An autosomal recessive disorder characterized by telangiectatic ERYTHEMA of the face, photosensitivity, DWARFISM and other abnormalities, and a predisposition toward developing cancer. The Bloom syndrome gene (BLM) encodes a RecQ-like DNA helicase.
A family of structurally-related DNA helicases that play an essential role in the maintenance of genome integrity. RecQ helicases were originally discovered in E COLI and are highly conserved across both prokaryotic and eukaryotic organisms. Genetic mutations that result in loss of RecQ helicase activity gives rise to disorders that are associated with CANCER predisposition and premature aging.
Permanent dilation of preexisting blood vessels (CAPILLARIES; ARTERIOLES; VENULES) creating small focal red lesions, most commonly in the skin or mucous membranes. It is characterized by the prominence of skin blood vessels, such as vascular spiders.
A characteristic symptom complex.
Facial dermatoses refers to various skin conditions that affect the face, causing symptoms such as redness, inflammation, papules, pustules, scaling, or pigmentation changes, which can be caused by a range of factors including genetics, infections, allergies, and environmental factors.
An algal bloom where the algae produce powerful toxins that can kill fish, birds, and mammals, and ultimately cause illness in humans. The harmful bloom can also cause oxygen depletion in the water due to the death and decomposition of non-toxic algae species.
Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands.
An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME.
A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.
An autosomal recessive disorder that causes premature aging in adults, characterized by sclerodermal skin changes, cataracts, subcutaneous calcification, muscular atrophy, a tendency to diabetes mellitus, aged appearance of the face, baldness, and a high incidence of neoplastic disease.
A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height.
The enrichment of a terrestrial or aquatic ECOSYSTEM by the addition of nutrients, especially nitrogen and phosphorus, that results in a superabundant growth of plants, ALGAE, or other primary producers. It can be a natural process or result from human activity such as agriculture runoff or sewage pollution. In aquatic ecosystems, an increase in the algae population is termed an algal bloom.
Free-floating minute organisms that are photosynthetic. The term is non-taxonomic and refers to a lifestyle (energy utilization and motility), rather than a particular type of organism. Most, but not all, are unicellular algae. Important groups include DIATOMS; DINOFLAGELLATES; CYANOBACTERIA; CHLOROPHYTA; HAPTOPHYTA; CRYPTOMONADS; and silicoflagellates.
A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products.
A form-genus of CYANOBACTERIA in the order Chroococcales. Many species are planktonic and possess gas vacuoles.
DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.
'Abnormalities, Multiple' is a broad term referring to the presence of two or more structural or functional anomalies in an individual, which may be genetic or environmental in origin, and can affect various systems and organs of the body.
A cross-shaped DNA structure that can be observed under the electron microscope. It is formed by the incomplete exchange of strands between two double-stranded helices or by complementary INVERTED REPEAT SEQUENCES that refold into hairpin loops on opposite strands across from each other.
Abnormal responses to sunlight or artificial light due to extreme reactivity of light-absorbing molecules in tissues. It refers almost exclusively to skin photosensitivity, including sunburn, reactions due to repeated prolonged exposure in the absence of photosensitizing factors, and reactions requiring photosensitizing factors such as photosensitizing agents and certain diseases. With restricted reference to skin tissue, it does not include photosensitivity of the eye to light, as in photophobia or photosensitive epilepsy.
A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)
Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=227650, August 20, 2004)
A cluster of metabolic risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The major components of metabolic syndrome X include excess ABDOMINAL FAT; atherogenic DYSLIPIDEMIA; HYPERTENSION; HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROMBOSIS) state. (from AHA/NHLBI/ADA Conference Proceedings, Circulation 2004; 109:551-556)
A Rec A recombinase found in eukaryotes. Rad51 is involved in DNA REPAIR of double-strand breaks.
An ethnic group with historical ties to the land of ISRAEL and the religion of JUDAISM.
Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD).
The process by which a DNA molecule is duplicated.
Cyclic heptapeptides found in MICROCYSTIS and other CYANOBACTERIA. Hepatotoxic and carcinogenic effects have been noted. They are sometimes called cyanotoxins, which should not be confused with chemicals containing a cyano group (CN) which are toxic.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES.
The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes.
An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional.
An autosomal recessive syndrome occurring principally in females, characterized by the presence of reticulated, atrophic, hyperpigmented, telangiectatic cutaneous plaques, often accompanied by juvenile cataracts, saddle nose, congenital bone defects, disturbances in the growth of HAIR; NAILS; and TEETH; and HYPOGONADISM.
An oligopeptide produced by various bacteria which acts as a protease inhibitor.
An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.
Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1.
A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.
A condition characterized by severe PROTEINURIA, greater than 3.5 g/day in an average adult. The substantial loss of protein in the urine results in complications such as HYPOPROTEINEMIA; generalized EDEMA; HYPERTENSION; and HYPERLIPIDEMIAS. Diseases associated with nephrotic syndrome generally cause chronic kidney dysfunction.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
A single-stranded DNA-binding protein that is found in EUKARYOTIC CELLS. It is required for DNA REPLICATION; DNA REPAIR; and GENETIC RECOMBINATION.
Mucocellular carcinoma of the ovary, usually metastatic from the gastrointestinal tract, characterized by areas of mucoid degeneration and the presence of signet-ring-like cells. It accounts for 30%-40% of metastatic cancers to the ovaries and possibly 1%-2% of all malignant ovarian tumors. The lesions may not be discovered until the primary disease is advanced, and most patients die of their disease within a year. In some cases, a primary tumor is not found. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p1685)
Chronic inflammatory and autoimmune disease in which the salivary and lacrimal glands undergo progressive destruction by lymphocytes and plasma cells resulting in decreased production of saliva and tears. The primary form, often called sicca syndrome, involves both KERATOCONJUNCTIVITIS SICCA and XEROSTOMIA. The secondary form includes, in addition, the presence of a connective tissue disease, usually rheumatoid arthritis.
Inland bodies of still or slowly moving FRESH WATER or salt water, larger than a pond, and supplied by RIVERS and streams.
Established cell cultures that have the potential to propagate indefinitely.
An individual in which both alleles at a given locus are identical.
Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23).
An individual having different alleles at one or more loci regarding a specific character.
The magnitude of INBREEDING in humans.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)
A syndrome of defective gonadal development in phenotypic females associated with the karyotype 45,X (or 45,XO). Patients generally are of short stature with undifferentiated GONADS (streak gonads), SEXUAL INFANTILISM, HYPOGONADISM, webbing of the neck, cubitus valgus, elevated GONADOTROPINS, decreased ESTRADIOL level in blood, and CONGENITAL HEART DEFECTS. NOONAN SYNDROME (also called Pseudo-Turner Syndrome and Male Turner Syndrome) resembles this disorder; however, it occurs in males and females with a normal karyotype and is inherited as an autosomal dominant.

Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. (1/188)

Several eukaryotic homologs of the Escherichia coli RecQ DNA helicase have been found. These include the human BLM gene, whose mutation results in Bloom syndrome, and the human WRN gene, whose mutation leads to Werner syndrome resembling premature aging. We cloned a Drosophila melanogaster homolog of the RECQ helicase family, Dmblm (Drosophila melanogaster Bloom), which encodes a putative 1487-amino-acid protein. Phylogenetic and dot plot analyses for the RECQ family, including 10 eukaryotic and 3 prokaryotic genes, indicate Dmblm is most closely related to the Homo sapiens BLM gene, suggesting functional similarity. Also, we found that Dmblm cDNA partially rescued the sensitivity to methyl methanesulfonate of Saccharomyces cerevisiae sgs1 mutant, demonstrating the presence of a functional similarity between Dmblm and SGS1. Our analyses identify four possible subfamilies in the RECQ family: (1) the BLM subgroup (H. sapiens Bloom, D. melanogaster Dmblm, and Caenorhabditis elegans T04A11.6); (2) the yeast RECQ subgroup (S. cerevisiae SGS1 and Schizosaccharomyces pombe rqh1/rad12); (3) the RECQL/Q1 subgroup (H. sapiens RECQL/Q1 and C. elegans K02F3.1); and (4) the WRN subgroup (H. sapiens Werner and C. elegans F18C5.2). This result may indicate that metazoans hold at least three RECQ genes, each of which may have a different function, and that multiple RECQ genes diverged with the generation of multicellular organisms. We propose that invertebrates such as nematodes and insects are useful as model systems of human genetic diseases.  (+info)

The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. (2/188)

Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.  (+info)

Oligomeric ring structure of the Bloom's syndrome helicase. (3/188)

Bloom's syndrome is a recessive human genetic disorder associated with an elevated incidence of many types of cancer. The Bloom's syndrome gene product, BLM, belongs to the RecQ subfamily of DNA helicases and is required for the maintenance of genomic stability in human cells - in particular, the suppression of reciprocal exchanges between sister chromatids. We have investigated the quaternary structure of BLM using a combination of size-exclusion chromatography and electron microscopy with reference-free image processing. We found that BLM forms hexameric ring structures with an overall diameter of approximately 13 nm surrounding a central hole of approximately 3.5 nm diameter. A fourfold symmetric square form with approximately 11 nm sides and a hole of approximately 4 nm diameter was also detected, which might represent a distinct oligomeric species or a side view of the hexameric form. Chromatography studies indicated that the majority of enzymatically active BLM has an apparent molecular mass of > 700 kDa, which is consistent with an oligomeric structure for BLM. This provides the first structural analysis of an oligomeric ring helicase of eukaryotic cellular origin. These results have implications for the mechanism of action of BLM and suggest that other RecQ family helicases, including the WRN protein associated with Werner's syndrome, might also adopt ring structures.  (+info)

