hemoglobin, which is the protein in red blood cells that carries oxygen throughout the body. Vitamin B12 and folic acid are also important nutrients for red blood cell production, as they help to regulate the growth and division of red blood cells in the bone marrow.

Hematinics are often prescribed to treat anemia, which is a condition characterized by a low red blood cell count or abnormally low levels of hemoglobin in the blood. Anemia can be caused by a variety of factors, including nutritional deficiencies, chronic diseases, and inherited genetic disorders.

Examples of hematinics include ferrous sulfate (an iron supplement), cyanocobalamin (vitamin B12), and folic acid. These medications are available in various forms, such as tablets, capsules, and liquids, and can be taken orally or by injection. It is important to follow the dosage instructions carefully and to inform your healthcare provider of any other medications you are taking, as hematinics can interact with certain drugs and may cause side effects.

Refractory anemia with excess blasts is a type of blood disorder that is characterized by the presence of increased numbers of immature blood cells, or "blasts," in the bone marrow and peripheral blood. This condition is considered a subtype of myelodysplastic syndrome (MDS), which is a group of disorders caused by abnormalities in the production of blood cells in the bone marrow.

In refractory anemia with excess blasts, the bone marrow fails to produce sufficient numbers of healthy red blood cells, white blood cells, and platelets. This results in anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). Additionally, there is an increased number of blasts in the bone marrow and peripheral blood, which can indicate the development of acute myeloid leukemia (AML), a more aggressive form of blood cancer.

Refractory anemia with excess blasts is considered "refractory" because it does not respond well to treatment, including chemotherapy and stem cell transplantation. The prognosis for this condition varies depending on the severity of the disease and other individual factors, but it is generally poor, with many patients progressing to AML within a few years.

Kidney papillary necrosis is a medical condition characterized by the death (necrosis) of the renal papillae, which are the small conical projections at the ends of the renal tubules in the kidneys. This condition typically occurs due to reduced blood flow to the kidneys or as a result of toxic injury from certain medications, chronic infections, diabetes, sickle cell disease, and systemic vasculitides.

The necrosis of the papillae can lead to the formation of small stones or debris that can obstruct the flow of urine, causing further damage to the kidneys. Symptoms of kidney papillary necrosis may include fever, flank pain, nausea, vomiting, and bloody or foul-smelling urine. The diagnosis is typically made through imaging studies such as CT scans or MRI, and treatment may involve addressing the underlying cause, administering antibiotics to prevent infection, and providing supportive care to maintain kidney function.

Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is a genetic disorder that affects the normal functioning of an enzyme called G6PD. This enzyme is found in red blood cells and plays a crucial role in protecting them from damage.

In people with G6PD deficiency, the enzyme's activity is reduced or absent, making their red blood cells more susceptible to damage and destruction, particularly when they are exposed to certain triggers such as certain medications, infections, or foods. This can lead to a condition called hemolysis, where the red blood cells break down prematurely, leading to anemia, jaundice, and in severe cases, kidney failure.

G6PD deficiency is typically inherited from one's parents in an X-linked recessive pattern, meaning that males are more likely to be affected than females. While there is no cure for G6PD deficiency, avoiding triggers and managing symptoms can help prevent complications.

Priapism is defined as a persistent and painful erection of the penis that lasts for more than four hours and occurs without sexual stimulation. It's a serious medical condition that requires immediate attention, as it can lead to permanent damage to the penis if left untreated.

Priapism can be classified into two types: ischemic (or low-flow) priapism and nonischemic (or high-flow) priapism. Ischemic priapism is the more common form, and it occurs when blood flow to the penis is obstructed, leading to the accumulation of deoxygenated blood in the corpora cavernosa. Nonischemic priapism, on the other hand, is usually caused by unregulated arterial blood flow into the corpora cavernosa, often as a result of trauma or surgery.

The causes of priapism can vary, but some common underlying conditions include sickle cell disease, leukemia, spinal cord injuries, and certain medications such as antidepressants and drugs used to treat erectile dysfunction. Treatment for priapism depends on the type and cause of the condition, and may involve medication, aspiration of blood from the penis, or surgical intervention.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

Erythrocyte inclusions refer to the presence of abnormal structures or substances within red blood cells (erythrocytes). These inclusions can be composed of various materials such as proteins, pigments, or foreign bodies. They may be seen in a variety of medical conditions and can provide important diagnostic clues.

Some examples of erythrocyte inclusions include:

1. Howell-Jolly bodies: small remnants of nuclear material left behind after the red blood cell matures. They are typically seen in individuals with an absent or nonfunctional spleen.
2. Heinz bodies: denatured hemoglobin that forms clumps within the red blood cells. They can be seen in conditions such as hemolytic anemia, G6PD deficiency, and exposure to certain drugs or toxins.
3. Pappenheimer bodies: aggregates of iron-containing proteins called ferritin or hemosiderin. They are typically seen in conditions associated with increased red blood cell destruction, such as thalassemia or lead poisoning.
4. Basophilic stippling: small, basophilic (blue-staining) granules within the red blood cells. They can be seen in various conditions, including lead poisoning, megaloblastic anemias, and certain inherited disorders.
5. Parasites: organisms such as malaria or babesia that infect and multiply within the red blood cells.

The detection of erythrocyte inclusions typically requires specialized testing, such as peripheral blood smears stained with specific dyes to highlight the abnormal structures. The presence and type of inclusions can help diagnose certain medical conditions and guide appropriate treatment.

Osmotic fragility is a term used in medicine, specifically in the field of hematology. It refers to the susceptibility or tendency of red blood cells (RBCs) to undergo lysis (rupture or breaking open) when exposed to hypotonic solutions (solutions with lower osmotic pressure than the RBCs). This test is often used to diagnose and monitor hereditary spherocytosis, a genetic disorder that affects the structure and stability of red blood cells.

In this condition, the RBC membrane proteins are defective, leading to abnormally shaped and fragile cells. When these abnormal RBCs come into contact with hypotonic solutions, they rupture more easily than normal RBCs due to their decreased osmotic resistance. The degree of osmotic fragility can be measured through a laboratory test called the "osmotic fragility test," which evaluates the stability and structural integrity of RBCs in response to varying osmotic pressures.

In summary, osmotic fragility is a medical term that describes the increased susceptibility of red blood cells to lysis when exposed to hypotonic solutions, often associated with hereditary spherocytosis or other conditions affecting RBC membrane stability.

2,3-Diphosphoglycerate (2,3-DPG) is a molecule found in red blood cells that plays a crucial role in regulating the affinity of hemoglobin for oxygen. It is a byproduct of the glycolytic pathway, which is a series of biochemical reactions that convert glucose into energy.

