Diseases of BONES.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Metabolic bone diseases are a group of disorders that affect the bones' structure and strength, caused by disturbances in the normal metabolic processes involved in bone formation, resorption, or mineralization, including conditions like osteoporosis, osteomalacia, Paget's disease, and renal osteodystrophy.
The continuous turnover of BONE MATRIX and mineral that involves first an increase in BONE RESORPTION (osteoclastic activity) and later, reactive BONE FORMATION (osteoblastic activity). The process of bone remodeling takes place in the adult skeleton at discrete foci. The process ensures the mechanical integrity of the skeleton throughout life and plays an important role in calcium HOMEOSTASIS. An imbalance in the regulation of bone remodeling's two contrasting events, bone resorption and bone formation, results in many of the metabolic bone diseases, such as OSTEOPOROSIS.
Bone loss due to osteoclastic activity.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
Decalcification of bone or abnormal bone development due to chronic KIDNEY DISEASES, in which 1,25-DIHYDROXYVITAMIN D3 synthesis by the kidneys is impaired, leading to reduced negative feedback on PARATHYROID HORMONE. The resulting SECONDARY HYPERPARATHYROIDISM eventually leads to bone disorders.
Tumors or cancer located in bone tissue or specific BONES.
Disorder caused by an interruption of the mineralization of organic bone matrix leading to bone softening, bone pain, and weakness. It is the adult form of rickets resulting from disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis.
Organic compounds which contain P-C-P bonds, where P stands for phosphonates or phosphonic acids. These compounds affect calcium metabolism. They inhibit ectopic calcification and slow down bone resorption and bone turnover. Technetium complexes of diphosphonates have been used successfully as bone scanning agents.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Dissolution of bone that particularly involves the removal or loss of calcium.
A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption.
The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.
A fibrous degeneration, cyst formation, and the presence of fibrous nodules in bone, usually due to HYPERPARATHYROIDISM.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Breaks in bones.
Extracellular substance of bone tissue consisting of COLLAGEN fibers, ground substance, and inorganic crystalline minerals and salts.
A disease marked by repeated episodes of increased bone resorption followed by excessive attempts at repair, resulting in weakened, deformed bones of increased mass. The resultant architecture of the bone assumes a mosaic pattern in which the fibers take on a haphazard pattern instead of the normal parallel symmetry.
Syndromes of bone destruction where the cause is not obvious such as neoplasia, infection, or trauma. The destruction follows various patterns: massive (Gorham disease), multicentric (HAJDU-CHENEY SYNDROME), or carpal/tarsal.
The process of bone formation. Histogenesis of bone including ossification.
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B and OSTEOPROTEGERIN. It plays an important role in regulating OSTEOCLAST differentiation and activation.
Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone.
The largest of three bones that make up each half of the pelvic girdle.
Agents that inhibit BONE RESORPTION and/or favor BONE MINERALIZATION and BONE REGENERATION. They are used to heal BONE FRACTURES and to treat METABOLIC BONE DISEASES such as OSTEOPOROSIS.
A condition of abnormally elevated output of PARATHYROID HORMONE (or PTH) triggering responses that increase blood CALCIUM. It is characterized by HYPERCALCEMIA and BONE RESORPTION, eventually leading to bone diseases. PRIMARY HYPERPARATHYROIDISM is caused by parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. SECONDARY HYPERPARATHYROIDISM is increased PTH secretion in response to HYPOCALCEMIA, usually caused by chronic KIDNEY DISEASES.
A secreted member of the TNF receptor superfamily that negatively regulates osteoclastogenesis. It is a soluble decoy receptor of RANK LIGAND that inhibits both CELL DIFFERENTIATION and function of OSTEOCLASTS by inhibiting the interaction between RANK LIGAND and RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B.
A VITAMIN D that can be regarded as a reduction product of vitamin D2.
Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
Fractures occurring as a result of disease of a bone or from some undiscoverable cause, and not due to trauma. (Dorland, 27th ed)
The grafting of bone from a donor site to a recipient site.
Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX.
Mature osteoblasts that have become embedded in the BONE MATRIX. They occupy a small cavity, called lacuna, in the matrix and are connected to adjacent osteocytes via protoplasmic projections called canaliculi.
Diseases of the bones related to hyperfunction or hypofunction of the endocrine glands.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
Disorders caused by interruption of BONE MINERALIZATION manifesting as OSTEOMALACIA in adults and characteristic deformities in infancy and childhood due to disturbances in normal BONE FORMATION. The mineralization process may be interrupted by disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis, resulting from dietary deficiencies, or acquired, or inherited metabolic, or hormonal disturbances.
Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.
Synthetic or natural materials for the replacement of bones or bone tissue. They include hard tissue replacement polymers, natural coral, hydroxyapatite, beta-tricalcium phosphate, and various other biomaterials. The bone substitutes as inert materials can be incorporated into surrounding tissue or gradually replaced by original tissue.
Abnormally high level of calcium in the blood.
Stable strontium atoms that have the same atomic number as the element strontium, but differ in the atomic weight. Sr-84, 86, 87, and 88 are the stable strontium isotopes.
The longest and largest bone of the skeleton, it is situated between the hip and the knee.
Death of a bone or part of a bone, either atraumatic or posttraumatic.
A gamma-emitting radionuclide imaging agent used primarily in skeletal scintigraphy. Because of its absorption by a variety of tumors, it is useful for the detection of neoplasms.
A diphosphonate which affects calcium metabolism. It inhibits bone resorption and soft tissue calcification.
A disease of bone marked by thinning of the cortex by fibrous tissue containing bony spicules, producing pain, disability, and gradually increasing deformity. Only one bone may be involved (FIBROUS DYSPLASIA, MONOSTOTIC) or several (FIBROUS DYSPLASIA, POLYOSTOTIC).
Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY).
Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts.
A tumor necrosis factor receptor family member that is specific for RANK LIGAND and plays a role in bone homeostasis by regulating osteoclastogenesis. It is also expressed on DENDRITIC CELLS where it plays a role in regulating dendritic cell survival. Signaling by the activated receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
The second longest bone of the skeleton. It is located on the medial side of the lower leg, articulating with the FIBULA laterally, the TALUS distally, and the FEMUR proximally.
A noninvasive method for assessing BODY COMPOSITION. It is based on the differential absorption of X-RAYS (or GAMMA RAYS) by different tissues such as bone, fat and other soft tissues. The source of (X-ray or gamma-ray) photon beam is generated either from radioisotopes such as GADOLINIUM 153, IODINE 125, or Americanium 241 which emit GAMMA RAYS in the appropriate range; or from an X-ray tube which produces X-RAYS in the desired range. It is primarily used for quantitating BONE MINERAL CONTENT, especially for the diagnosis of OSTEOPOROSIS, and also in measuring BONE MINERALIZATION.
A diphosphonate which affects calcium metabolism. It inhibits ectopic calcification and slows down bone resorption and bone turnover.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
Disorders in the processing of calcium in the body: its absorption, transport, storage, and utilization.
A potent osteoinductive protein that plays a critical role in the differentiation of osteoprogenitor cells into OSTEOBLASTS.
Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Bones that constitute each half of the pelvic girdle in VERTEBRATES, formed by fusion of the ILIUM; ISCHIUM; and PUBIC BONE.
A powder that dissolves in water, which is administered orally, and is used as a diuretic, expectorant, systemic alkalizer, and electrolyte replenisher.
An abnormal hardening or increased density of bone tissue.
Either of a pair of compound bones forming the lateral (left and right) surfaces and base of the skull which contains the organs of hearing. It is a large bone formed by the fusion of parts: the squamous (the flattened anterior-superior part), the tympanic (the curved anterior-inferior part), the mastoid (the irregular posterior portion), and the petrous (the part at the base of the skull).
Hydroxy analogs of vitamin D 3; (CHOLECALCIFEROL); including CALCIFEDIOL; CALCITRIOL; and 24,25-DIHYDROXYVITAMIN D 3.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
'Jaw diseases' is a broad term referring to various medical conditions affecting the temporomandibular joint, jawbones, or the surrounding muscles, including but not limited to dental disorders, jaw fractures, tumors, infections, and developmental abnormalities.
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
X-RAY COMPUTERIZED TOMOGRAPHY with resolution in the micrometer range.
The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN.
One of a pair of irregularly shaped quadrilateral bones situated between the FRONTAL BONE and OCCIPITAL BONE, which together form the sides of the CRANIUM.
Bone diseases caused by pathogenic microorganisms.
COLLAGEN DISEASES characterized by brittle, osteoporotic, and easily fractured bones. It may also present with blue sclerae, loose joints, and imperfect dentin formation. Most types are autosomal dominant and are associated with mutations in COLLAGEN TYPE I.
Inorganic compounds that contain TECHNETIUM as an integral part of the molecule. Technetium 99m (m=metastable) is an isotope of technetium that has a half-life of about 6 hours. Technetium 99, which has a half-life of 210,000 years, is a decay product of technetium 99m.
A nonhormonal medication for the treatment of postmenopausal osteoporosis in women. This drug builds healthy bone, restoring some of the bone loss as a result of osteoporosis.
Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.
Resorption or wasting of the tooth-supporting bone (ALVEOLAR PROCESS) in the MAXILLA or MANDIBLE.
Adhesives used to fix prosthetic devices to bones and to cement bone to bone in difficult fractures. Synthetic resins are commonly used as cements. A mixture of monocalcium phosphate, monohydrate, alpha-tricalcium phosphate, and calcium carbonate with a sodium phosphate solution is also a useful bone paste.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Derivatives of ERGOSTEROL formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. They differ from CHOLECALCIFEROL in having a double bond between C22 and C23 and a methyl group at C24.
Metabolic disorder associated with fractures of the femoral neck, vertebrae, and distal forearm. It occurs commonly in women within 15-20 years after menopause, and is caused by factors associated with menopause including estrogen deficiency.
A coronary vasodilator agent.
A circular structural unit of bone tissue. It consists of a central hole, the Haversian canal through which blood vessels run, surrounded by concentric rings, called lamellae.
Benign unilocular lytic areas in the proximal end of a long bone with well defined and narrow endosteal margins. The cysts contain fluid and the cyst walls may contain some giant cells. Bone cysts usually occur in males between the ages 3-15 years.
A condition of an abnormally low level of PHOSPHATES in the blood.
Inorganic salts of phosphoric acid.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