Transfection of BLM into cultured bloom syndrome cells reduces the sister-chromatid exchange rate toward normal. (4/188)

The gene BLM, mutated in Bloom syndrome (BS), encodes the nuclear protein BLM, which when absent, as it is from most BS cells, results in genomic instability. A manifestation of this instability is an excessive rate of sister-chromatid exchange (SCE). Here we describe the effects on this abnormal cellular phenotype of stable transfection of normal BLM cDNAs into two types of BS cells, SV40-transformed fibroblasts and Epstein-Barr virus (EBV)-transformed lymphoblastoid cells. Clones of BLM-transfected fibroblasts produced normal amounts of BLM by western blot analysis and displayed a normal nuclear localization of the protein by immunofluorescence microscopy. They had a mean of 24 SCEs/46 chromosomes, in contrast to the mean of 69 SCEs in controls transfected only with the vector. BLM-transfected fibroblast clones that expressed highest levels of the BLM protein had lowest levels of SCE. The lymphoblastoid cells transfected with BLM had SCE frequencies of 22 and 42 in two separate experiments in which two different selectable markers were used, in contrast to 57 and 58 in vector-transfected cells; in this type cell, however, the BLM protein was below the level detectable by western blot analysis. These experiments prove that BLM cDNA encodes a functional protein capable of restoring to or toward normal the uniquely characteristic high-SCE phenotype of BS cells.  (+info)

Expression of the BLM gene in human haematopoietic cells. (5/188)

Bloom's syndrome (BS) is a rare autosomal recessive disorder characterized by stunted growth, sun-sensitive erythema and immunodeficiency. Chromosomal abnormalities are often observed. Patients with BS are highly predisposed to cancers. The causative gene for BS has been identified as BLM. The former encodes a protein, which is a homologue of the RecQ DNA helicase family, a family which includes helicases such as Esherichia coli RecQ, yeast Sgs1, and human WRN. WRN is encoded by the gene that when mutated causes Werner's syndrome. The function of BLM in DNA replication and repair has not yet been determined, however. To understand the function of BLM in haematopoietic cells and the cause of immunodeficiency in BS, expression of the BLM gene in various human tissues and haematopoietic cell lines was analysed and the involvement of BLM in immunoglobulin rearrangement examined. In contrast to WRN, BLM was expressed strongly in the testis and thymus. B, T, myelomonocytic and megakaryocytic cell lines also expressed BLM. All of the examined sequences at the junction of the variable (V), diversity (D) and joining (J) regions of the immunoglobulin heavy-chain genes were in-frame, and N-region insertions were also present. The frequency of abnormal rearrangements of the T cell receptor was slightly elevated in the peripheral T cells of patients with BS compared with healthy individuals, whereas a higher frequency of abnormal rearrangements was observed in the cells of patients with ataxia-telangiectasia (A-T). In DND39 cell lines, the induction of sterile transcription, which is required for class switching of immunoglobulin heavy-chain constant genes, was correlated with the induction of the BLM gene. Taking into consideration all these results, BLM may not be directly involved in VDJ recombination, but is apparently involved in the maintenance of the stability of DNA.  (+info)

Requirement of yeast SGS1 and SRS2 genes for replication and transcription. (6/188)

The SGS1 gene of the yeast Saccharomyces cerevisiae encodes a DNA helicase with homology to the human Bloom's syndrome gene BLM and the Werner's syndrome gene WRN. The SRS2 gene of yeast also encodes a DNA helicase. Simultaneous deletion of SGS1 and SRS2 is lethal in yeast. Here, using a conditional mutation of SGS1, it is shown that DNA replication and RNA polymerase I transcription are drastically inhibited in the srs2Delta sgs1-ts strain at the restrictive temperature. Thus, SGS1 and SRS2 function in DNA replication and RNA polymerase I transcription. These functions may contribute to the various defects observed in Werner's and Bloom's syndromes.  (+info)

Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. (7/188)

The phenomenon of posttranscriptional gene silencing (PTGS), which occurs when a transgene is introduced into a cell, is poorly understood. Here, the qde-3 gene, which is required for the activation and maintenance of gene silencing in the fungus Neurospora crassa, was isolated. Sequence analysis revealed that the qde-3 gene belongs to the RecQ DNA helicase family. The QDE3 protein may function in the DNA-DNA interaction between introduced transgenes or with an endogenous gene required for gene-silencing activation. In animals, genes that are homologous to RecQ protein, such as the human genes for Bloom's syndrome and Werner's syndrome, may also function in PTGS.  (+info)

A role for PML and the nuclear body in genomic stability. (8/188)

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells. The Bloom syndrome gene BLM encodes a RecQ DNA helicase, whose absence from the cell results in genomic instability epitomized by high levels of sister-chromatid exchange (SCE) and cancer predisposition. We show here that BLM co-localizes with PML to the NB. In cells from persons with Bloom syndrome the localization of PML is unperturbed, whereas in APL cells carrying the PML-RARalpha oncoprotein, both PML and BLM are delocalized from the NB into microspeckled nuclear regions. Treatment with retinoic acid (RA) induces the relocalization of both proteins to the NB. In primary PML-/- cells, BLM fails to accumulate in the NB. Strikingly, in PML-/- cells the frequency of SCEs is increased relative to PML+/+ cells. These data demonstrate that BLM is a constituent of the NB and that PML is required for its accumulation in these nuclear domains and for the normal function of BLM. Thus, our findings suggest a role for BLM in APL pathogenesis and implicate the PML NB in the maintenance of genomic stability.  (+info)

Bloom syndrome is a rare genetic disorder characterized by short stature, sun-sensitive skin rash, and an increased risk of developing cancer. It is caused by mutations in the BLM gene, which provides instructions for making a protein that helps prevent tangles and knots from forming in DNA during cell division. As a result, cells with Bloom syndrome have a high rate of genetic recombination, leading to chromosomal instability and an increased risk of cancer.

Individuals with Bloom syndrome typically have a distinctive facial appearance, including a narrow face, small jaw, and a prominent nose. They may also have learning disabilities, fertility problems, and an increased susceptibility to infections. The condition is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene, one from each parent, to develop the disorder. Bloom syndrome is typically diagnosed through genetic testing and chromosome analysis. Treatment is focused on managing the symptoms and reducing the risk of cancer through regular screenings and lifestyle modifications.

RecQ helicases are a group of enzymes that belong to the RecQ family, which are named after the E. coli RecQ protein. These helicases play crucial roles in maintaining genomic stability by participating in various DNA metabolic processes such as DNA replication, repair, recombination, and transcription. They are highly conserved across different species, including bacteria, yeast, plants, and mammals.

In humans, there are five RecQ helicases: RECQL1, RECQL4, RECQL5, BLM (RecQ-like helicase), and WRN (Werner syndrome ATP-dependent helicase). Defects in these proteins have been linked to various genetic disorders. For instance, mutations in the BLM gene cause Bloom's syndrome, while mutations in the WRN gene lead to Werner syndrome, both of which are characterized by genomic instability and increased cancer predisposition.

RecQ helicases possess 3'-5' DNA helicase activity, unwinding double-stranded DNA into single strands, and can also perform other functions like branch migration, strand annealing, and removal of protein-DNA crosslinks. Their roles in DNA metabolism help prevent and resolve DNA damage, maintain proper chromosome segregation during cell division, and ensure the integrity of the genome.

Telangiectasia is a medical term that refers to the dilation and widening of small blood vessels called capillaries, leading to their visibility under the skin or mucous membranes. These dilated vessels often appear as tiny red lines or patterns, measuring less than 1 millimeter in diameter.

Telangiectasias can occur in various parts of the body, such as the face, nose, cheeks, legs, and fingers. They are typically harmless but may cause cosmetic concerns for some individuals. In certain cases, telangiectasias can be a sign of an underlying medical condition, like rosacea, hereditary hemorrhagic telangiectasia (HHT), or liver disease.

It is essential to consult with a healthcare professional if you notice any unusual changes in your skin or mucous membranes, as they can provide appropriate evaluation and treatment recommendations based on the underlying cause of the telangiectasias.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Facial dermatoses refer to various skin conditions that affect the face. These can include a wide range of disorders, such as:

1. Acne vulgaris: A common skin condition characterized by the formation of comedones (blackheads and whiteheads) and inflammatory papules, pustules, and nodules. It primarily affects the face, neck, chest, and back.
2. Rosacea: A chronic skin condition that causes redness, flushing, and visible blood vessels on the face, along with bumps or pimples and sometimes eye irritation.
3. Seborrheic dermatitis: A common inflammatory skin disorder that causes a red, itchy, and flaky rash, often on the scalp, face, and eyebrows. It can also affect other oily areas of the body, like the sides of the nose and behind the ears.
4. Atopic dermatitis (eczema): A chronic inflammatory skin condition that causes red, itchy, and scaly patches on the skin. While it can occur anywhere on the body, it frequently affects the face, especially in infants and young children.
5. Psoriasis: An autoimmune disorder that results in thick, scaly, silvery, or red patches on the skin. It can affect any part of the body, including the face.
6. Contact dermatitis: A skin reaction caused by direct contact with an allergen or irritant, resulting in redness, itching, and inflammation. The face can be affected when allergens or irritants come into contact with the skin through cosmetics, skincare products, or other substances.
7. Lupus erythematosus: An autoimmune disorder that can cause a butterfly-shaped rash on the cheeks and nose, along with other symptoms like joint pain, fatigue, and photosensitivity.
8. Perioral dermatitis: A inflammatory skin condition that causes redness, small bumps, and dryness around the mouth, often mistaken for acne. It can also affect the skin around the nose and eyes.
9. Vitiligo: An autoimmune disorder that results in the loss of pigmentation in patches of skin, which can occur on the face and other parts of the body.
10. Tinea faciei: A fungal infection that affects the facial skin, causing red, scaly, or itchy patches. It is also known as ringworm of the face.