In the tissues where oxygen demand is high, such as muscles and organs, 2,3-DPG concentrations are typically elevated. This molecule binds to deoxygenated hemoglobin at specific sites on the beta chains, reducing its affinity for oxygen and promoting the release of oxygen to the tissues.

Conversely, in the lungs where oxygen is abundant, 2,3-DPG concentrations are lower, allowing hemoglobin to bind more readily to oxygen and load up with oxygen for delivery to the tissues. Therefore, 2,3-DPG helps optimize the matching of oxygen supply and demand in the body.

Neonatal screening is a medical procedure in which specific tests are performed on newborn babies within the first few days of life to detect certain congenital or inherited disorders that are not otherwise clinically apparent at birth. These conditions, if left untreated, can lead to serious health problems, developmental delays, or even death.

The primary goal of neonatal screening is to identify affected infants early so that appropriate treatment and management can be initiated as soon as possible, thereby improving their overall prognosis and quality of life. Commonly screened conditions include phenylketonuria (PKU), congenital hypothyroidism, galactosemia, maple syrup urine disease, sickle cell disease, cystic fibrosis, and hearing loss, among others.

Neonatal screening typically involves collecting a small blood sample from the infant's heel (heel stick) or through a dried blood spot card, which is then analyzed using various biochemical, enzymatic, or genetic tests. In some cases, additional tests such as hearing screenings and pulse oximetry for critical congenital heart disease may also be performed.

It's important to note that neonatal screening is not a diagnostic tool but rather an initial step in identifying infants who may be at risk of certain conditions. Positive screening results should always be confirmed with additional diagnostic tests before any treatment decisions are made.

Fanconi anemia complementation group C protein, also known as FANCC protein, is a component of the Fanconi anemia (FA) DNA repair pathway. This protein plays a critical role in protecting cells from oxidative stress and maintaining genomic stability. Mutations in the FANCC gene can lead to Fanconi anemia, a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and increased risk of cancer.

FANCC protein functions as part of a complex that includes other FA proteins, which work together to repair DNA damage caused by interstrand crosslinks (ICLs) - a type of DNA lesion that can lead to genomic instability and cancer. When the FA pathway is activated in response to ICLs, FANCC protein undergoes monoubiquitination, which allows it to interact with other proteins involved in DNA repair and chromatin remodeling.

Defects in the FANCC protein can result in impaired DNA repair and increased sensitivity to DNA-damaging agents, leading to the characteristic features of Fanconi anemia. Additionally, mutations in the FANCC gene have been associated with an increased risk of developing acute myeloid leukemia (AML) and other cancers.

Fanconi Anemia Complementation Group D2 Protein, also known as FANCD2 protein, is a key player in the Fanconi anemia (FA) pathway, which is a DNA repair pathway that helps to maintain genomic stability. The FA pathway is responsible for the repair of DNA interstrand cross-links (ICLs), which are harmful lesions that can lead to genomic instability and cancer.

FANCD2 protein is part of the E3 ubiquitin ligase complex that monoubiquitinates FANCI protein, forming a heterodimeric complex known as ID2. The monoubiquitination of FANCD2/FANCI is a critical step in the FA pathway and is required for the recruitment of downstream repair factors to the site of DNA damage.

Mutations in the gene that encodes FANCD2 protein can lead to Fanconi anemia, a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk of cancer. The disease is typically inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Retinal diseases refer to a group of conditions that affect the retina, which is the light-sensitive tissue located at the back of the eye. The retina is responsible for converting light into electrical signals that are sent to the brain and interpreted as visual images. Retinal diseases can cause vision loss or even blindness, depending on their severity and location in the retina.

Some common retinal diseases include:

1. Age-related macular degeneration (AMD): A progressive disease that affects the central part of the retina called the macula, causing blurred or distorted vision.
2. Diabetic retinopathy: A complication of diabetes that can damage the blood vessels in the retina, leading to vision loss.
3. Retinal detachment: A serious condition where the retina becomes separated from its underlying tissue, requiring immediate medical attention.
4. Macular edema: Swelling or thickening of the macula due to fluid accumulation, which can cause blurred vision.
5. Retinitis pigmentosa: A group of inherited eye disorders that affect the retina's ability to respond to light, causing progressive vision loss.
6. Macular hole: A small break in the macula that can cause distorted or blurry vision.
7. Retinal vein occlusion: Blockage of the retinal veins that can lead to bleeding, swelling, and potential vision loss.

Treatment for retinal diseases varies depending on the specific condition and its severity. Some treatments include medication, laser therapy, surgery, or a combination of these options. Regular eye exams are essential for early detection and treatment of retinal diseases.

Fanconi anemia complementation group A protein (FANCA) is a protein encoded by the FANCA gene in humans. It is a part of the Fanconi anemia (FA) pathway, which is a group of proteins that play a critical role in maintaining genomic stability and preventing cancer.

The FA pathway is involved in the repair of DNA interstrand crosslinks (ICLs), which are harmful lesions that can block replication and transcription of DNA. FANCA protein, along with other FA proteins, forms a complex called the "FA core complex" that monoubiquitinates another FA protein called FANCD2. This monoubiquitination event is essential for the recruitment of downstream repair factors to damaged DNA and restoration of normal DNA structure.

Mutations in the FANCA gene can lead to Fanconi anemia, a rare genetic disorder characterized by congenital abnormalities, bone marrow failure, and increased risk of cancer. The disease is typically inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Hemoglobin A2 is a type of hemoglobin that is found in human red blood cells. Hemoglobin is the protein in red blood cells that carries oxygen throughout the body. Hemoglobin A2 is made up of two alpha-like globin chains and two delta-globin chains, and it accounts for approximately 1.5 to 3.5% of the total hemoglobin in adult humans.

Hemoglobin A2 is not normally present in significant amounts until after a child has passed through their first year of life. Its level remains relatively constant throughout adulthood, and it is often used as a diagnostic marker for certain types of anemia, such as beta-thalassemia. In people with beta-thalassemia, the production of beta-globin chains is reduced or absent, leading to an increase in the relative proportion of Hemoglobin A2 and Hemoglobin F (fetal hemoglobin) in the red blood cells.

It's important to note that Hemoglobin A2 measurement alone is not enough for a definitive diagnosis of beta-thalassemia, but it can be used as a supportive test along with other investigations such as complete blood count (CBC), hemoglobin electrophoresis and molecular genetic testing.