AMINO ACIDS composed of GLYCINE substituted at the nitrogen rather than the usual carbon position, resulting in the loss of HYDROGEN BONDING donors. Polymers of these compounds are called PEPTOIDS.
A non-hereditary KIDNEY disorder characterized by the abnormally dilated (ECTASIA) medullary and inner papillary portions of the collecting ducts. These collecting ducts usually contain CYSTS or DIVERTICULA filled with jelly-like material or small calculi (KIDNEY STONES) leading to infections or obstruction. It should be distinguished from congenital or hereditary POLYCYSTIC KIDNEY DISEASES.
Formation of stones in the KIDNEY.
Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)
Bone-marrow-derived, non-hematopoietic cells that support HEMATOPOETIC STEM CELLS. They have also been isolated from other organs and tissues such as UMBILICAL CORD BLOOD, umbilical vein subendothelium, and WHARTON JELLY. These cells are considered to be a source of multipotent stem cells because they include subpopulations of mesenchymal stem cells.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
Conditions characterized by the presence of M protein (Monoclonal protein) in serum or urine without clinical manifestations of plasma cell dyscrasia.
The spinal or vertebral column.
Femoral neoplasms refer to abnormal growths or tumors, benign or malignant, located in the femur bone or its surrounding soft tissues within the thigh region.
Excision of one or more of the parathyroid glands.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The bone that forms the frontal aspect of the skull. Its flat part forms the forehead, articulating inferiorly with the NASAL BONE and the CHEEK BONE on each side of the face.
A transcription factor that dimerizes with CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain and is involved in genetic regulation of skeletal development and CELL DIFFERENTIATION.
'Osteomyelitis' is a medical condition defined as an inflammation or infection of the bone or marrow, often caused by bacteria or fungi, which can lead to symptoms such as pain, swelling, warmth, and redness in the affected area, and may require antibiotics or surgical intervention for treatment.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2.
A bone morphogenetic protein that is widely expressed during EMBRYONIC DEVELOPMENT. It is both a potent osteogenic factor and a specific regulator of nephrogenesis.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Bone marrow diseases, also known as hematologic or blood disorders, refer to conditions that affect the production and function of blood cells within the bone marrow, such as leukemia, lymphoma, myeloma, and aplastic anemia, potentially leading to complications like anemia, neutropenia, thrombocytopenia, and increased susceptibility to infections or bleeding.
Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.
The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph.
VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE.
A condition of abnormally high level of PHOSPHATES in the blood, usually significantly above the normal range of 0.84-1.58 mmol per liter of serum.
Disorders in the processing of phosphorus in the body: its absorption, transport, storage, and utilization.
Elements of limited time intervals, contributing to particular results or situations.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
A membrane-bound metalloendopeptidase that may play a role in the degradation or activation of a variety of PEPTIDE HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. Genetic mutations that result in loss of function of this protein are a cause of HYPOPHOSPHATEMIC RICKETS, X-LINKED DOMINANT.
Local surroundings with which cells interact by processing various chemical and physical signals, and by contributing their own effects to this environment.
A cysteine protease that is highly expressed in OSTEOCLASTS and plays an essential role in BONE RESORPTION as a potent EXTRACELLULAR MATRIX-degrading enzyme.
Pathologic deposition of calcium salts in tissues.
Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.
A dye which inhibits protein biosynthesis at the initial stages. The ammonium salt (aluminon) is a reagent for the colorimetric estimation of aluminum in water, foods, and tissues.
A condition of abnormally elevated output of PARATHYROID HORMONE due to parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. It is characterized by the combination of HYPERCALCEMIA, phosphaturia, elevated renal 1,25-DIHYDROXYVITAMIN D3 synthesis, and increased BONE RESORPTION.
Maxillary diseases refer to various medical conditions primarily affecting the maxilla (upper jaw) bone, including inflammatory processes, tumors, cysts, or traumatic injuries, which may cause symptoms such as pain, swelling, or functional impairment.
The bones of the free part of the lower extremity in humans and of any of the four extremities in animals. It includes the FEMUR; PATELLA; TIBIA; and FIBULA.
A group of genetic disorders of the KIDNEY TUBULES characterized by the accumulation of metabolically produced acids with elevated plasma chloride, hyperchloremic metabolic ACIDOSIS. Defective renal acidification of URINE (proximal tubules) or low renal acid excretion (distal tubules) can lead to complications such as HYPOKALEMIA, hypercalcinuria with NEPHROLITHIASIS and NEPHROCALCINOSIS, and RICKETS.
Neoplasms located in the bone marrow. They are differentiated from neoplasms composed of bone marrow cells, such as MULTIPLE MYELOMA. Most bone marrow neoplasms are metastatic.
Removal of bone marrow and evaluation of its histologic picture.
Fractures of the femur.
The five cylindrical bones of the METACARPUS, articulating with the CARPAL BONES proximally and the PHALANGES OF FINGERS distally.
Inorganic or organic compounds that contain the basic structure RB(OH)2.
A nutritional condition produced by a deficiency of VITAMIN D in the diet, insufficient production of vitamin D in the skin, inadequate absorption of vitamin D from the diet, or abnormal conversion of vitamin D to its bioactive metabolites. It is manifested clinically as RICKETS in children and OSTEOMALACIA in adults. (From Cecil Textbook of Medicine, 19th ed, p1406)
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A genetic metabolic disorder resulting from serum and bone alkaline phosphatase deficiency leading to hypercalcemia, ethanolamine phosphatemia, and ethanolamine phosphaturia. Clinical manifestations include severe skeletal defects resembling vitamin D-resistant rickets, failure of the calvarium to calcify, dyspnea, cyanosis, vomiting, constipation, renal calcinosis, failure to thrive, disorders of movement, beading of the costochondral junction, and rachitic bone changes. (From Dorland, 27th ed)
A bone morphogenetic protein that is a potent inducer of bone formation. It also functions as a regulator of MESODERM formation during EMBRYONIC DEVELOPMENT.
Tumors or cancer of the human BREAST.
The five long bones of the METATARSUS, articulating with the TARSAL BONES proximally and the PHALANGES OF TOES distally.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
The seven bones which form the tarsus - namely, CALCANEUS; TALUS; cuboid, navicular, and the internal, middle, and external cuneiforms.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
CCR receptors with specificity for a broad variety of CC CHEMOKINES. They are expressed at high levels in MONOCYTES; tissue MACROPHAGES; NEUTROPHILS; and EOSINOPHILS.
A ubiquitously expressed, secreted protein with bone resorption and renal calcium reabsorption activities that are similar to PARATHYROID HORMONE. It does not circulate in appreciable amounts in normal subjects, but rather exerts its biological actions locally. Overexpression of parathyroid hormone-related protein by tumor cells results in humoral calcemia of malignancy.
Cholecalciferols substituted with two hydroxy groups in any position.
The first artificially produced element and a radioactive fission product of URANIUM. Technetium has the atomic symbol Tc, atomic number 43, and atomic weight 98.91. All technetium isotopes are radioactive. Technetium 99m (m=metastable) which is the decay product of Molybdenum 99, has a half-life of about 6 hours and is used diagnostically as a radioactive imaging agent. Technetium 99 which is a decay product of technetium 99m, has a half-life of 210,000 years.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS.
Removal of mineral constituents or salts from bone or bone tissue. Demineralization is used as a method of studying bone strength and bone chemistry.
The TARSAL BONES; METATARSAL BONES; and PHALANGES OF TOES. The tarsal bones consists of seven bones: CALCANEUS; TALUS; cuboid; navicular; internal; middle; and external cuneiform bones. The five metatarsal bones are numbered one through five, running medial to lateral. There are 14 phalanges in each foot, the great toe has two while the other toes have three each.
Tumors or cancer of the PROSTATE.
'Spinal diseases' is a broad term referring to various medical conditions that affect the structural integrity, function, or health of the spinal column, including degenerative disorders, infections, inflammatory processes, traumatic injuries, neoplasms, and congenital abnormalities.
LDL-receptor related protein that combines with FRIZZLED RECEPTORS at the cell surface to form receptors that bind WNT PROTEINS. The protein plays an important role in the WNT SIGNALING PATHWAY in OSTEOBLASTS and during EMBRYONIC DEVELOPMENT.
Pyrazines are heterocyclic organic compounds containing a six-membered ring with two nitrogen atoms at opposite positions, often responsible for the characteristic flavors and aromas found in various foods, beverages, and some biological systems, but they do not have a direct medical definition as they are not a drug, treatment, or a significant component of human physiology or pathology.
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice.
The outer shorter of the two bones of the FOREARM, lying parallel to the ULNA and partially revolving around it.
A surgical specialty which utilizes medical, surgical, and physical methods to treat and correct deformities, diseases, and injuries to the skeletal system, its articulations, and associated structures.
A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains.
Fibrous blood-filled cyst in the bone. Although benign it can be destructive causing deformity and fractures.
Conditions in which the KIDNEYS perform below the normal level for more than three months. Chronic kidney insufficiency is classified by five stages according to the decline in GLOMERULAR FILTRATION RATE and the degree of kidney damage (as measured by the level of PROTEINURIA). The most severe form is the end-stage renal disease (CHRONIC KIDNEY FAILURE). (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002)
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24.
The giving of drugs, chemicals, or other substances by mouth.
The surgical removal of one or both ovaries.
A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation.
A bone morphogenetic protein that is a potent inducer of BONE formation. It plays additional roles in regulating CELL DIFFERENTIATION of non-osteoblastic cell types and epithelial-mesenchymal interactions.
The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties.
Progenitor cells from which all blood cells derive.
Presence of calcium salts, especially calcium pyrophosphate, in the cartilaginous structures of one or more joints. When accompanied by attacks of goutlike symptoms, it is called pseudogout. (Dorland, 27th ed)
The transfer of a neoplasm from one organ or part of the body to another remote from the primary site.
Implantable fracture fixation devices attached to bone fragments with screws to bridge the fracture gap and shield the fracture site from stress as bone heals. (UMDNS, 1999)
The growth action of bone tissue as it assimilates surgically implanted devices or prostheses to be used as either replacement parts (e.g., hip) or as anchors (e.g., endosseous dental implants).
Thin outer membrane that surrounds a bone. It contains CONNECTIVE TISSUE, CAPILLARIES, nerves, and a number of cell types.
A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR).

Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. (1/1036)

PURPOSE: To assess whether pamidronate can reduce the frequency of skeletal morbidity in women with lytic bone metastases from breast cancer treated with hormone therapy. PATIENTS AND METHODS: Three hundred seventy-two women with breast cancer who had at least one lytic bone lesion and who were receiving hormonal therapy were randomized to receive 90 mg of pamidronate or placebo as a 2-hour intravenous infusion given in double-blind fashion every 4 weeks for 24 cycles. Patients were evaluated for skeletal complications: pathologic fractures, spinal cord compression, irradiation of or surgery on bone, or hypercalcemia. The skeletal morbidity rate (the ratio of the number of skeletal complications to the time on trial) was the primary efficacy variable. Bone pain, use of analgesics, quality of life, performance status, bone tumor response, and biochemical parameters were also evaluated. RESULTS: One hundred eighty-two patients who received pamidronate and 189 who received placebo were assessable. The skeletal morbidity rate was significantly reduced at 12, 18, and 24 cycles in patients treated with 90 mg of pamidronate (P = .028, .023, and .008, respectively). At 24 cycles, the proportion of patients having had any skeletal complication was 56% in the pamidronate group and 67% in the placebo group (P = .027). The time to the first skeletal complication was longer for patients receiving pamidronate than for those given placebo (P = .049). There was no statistical difference in survival or in objective bone response rate. Pamidronate was well tolerated. CONCLUSION: Treatment with 90 mg of pamidronate as a 2-hour intravenous infusion every 4 weeks in addition to hormonal therapy significantly reduces skeletal morbidity from osteolytic metastases.  (+info)