These are just a few examples of skin conditions that can affect the face. If you experience any unusual symptoms or changes in your skin, it's essential to consult a dermatologist for proper diagnosis and treatment.

A Harmful Algal Bloom (HAB) is a rapid growth or accumulation of toxic or harmful algae in aquatic environments, which can cause harm to humans, animals, and the environment. These algae produce toxins that can contaminate water supplies, shellfish, and other seafood, leading to illness or even death if ingested. HABs can also result in oxygen depletion in the water, creating "dead zones" where fish and other marine life cannot survive. They are often caused by nutrient pollution from agricultural runoff, sewage, and other human activities that increase the amount of nitrogen and phosphorus in the water.

DNA helicases are a group of enzymes that are responsible for separating the two strands of DNA during processes such as replication and transcription. They do this by unwinding the double helix structure of DNA, using energy from ATP to break the hydrogen bonds between the base pairs. This allows other proteins to access the individual strands of DNA and carry out functions such as copying the genetic code or transcribing it into RNA.

During replication, DNA helicases help to create a replication fork, where the two strands of DNA are separated and new complementary strands are synthesized. In transcription, DNA helicases help to unwind the DNA double helix at the promoter region, allowing the RNA polymerase enzyme to bind and begin transcribing the DNA into RNA.

DNA helicases play a crucial role in maintaining the integrity of the genetic code and are essential for the normal functioning of cells. Defects in DNA helicases have been linked to various diseases, including cancer and neurological disorders.

Sister chromatid exchange (SCE) is a type of genetic recombination that takes place between two identical sister chromatids during the DNA repair process in meiosis or mitosis. It results in an exchange of genetic material between the two chromatids, creating a new combination of genes on each chromatid. This event is a normal part of cell division and helps to increase genetic variability within a population. However, an increased rate of SCEs can also be indicative of exposure to certain genotoxic agents or conditions that cause DNA damage.

Adenosine triphosphatases (ATPases) are a group of enzymes that catalyze the conversion of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate. This reaction releases energy, which is used to drive various cellular processes such as muscle contraction, transport of ions across membranes, and synthesis of proteins and nucleic acids.

ATPases are classified into several types based on their structure, function, and mechanism of action. Some examples include:

1. P-type ATPases: These ATPases form a phosphorylated intermediate during the reaction cycle and are involved in the transport of ions across membranes, such as the sodium-potassium pump and calcium pumps.
2. F-type ATPases: These ATPases are found in mitochondria, chloroplasts, and bacteria, and are responsible for generating a proton gradient across the membrane, which is used to synthesize ATP.
3. V-type ATPases: These ATPases are found in vacuolar membranes and endomembranes, and are involved in acidification of intracellular compartments.
4. A-type ATPases: These ATPases are found in the plasma membrane and are involved in various functions such as cell signaling and ion transport.

Overall, ATPases play a crucial role in maintaining the energy balance of cells and regulating various physiological processes.

Werner Syndrome is a rare, autosomal recessive genetic disorder characterized by the appearance of premature aging. It's often referred to as "progeria of the adult" or "adult progeria." The syndrome is caused by mutations in the WRN gene, which provides instructions for making a protein involved in repairing damaged DNA and maintaining the stability of the genetic information.

The symptoms typically begin in a person's late teens or early twenties and may include:
- Short stature
- Premature graying and loss of hair
- Skin changes, such as scleroderma (a thickening and hardening of the skin) and ulcers
- Voice changes
- Type 2 diabetes
- Cataracts
- Atherosclerosis (the buildup of fats, cholesterol, and other substances in and on the artery walls)
- Increased risk of cancer

The life expectancy of individuals with Werner Syndrome is typically around 45 to 50 years. It's important to note that while there are similarities between Werner Syndrome and other forms of progeria, such as Hutchinson-Gilford Progeria Syndrome, they are distinct conditions with different genetic causes and clinical features.

Dwarfism is a medical condition that is characterized by short stature, typically with an adult height of 4 feet 10 inches (147 centimeters) or less. It is caused by a variety of genetic and medical conditions that affect bone growth, including skeletal dysplasias, hormonal deficiencies, and chromosomal abnormalities.

Skeletal dysplasias are the most common cause of dwarfism and are characterized by abnormalities in the development and growth of bones and cartilage. Achondroplasia is the most common form of skeletal dysplasia, accounting for about 70% of all cases of dwarfism. It is caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene and results in short limbs, a large head, and a prominent forehead.

Hormonal deficiencies, such as growth hormone deficiency or hypothyroidism, can also cause dwarfism if they are not diagnosed and treated early. Chromosomal abnormalities, such as Turner syndrome (monosomy X) or Down syndrome (trisomy 21), can also result in short stature and other features of dwarfism.

It is important to note that people with dwarfism are not "dwarves" - the term "dwarf" is a medical and sociological term used to describe individuals with this condition, while "dwarves" is a term often used in fantasy literature and media to refer to mythical beings. The use of the term "dwarf" can be considered disrespectful or offensive to some people with dwarfism, so it is important to use respectful language when referring to individuals with this condition.

Eutrophication is the process of excessive nutrient enrichment in bodies of water, which can lead to a rapid growth of aquatic plants and algae. This overgrowth can result in decreased levels of oxygen in the water, harming or even killing fish and other aquatic life. The primary cause of eutrophication is the addition of nutrients, particularly nitrogen and phosphorus, from human activities such as agricultural runoff, sewage and wastewater discharge, and air pollution.

In advanced stages, eutrophication can lead to a shift in the dominant species in the aquatic ecosystem, favoring those that are better adapted to the high-nutrient conditions. This can result in a loss of biodiversity and changes in water quality, making it difficult for many organisms to survive.

Eutrophication is a significant global environmental problem, affecting both freshwater and marine ecosystems. It can lead to harmful algal blooms (HABs), which can produce toxins that are dangerous to humans and animals. In addition, eutrophication can impact water use for drinking, irrigation, recreation, and industry, making it a critical issue for public health and economic development.

Phytoplankton are microscopic photosynthetic organisms that live in watery environments such as oceans, seas, lakes, and rivers. They are a diverse group of organisms, including bacteria, algae, and protozoa. Phytoplankton are a critical component of the marine food chain, serving as primary producers that convert sunlight, carbon dioxide, and nutrients into organic matter through photosynthesis. This organic matter forms the base of the food chain and supports the growth and survival of many larger organisms, including zooplankton, fish, and other marine animals. Phytoplankton also play an important role in global carbon cycling and help to regulate Earth's climate by absorbing carbon dioxide from the atmosphere and releasing oxygen.

Exodeoxyribonucleases are a type of enzyme that cleave (break) nucleotides from the ends of DNA molecules. They are further classified into 5' exodeoxyribonucleases and 3' exodeoxyribonucleases based on the end of the DNA molecule they act upon.

5' Exodeoxyribonucleases remove nucleotides from the 5' end (phosphate group) of a DNA strand, while 3' exodeoxyribonucleases remove nucleotides from the 3' end (hydroxyl group) of a DNA strand.

These enzymes play important roles in various biological processes such as DNA replication, repair, and degradation. They are also used in molecular biology research for various applications such as DNA sequencing, cloning, and genetic engineering.

"Microcystis" is not a medical term, but a genus of cyanobacteria (blue-green algae) commonly found in freshwater environments. Some species of Microcystis can produce toxins called microcystins, which can cause liver damage and other health problems in humans and animals when they consume or come into contact with contaminated water. Therefore, Microcystis blooms in recreational waters or drinking water sources can pose a public health concern.

DNA topoisomerases are enzymes that modify the topological structure of DNA by regulating the number of twists or supercoils in the double helix. There are two main types of DNA topoisomerases: type I and type II.

Type I DNA topoisomerases function by cutting one strand of the DNA duplex, allowing the uncut strand to rotate around the break, and then resealing the break. This process can relieve both positive and negative supercoiling in DNA, as well as introduce single-stranded breaks into the DNA molecule.

Type I topoisomerases are further divided into three subtypes: type IA, type IB, and type IC. These subtypes differ in their mechanism of action and the structure of the active site tyrosine residue that makes the transient break in the DNA strand.

Overall, DNA topoisomerases play a crucial role in many cellular processes involving DNA, including replication, transcription, recombination, and chromosome segregation. Dysregulation of these enzymes has been implicated in various human diseases, including cancer and genetic disorders.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

DNA repair is the process by which cells identify and correct damage to the DNA molecules that encode their genome. DNA can be damaged by a variety of internal and external factors, such as radiation, chemicals, and metabolic byproducts. If left unrepaired, this damage can lead to mutations, which may in turn lead to cancer and other diseases.