Hyphema is defined as the presence of blood in the anterior chamber of the eye, which is the space between the cornea and the iris. This condition usually results from trauma or injury to the eye, but it can also occur due to various medical conditions such as severe eye inflammation, retinal surgery, or blood disorders that affect clotting.

The blood in the anterior chamber can vary in amount, ranging from a few drops to a complete fill, which is called an "eight-ball hyphema." Hyphema can be painful and cause sensitivity to light (photophobia), blurred vision, or even loss of vision if not treated promptly.

Immediate medical attention is necessary for hyphema to prevent complications such as increased intraocular pressure, corneal blood staining, glaucoma, or cataracts. Treatment options may include bed rest, eye drops to reduce inflammation and control intraocular pressure, and sometimes surgery to remove the blood from the anterior chamber.

A splenectomy is a surgical procedure in which the spleen is removed from the body. The spleen is an organ located in the upper left quadrant of the abdomen, near the stomach and behind the ribs. It plays several important roles in the body, including fighting certain types of infections, removing old or damaged red blood cells from the circulation, and storing platelets and white blood cells.

There are several reasons why a splenectomy may be necessary, including:

* Trauma to the spleen that cannot be repaired
* Certain types of cancer, such as Hodgkin's lymphoma or non-Hodgkin's lymphoma
* Sickle cell disease, which can cause the spleen to enlarge and become damaged
* A ruptured spleen, which can be life-threatening if not treated promptly
* Certain blood disorders, such as idiopathic thrombocytopenic purpura (ITP) or hemolytic anemia

A splenectomy is typically performed under general anesthesia and may be done using open surgery or laparoscopically. After the spleen is removed, the incision(s) are closed with sutures or staples. Recovery time varies depending on the individual and the type of surgery performed, but most people are able to return to their normal activities within a few weeks.

It's important to note that following a splenectomy, individuals may be at increased risk for certain types of infections, so it's recommended that they receive vaccinations to help protect against these infections. They should also seek medical attention promptly if they develop fever, chills, or other signs of infection.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Pulmonary hypertension is a medical condition characterized by increased blood pressure in the pulmonary arteries, which are the blood vessels that carry blood from the right side of the heart to the lungs. This results in higher than normal pressures in the pulmonary circulation and can lead to various symptoms and complications.

Pulmonary hypertension is typically defined as a mean pulmonary artery pressure (mPAP) greater than or equal to 25 mmHg at rest, as measured by right heart catheterization. The World Health Organization (WHO) classifies pulmonary hypertension into five groups based on the underlying cause:

1. Pulmonary arterial hypertension (PAH): This group includes idiopathic PAH, heritable PAH, drug-induced PAH, and associated PAH due to conditions such as connective tissue diseases, HIV infection, portal hypertension, congenital heart disease, and schistosomiasis.
2. Pulmonary hypertension due to left heart disease: This group includes conditions that cause elevated left atrial pressure, such as left ventricular systolic or diastolic dysfunction, valvular heart disease, and congenital cardiovascular shunts.
3. Pulmonary hypertension due to lung diseases and/or hypoxia: This group includes chronic obstructive pulmonary disease (COPD), interstitial lung disease, sleep-disordered breathing, alveolar hypoventilation disorders, and high altitude exposure.
4. Chronic thromboembolic pulmonary hypertension (CTEPH): This group includes persistent obstruction of the pulmonary arteries due to organized thrombi or emboli.
5. Pulmonary hypertension with unclear and/or multifactorial mechanisms: This group includes hematologic disorders, systemic disorders, metabolic disorders, and other conditions that can cause pulmonary hypertension but do not fit into the previous groups.

Symptoms of pulmonary hypertension may include shortness of breath, fatigue, chest pain, lightheadedness, and syncope (fainting). Diagnosis typically involves a combination of medical history, physical examination, imaging studies, and invasive testing such as right heart catheterization. Treatment depends on the underlying cause but may include medications, oxygen therapy, pulmonary rehabilitation, and, in some cases, surgical intervention.

A premarital examination is a medical evaluation typically consisting of screening tests and counseling, performed for individuals who are planning to get married. The purpose of this examination is to identify any potential health issues that may affect the couple's future family plans or overall well-being. These evaluations often include:

1. Medical History Review: Detailed review of past medical history, surgical history, allergies, current medications, and immunization status.
2. Physical Examination: Complete physical examination to identify any existing health conditions.
3. Infectious Disease Screening: Tests for sexually transmitted infections (STIs) such as HIV, syphilis, hepatitis B, and sometimes gonorrhea and chlamydia.
4. Genetic Disorder Screening: Depending on family history or ethnic background, screening for genetic disorders may be recommended.
5. Blood Type Testing: Determination of blood types (A, B, AB, O) and Rh factor (positive or negative).
6. Counseling: Discussion about reproductive health, family planning, birth control methods, and prevention of sexually transmitted infections.
7. Vaccination Status Check: Ensuring up-to-date vaccinations for both partners.
8. Other Tests: Depending on specific circumstances, other tests like tuberculosis screening or cancer screenings might be advised.

It's important to note that laws regarding premarital examinations vary by country and state. Some places require certain tests by law while others do not.

Heinz bodies are small, irregularly shaped inclusions found in the red blood cells (RBCs). They are aggregates of denatured hemoglobin and are typically seen in RBCs that have been exposed to oxidative stress. This can occur due to various factors such as exposure to certain chemicals, drugs, or diseases.

The presence of Heinz bodies can lead to the premature destruction of RBCs, a condition known as hemolysis. This can result in anemia and related symptoms such as fatigue, weakness, and shortness of breath. It's important to note that while Heinz bodies are often associated with certain diseases, they can also be present in otherwise healthy individuals who have been exposed to oxidative stress.

It's worth mentioning that the term "Heinz bodies" comes from the name of the scientist Robert Heinz, who first described them in 1890.

Splenomegaly is a medical term that refers to an enlargement or expansion of the spleen beyond its normal size. The spleen is a vital organ located in the upper left quadrant of the abdomen, behind the stomach and below the diaphragm. It plays a crucial role in filtering the blood, fighting infections, and storing red and white blood cells and platelets.

Splenomegaly can occur due to various underlying medical conditions, including infections, liver diseases, blood disorders, cancer, and inflammatory diseases. The enlarged spleen may put pressure on surrounding organs, causing discomfort or pain in the abdomen, and it may also lead to a decrease in red and white blood cells and platelets, increasing the risk of anemia, infections, and bleeding.