The aetiology of congenital angulation of tubular bones with constriction of the medullary canal, and its relationship to congenital pseudarthrosis. (2/1036)

It is suggested that there is a group of cases of congenital angulation of tubular bones in which the lesion is a defect of ossification of the primary cartilaginous anlage and in which neurofibromatosis is not implicated. It appears that in this group the prognosis with regard to the resolution of deformity and the prevention of pseudarthrosis with conservative treatment or relatively simple surgical procedures is better than that in the neurofibromatous type.  (+info)

Massive pelvic and femoral pseudotumoral osteolysis secondary to an uncemented total hip arthroplasty. (3/1036)

A 51 year-old man developed an extensive osteolytic response to wear debris in an uncemented porous-coated total hip arthroplasty, with metal/polyethylene interface, which had been implanted eighteen years previously. This reaction, which involved the upper femur and the ilium, produced a mass which compressed the pelvic viscera.  (+info)

Circulating biochemical markers of bone remodeling in uremic patients. (4/1036)

Chronic renal failure is often associated with bone disorders, including secondary hyperparathyroidism, aluminum-related low-turnover bone disease, osteomalacia, adynamic osteopathy, osteoporosis, and skeletal beta2-microglobulin amyloid deposits. In spite of the enormous progress made during the last few years in the search of noninvasive methods to assess bone metabolism, the distinction between high- and low-turnover bone diseases in these patients still frequently requires invasive and/or costly procedures such as bone biopsy after double tetracycline labeling, scintigraphic-scan studies, computed tomography, and densitometry. This review is focused on the diagnostic value of several new serum markers of bone metabolism, including bone-specific alkaline phosphatase (bAP), procollagen type I carboxy-terminal extension peptide (PICP), procollagen type I cross-linked carboxy-terminal telopeptide (ICTP), pyridinoline (PYD), osteocalcin, and tartrate-resistant acid phosphatase (TRAP) in patients with chronic renal failure. Most of the observations made by several groups converge to the conclusion that serum bAP is the most sensitive and specific marker to evaluate the degree of bone remodeling in uremic patients. Nonetheless, PYD and osteocalcin, in spite of their retention and accumulation in the serum of renal insufficient patients, are also excellent markers of bone turnover. The future generalized use of these markers, individually or in combination with other methods, will undoubtedly improve the diagnosis and the treatment of the complex renal osteodystrophy.  (+info)

Cladribine activity in adult langerhans-cell histiocytosis. (5/1036)

Langerhans-cell histiocytosis (LCH) results from the accumulation of tissue histiocytes derived from the same progenitor cells as monocytes. Because cladribine is potently toxic to monocytes, we conducted a phase II trial of cladribine. Cladribine was administered to 13 LCH patients at 0.14 mg/kg per day by 2-hour intravenous infusion for 5 consecutive days, every 4 weeks for a maximum of six courses. Median age was 42 years (range, 19 to 72) and median pretreatment disease duration was 99 months (range, 6 to 252). One patient was untreated, one had received prior prednisone only, one prior radiation only, six prior radiation and chemotherapy, and four prior surgery, radiation, and chemotherapy. Seven patients had cutaneous involvement, six multifocal osseous, six pulmonary, two each with soft tissue and nodal involvement, and four had diabetes insipidus. Of 13 patients, 12 were evaluable for response and all for toxicity. After a median of three courses (range, 1 to 6), seven (58%) patients achieved complete responses (two pathologic and five clinical) and two (17%) patients achieved partial responses; overall response rate, 75%. Median response follow-up duration was 33 months (range, 1 to 65). Seven patients experienced grade 3 to 4 neutropenia. Only one patient had a documented infection, dermatomal herpes zoster. At a median follow-up of 42 months (range, 5 to 76), 12 patients remain alive and one patient has died. Thus, cladribine has major activity in adult LCH and warrants further investigation in both pediatric and adult LCH as a single agent and in combination with other drugs.  (+info)

Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. (6/1036)

Somatic gene therapies require targeted transfer of the therapeutic gene(s) into stem cells that proliferate and then differentiate and express the gene in a tissue-restricted manner. We have developed an approach for gene therapy using marrow cells that takes advantage of the osteoblast specificity of the osteocalcin promoter to confine expression of chimeric genes to bone. Adherent marrow cells, carrying a reporter gene [chloramphenicol acetyltransferase (CAT)] under the control of a 1.7-kilobase rat osteocalcin gene promoter, were expanded ex vivo. After transplantation by intravenous infusion, engrafted donor cells in recipient mice were detected by the presence of the transgene in a broad spectrum of tissues. However, expression of the transgene was restricted to osteoblasts and osteocytes, as established by biochemical analysis of CAT activity and immunohistochemical analysis of CAT expression at the single cell level. Our data indicate that donor cells achieved long-term engraftment in various tissues of the recipients and that the CAT gene under control of the osteocalcin promoter is expressed specifically in bone. Thus, transplantation of multipotential marrow cells containing the osteocalcin promoter-controlled transgene provides an efficacious approach to deliver therapeutic gene expression to osteoblasts for treatment of bone disorders or tumor metastasis to the skeleton.  (+info)

Beta2-microglobulin and renal bone disease. (7/1036)

Dialysis-related amyloidosis (DRA) is characterized by amyloid deposition mainly in bone and joint structures, presenting as carpal tunnel syndrome, destructive arthropathy, and subchondral bone erosions and cysts. Beta2-microglobulin has been demonstrated to be a major constituent of amyloid fibrils. DRA occurs not only in patients undergoing long-term hemodialysis, but also in patients undergoing continuous ambulatory peritoneal dialysis. The incidence of this complication increases with the duration of dialytic therapy and the age of the patient. While a definitive diagnosis of DRA can be made only by histological findings, various imaging techniques often support diagnosis. The molecular pathogenesis of this complication remains unknown. Recent studies have, however, suggested a pathogenic role of a new modification of beta2-microglobulin in amyloid fibrils--that is, the advanced glycation end-products (AGEs) formed with carbonyl compounds derived from autoxidation of both carbohydrates and lipids ("carbonyl stress"). Therapy for DRA is limited to symptomatic approaches and surgical removal of amyloid deposits. High-flux biocompatible dialysis membranes could be used to delay DRA development.  (+info)

Prostaglandins and bone: physiology and pathophysiology. (8/1036)

Prostaglandins (PGs) are potent stimulators of bone formation and resorption and are produced by bone cells. PGs also have inhibitory effects on fully differentiated osteoblasts and osteoclasts. This complex, multifunctional regulation is probably mediated by different PG receptors. Endogenous PGs in bone are produced largely by induction of COX-2, which is highly regulated by hormones and local factors. The development of specific agonists and antagonists for PG receptors and for COX-2 should allow us to define the physiologic and pathophysiologic roles of PGs more precisely and develop new therapeutic approaches to metabolic and inflammatory disorders of the skeleton.  (+info)

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Metabolic bone diseases are a group of conditions that affect the bones and are caused by disorders in the body's metabolism. These disorders can result in changes to the bone structure, density, and strength, leading to an increased risk of fractures and other complications. Some common examples of metabolic bone diseases include:

1. Osteoporosis: a condition characterized by weak and brittle bones that are more likely to break, often as a result of age-related bone loss or hormonal changes.
2. Paget's disease of bone: a chronic disorder that causes abnormal bone growth and deformities, leading to fragile and enlarged bones.
3. Osteomalacia: a condition caused by a lack of vitamin D or problems with the body's ability to absorb it, resulting in weak and soft bones.
4. Hyperparathyroidism: a hormonal disorder that causes too much parathyroid hormone to be produced, leading to bone loss and other complications.
5. Hypoparathyroidism: a hormonal disorder that results in low levels of parathyroid hormone, causing weak and brittle bones.
6. Renal osteodystrophy: a group of bone disorders that occur as a result of chronic kidney disease, including osteomalacia, osteoporosis, and high turnover bone disease.

Treatment for metabolic bone diseases may include medications to improve bone density and strength, dietary changes, exercise, and lifestyle modifications. In some cases, surgery may be necessary to correct bone deformities or fractures.

Bone remodeling is the normal and continuous process by which bone tissue is removed from the skeleton (a process called resorption) and new bone tissue is formed (a process called formation). This ongoing cycle allows bones to repair microdamage, adjust their size and shape in response to mechanical stress, and maintain mineral homeostasis. The cells responsible for bone resorption are osteoclasts, while the cells responsible for bone formation are osteoblasts. These two cell types work together to maintain the structural integrity and health of bones throughout an individual's life.

During bone remodeling, the process can be divided into several stages:

1. Activation: The initiation of bone remodeling is triggered by various factors such as microdamage, hormonal changes, or mechanical stress. This leads to the recruitment and activation of osteoclast precursor cells.
2. Resorption: Osteoclasts attach to the bone surface and create a sealed compartment called a resorption lacuna. They then secrete acid and enzymes that dissolve and digest the mineralized matrix, creating pits or cavities on the bone surface. This process helps remove old or damaged bone tissue and releases calcium and phosphate ions into the bloodstream.
3. Reversal: After resorption is complete, the osteoclasts undergo apoptosis (programmed cell death), and mononuclear cells called reversal cells appear on the resorbed surface. These cells prepare the bone surface for the next stage by cleaning up debris and releasing signals that attract osteoblast precursors.
4. Formation: Osteoblasts, derived from mesenchymal stem cells, migrate to the resorbed surface and begin producing a new organic matrix called osteoid. As the osteoid mineralizes, it forms a hard, calcified structure that gradually replaces the resorbed bone tissue. The osteoblasts may become embedded within this newly formed bone as they differentiate into osteocytes, which are mature bone cells responsible for maintaining bone homeostasis and responding to mechanical stress.
5. Mineralization: Over time, the newly formed bone continues to mineralize, becoming stronger and more dense. This process helps maintain the structural integrity of the skeleton and ensures adequate calcium storage.