There are several different mechanisms for repairing DNA damage, including:

1. Base excision repair (BER): This process repairs damage to a single base in the DNA molecule. An enzyme called a glycosylase removes the damaged base, leaving a gap that is then filled in by other enzymes.
2. Nucleotide excision repair (NER): This process repairs more severe damage, such as bulky adducts or crosslinks between the two strands of the DNA molecule. An enzyme cuts out a section of the damaged DNA, and the gap is then filled in by other enzymes.
3. Mismatch repair (MMR): This process repairs errors that occur during DNA replication, such as mismatched bases or small insertions or deletions. Specialized enzymes recognize the error and remove a section of the newly synthesized strand, which is then replaced by new nucleotides.
4. Double-strand break repair (DSBR): This process repairs breaks in both strands of the DNA molecule. There are two main pathways for DSBR: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ directly rejoins the broken ends, while HR uses a template from a sister chromatid to repair the break.

Overall, DNA repair is a crucial process that helps maintain genome stability and prevent the development of diseases caused by genetic mutations.

'Abnormalities, Multiple' is a broad term that refers to the presence of two or more structural or functional anomalies in an individual. These abnormalities can be present at birth (congenital) or can develop later in life (acquired). They can affect various organs and systems of the body and can vary greatly in severity and impact on a person's health and well-being.

Multiple abnormalities can occur due to genetic factors, environmental influences, or a combination of both. Chromosomal abnormalities, gene mutations, exposure to teratogens (substances that cause birth defects), and maternal infections during pregnancy are some of the common causes of multiple congenital abnormalities.

Examples of multiple congenital abnormalities include Down syndrome, Turner syndrome, and VATER/VACTERL association. Acquired multiple abnormalities can result from conditions such as trauma, infection, degenerative diseases, or cancer.

The medical evaluation and management of individuals with multiple abnormalities depend on the specific abnormalities present and their impact on the individual's health and functioning. A multidisciplinary team of healthcare professionals is often involved in the care of these individuals to address their complex needs.

"Cruciform DNA" is a term used to describe a specific conformation or structure that a double-stranded DNA molecule can adopt. It is so-called because the structure resembles the shape of a cross or crucifix.

This conformation arises when two inverted repeats of DNA sequence are located close to each other on the same DNA molecule, such that they can pair up and form a stable secondary structure. This results in the formation of a hairpin loop at each end of the inverted repeat sequences, with the loops pointing towards each other and the intervening sequences forming two arms that cross in the middle.

Cruciform structures are important in various biological processes, including DNA replication, repair, and recombination. However, they can also pose challenges to these processes, as the crossing of the DNA strands can create topological constraints that must be resolved before replication or transcription can proceed.

It's worth noting that cruciform structures are not stable in solution and are usually only observed under specific conditions, such as when the DNA is supercoiled or when negative supercoiling is introduced through the action of enzymes like topoisomerases.

Photosensitivity disorders refer to conditions that cause an abnormal reaction to sunlight or artificial light. This reaction can take the form of various skin changes, such as rashes, inflammation, or pigmentation, and in some cases, it can also lead to systemic symptoms like fatigue, fever, or joint pain.

The two main types of photosensitivity disorders are:

1. Phototoxic reactions: These occur when a substance (such as certain medications, chemicals, or plants) absorbs light energy and transfers it to skin cells, causing damage and inflammation. The reaction typically appears within 24 hours of exposure to the light source and can resemble a sunburn.

2. Photoallergic reactions: These occur when the immune system responds to the combination of light and a particular substance, leading to an allergic response. The reaction may not appear until several days after initial exposure and can cause redness, itching, and blistering.

It is important for individuals with photosensitivity disorders to avoid excessive sun exposure, wear protective clothing, and use broad-spectrum sunscreens with a high SPF rating to minimize the risk of phototoxic or photoallergic reactions.

Down syndrome is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is characterized by intellectual and developmental disabilities, distinctive facial features, and sometimes physical growth delays and health problems. The condition affects approximately one in every 700 babies born in the United States.

Individuals with Down syndrome have varying degrees of cognitive impairment, ranging from mild to moderate or severe. They may also have delayed development, including late walking and talking, and may require additional support and education services throughout their lives.

People with Down syndrome are at increased risk for certain health conditions, such as congenital heart defects, respiratory infections, hearing loss, vision problems, gastrointestinal issues, and thyroid disorders. However, many individuals with Down syndrome live healthy and fulfilling lives with appropriate medical care and support.

The condition is named after John Langdon Down, an English physician who first described the syndrome in 1866.

Fanconi anemia is a rare, inherited disorder that affects the body's ability to produce healthy blood cells. It is characterized by bone marrow failure, congenital abnormalities, and an increased risk of developing certain types of cancer. The condition is caused by mutations in genes responsible for repairing damaged DNA, leading to chromosomal instability and cell death.

The classic form of Fanconi anemia (type A) is typically diagnosed in childhood and is associated with various physical abnormalities such as short stature, skin pigmentation changes, thumb and radial ray anomalies, kidney and genitourinary malformations, and developmental delays. Other types of Fanconi anemia (B-G) may have different clinical presentations but share the common feature of bone marrow failure and cancer predisposition.

Bone marrow failure in Fanconi anemia results in decreased production of all three types of blood cells: red blood cells, white blood cells, and platelets. This can lead to anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). These conditions increase the risk of infections, fatigue, and bleeding.

Individuals with Fanconi anemia have a significantly higher risk of developing various types of cancer, particularly acute myeloid leukemia (AML) and solid tumors such as squamous cell carcinomas of the head, neck, esophagus, and anogenital region.

Treatment for Fanconi anemia typically involves managing symptoms related to bone marrow failure, such as transfusions, growth factors, and antibiotics. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment option for bone marrow failure but carries risks of its own, including graft-versus-host disease and transplant-related mortality. Regular cancer surveillance is essential due to the increased risk of malignancies in these patients.

Metabolic syndrome, also known as Syndrome X, is a cluster of conditions that increase the risk of heart disease, stroke, and diabetes. It is not a single disease but a group of risk factors that often co-occur. According to the American Heart Association and the National Heart, Lung, and Blood Institute, a person has metabolic syndrome if they have any three of the following five conditions:

1. Abdominal obesity (waist circumference of 40 inches or more in men, and 35 inches or more in women)
2. Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater
3. HDL cholesterol level of less than 40 mg/dL in men or less than 50 mg/dL in women
4. Systolic blood pressure of 130 millimeters of mercury (mmHg) or greater, or diastolic blood pressure of 85 mmHg or greater
5. Fasting glucose level of 100 mg/dL or greater

Metabolic syndrome is thought to be caused by a combination of genetic and lifestyle factors, such as physical inactivity and a diet high in refined carbohydrates and unhealthy fats. Treatment typically involves making lifestyle changes, such as eating a healthy diet, getting regular exercise, and losing weight if necessary. In some cases, medication may also be needed to manage individual components of the syndrome, such as high blood pressure or high cholesterol.

Rad51 recombinase is a protein involved in the repair of double-stranded DNA breaks through homologous recombination, a process that helps maintain genomic stability. This protein forms a nucleoprotein filament on single-stranded DNA, facilitating the search for and invasion of homologous sequences in double-stranded DNA. Rad51 recombinase is highly conserved across various species, including humans, and plays a crucial role in preventing genetic disorders, cancer, and aging caused by DNA damage.

I'm sorry for any confusion, but "Jews" is not a medical term. It is a term used to describe a group of people who share cultural, religious, and ethnic heritage. The Jewish people originated from the ancient kingdoms of Israel and Judah. They are bound together by their religion, Judaism, which is based on the Torah, or the five books of Moses.

If you have any medical questions or terms that you would like defined, I'd be happy to help!

DNA ligases are enzymes that catalyze the formation of a phosphodiester bond between two compatible ends of DNA molecules, effectively joining or "ligating" them together. There are several types of DNA ligases found in nature, each with specific functions and preferences for the type of DNA ends they can seal.

The most well-known DNA ligase is DNA ligase I, which plays a crucial role in replicating and repairing DNA in eukaryotic cells. It seals nicks or gaps in double-stranded DNA during replication and participates in the final step of DNA excision repair by rejoining the repaired strand to the original strand.

DNA ligase IV, another important enzyme, is primarily involved in the repair of double-strand breaks through a process called non-homologous end joining (NHEJ). This pathway is essential for maintaining genome stability and preventing chromosomal abnormalities.

Bacterial DNA ligases, such as T4 DNA ligase, are often used in molecular biology techniques due to their ability to join various types of DNA ends with high efficiency. These enzymes have been instrumental in the development of recombinant DNA technology and gene cloning methods.

DNA replication is the biological process by which DNA makes an identical copy of itself during cell division. It is a fundamental mechanism that allows genetic information to be passed down from one generation of cells to the next. During DNA replication, each strand of the double helix serves as a template for the synthesis of a new complementary strand. This results in the creation of two identical DNA molecules. The enzymes responsible for DNA replication include helicase, which unwinds the double helix, and polymerase, which adds nucleotides to the growing strands.