The diagnosis of splenomegaly typically involves a physical examination, medical history, and imaging tests such as ultrasound, CT scan, or MRI. Treatment depends on the underlying cause and may include medications, surgery, or other interventions to manage the underlying condition.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Methemoglobin is a form of hemoglobin in which the iron within the heme group is in the ferric (Fe3+) state instead of the ferrous (Fe2+) state. This oxidation reduces its ability to bind and transport oxygen effectively, leading to methemoglobinemia when methemoglobin levels become too high. Methemoglobin has a limited capacity to release oxygen to tissues, which can result in hypoxia (reduced oxygen supply) and cyanosis (bluish discoloration of the skin and mucous membranes).

Methemoglobin is normally present in small amounts in the blood, but certain factors such as exposure to oxidizing agents, genetic predisposition, or certain medications can increase its levels. Elevated methemoglobin levels can be treated with methylene blue, which helps restore the iron within hemoglobin back to its ferrous state and improves oxygen transport capacity.

Diphosphoglycerates (also known as 2,3-diphosphoglycerates or 2,3-DPG) are organic molecules found in red blood cells. They play a crucial role in regulating the affinity of hemoglobin for oxygen. Hemoglobin is the protein in red blood cells that carries oxygen from the lungs to the body's tissues.

When the concentration of diphosphoglycerates in red blood cells increases, it reduces the ability of hemoglobin to bind with oxygen, which allows more oxygen to be released into the tissues. This is particularly important in conditions where there is low oxygen availability, such as at high altitudes or in diseases that cause poor oxygen delivery to the tissues, like heart failure and chronic obstructive pulmonary disease (COPD).

In summary, diphosphoglycerates are essential molecules that help regulate hemoglobin's affinity for oxygen, ensuring optimal oxygen delivery to the body's tissues.

Enuresis is a medical term that refers to the involuntary or unconscious release of urine, especially at night during sleep, in children who are at least 5 years old. It's commonly known as bedwetting. Enuresis can be classified into two types: primary and secondary. Primary enuresis occurs when a child has never achieved consistent dryness during sleep, while secondary enuresis happens when a child starts wetting the bed again after having been dry for at least six months.

Enuresis can have various causes, including developmental delays, small bladder capacity, urinary tract infections, constipation, sleep disorders, and emotional stress. In some cases, it may also be associated with genetic factors. Treatment options depend on the underlying cause and may include behavioral interventions, bladder training, alarm systems, medication, or a combination of these approaches.

I'm sorry for any confusion, but "Mediterranean Islands" is not a term that has a specific medical definition. The Mediterranean Sea is surrounded by many countries and islands, including Cyprus, Sicily, Sardinia, Corsica, Crete, and numerous Greek islands, among others. If you're looking for medical information related to these areas, I would need more specificity. However, if you're interested in general health statistics or demographic data related to these islands, I could try to provide some relevant information.

Hereditary Spherocytosis is a genetic disorder that affects the red blood cells (RBCs) causing them to take on a spherical shape instead of their normal biconcave disc shape. This occurs due to mutations in the genes responsible for the proteins that maintain the structure and flexibility of RBCs, such as ankyrin, band 3, spectrin, and protein 4.2.

The abnormally shaped RBCs are fragile and prone to hemolysis (premature destruction), which can lead to anemia, jaundice, and gallstones. Symptoms can vary from mild to severe and may include fatigue, weakness, shortness of breath, and a yellowing of the skin and eyes (jaundice). Diagnosis is typically made through a combination of family history, physical examination, complete blood count (CBC), and specialized tests such as osmotic fragility test, eosin-5'-maleimide binding test, or direct antiglobulin test. Treatment may include monitoring, supplementation with folic acid, and in severe cases, splenectomy (surgical removal of the spleen) to reduce RBC destruction.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Hemolytic anemia, congenital nonspherocytic is a rare type of inherited anemia characterized by the premature destruction (hemolysis) of red blood cells. This condition is caused by defects in enzymes or proteins that help maintain the structural integrity and function of red blood cells.

In this form of hemolytic anemia, the red blood cells are not spherical in shape like spherocytes; instead, they may be oval or elongated. The most common types of congenital nonspherocytic hemolytic anemia are caused by deficiencies in enzymes such as glucose-6-phosphate dehydrogenase (G6PD) and pyruvate kinase.

Symptoms of this condition may include fatigue, weakness, pale skin, jaundice, dark urine, and an enlarged spleen. Treatment may involve blood transfusions, medications to manage symptoms, and avoidance of certain triggers that can exacerbate the hemolysis. In some cases, a bone marrow transplant may be considered as a curative treatment option.

Pallor is a medical term that refers to an abnormal pale appearance of the skin, mucous membranes, or nail beds. It can be a sign of various underlying medical conditions such as anemia (a decrease in red blood cells or hemoglobin), blood loss, malnutrition, vitamin deficiencies, or certain diseases that affect circulation or oxygenation of the blood. Pallor can also occur due to emotional distress or fear, leading to a temporary reduction in blood flow to the skin. It is important to note that pallor should be evaluated in conjunction with other symptoms and medical history for an accurate diagnosis.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Hematologic tests, also known as hematology tests, are a group of diagnostic exams that evaluate the health and function of different components of blood, such as red and white blood cells, platelets, and clotting factors. These tests can detect various disorders, including anemia, infection, bleeding problems, and several types of cancer. Common hematologic tests include complete blood count (CBC), coagulation studies, peripheral smear examination, and erythrocyte sedimentation rate (ESR). The specific test or combination of tests ordered will depend on the patient's symptoms, medical history, and physical examination findings.

Hemoglobinuria is a medical condition characterized by the presence of hemoglobin in the urine. Hemoglobin is a protein found in red blood cells that carries oxygen throughout the body. Normally, when red blood cells die, they are broken down and their hemoglobin is recycled. However, in certain conditions such as intravascular hemolysis (the destruction of red blood cells inside blood vessels), hemoglobin can be released into the bloodstream and then filtered by the kidneys into the urine.

Hemoglobinuria can be a symptom of various underlying medical conditions, including hemolytic anemias, disseminated intravascular coagulation (DIC), severe infections, snake bites, and exposure to certain toxins or medications. It is important to identify the underlying cause of hemoglobinuria, as treatment will depend on the specific condition.