Throughout this continuous cycle of bone remodeling, hormones, growth factors, and mechanical stress play crucial roles in regulating the balance between resorption and formation. Disruptions to this delicate equilibrium can lead to various bone diseases, such as osteoporosis, where excessive resorption results in weakened bones and increased fracture risk.

Bone resorption is the process by which bone tissue is broken down and absorbed into the body. It is a normal part of bone remodeling, in which old or damaged bone tissue is removed and new tissue is formed. However, excessive bone resorption can lead to conditions such as osteoporosis, in which bones become weak and fragile due to a loss of density. This process is carried out by cells called osteoclasts, which break down the bone tissue and release minerals such as calcium into the bloodstream.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

Renal osteodystrophy is a bone disease that occurs in individuals with chronic kidney disease (CKD). It is characterized by abnormalities in the bones' structure and mineral composition due to disturbances in the metabolism of calcium, phosphorus, and vitamin D. These metabolic disturbances result from the kidneys' decreased ability to maintain balance in the levels of these minerals and hormones.

Renal osteodystrophy can manifest as several bone disorders, including:

1. Osteitis fibrosa cystica: Increased bone turnover due to excessive parathyroid hormone (PTH) production, leading to high levels of alkaline phosphatase and increased resorption of bones.
2. Adynamic bone disease: Decreased bone turnover due to reduced PTH levels, resulting in low bone formation rates and increased fracture risk.
3. Mixed uremic osteodystrophy: A combination of high and low bone turnover, with varying degrees of mineralization defects.
4. Osteomalacia: Defective mineralization of bones due to vitamin D deficiency or resistance, leading to soft and weak bones.

Symptoms of renal osteodystrophy may include bone pain, muscle weakness, fractures, deformities, and growth retardation in children. Diagnosis typically involves laboratory tests, imaging studies, and sometimes bone biopsies. Treatment focuses on correcting the metabolic imbalances through dietary modifications, medications (such as phosphate binders, vitamin D analogs, and calcimimetics), and addressing any secondary hyperparathyroidism if present.

Bone neoplasms are abnormal growths or tumors that develop in the bone. They can be benign (non-cancerous) or malignant (cancerous). Benign bone neoplasms do not spread to other parts of the body and are rarely a threat to life, although they may cause problems if they grow large enough to press on surrounding tissues or cause fractures. Malignant bone neoplasms, on the other hand, can invade and destroy nearby tissue and may spread (metastasize) to other parts of the body.

There are many different types of bone neoplasms, including:

1. Osteochondroma - a benign tumor that develops from cartilage and bone
2. Enchondroma - a benign tumor that forms in the cartilage that lines the inside of the bones
3. Chondrosarcoma - a malignant tumor that develops from cartilage
4. Osteosarcoma - a malignant tumor that develops from bone cells
5. Ewing sarcoma - a malignant tumor that develops in the bones or soft tissues around the bones
6. Giant cell tumor of bone - a benign or occasionally malignant tumor that develops from bone tissue
7. Fibrosarcoma - a malignant tumor that develops from fibrous tissue in the bone

The symptoms of bone neoplasms vary depending on the type, size, and location of the tumor. They may include pain, swelling, stiffness, fractures, or limited mobility. Treatment options depend on the type and stage of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these treatments.

Osteomalacia is a medical condition characterized by the softening of bones due to defective bone mineralization, resulting from inadequate vitamin D, phosphate, or calcium. It mainly affects adults and is different from rickets, which occurs in children. The primary symptom is bone pain, but muscle weakness can also occur. Prolonged osteomalacia may lead to skeletal deformities and an increased risk of fractures. Treatment typically involves supplementation with vitamin D, calcium, and sometimes phosphate.

Diphosphonates are a class of medications that are used to treat bone diseases, such as osteoporosis and Paget's disease. They work by binding to the surface of bones and inhibiting the activity of bone-resorbing cells called osteoclasts. This helps to slow down the breakdown and loss of bone tissue, which can help to reduce the risk of fractures.

Diphosphonates are typically taken orally in the form of tablets, but some forms may be given by injection. Commonly prescribed diphosphonates include alendronate (Fosamax), risedronate (Actonel), and ibandronate (Boniva). Side effects of diphosphonates can include gastrointestinal symptoms such as nausea, heartburn, and abdominal pain. In rare cases, they may also cause esophageal ulcers or osteonecrosis of the jaw.

It is important to follow the instructions for taking diphosphonates carefully, as they must be taken on an empty stomach with a full glass of water and the patient must remain upright for at least 30 minutes after taking the medication to reduce the risk of esophageal irritation. Regular monitoring of bone density and kidney function is also recommended while taking these medications.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Osteolysis is a medical term that refers to the loss or resorption of bone tissue. It's a process where the body's normal bone remodeling cycle is disrupted, leading to an imbalance between bone formation and bone breakdown. This results in the progressive deterioration and destruction of bone.

Osteolysis can occur due to various reasons such as chronic inflammation, mechanical stress, or certain medical conditions like rheumatoid arthritis, Paget's disease, or bone tumors. It can also be a side effect of some medications, such as those used in cancer treatment or for managing osteoporosis.

In severe cases, osteolysis can lead to weakened bones, increased risk of fractures, and deformities. Treatment typically aims to address the underlying cause and may include medication, surgery, or lifestyle changes.

Osteoclasts are large, multinucleated cells that are primarily responsible for bone resorption, a process in which they break down and dissolve the mineralized matrix of bones. They are derived from monocyte-macrophage precursor cells of hematopoietic origin and play a crucial role in maintaining bone homeostasis by balancing bone formation and bone resorption.

Osteoclasts adhere to the bone surface and create an isolated microenvironment, called the "resorption lacuna," between their cell membrane and the bone surface. Here, they release hydrogen ions into the lacuna through a process called proton pumping, which lowers the pH and dissolves the mineral component of the bone matrix. Additionally, osteoclasts secrete proteolytic enzymes, such as cathepsin K, that degrade the organic components, like collagen, in the bone matrix.

An imbalance in osteoclast activity can lead to various bone diseases, including osteoporosis and Paget's disease, where excessive bone resorption results in weakened and fragile bones.

Bone development, also known as ossification, is the process by which bone tissue is formed and grows. This complex process involves several different types of cells, including osteoblasts, which produce new bone matrix, and osteoclasts, which break down and resorb existing bone tissue.

There are two main types of bone development: intramembranous and endochondral ossification. Intramembranous ossification occurs when bone tissue forms directly from connective tissue, while endochondral ossification involves the formation of a cartilage model that is later replaced by bone.