Microcystins are a type of toxin produced by certain species of blue-green algae (cyanobacteria) that can contaminate freshwater bodies. They are cyclic peptides consisting of seven amino acids, and their structure varies among different microcystin variants. These toxins can have negative effects on the liver and other organs in humans and animals upon exposure through ingestion, inhalation, or skin contact with contaminated water. They are a concern for both public health and environmental safety, particularly in relation to drinking water supplies, recreational water use, and aquatic ecosystems.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Marine toxins are toxic compounds that are produced by certain marine organisms, including algae, bacteria, and various marine animals such as shellfish, jellyfish, and snails. These toxins can cause a range of illnesses and symptoms in humans who consume contaminated seafood or come into direct contact with the toxin-producing organisms. Some of the most well-known marine toxins include:

1. Saxitoxin: Produced by certain types of algae, saxitoxin can cause paralytic shellfish poisoning (PSP) in humans who consume contaminated shellfish. Symptoms of PSP include tingling and numbness of the lips, tongue, and fingers, followed by muscle weakness, paralysis, and in severe cases, respiratory failure.
2. Domoic acid: Produced by certain types of algae, domoic acid can cause amnesic shellfish poisoning (ASP) in humans who consume contaminated shellfish. Symptoms of ASP include nausea, vomiting, diarrhea, abdominal cramps, headache, and memory loss.
3. Okadaic acid: Produced by certain types of algae, okadaic acid can cause diarrhetic shellfish poisoning (DSP) in humans who consume contaminated shellfish. Symptoms of DSP include nausea, vomiting, diarrhea, abdominal cramps, and fever.
4. Ciguatoxin: Produced by certain types of dinoflagellates, ciguatoxin can cause ciguatera fish poisoning (CFP) in humans who consume contaminated fish. Symptoms of CFP include nausea, vomiting, diarrhea, abdominal pain, and neurological symptoms such as tingling and numbness of the lips, tongue, and fingers, as well as reversal of hot and cold sensations.
5. Tetrodotoxin: Found in certain types of pufferfish, tetrodotoxin can cause a severe form of food poisoning known as pufferfish poisoning or fugu poisoning. Symptoms of tetrodotoxin poisoning include numbness of the lips and tongue, difficulty speaking, muscle weakness, paralysis, and respiratory failure.

Prevention measures for these types of seafood poisoning include avoiding consumption of fish and shellfish that are known to be associated with these toxins, as well as cooking and preparing seafood properly before eating it. Additionally, monitoring programs have been established in many countries to monitor the levels of these toxins in seafood and issue warnings when necessary.

Crossing over, genetic is a process that occurs during meiosis, where homologous chromosomes exchange genetic material with each other. It is a crucial mechanism for generating genetic diversity in sexually reproducing organisms.

Here's a more detailed explanation:

During meiosis, homologous chromosomes pair up and align closely with each other. At this point, sections of the chromosomes can break off and reattach to the corresponding section on the homologous chromosome. This exchange of genetic material is called crossing over or genetic recombination.

The result of crossing over is that the two resulting chromosomes are no longer identical to each other or to the original chromosomes. Instead, they contain a unique combination of genetic material from both parents. Crossing over can lead to new combinations of alleles (different forms of the same gene) and can increase genetic diversity in the population.

Crossing over is a random process, so the location and frequency of crossover events vary between individuals and between chromosomes. The number and position of crossovers can affect the likelihood that certain genes will be inherited together or separated, which is an important consideration in genetic mapping and breeding studies.

Genomic instability is a term used in genetics and molecular biology to describe a state of increased susceptibility to genetic changes or mutations in the genome. It can be defined as a condition where the integrity and stability of the genome are compromised, leading to an increased rate of DNA alterations such as point mutations, insertions, deletions, and chromosomal rearrangements.

Genomic instability is a hallmark of cancer cells and can also be observed in various other diseases, including genetic disorders and aging. It can arise due to defects in the DNA repair mechanisms, telomere maintenance, epigenetic regulation, or chromosome segregation during cell division. These defects can result from inherited genetic mutations, acquired somatic mutations, exposure to environmental mutagens, or age-related degenerative changes.

Genomic instability is a significant factor in the development and progression of cancer as it promotes the accumulation of oncogenic mutations that contribute to tumor initiation, growth, and metastasis. Therefore, understanding the mechanisms underlying genomic instability is crucial for developing effective strategies for cancer prevention, diagnosis, and treatment.

Rothmund-Thomson syndrome (RTS) is a rare genetic disorder characterized by the triad of poikiloderma, juvenile cataracts, and skeletal abnormalities. Poikiloderma is a skin condition that involves changes in coloration, including redness, brownish pigmentation, and telangiectasia (dilation of small blood vessels), as well as atrophy (wasting) of the skin.

The syndrome is caused by mutations in the RECQL4 gene, which plays a role in DNA repair. RTS has an autosomal recessive pattern of inheritance, meaning that an individual must inherit two copies of the mutated gene, one from each parent, to develop the condition.

Individuals with RTS may also experience other symptoms, such as sparse hair, short stature, small hands and feet, missing teeth, and a predisposition to developing certain types of cancer, particularly osteosarcoma (a type of bone cancer). The severity of the condition can vary widely among individuals.

RTS is typically diagnosed based on clinical features and genetic testing. Treatment is focused on managing the symptoms of the condition and may include measures such as sun protection to prevent skin damage, eye exams to monitor for cataracts, and regular cancer screenings.

Antipain is a naturally occurring organic compound that is found in various types of streptomyces bacteria. It is classified as a protease inhibitor, which means that it works by blocking the action of certain enzymes called proteases, which are involved in breaking down proteins in the body. Antipain has been shown to have anti-inflammatory and analgesic (pain-relieving) effects, and it is sometimes used in research to study the role of proteases in various biological processes. It is not approved for use as a medication in humans.

Hydroxyurea is an antimetabolite drug that is primarily used in the treatment of myeloproliferative disorders such as chronic myelogenous leukemia (CML), essential thrombocythemia, and polycythemia vera. It works by interfering with the synthesis of DNA, which inhibits the growth of cancer cells.

In addition to its use in cancer therapy, hydroxyurea is also used off-label for the management of sickle cell disease. In this context, it helps to reduce the frequency and severity of painful vaso-occlusive crises by increasing the production of fetal hemoglobin (HbF), which decreases the formation of sickled red blood cells.

The medical definition of hydroxyurea is:

A hydantoin derivative and antimetabolite that inhibits ribonucleoside diphosphate reductase, thereby interfering with DNA synthesis. It has been used as an antineoplastic agent, particularly in the treatment of myeloproliferative disorders, and more recently for the management of sickle cell disease to reduce the frequency and severity of painful vaso-occlusive crises by increasing fetal hemoglobin production.

Dinoflagellida is a large group of mostly marine planktonic protists, many of which are bioluminescent. Some dinoflagellates are responsible for harmful algal blooms (HABs), also known as "red tides," which can produce toxins that affect marine life and human health.

Dinoflagellates are characterized by two flagella, or whip-like structures, that they use for movement. They have complex cell structures, including a unique structure called the nucleomorph, which is the remnant of a former endosymbiotic event where another eukaryotic cell was engulfed and became part of the dinoflagellate's cell.

Dinoflagellates are important contributors to the marine food chain, serving as both primary producers and consumers. Some species form symbiotic relationships with other marine organisms, such as corals, providing them with nutrients in exchange for protection and other benefits.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Polynucleotide ligases are enzymes that catalyze the formation of phosphodiester bonds between the 3'-hydroxyl and 5'-phosphate ends of two adjacent nucleotides in a polynucleotide chain, such as DNA. These enzymes play a crucial role in the repair and replication of DNA, by sealing breaks or gaps in the sugar-phosphate backbone of the DNA molecule. They are essential for maintaining genomic integrity and stability, and have been widely used in molecular biology research and biotechnological applications, including DNA sequencing, cloning, and genetic engineering. Polynucleotide ligases can be found in various organisms, from bacteria to humans, and they typically require ATP or NAD+ as a cofactor for the ligation reaction.

Human chromosome pair 15 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. Chromosome pair 15 includes two homologous chromosomes, meaning they have the same size, shape, and gene content but may contain slight variations in their DNA sequences.

These chromosomes play a crucial role in inheritance and the development and function of the human body. Chromosome pair 15 contains around 100 million base pairs of DNA and approximately 700 protein-coding genes, which are involved in various biological processes such as growth, development, metabolism, and regulation of gene expression.

Abnormalities in chromosome pair 15 can lead to genetic disorders, including Prader-Willi syndrome and Angelman syndrome, which are caused by the loss or alteration of specific regions on chromosome 15.

Nephrotic syndrome is a group of symptoms that indicate kidney damage, specifically damage to the glomeruli—the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. The main features of nephrotic syndrome are:

1. Proteinuria (excess protein in urine): Large amounts of a protein called albumin leak into the urine due to damaged glomeruli, which can't properly filter proteins. This leads to low levels of albumin in the blood, causing fluid buildup and swelling.
2. Hypoalbuminemia (low blood albumin levels): As albumin leaks into the urine, the concentration of albumin in the blood decreases, leading to hypoalbuminemia. This can cause edema (swelling), particularly in the legs, ankles, and feet.
3. Edema (fluid retention and swelling): With low levels of albumin in the blood, fluids move into the surrounding tissues, causing swelling or puffiness. The swelling is most noticeable around the eyes, face, hands, feet, and abdomen.
4. Hyperlipidemia (high lipid/cholesterol levels): The kidneys play a role in regulating lipid metabolism. Damage to the glomeruli can lead to increased lipid production and high cholesterol levels in the blood.

Nephrotic syndrome can result from various underlying kidney diseases, such as minimal change disease, membranous nephropathy, or focal segmental glomerulosclerosis. Treatment depends on the underlying cause and may include medications to control inflammation, manage high blood pressure, and reduce proteinuria. In some cases, dietary modifications and lifestyle changes are also recommended.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Replication Protein A (RPA) is a single-stranded DNA binding protein complex that plays a crucial role in the process of DNA replication, repair, and recombination. In eukaryotic cells, RPA is composed of three subunits: RPA70, RPA32, and RPA14. The primary function of RPA is to coat single-stranded DNA (ssDNA) generated during these processes, protecting it from degradation, preventing the formation of secondary structures, and promoting the recruitment of other proteins involved in DNA metabolism.