In some cases, hemoglobinuria can lead to kidney damage due to the toxic effects of free hemoglobin on the renal tubules. This can result in acute or chronic kidney injury, and in severe cases, it may require dialysis or transplantation.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Tricuspid valve insufficiency, also known as tricuspid regurgitation, is a cardiac condition in which the tricuspid valve located between the right atrium and right ventricle of the heart does not close properly, allowing blood to flow back into the right atrium during contraction of the right ventricle. This results in a portion of the blood being pumped inefficiently, which can lead to volume overload of the right side of the heart and potentially result in symptoms such as fatigue, weakness, shortness of breath, and fluid retention. The condition can be congenital or acquired, with common causes including dilated cardiomyopathy, infective endocarditis, rheumatic heart disease, and trauma.

Hemoglobin and Sickle Cell Anemia - Oregon State University Library Sickle Cell Anemia, a Molecular Disease - reproduction of ... "Sickle Cell Anemia, a Molecular Disease" is a 1949 scientific paper by Linus Pauling, Harvey A. Itano, Seymour J. Singer and ... Scholia has a work profile for Sickle Cell Anemia, a Molecular Disease. It's in the Blood! A Documentary History of Linus ... Pauling, Linus; Harvey A. Itano; S. J. Singer; Ibert C. Wells (1949-11-01). "Sickle Cell Anemia, a Molecular Disease". Science ...
sickle cell disease. leukemia. aplastic anemia. myelodysplastic syndrome. Hemoglobin, the oxygen-carrying molecule in a red ... sickle cell disease, leukemia, aplastic anemia, or myelodysplastic syndrome, among others. It is diagnosed with a blood ... "Transfusion support in patients with sickle cell disease". Seminars in Hematology. Transfusion Support in Patients with ... When red blood cells (RBCs) die, they are consumed by macrophages. Transfused RBCs have shorter lifespans that native ones, so ...
... hemolytic anemia, sickle cell anemia, and pernicious anemia, the most important of them being deficiency and sickle cell anemia ... Anemia can also be classified based on the size of the red blood cells and amount of hemoglobin in each cell. If the cells are ... when anemia results from abnormal break down of red blood cells - in hemolytic anemia), nerve cell damage (vitamin B12 ... Causes of increased breakdown include genetic disorders such as sickle cell anemia, infections such as malaria, and certain ...
... is a vasodilator and an anti-sickling agent. Alavi JB (May 1984). "Sickle cell anemia. Pathophysiology and treatment ...
The most dangerous of the sickle cell diseases is known as sickle cell anemia. Sickle cell anemia is the most common homozygous ... including sickle cell disease, known as single gene disorders. Sickle cell disease is a group of diseases caused by a mutation ... Patients with sickle cell anemia have a missense or substitution mutation in the gene encoding the hemoglobin B subunit ... In the case of sickle cell anemia, the most common missense mutation is a single nucleotide mutation from thymine to adenine in ...
... results in the disease known as Sickle Cell Anemia. Sickle-cell anemia is an autosomal recessive disorder that affects 1 in 500 ... Sickle-cell anemia is caused by a point mutation in the β-globin chain of hemoglobin, causing the hydrophilic amino acid ... "Anemia, Sickle Cell". Genes and Disease. Bethesda MD: National Center for Biotechnology Information. 1998. NBK22183. Clancy S ( ... These sickle-shaped cells cannot carry nearly as much oxygen as normal red blood cells and they get caught more easily in the ...
Sickle cell anemia. Toxins, including ifosfamide (more commonly causing pRTA than dRTA), lithium carbonate and amphotericin B. ... Cell Biol. 37 (6): 1151-61. doi:10.1016/j.biocel.2005.01.002. PMID 15778079. Buckalew VM Jr (1989). "Nephrolithiasis in renal ... Distal RTA is characterized by a failure of acid secretion by the alpha intercalated cells of the distal tubule and cortical ... 1997). "Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene ...
A well-studied case is that of sickle cell anemia in humans, a hereditary disease that damages red blood cells. Sickle cell ... The sickle-cell and Haemoglobin C genes in some African populations. Ann. Human Genet. 21, 67-89. Sickle cell anemia. 2009. ... A person who inherits the sickle cell gene from one parent and a normal hemoglobin allele (HgbA) from the other, has a normal ... However, these heterozygote individuals, known as carriers of the sickle cell trait, may suffer problems from time to time. The ...
Sickle Cell Anemia's, 5. Thalassemia 6.Immune Deficiencies disease 7. Metabolic problem 8.Blood cell disorders 9.Histocytosis ... Blood stem cells are young or immature cells that can transform into other forms of essential blood cell types (pluripotent), ... such as red blood cells, white blood cells and platelets. The use of blood stem cells has emerged as a potentially curative ... thalassemia major and severe aplastic anaemia). What type of disease can be treated by cord blood stem cell? A new horizon has ...
"Voxelotor (Previously GBT440)". Sickle Cell Anemia News. Retrieved 13 December 2018. "ASH 2017: The HbS Polymerization ... intended for the treatment of hemolytic anemia due to sickle cell disease. The applicant for this medicinal product is Global ... "FDA approves drug to treat sickle cell disease in patients aged 4 up to 11 years". U.S. Food and Drug Administration (FDA) ( ... The approval of voxelotor was based on the results of a clinical trial with 274 participants with sickle cell disease. The FDA ...
"FDA Approves Immucor's PreciseType HEA Test to Screen for Sickle Cell Trait". Sickle Cell Anemia News. Retrieved 22 November ... Through its work with cord blood, stem cells and sickle cell treatments, NYBC is a leader in precision medicine, which takes ... The PreciseType HEA test screens blood donors for sickle cell trait (SCT), an inherited blood disorder that affects 1 million ... "FDA approves Immucor's PreciseType® HEA Test to be used for screening blood donors for Sickle Cell Trait (SCT)". Nasdaq. 21 ...
"Professor Swee Lay Thein". South Thames Sickle Cell & Thalassaemia Network. Retrieved 2019-10-04. "American Sickle Cell Anemia ... which include sickle cell disease and thalassemia. The only cures for sickle cell disease and thalassemia are bone marrow ... Sickle cell disease occurs because rigid strands form inside red blood cells, destroying their structure and resulting in the ... She moved to the National Institutes of Health as Senior Investigator and Chief of the new NIH Sickle Cell Branch in 2015. 2001 ...
Miles has sickle cell anemia. In April 2008, Miles was indicted on two counts of deadly conduct. The first charge came after ...