During fetal development, most bones develop through endochondral ossification, starting as a cartilage template that is gradually replaced by bone tissue. However, some bones, such as those in the skull and clavicles, develop through intramembranous ossification.

Bone development continues after birth, with new bone tissue being laid down and existing tissue being remodeled throughout life. This ongoing process helps to maintain the strength and integrity of the skeleton, allowing it to adapt to changing mechanical forces and repair any damage that may occur.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Multiple myeloma is a type of cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help your body fight infection by producing antibodies. In multiple myeloma, cancerous plasma cells accumulate in the bone marrow and crowd out healthy blood cells. Rather than producing useful antibodies, the cancer cells produce abnormal proteins that can cause complications such as kidney damage, bone pain and fractures.

Multiple myeloma is a type of cancer called a plasma cell neoplasm. Plasma cell neoplasms are diseases in which there is an overproduction of a single clone of plasma cells. In multiple myeloma, this results in the crowding out of normal plasma cells, red and white blood cells and platelets, leading to many of the complications associated with the disease.

The abnormal proteins produced by the cancer cells can also cause damage to organs and tissues in the body. These abnormal proteins can be detected in the blood or urine and are often used to monitor the progression of multiple myeloma.

Multiple myeloma is a relatively uncommon cancer, but it is the second most common blood cancer after non-Hodgkin lymphoma. It typically occurs in people over the age of 65, and men are more likely to develop multiple myeloma than women. While there is no cure for multiple myeloma, treatments such as chemotherapy, radiation therapy, and stem cell transplantation can help manage the disease and its symptoms, and improve quality of life.

Osteitis fibrosa cystica is a medical condition that refers to the abnormal bone remodeling process characterized by increased bone resorption and formation, leading to bone thickening and weakening. It is also known as "von Recklinghausen's disease of bone" or "monostotic fibrous dysplasia."

This condition is typically caused by excessive production of parathyroid hormone (PTH) due to a benign or malignant tumor of the parathyroid gland, known as hyperparathyroidism. The overproduction of PTH leads to an imbalance in calcium and phosphorus metabolism, resulting in increased bone resorption and fibrous tissue deposition within the bone marrow.

The clinical features of osteitis fibrosa cystica include bone pain, fractures, bone deformities, and elevated levels of calcium and alkaline phosphatase in the blood. Radiographic findings may show characteristic "rugger jersey" or "salt and pepper" patterns of alternating areas of increased and decreased bone density.

Treatment typically involves surgical removal of the abnormal parathyroid gland tissue, followed by medical management to prevent further bone loss and promote healing.

Osteoblasts are specialized bone-forming cells that are derived from mesenchymal stem cells. They play a crucial role in the process of bone formation and remodeling. Osteoblasts synthesize, secrete, and mineralize the organic matrix of bones, which is mainly composed of type I collagen.

These cells have receptors for various hormones and growth factors that regulate their activity, such as parathyroid hormone, vitamin D, and transforming growth factor-beta. When osteoblasts are not actively producing bone matrix, they can become trapped within the matrix they produce, where they differentiate into osteocytes, which are mature bone cells that play a role in maintaining bone structure and responding to mechanical stress.

Abnormalities in osteoblast function can lead to various bone diseases, such as osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Osteoporosis is a systemic skeletal disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone architecture, leading to increased risk of fractures, particularly in the spine, wrist, and hip. It mainly affects older people, especially postmenopausal women, due to hormonal changes that reduce bone density. Osteoporosis can also be caused by certain medications, medical conditions, or lifestyle factors such as smoking, alcohol abuse, and a lack of calcium and vitamin D in the diet. The diagnosis is often made using bone mineral density testing, and treatment may include medication to slow bone loss, promote bone formation, and prevent fractures.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

A bone fracture is a medical condition in which there is a partial or complete break in the continuity of a bone due to external or internal forces. Fractures can occur in any bone in the body and can vary in severity from a small crack to a shattered bone. The symptoms of a bone fracture typically include pain, swelling, bruising, deformity, and difficulty moving the affected limb. Treatment for a bone fracture may involve immobilization with a cast or splint, surgery to realign and stabilize the bone, or medication to manage pain and prevent infection. The specific treatment approach will depend on the location, type, and severity of the fracture.

Bone matrix refers to the non-cellular component of bone that provides structural support and functions as a reservoir for minerals, such as calcium and phosphate. It is made up of organic and inorganic components. The organic component consists mainly of type I collagen fibers, which provide flexibility and tensile strength to the bone. The inorganic component is primarily composed of hydroxyapatite crystals, which give bone its hardness and compressive strength. Bone matrix also contains other proteins, growth factors, and signaling molecules that regulate bone formation, remodeling, and repair.

Osteitis deformans, also known as Paget's disease of bone, is a chronic disorder of the bone characterized by abnormal turnover and remodeling of the bone. In this condition, the bone becomes enlarged, thickened, and deformed due to excessive and disorganized bone formation and resorption.

The process begins when the bone-remodeling cycle is disrupted, leading to an imbalance between the activity of osteoclasts (cells that break down bone) and osteoblasts (cells that form new bone). In Paget's disease, osteoclasts become overactive and increase bone resorption, followed by an overzealous response from osteoblasts, which attempt to repair the damage but do so in a disorganized manner.

The affected bones can become weakened, prone to fractures, and may cause pain, deformities, or other complications such as arthritis, hearing loss, or neurological symptoms if the skull or spine is involved. The exact cause of Paget's disease remains unknown, but it is believed that genetic and environmental factors play a role in its development.

Early diagnosis and treatment can help manage the symptoms and prevent complications associated with osteitis deformans. Treatment options include medications to slow down bone turnover, pain management, and orthopedic interventions when necessary.

Essential osteolysis is not a well-defined medical condition with a single, widely accepted medical definition. The term "osteolysis" generally refers to the loss or resorption of bone tissue. In essential osteolysis, this process occurs without an underlying cause that can be easily identified, such as a tumor, infection, or other disease.

Some sources describe essential osteolysis as a condition characterized by progressive bone loss that occurs spontaneously and symmetrically, typically affecting the small bones of the hands and feet. The exact cause of this form of osteolysis is not known, but it is thought to be related to an abnormal immune response or genetic factors.

It's important to note that essential osteolysis is a rare condition, and its symptoms and progression can vary significantly from person to person. If you have concerns about osteolysis or any other medical condition, it's best to consult with a healthcare professional for an accurate diagnosis and treatment plan.