RPA binds ssDNA with high affinity and specificity, forming a stable complex that protects the DNA from nucleases, chemical modifications, and other damaging agents. The protein also participates in the regulation of various enzymatic activities, such as helicase loading and activation, end processing, and polymerase processivity.

During DNA replication, RPA is essential for the initiation and elongation phases. It facilitates the assembly of the pre-replicative complex (pre-RC) at origins of replication, aids in the recruitment and activation of helicases, and promotes the switch from MCM2-7 helicase to polymerase processivity during DNA synthesis.

In addition to its role in DNA replication, RPA is involved in various DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). It also plays a critical role in meiotic recombination during sexual reproduction.

In summary, Replication Protein A (RPA) is a eukaryotic single-stranded DNA binding protein complex that protects, stabilizes, and regulates ssDNA during DNA replication, repair, and recombination processes.

A Krukenberg tumor is a type of metastatic cancer that primarily originates from the stomach (70% of cases) but can also arise from other organs such as the colon, ovary, or breast. It is characterized by the presence of signet-ring cells, which are a specific type of malignant cell with abundant mucin displacing the nucleus to the periphery.

Krukenberg tumors typically involve both ovaries and often present with bilateral ovarian enlargement. They can cause various symptoms such as abdominal pain, bloating, or irregular menstruation. The prognosis for patients with Krukenberg tumors is generally poor due to the advanced stage of the disease at diagnosis.

Sjögren's syndrome is a chronic autoimmune disorder in which the body's immune system mistakenly attacks its own moisture-producing glands, particularly the tear and salivary glands. This can lead to symptoms such as dry eyes, dry mouth, and dryness in other areas of the body. In some cases, it may also affect other organs, leading to a variety of complications.

There are two types of Sjögren's syndrome: primary and secondary. Primary Sjögren's syndrome occurs when the condition develops on its own, while secondary Sjögren's syndrome occurs when it develops in conjunction with another autoimmune disease, such as rheumatoid arthritis or lupus.

The exact cause of Sjögren's syndrome is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Treatment typically focuses on relieving symptoms and may include artificial tears, saliva substitutes, medications to stimulate saliva production, and immunosuppressive drugs in more severe cases.

I'm happy to help, but it seems there might be some confusion in your question. "Lakes" is not a medical term that has a specific definition in the context of medicine or healthcare. It is a geographical term used to describe large bodies of water surrounded by land. If you have any questions related to health, medicine, or healthcare, I would be happy to try and help answer those for you!

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Chromosome aberrations refer to structural and numerical changes in the chromosomes that can occur spontaneously or as a result of exposure to mutagenic agents. These changes can affect the genetic material encoded in the chromosomes, leading to various consequences such as developmental abnormalities, cancer, or infertility.

Structural aberrations include deletions, duplications, inversions, translocations, and rings, which result from breaks and rearrangements of chromosome segments. Numerical aberrations involve changes in the number of chromosomes, such as aneuploidy (extra or missing chromosomes) or polyploidy (multiples of a complete set of chromosomes).

Chromosome aberrations can be detected and analyzed using various cytogenetic techniques, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). These methods allow for the identification and characterization of chromosomal changes at the molecular level, providing valuable information for genetic counseling, diagnosis, and research.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Ataxia telangiectasia is a rare, inherited genetic disorder that affects the nervous system, immune system, and overall development. The condition is characterized by progressive difficulty with coordination and balance (ataxia), as well as the development of small, dilated blood vessels (telangiectasias) on the skin and eyes.

The underlying cause of ataxia telangiectasia is a mutation in the ATM gene, which provides instructions for making a protein that plays a critical role in DNA repair and maintaining genetic stability. When this gene is mutated, cells are unable to properly repair damaged DNA, leading to an increased risk of cancer and other health problems.

Individuals with ataxia telangiectasia typically begin to show symptoms during early childhood, with progressive difficulties in coordination and balance, slurred speech, and recurrent respiratory infections due to weakened immune function. Over time, these symptoms can worsen, leading to significant disability and reduced life expectancy.

There is currently no cure for ataxia telangiectasia, and treatment is focused on managing the symptoms and complications of the condition. This may include physical therapy, speech therapy, and medications to help control infections and other health problems.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Consanguinity is a medical and genetic term that refers to the degree of genetic relationship between two individuals who share common ancestors. Consanguineous relationships exist when people are related by blood, through a common ancestor or siblings who have children together. The closer the relationship between the two individuals, the higher the degree of consanguinity.

The degree of consanguinity is typically expressed as a percentage or fraction, with higher values indicating a closer genetic relationship. For example, first-degree relatives, such as parents and children or full siblings, share approximately 50% of their genes and have a consanguinity coefficient of 0.25 (or 25%).

Consanguinity can increase the risk of certain genetic disorders and birth defects in offspring due to the increased likelihood of sharing harmful recessive genes. The risks depend on the degree of consanguinity, with closer relationships carrying higher risks. It is important for individuals who are planning to have children and have a history of consanguinity to consider genetic counseling and testing to assess their risk of passing on genetic disorders.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Chromosome disorders are a group of genetic conditions caused by abnormalities in the number or structure of chromosomes. Chromosomes are thread-like structures located in the nucleus of cells that contain most of the body's genetic material, which is composed of DNA and proteins. Normally, humans have 23 pairs of chromosomes, for a total of 46 chromosomes.

Chromosome disorders can result from changes in the number of chromosomes (aneuploidy) or structural abnormalities in one or more chromosomes. Some common examples of chromosome disorders include:

1. Down syndrome: a condition caused by an extra copy of chromosome 21, resulting in intellectual disability, developmental delays, and distinctive physical features.
2. Turner syndrome: a condition that affects only females and is caused by the absence of all or part of one X chromosome, resulting in short stature, lack of sexual development, and other symptoms.
3. Klinefelter syndrome: a condition that affects only males and is caused by an extra copy of the X chromosome, resulting in tall stature, infertility, and other symptoms.
4. Cri-du-chat syndrome: a condition caused by a deletion of part of the short arm of chromosome 5, resulting in intellectual disability, developmental delays, and a distinctive cat-like cry.
5. Fragile X syndrome: a condition caused by a mutation in the FMR1 gene on the X chromosome, resulting in intellectual disability, behavioral problems, and physical symptoms.

Chromosome disorders can be diagnosed through various genetic tests, such as karyotyping, chromosomal microarray analysis (CMA), or fluorescence in situ hybridization (FISH). Treatment for these conditions depends on the specific disorder and its associated symptoms and may include medical interventions, therapies, and educational support.

Turner Syndrome is a genetic disorder that affects females, caused by complete or partial absence of one X chromosome. The typical karyotype is 45,X0 instead of the normal 46,XX in women. This condition leads to distinctive physical features and medical issues in growth, development, and fertility. Characteristic features include short stature, webbed neck, low-set ears, and swelling of the hands and feet. Other potential symptoms can include heart defects, hearing and vision problems, skeletal abnormalities, kidney issues, and learning disabilities. Not all individuals with Turner Syndrome will have every symptom, but most will require medical interventions and monitoring throughout their lives to address various health concerns associated with the condition.