Labat, Gladys P.; Shelton, Thomas G.; Stanley, Connie; Branson, Herman (Jan 1958). "Studies of Sickle Cell Anemia". Journal of ... and how they contribute to diseases such as sickle cell anemia. He remained at Howard for 27 years, achieving increasingly ...
Mason VR: Sickle cell anemia. JAMA 1922;79:1318-1320. Frank Capra. The Name Above the Title. Macmillan. New York. 1971. p. 174 ... As a medical resident at Hopkins in 1922 Mason gave the disease sickle cell anemia its name. When motion picture director Frank ...
doi:10.1016/S0021-9258(18)51237-0. Pauling, L; Itano, H A; Singer, S J; Wells, I C (1949). "Sickle cell anemia, a molecular ...
Sickle cell anemia is also considered a recessive condition, but heterozygous carriers have increased resistance to malaria in ... "OMIM Entry #603903 - SICKLE CELL ANEMIA". www.omim.org. Retrieved 2019-07-01. Swanson, Kate (2021-09-07). "Autosomal recessive ... Williams T. N.; Obaro S. K. (2011). "Sickle cell disease and malaria morbidity: a tale with two tails". Trends in Parasitology ... Examples of this type of disorder are albinism, medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle cell ...
"What causes jaundice in hemolytic anemia?". www.medscape.com. Retrieved 26 April 2022. "What Is Sickle Cell Disease?". National ... These diseases may cause jaundice due to increased erythrocyte hemolysis: Sickle-cell anemia Spherocytosis Thalassemia Pyruvate ... The majority of this bilirubin comes from the breakdown of heme from expired red blood cells in the process just described. ... High unconjugated bilirubin may be due to excess red blood cell breakdown, large bruises, genetic conditions such as Gilbert's ...
"Sickle Cell Anemia, a Molecular Disease". Science, 25 November 1949, vol. 110, no. 2865, pp. 543-548. "Comparison of Mayo ... This concept was introduced in 1949, with the seminal paper, "Sickle Cell Anemia, a Molecular Disease", in Science magazine, ...
... that not all people with sickle cell anemia are anemic, that not all sickle cell cases are fatal, and that sickle cell anemia ... "Immunologic Studies in Sickle Cell Anemia". This work concluded that sickle cell anemia is most common among people of African ... "Immunologic studies in sickle cell anemia" in the Archives of Internal Medicine "Hodgkin's disease with terminal eosinophilia ... During this time, he began his research on sickle cell anemia with financial support from the Alpha Phi Alpha Fraternity. This ...
Working with populations in which sickle cell anemia was endemic, in 1966, Drs. Margaret G. Robinson and R. Janet Watson ... These results were paramount in establishing the practice of vaccinating patients with sickle-cell anemia against encapsulated ... Robinson, Margeret; WAtson, Janet (1966). "Pneumococcal Meningitis in Sickle-Cell Anemia". New England Journal of Medicine. ... observed a high incidence of pneumococcal meningitis in sickle cell patients - a similar rate to that of post-splenectomy ...
His success with sickle cell anemia led Pauling to speculate that a number of other diseases, including mental illnesses such ... It was the first proof of a human disease being caused by an abnormal protein, and sickle cell anemia became the first disease ... Pauling, L.; Itano, H. A.; Singer, S. J.; Wells, I. C. (1949-11-25). "Sickle Cell Anemia, a Molecular Disease". Science. 110 ( ... In November 1949, Pauling, Harvey Itano, S. J. Singer and Ibert Wells published "Sickle Cell Anemia, a Molecular Disease" in ...
"Sickle Cell Anemia, a Molecular Disease". Science, 25 November 1949, vol. 110, no. 2865, pp. 543-548. BJ Strasser, Perspectives ... In November 1949, with the seminal paper, "Sickle Cell Anemia, a Molecular Disease", in Science magazine, Linus Pauling, Harvey ... "Sickle Cell Anemia, a Molecular Disease"] Science, 19 November 1999, vol. 286, no.5444, pp. 1488 - 1490. RJ Williams (1956) ...
While at Caltech, Itano joined the lab of Linus Pauling and began working on sickle cell anemia, a genetic disease that Pauling ... recognizing his sickle cell work. Pauling, Linus; Harvey A. Itano; S. J. Singer; Ibert C. Wells (1949-11-01). "Sickle Cell ... Ingram, V. M. (1956-10-13). "A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anaemia ... Pauling was convinced that sickle cell disease was caused by defective hemoglobin, and set Itano to find out what made sickle ...
... a Sickle Cell Anemia Blood Drive; and meetings of local business groups and professional organizations." Ironically the ...
Pauling, Linus; Harvey A. Itano; S. J. Singer; Ibert C. Wells (1949). "Sickle Cell Anemia, a Molecular Disease". Science. 110 ( ... which are defined as any microscopic organism that comprises either a single cell (unicellular), cell clusters or no cell at ... This section contains a list of works on cell biology, the study of cells - their physiological properties, their structure, ... 2001). Landmark papers in cell biology: selected research articles celebrating forty years of the American Society for Cell ...
One example is sickle cell anemia. It is due to a mutation in the hemoglobin gene leading to sickle shape formation of red ... "What Is Sickle Cell Disease?". National Heart, Lung, and Blood Institute. June 12, 2015. Archived from the original on 6 March ... The alternative homozygote, which does not carry the sickle cell disease allele, is susceptible to infection by Plasmodium. As ... Hence, homozygote and heterozygote genotypes for the sickle-cell disease allele show malaria resistance, while the homozygote ...
It is possible for a person to have both the gene for hemoglobin S (the form associated with sickle cell anemia) and the gene ... Individuals with sickle cell-hemoglobin C (HbSC), have inherited the gene for sickle cell disease (HbS) from one parent and the ... But the condition was harmless as the individuals had no anaemia. Thus, it was not clear whether it was involved in sickle cell ... Pauling L, Itano HA (November 1949). "Sickle cell anemia a molecular disease". Science. 110 (2865): 543-8. Bibcode:1949Sci... ...
... sickle-cell anaemia; and the mosquito transmission of Venezuelan Equine Encephalomeyelitis Virus in Trinidad. But he will best ...
Doctors Taliaferro and Huck discovered a latent form of sickle cell anemia. Their study on sickle cell anemia was the first of ... Beginning in 1920, doctors at Johns Hopkins Hospital conducted research on sickle cell anemia, or sickle cell disease. Although ... There is a lack of phenotypic expression of Ho-2 in terms of sickle cell, so a person with sickle cell and hemoglobin Hopkins-2 ... There were, however, no sickled cells found in the blood and they had no symptoms relating to sickle cell. There was also a ...
... or sickle cell anemia) causes your body to produce abnormally shaped red blood cells. Learn about symptoms and treatment. ... If you are born with one sickle cell gene, its called sickle cell trait. People with sickle cell trait are generally healthy, ... Sickle Cell Anemia Disease (For Kids) (Nemours Foundation) Also in Spanish * Sickle Cell Disease (For Parents) (Nemours ... What is sickle cell disease (SCD)?. Sickle cell disease (SCD) is a group of inherited red blood cell disorders. If you have SCD ...
Sickle cell anemia is the most severe form of sickle cell disease, a group of inherited red blood cell disorders causing ... Sickle cell anemia is the most severe form of sickle cell disease, a group of inherited red blood cell disorders causing ... To Prevent Complications of Sickle Cell Anemia. Childhood stroke and other sickle cell anemia complications are preventable-not ... These cells clump together, blocking blood flow carrying oxygen through the body. Sickle cell anemia, which primarily affects ...
For imaging the skeletal manifestations of sickle cell disease, MRI is the best method for detecting early signs of ... encoded search term (Sickle Cell Anemia Skeletal Imaging) and Sickle Cell Anemia Skeletal Imaging What to Read Next on Medscape ... Ganguly A, Boswell W, Aniq H. Musculoskeletal manifestations of sickle cell anaemia: a pictorial review. Anemia. 2011. 2011: ... Manifestations of sickle cell disease. The skeletal manifestations of sickle cell disease are the result of changes in bone and ...
Hemoglobin and Sickle Cell Anemia - Oregon State University Library Sickle Cell Anemia, a Molecular Disease - reproduction of ... "Sickle Cell Anemia, a Molecular Disease" is a 1949 scientific paper by Linus Pauling, Harvey A. Itano, Seymour J. Singer and ... Scholia has a work profile for Sickle Cell Anemia, a Molecular Disease. Its in the Blood! A Documentary History of Linus ... Pauling, Linus; Harvey A. Itano; S. J. Singer; Ibert C. Wells (1949-11-01). "Sickle Cell Anemia, a Molecular Disease". Science ...
Sickle cell disease causes red blood cells to be sickle-shaped. Read on to learn about risk factors, symptoms, and more. ... Red blood cells are normally shaped like discs, which allows them to travel through blood vessels. ... Can Sickle Cell Anemia Be Cured?. A stem cell transplant may cure sickle cell anemia, but the risks often outweigh the benefits ... Sickle cell anemia, or sickle cell disease (SCD), is a genetic disease of the red blood cells (RBCs). Normally, RBCs are shaped ...
Sickle cell anemia is congenital, meaning it is present at birth, and symptoms vary between individuals depending on severity. ... sickle cell anemia. Medically reviewed by Jenneh Rishe, RN. Sickle cell anemia is a serious illness, whereas sickle cell trait ... Is sickle cell anemia fatal?. Medically reviewed by Jenneh Rishe, RN. Sickle cell anemia can lead to fatal complications, but ... Sickle cell anemia is a form of sickle cell disease that occurs when children have fewer healthy red blood cells than expected ...
Anemia - sickle cell; Hemoglobin SS disease (Hb SS); Sickle cell disease. Definition. Sickle cell anemia is an inherited ... or sickle cell-b + thalassemia. Someone with sickle cell trait or these forms of sickle cell disease will usually have no ... Sickle cell anemia can only result when two carriers with sickle cell trait have a child together. Therefore, genetic ... about 1 in 12 African Americans has sickle cell trait).. Prenatal diagnosis of sickle cell anemia is also available. Prompt ...
Gene editing offers hope for curing sickle cell anemia---Only ... Sickle cell anemia is a blood disorder caused by a single ... Sickle cell anemia is a blood disorder caused by a single mutation in both copies of a gene coding for beta-globin, a protein ... Gene editing offers hope for curing sickle cell anemia Source: Xinhua 2016-10-13 04:05:29 ... we show a level of correction in stem cells that should be sufficient for a clinical benefit in persons with sickle cell anemia ...
b,I have sickle cell.,/b, When you are sick, you do whatever you can to seem well, even cheat your way to it. ... The Bad Blood: My Life With Sickle Cell Anaemia. I have sickle cell. When you are sick, you do whatever you can to seem well, ... I have sickle cell anaemia and am in crisis. Sickle cell is a blood disorder caused by abnormal haemoglobin where red blood ... And eventually they ran blood tests and they came to me with sickle cell, full-blown, disease, anaemia. ...
NIH clinical trial is ushering in a genetic revolution as an innovative type of gene therapy is used to attempt to cure sickle ... Then, bone marrow stem cells are taken from of a patient with sickle cell anemia. In the laboratory those cells are combined ... The hope is the new DNA in the cells will cure Jennelle of sickle cell anemia, a brutal disease that causes debilitating pain. ... More on the trial aiming to cure sickle cell 05:09 Pain from sickle cell can occur anywhere blood circulates. Thats because ...
Heres what parents should know about sickle cell anemia and other types of sickle cell disease in young children. ... What is sickle cell anemia?. Sickle cell anemia is a congenital form of anemia, and the most common type of sickle cell disease ... Symptoms of sickle cell anemia in babies. Babies with sickle cell anemia have the disease at birth but dont typically begin to ... and is also sometimes called sickle cell anemia). It affects just 2 percent of people with sickle cell disease. *Sickle beta ...
Sickle cell anemia is a hereditary incurable defect confined to red blood cells.The basic defect is in the structure of ... MAM has screened more than 250,000 tribals for sickle cell. Approx 1.5 % of the tribal people are suffering from this incurable ... In addition to these symptoms one of the typical symptom experienced by patients called Sickle Cell Crisis. Whenever there is ... MAM has established a Sickle Cell community control center in tribal area of Dhadgaon, Dhule district in Maharastra since 1998 ...
Under certain conditions, red blood cells with the sickle cell defect will change from a soft, rounded form to a rigid, sickle ... Stanford Medicine News 2017 10 Sickle cell anemia treatment nears trial Story ... Porteus awarded grant for work on possible treatment for sickle cell anemia ... Researchers take step toward gene therapy for sickle cell disease Using the CRISPR gene-editing technique in stem cells, ...
... the team describes a faster and more efficient method of reprogramming cells that might speed the development of stem cell ... Publishing online in  Stem Cells  on May 29, ... for studying sickle cell anemia by reprogramming somatic cells ... Researchers at Johns Hopkins have established a human cell-based system ... Johns Hopkins Researchers Develop Human Stem Cell Line Containing Sickle Cell Anemia Mutation. Improved Adult Cell ...
Sickle cell tests are generally ordered when a person has inexplicable anemia. Learn more about the reasons and test results ... Sickle cell tests are used to detect the presence of sickle shaped red blood cells that cause sickle cell anemia. Sickle cell ... Reasons for Sickle Cell Test. Sickle cell tests are generally ordered when a person has inexplicable anemia. This test can ... People suffering from sickle cell anemia can also experience painful episodes and other complications if these cells get lodged ...