... has also appeared in the older literature as Bloom-Torre-Machacek syndrome. The most prominent feature of Bloom ... "Bloom Syndrome - Symptoms, Causes, Treatment , NORD". rarediseases.org. Retrieved 2023-09-25. "Data from the Bloom's Syndrome ... There is at least one person with Bloom syndrome who had five independent primary cancers. Persons with Bloom syndrome may ... Bloom Syndrome complex or the dissolvasome. Disruption of the proper assembly of the Bloom Syndrome complex leads to genome ...
... is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome. The Bloom ... "Bloom syndrome". Genetics Home Reference. NIH. Retrieved 19 March 2013. De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, ... Bloom syndrome protein has been shown to interact with: ATM, CHAF1A, CHEK1, FANCM, FEN1, H2AFX, MLH1 P53, RAD51L3, RAD51, RPA1 ... Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3' → 5' helicase activity. The normal ...
German J (March 1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". American ... known as paraneoplastic syndromes. Common paraneoplastic syndromes include hypercalcemia, which can cause altered mental state ... Some of these syndromes include: certain inherited mutations in the genes BRCA1 and BRCA2 with a more than 75% risk of breast ... However, such germline mutations (which cause highly penetrant cancer syndromes) are the cause of only about 1 percent of ...
Other DNA repair disorders include: Werner's syndrome: premature aging and retarded growth Bloom's syndrome: sunlight ... German J (March 1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". American ... Humans born with inherited defects in DNA repair mechanisms (for example, Li-Fraumeni syndrome) have a higher cancer risk. The ... Fearon ER (November 1997). "Human cancer syndromes: clues to the origin and nature of cancer". Science. 278 (5340): 1043-50. ...
German, J (Mar 1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". Am J Hum ... Five of them (xeroderma pigmentosum, Cockayne's syndrome, trichothiodystrophy, Down's syndrome, and triple-A syndrome) have a ... Rare fragile sites can lead to genetic disease such as fragile X mental retardation syndrome, myotonic dystrophy, Friedrich's ... Four (ataxia-telangiectasia, ataxia-telangiectasia-like disorder, Nijmegen breakage syndrome and Alzheimer's disease) are ...
Some segmental progeroid syndromes, such as Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndromes (RTS) and ... Werner syndrome (WS) Bloom syndrome (BS) Rothmund-Thomson syndrome (RTS) Cockayne syndrome (CS) Xeroderma pigmentosum (XP) ... Examples of PS include Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), Cockayne syndrome (CS), ... RECQL3/BLM and RECQL4 lead to Werner syndrome (WS), Bloom syndrome (BS), and Rothmund-Thomson syndrome (RTS), respectively. On ...
Bloom syndrome, Fanconi anemia, MUTYH-associated polyposis, Rothmund-Thomson syndrome, Werner syndrome and Xeroderma ... A hereditary cancer syndrome (familial/family cancer syndrome, inherited cancer syndrome, cancer predisposition syndrome, ... Lynch syndrome), Howel-Evans syndrome of esophageal cancer with tylosis, juvenile polyposis syndrome, Li-Fraumeni syndrome, ... Birt-Hogg-Dubé syndrome, Carney syndrome, familial chordoma, Cowden syndrome, dysplastic nevus syndrome with familial melanoma ...
German J (March 1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". American ... known as Li-Fraumeni syndrome. Other inherited tumor suppressor gene syndromes include Rb mutations, linked to retinoblastoma, ... However, such germline mutations (which cause highly penetrant cancer syndromes) are the cause of only about one percent of ... For instance, individuals that are heterozygous for p53 mutations are often victims of Li-Fraumeni syndrome, and that are ...
Ataxia-telangiectasia Bloom syndrome Cockayne syndrome Fanconi anemia Progeria (Hutchinson-Gilford progeria syndrome) Rothmund- ... German J (1969). "Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients". Am. J. Hum. ... Companion Reviews and Search Terms Bloom s syndrome - Companion Reviews and Search Terms Fanconi s anemia - Companion Reviews ... Thomson syndrome Trichothiodystrophy Werner syndrome Xeroderma pigmentosum Some examples of DNA repair defects causing ...
another example of mitotic recombination is the Bloom's syndrome, which happens due to the mutation in the blm gene. The ... p282 Sanz, Maureen M.; German, James; Cunniff, Christopher (11 March 1993). "Bloom's Syndrome". In Adam, Margaret P.; Ardinger ... The only non-lethal full monosomy occurring in humans is the one causing Turner's syndrome. Around 30% of Turner's syndrome ... An example of this is one of the milder forms of Klinefelter syndrome, called 46,XY/47,XXY mosaic wherein some of the patient's ...
WRN gene in Werner syndrome (WS), BLM gene in Bloom syndrome (BS), and RECQL4 in Rothmund-Thomson syndrome. These syndromes are ... Bloom syndrome Bernstein DA, Keck JL (June 2003). "Domain mapping of Escherichia coli RecQ defines the roles of conserved N- ... The budding yeast Saccharomyces cerevisiae encodes an ortholog of the Bloom syndrome (BLM) protein that is designated Sgs1 ( ... Cells from humans with Bloom syndrome are sensitive to DNA damaging agents such as UV and methyl methanesulfonate indicating ...
Bloom syndrome is associated with mutations in the BLM gene and Werner syndrome is associated with mutations in the WRN gene. ... Yankiwski V, Marciniak RA, Guarente L, Neff NF (2000). "Nuclear structure in normal and Bloom syndrome cells". Proc. Natl. Acad ... In addition to the Rothmund-Thomson syndrome, RECQL4 mutations are also associated with RAPADILINO and Baller-Gerold syndromes ... There are two types of Rothmund Thomson syndrome and it is Type 2 that occurs in patients carrying deleterious mutations in ...
Bloom developed chronic fatigue syndrome in 1988, which left him housebound. The 2007 book Chronic Fatigue Syndrome For Dummies ... Bloom would go on to found one of the largest public relations firms in the music industry. In 1974 Bloom was made the head of ... Bloom considers himself a non-militant yet "stone-cold atheist" and lives in Brooklyn, New York. In 1986, Bloom joined with Bob ... Bloom, Howard K. (2017). How I Accidentally Started The Sixties. Rare Bird Books. ISBN 978-1945572913. Bloom, Howard K. (2016 ...
Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W (April 2005). "BLAP75, an essential component of Bloom's syndrome ... OB1 binds to Topoisomerase III alpha, while OB2 binds to RMI2 within the Bloom Syndrome complex, and FANCM of the Fanconi ... Mutations in RMI1 are associated with Bloom-Syndrome like disorder. Two patients, both with microcephalic dwarfism came from ... August 2018). "Mutations in TOP3A Cause a Bloom Syndrome-like Disorder". American Journal of Human Genetics. 103 (2): 221-231. ...
Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W (Apr 2005). "BLAP75, an essential component of Bloom's syndrome ... Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (Mar 2000). "The Bloom's syndrome gene product ... Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (Mar 2000). "The Bloom's syndrome gene product ... Wu L, Hickson ID (Nov 2002). "The Bloom's syndrome helicase stimulates the activity of human topoisomerase IIIalpha". Nucleic ...
"Stimulation of flap endonuclease-1 by the Bloom's syndrome protein". The Journal of Biological Chemistry. 279 (11): 9847-9856. ... October 2001). "Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity". The ... hereditary cancer syndromes).[citation needed] Similarly, at least 12 DNA repair genes have frequently been found to be ...
In Bloom syndrome, those affected most often die of cancer. Aging (senescence) increases vulnerability to age-associated ... Bloom GS (April 2014). "Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis". JAMA Neurology. 71 (4): ... The metabolic syndrome is the co-occurrence of metabolic risk factors for type 2 diabetes and cardiovascular disease (abdominal ... Those with Werner's syndrome experience osteoporosis, cataracts, and, cardiovascular disease, but not neurodegeneration or ...
"A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome". Molecular and Cellular Biology. 23 (10): 3417-26. ...
Deans AJ, West SC (December 2009). "FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia". ... May 2003). "A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome". Molecular and Cellular Biology. 23 (10 ... and sequesters another DNA repair complex called the Bloom Syndrome complex away from FANCM. As with FANCM depletion, this ...
"A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome". Molecular and Cellular Biology. 23 (10): 3417-26. ...
"Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases". J. Biol. Chem. 277 (43): 41110- ... "Stimulation of flap endonuclease-1 by the Bloom's syndrome protein". J. Biol. Chem. 279 (11): 9847-56. doi:10.1074/jbc. ... and functional interaction between Werner and Bloom syndrome proteins". J. Biol. Chem. 277 (24): 22035-44. doi:10.1074/jbc. ... Werner syndrome is caused by mutations in the WRN gene. More than 20 mutations in the WRN gene are known to cause Werner ...
Deans AJ, West SC (December 2009). "FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia". Mol. ... It should not be confused with Fanconi syndrome, a kidney disorder also named after Fanconi. FA is characterized by bone marrow ... Although it is a very rare disorder, study of this and other bone marrow failure syndromes has improved scientific ... This is in contrast to Diamond-Blackfan anemia, which affects only erythrocytes, and Shwachman-Diamond syndrome, which ...
Ellis NA, Ciocci S, German J (February 2001). "Back mutation can produce phenotype reversion in Bloom syndrome somatic cells". ... Marfan syndrome is also an example of dominant negative mutation and haploinsufficiency. Lethal mutations result in the instant ... Atopic eczema and dermatitis syndrome are common diseases caused by a null mutation of the gene that activates filaggrin. ... Gong, Lizhi Ian; Suchard, Marc A; Bloom, Jesse D (14 May 2013). Pascual, Mercedes (ed.). "Stability-mediated epistasis ...
These include: Turner syndrome, Klinefelter's syndrome, Cystic fibrosis, and Bloom syndrome. Wikimedia Commons has media ...
Examples of such genetic disorders include xeroderma pigmentosum and Bloom syndrome. Balding: AKs are commonly found on the ...
2003). "A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome". Mol. Cell. Biol. 23 (10): 3417-26. doi: ...
The enzyme is thought to play a role in Bloom's syndrome. It has been proposed that Bloom's syndrome involves the induction of ... Karow JK, Constantinou A, Li JL, West SC, Hickson ID (June 2000). "The Bloom's syndrome gene product promotes branch migration ...