Sickle cell anemia is a condition in which red blood cells, instead of staying round and soft, become curved and rigid. The ... whod had sickle cell anemia.. The disease had been so debilitating and distressing that, as a 14-year-old boy, John was on his ... The thorny history of sickle cell anemia As part of the universitys Racism and Repair in the Modern Academy project, Johns ... Another breakthrough in treating sickle cell anemia came in 2012, when a team of researchers led by Robert Brodsky, director of ...
The blood cells that carry oxygen. Sickle Cell Anemia (SS). The most common form of sickle cell disease. Sickle cell anemia is ... Anemia. A reduced number of red blood cells. Anemia occurs in persons with sickle cell disease because the sickled red cells do ... Sickle cell trait and the various types of sickle cell disease. Sickle Cell Disease. An inherited disorder of the red blood ... There are three common types of sickle cell disease in the United States: Hemoglobin SS or sickle cell anemia, Hemoglobin SC ...
The Co-operative Study for Sickle Cell Disease (CSSCD), a large, multi-center natural history study of sickle cell disease, ... Asthma and sickle cell anemia-related mortality. Asthma was associated with a significant increase in the risk of all-cause ... Mortality in children and adolescents with sickle cell disease. Cooperative Study of Sickle Cell Disease. Pediatrics. 1989; 84: ... Figure 1.Kaplan-Meier plot of age of death for subjects with sickle cell anemia and asthma (n=138) and those without asthma (n= ...
Sickle-Cell Anemia Sickle-cell anemia is not contagious; no one can catch it from another person. The only way to contract the ... cells are doughnut-shaped. In persons suffering from sickle-cell anemia, the cells are shaped like a half-moon or sickle, hence ... with sickle-cell anemia was different from that in nonsufferers, making sickle-cell anemia the first disease in which an ... produce offspring together that sickle-cell anemia occurs. Sickle-cell anemia was first described in medical literature in 1910 ...
Global Sickle Cell Anemia Therapeutics Market Overview An intense decrease in the complete red platelets, or RBC count, or ... bombing clinical trials for the treatment of sickle cell iron deficiency are expected to derail the global sickle cell anemia ... Therefore, a sickle-like molded cell is framed under specific conditions. Afflictions of sickle cell illness typically begin to ... that may support therapy of sickle cell frailty is expected to aid in the development of the global sickle cell anemia ...
Ronald Nagel on Pleiotropic and epistatic genes in sickle cell anaemia, part of a collection of multimedia lectures. ... Pleiotropic and epistatic genes in sickle cell anaemia. *Prof. Ronald Nagel - Albert Einstein College of Medicine, USA ... Nagel, R. (2007, October 1). Pleiotropic and epistatic genes in sickle cell anaemia [Video file]. In The Biomedical & Life ... Pleiotropic and epistatic genes in sickle cell anaemia. Embed in course/own notes ...
A novel and effective deep learning approach for identification of sickle cell anemia is proposed in this work. Around nine ... The detection of sickle cell is also performed using typical InceptionV3 model by using SoftMax layer. It is observed that the ... Thus, the proposed approach is appropriate for pathologists to take early clinical decisions on detection of sickle cells. ... is a disorder in Red Blood Cells (RBCs) of human blood. Children under five years and pregnant women are mostly affected by SCA ...
... modifies the genes of the patients stem cells to induce them to produce fetal hemoglobin. ... A Revolutionary New Gene Therapy Treatment for Sickle Cell Anemia Is Imminent *email ... I have a long-standing interest in sickle cell anemia, a genetic abnormality that is the scourge of approximately 100,000 ... Sickle cell disease (SCD) is an inherited disorder marked by abnormal hemoglobin, the protein that delivers oxygen to the cells ...
Screening for stroke in children with sickle cell anemia could be lifesaving. ... Sickle cell anemia is the leading cause of childhood stroke and the most severe form of sickle cell disease, a red blood cell ... Many Kids With Sickle Cell Anemia Do Not Receive Stroke Screening, Treatment. Screening for stroke in children with sickle cell ... A study found that less than half of children ages 2 to 16 years with sickle cell anemia are screened for stroke. ...
Celebrating Families with Children Stricken with Sickle Cell Anemia. Ticket pricing starting at $50. Full course dining, ... Home > Calendar > 2nd Annual Black Tie Gala Benefiting Children with Sickle Cell Anemia ...
What are indications, complications of acute blood transfusions in sickle cell anemia? Key Points Additional Reading. *By ... ACS is usually from infection but may be because of fat embolism, intrapulmonary aggregates of sickled cells, atelectasis, or ... 2 The benefits of removing sickled cells include an increased percentage of Hb A and the ability to transfuse a greater volume ... aplastic anemia, preoperative transfusion, splenic sequestration plus severe anemia, acute hepatic sequestration, and severe ...
Introduction: Neurological injury is a common complication of sickle cell anemia (SCA). SCA is the most common cause of stroke ... 1. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. DeBaun MR, Gordon M, McKinstry RC, et ... 546 Progressive Loss of Brain Volume in Children with Sickle Cell Anemia: A Report from the Silent Cerebral Infarct Transfusion ... 7Vanderbilt-Meharry-Matthew Walker Center of Excellence in Sickle Cell Disease, Vanderbilt University School of Medicine, ...
Management of Sickle Cell Anemia in Nigeria with Medicinal Plants: Cationic Evaluation of Extracts and Possible Effects on the ... Management of Sickle Cell Anemia in Nigeria with Medicinal Plants: Cationic Evaluation of Extracts and Possible Effects on the ... Management of Sickle Cell Anemia in Nigeria with Medicinal Plants: Cationic Evaluation of Extracts and Possible Effects on the ... were evaluated for their cationic constituents as a measure of their efficacy in sickle cell anemia disorder. Extracts were ...
Trouillot, L "Brooklyn screens for sickle cell anemia." 87, no. 1 (1972). Trouillot, L "Brooklyn screens for sickle cell anemia ... Cover - Microscopic view of untreated sickle cells. Screening program for sickle cell anemia in Brooklyn is described in ... What you should know about sickle cell trait Cite CITE. Title : What you should know about sickle cell trait Corporate Authors( ... Sickle cell trait (SCT) is not a mild form of sickle cell disease. Having SCT simply means that a person carries a single gene ...

No FAQ available that match "anemia sickle cell"