Bloom syndrome (homozygous null mutation in BLM DNA repair enzyme. similar mechanism and etiology to ataxia telangiectasia) ... Osler-Weber-Rendu syndrome) Ataxia-telangiectasia Sturge-Weber syndrome, a nevus formation in the skin supplied by the ... are one of the features of the acronymically named CREST syndrome, a form of systemic scleroderma. The syndrome recognises the ... Naevus flammeus (port-wine stain) Klippel-Trenaunay syndrome Maffucci syndrome (multiple enchondromas and hemangiomas) ...
SCE is elevated in pathologies including Bloom syndrome, having recombination rates ~10-100 times above normal, depending on ... "Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome". Proc Natl Acad Sci U S A. 86 (2): 670-4 ... "Increased rate of spontaneous mitotic recombination in T lymphocytes from a Bloom's syndrome patient using a flow-cytometric ...
One of these helicases, the Bloom syndrome protein, contains an arginine finger which assists in its hydrolysis of ATP. In ... the arginine finger of the Bloom syndrome protein is Arg982. The RecQ helicase, along with most proteins containing arginine ... "The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling". Nucleic Acids ...
BLOOM SYNDROME; BLM". omim.org. Retrieved 2020-04-11. "Bloom syndrome". Genetics Home Reference. Retrieved 2020-04-11. "OMIM ... Those with Bloom syndrome can also have learning disabilities and have an increased risk of developing chronic obstructive ... Bloom syndrome is a rare autosomal recessive disorder that is characterized by short stature, chromosomal instability, ... Progeroid syndromes are genetic diseases that are linked to premature aging. Progeroid syndromes are characterized by having ...
Bloom syndrome has also appeared in the older literature as Bloom-Torre-Machacek syndrome. The most prominent feature of Bloom ... "Bloom Syndrome - Symptoms, Causes, Treatment , NORD". rarediseases.org. Retrieved 2023-09-25. "Data from the Blooms Syndrome ... There is at least one person with Bloom syndrome who had five independent primary cancers. Persons with Bloom syndrome may ... Bloom Syndrome complex or the dissolvasome. Disruption of the proper assembly of the Bloom Syndrome complex leads to genome ...
Bloom syndrome is an inherited disorder characterized by short stature, a skin rash that develops after exposure to the sun, ... medlineplus.gov/genetics/condition/bloom-syndrome/ Bloom syndrome. ... Syndrome-causing mutations of the BLM gene in persons in the Blooms Syndrome Registry. Hum Mutat. 2007 Aug;28(8):743-53. doi: ... Men with Bloom syndrome usually do not produce sperm and as a result are unable to father children (infertile). Women with the ...
It was first described in 1954 by David Bloom in a series of patients with telangiectatic erythema on the face and dwarfism. ... Bloom syndrome (congenital telangiectatic erythema) is a rare autosomal recessive disorder. ... Men with Bloom syndrome are sterile; women have reduced fertility and a shortened reproductive span. Bloom syndrome patients ... encoded search term (Bloom Syndrome (Congenital Telangiectatic Erythema)) and Bloom Syndrome (Congenital Telangiectatic ...
It was first described in 1954 by David Bloom in a series of patients with telangiectatic erythema on the face and dwarfism. ... Bloom syndrome (congenital telangiectatic erythema) is a rare autosomal recessive disorder. ... Men with Bloom syndrome are sterile; women have reduced fertility and a shortened reproductive span. Bloom syndrome patients ... encoded search term (Bloom Syndrome (Congenital Telangiectatic Erythema)) and Bloom Syndrome (Congenital Telangiectatic ...
Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging ... "Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging ... Mutations in BLM cause Bloom syndrome, a rare disorder associated with cancer predisposition and premature aging. Humans and ...
Bloom syndrome (BLM) is characterized by short stature, sun-sensitive facial erythema, and immunodeficiency. Individuals with ...
Host cell reactivation of sunlamp-exposed adenovirus in fibroblasts from patients with blooms syndrome, ataxia telangiectasia ... three Blooms syndrome, and two Huntingtons disease fibroblasts strains. ...
Immunodeficiencies , Introduction , Bloom Syndrome. Bloom Syndrome Bloom syndrome by the Atlas of Genetics and Cytogenetics in ...
Immunodeficiency in Blooms Syndrome. door admin , jun 3, 2019 , Nieuws. Abstract Blooms syndrome (BS) is an autosomal ... Bloom Syndrome in Short Children Born Small for Gestational Age: A Challenging Diagnosis Background: GH treatment has become a ... Het Bloom-syndroom. door admin , jun 6, 2019 , Nieuws. Tijdig de diagnose stellen voordat groeihormoontherapie wordt overwogen ... Abstract DNA repair syndromes are heterogeneous disorders caused by pathogenic variants in genes encoding proteins key in DNA ...
Bloom Syndrome Definition. It is a rare form of inherited disorder that is also known as Bloom-Torre-Machacek syndrome. This ... Bloom Syndrome Causes. The mutations in the BLM lead to this syndrome. The BLM gene offers directions for producing a family of ... Bloom Syndrome Treatment. There is no treatment available to make the genome in the cells stable and block the abnormal ... Bloom Syndrome Prognosis. Patients with neoplasms arising due to this condition have the maximum risk of early death in the ...
It was first described in 1954 by David Bloom in a series of patients with telangiectatic erythema on the face and dwarfism. ... Bloom syndrome (congenital telangiectatic erythema) is a rare autosomal recessive disorder. ... encoded search term (Bloom Syndrome (Congenital Telangiectatic Erythema)) and Bloom Syndrome (Congenital Telangiectatic ... Amor-Guéret M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 2006 May 8. 236(1):1-12. [ ...
It was first described in 1954 by David Bloom in a series of patients with telangiectatic erythema on the face and dwarfism. ... Bloom syndrome (congenital telangiectatic erythema) is a rare autosomal recessive disorder. ... encoded search term (Bloom Syndrome (Congenital Telangiectatic Erythema)) and Bloom Syndrome (Congenital Telangiectatic ... Bloom Syndrome (Congenital Telangiectatic Erythema). Updated: Dec 14, 2015 * Author: Amira M Elbendary, MBBCh, MSc; Chief ...
Bloom syndrome. Disease definition Bloom syndrome is a rare disorder associated with pre- and postnatal growth deficiency, a ... The differential diagnosis of Bloom syndrome includes Fanconi anemia, Silver-Russell syndrome, Rothmund-Thomson syndrome, ... Bloom syndrome is inherited as an autosomal recessive trait. The BLM gene codes for a RecQ helicase that forms a complex with ... Bloom syndrome (BSyn) overall prevalence is unknown, but in the Ashkenazi Jewish population it is estimated at approximately 1 ...
Genetic Disorders - Ambras, Under Tan, Ehler-Danlos, Proteus & Bloom Syndromes. Contributor: Gurpreet ...
... ... can adderall cause serotonin syndrome and naturally the Xianjia can adderall cause serotonin syndrome Taoist school viagra ... The Purple Gold Four Swords how do some guys last longer in bed that I came can adderall cause serotonin syndrome to build for ... and the person floated into the air With a wave of his big sleeve, Juexian Sword came can adderall cause serotonin syndrome out ...
by the United States (U.S.) Food and Drug Administration (FDA) to test for a medical condition known as Bloom syndrome. In 2017 ... FDA permits marketing of first direct-to-consumer genetic carrier test for Bloom syndrome. (2015, February 19). https://www.fda ...
Bloom syndrome. BLM/RECQL3. Autosomal recessive Increased predisposition to a wide variety of malignancies [135] . Acute ... Ellis NA, German J. Molecular genetics of Blooms syndrome. Human molecular genetics. 1996 Sep 1;5(Supplement 1):1457-63. ... Syndrome. Gene(s). Inheritance Pattern. Clinical Manifestation. Surveillance Recommendations. Tylosis (non-Epidermolytic ... Metabolic syndrome and risk of esophageal adenocarcinoma in elderly patients in the United States: An analysis of SEER-Medicare ...
Bloom syndrome. *constitutional mismatch repair deficiency. *Down syndrome. *Fanconi anemia. *Li-Fraumeni syndrome ... Children with Down syndrome have a higher risk of developing leukemia. Learn more about the symptoms, treatments, and risk of ...
Bloom Syndrome and our test Bloom syndrome is a rare genetic disorder characterized by impaired growth and increased risk of ... Sjögren-Larsson Syndrome Tay-Sachs Disease Tyrosinemia Type I Usher Syndrome Type 1F Usher Syndrome Type 3A Zellweger Spectrum ... Bloom Syndrome Canavan Disease Congenital Disorder of Glycosylation Type 1a (PMM2-CDG) Cystic Fibrosis D-Bifunctional Protein ... Symptoms of Bloom syndrome may vary between people with the condition even if they have the same genetic variants. ...
... syndromes are a group of hereditary disorders caused by alterations in a gene known as WT1. ... Blooms syndrome. *Simpson-Golabi-Behmel syndrome. *Perlman syndrome. *Trisomy 18. Patients with these conditions have a ... A look at each syndrome. WAGR syndrome. Individuals with the WAGR syndrome are missing one working copy of the WT1 gene. They ... Frasier syndrome (FS). People with Frasier syndrome may develop the following clinical features:. *Wilms tumor is not usually ...
carrier of likely Bloom syndrome allele (T;T) 6.6 Bloom syndrome; homozygote for mutation ...
... in patients with a rare disorder called Bloom Syndrome who age prematurely and many of whom develop cancer at a young age. ...
Bloom syndrome not specified Reversed 0. HGVS NC_000015.9:g.91341487C,G; NC_000015.9:g.91341487C,T ...
Bloom Syndrome. *Wilson Disease. How much does this test cost, and how can I get more information?. The cost for any Beacon ...
Bloom Syndrome:. If yes, result(s):. N/A. Familial Dysautonomia:. If yes, result(s):. N/A. ...
Previous articleFDA Authorizes Marketing for 23andMe Bloom Syndrome Carrier Status Test ...
Bloom syndrome. Canavan disease. Gaucher disease. Niemann-Pick disease. Tay-Sachs disease. ...
Bloom syndrome. BLM. CNV. Fanconi anemia, group J. BRIP1. CNV. Bartter syndrome, type 4a. BSND. CNV. ... Gitelman syndrome. SLC12A3. CNV. Agenesis of the corpus callosum with peripheral neuropathy (Andermann syndrome). SLC12A6. CNV ... Congenital myasthenic syndrome, RAPSN-related. RAPSN. CNV. Pontocerebellar hypoplasia, type 1 and 6, RARS2-related. RARS2. CNV ... Mitochondrial DNA depletion syndrome 5 (encephalomyopathic with or without methylmalonic aciduria). SUCLA2. CNV. ...

No FAQ available that match "bloom syndrome"

No images available that match "bloom syndrome"