Osteogenesis is the process of bone formation or development. It involves the differentiation and maturation of osteoblasts, which are bone-forming cells that synthesize and deposit the organic matrix of bone tissue, composed mainly of type I collagen. This organic matrix later mineralizes to form the inorganic crystalline component of bone, primarily hydroxyapatite.

There are two primary types of osteogenesis: intramembranous and endochondral. Intramembranous osteogenesis occurs directly within connective tissue, where mesenchymal stem cells differentiate into osteoblasts and form bone tissue without an intervening cartilage template. This process is responsible for the formation of flat bones like the skull and clavicles.

Endochondral osteogenesis, on the other hand, involves the initial development of a cartilaginous model or template, which is later replaced by bone tissue. This process forms long bones, such as those in the limbs, and occurs through several stages involving chondrocyte proliferation, hypertrophy, and calcification, followed by invasion of blood vessels and osteoblasts to replace the cartilage with bone tissue.

Abnormalities in osteogenesis can lead to various skeletal disorders and diseases, such as osteogenesis imperfecta (brittle bone disease), achondroplasia (a form of dwarfism), and cleidocranial dysplasia (a disorder affecting skull and collarbone development).

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

REceptor Activator of NF-kB (RANK) Ligand is a type of protein that plays a crucial role in the immune system and bone metabolism. It belongs to the tumor necrosis factor (TNF) superfamily and is primarily produced by osteoblasts, which are cells responsible for bone formation.

RANK Ligand binds to its receptor RANK, which is found on the surface of osteoclasts, a type of cell involved in bone resorption or breakdown. The binding of RANK Ligand to RANK activates signaling pathways that promote the differentiation, activation, and survival of osteoclasts, thereby increasing bone resorption.

Abnormalities in the RANKL-RANK signaling pathway have been implicated in various bone diseases, such as osteoporosis, rheumatoid arthritis, and certain types of cancer that metastasize to bones. Therefore, targeting this pathway with therapeutic agents has emerged as a promising approach for the treatment of these conditions.

Bone regeneration is the biological process of new bone formation that occurs after an injury or removal of a portion of bone. This complex process involves several stages, including inflammation, migration and proliferation of cells, matrix deposition, and mineralization, leading to the restoration of the bone's structure and function.

The main cells involved in bone regeneration are osteoblasts, which produce new bone matrix, and osteoclasts, which resorb damaged or old bone tissue. The process is tightly regulated by various growth factors, hormones, and signaling molecules that promote the recruitment, differentiation, and activity of these cells.

Bone regeneration can occur naturally in response to injury or surgical intervention, such as fracture repair or dental implant placement. However, in some cases, bone regeneration may be impaired due to factors such as age, disease, or trauma, leading to delayed healing or non-union of the bone. In these situations, various strategies and techniques, including the use of bone grafts, scaffolds, and growth factors, can be employed to enhance and support the bone regeneration process.

The ilium is the largest and broadest of the three parts that make up the hip bone or coxal bone. It is the uppermost portion of the pelvis and forms the side of the waist. The ilium has a curved, fan-like shape and articulates with the sacrum at the back to form the sacroiliac joint. The large, concave surface on the top of the ilium is called the iliac crest, which can be felt as a prominent ridge extending from the front of the hip to the lower back. This region is significant in orthopedics and physical examinations for its use in assessing various medical conditions and performing certain maneuvers during the physical examination.

Bone density conservation agents, also known as anti-resorptive agents or bone-sparing drugs, are a class of medications that help to prevent the loss of bone mass and reduce the risk of fractures. They work by inhibiting the activity of osteoclasts, the cells responsible for breaking down and reabsorbing bone tissue during the natural remodeling process.

Examples of bone density conservation agents include:

1. Bisphosphonates (e.g., alendronate, risedronate, ibandronate, zoledronic acid) - These are the most commonly prescribed class of bone density conservation agents. They bind to hydroxyapatite crystals in bone tissue and inhibit osteoclast activity, thereby reducing bone resorption.
2. Denosumab (Prolia) - This is a monoclonal antibody that targets RANKL (Receptor Activator of Nuclear Factor-κB Ligand), a key signaling molecule involved in osteoclast differentiation and activation. By inhibiting RANKL, denosumab reduces osteoclast activity and bone resorption.
3. Selective estrogen receptor modulators (SERMs) (e.g., raloxifene) - These medications act as estrogen agonists or antagonists in different tissues. In bone tissue, SERMs mimic the bone-preserving effects of estrogen by inhibiting osteoclast activity and reducing bone resorption.
4. Hormone replacement therapy (HRT) - Estrogen hormone replacement therapy has been shown to preserve bone density in postmenopausal women; however, its use is limited due to increased risks of breast cancer, cardiovascular disease, and thromboembolic events.
5. Calcitonin - This hormone, secreted by the thyroid gland, inhibits osteoclast activity and reduces bone resorption. However, it has largely been replaced by other more effective bone density conservation agents.

These medications are often prescribed for individuals at high risk of fractures due to conditions such as osteoporosis or metabolic disorders that affect bone health. It is essential to follow the recommended dosage and administration guidelines to maximize their benefits while minimizing potential side effects. Regular monitoring of bone density, blood calcium levels, and other relevant parameters is also necessary during treatment with these medications.

Hyperparathyroidism is a condition in which the parathyroid glands produce excessive amounts of parathyroid hormone (PTH). There are four small parathyroid glands located in the neck, near or within the thyroid gland. They release PTH into the bloodstream to help regulate the levels of calcium and phosphorus in the body.

In hyperparathyroidism, overproduction of PTH can lead to an imbalance in these minerals, causing high blood calcium levels (hypercalcemia) and low phosphate levels (hypophosphatemia). This can result in various symptoms such as fatigue, weakness, bone pain, kidney stones, and cognitive issues.

There are two types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism occurs when there is a problem with one or more of the parathyroid glands, causing them to become overactive and produce too much PTH. Secondary hyperparathyroidism develops as a response to low calcium levels in the body due to conditions like vitamin D deficiency, chronic kidney disease, or malabsorption syndromes.

Treatment for hyperparathyroidism depends on the underlying cause and severity of symptoms. In primary hyperparathyroidism, surgery to remove the overactive parathyroid gland(s) is often recommended. For secondary hyperparathyroidism, treating the underlying condition and managing calcium levels with medications or dietary changes may be sufficient.

Osteoprotegerin (OPG) is a soluble decoy receptor for the receptor activator of nuclear factor kappa-B ligand (RANKL). It is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in regulating bone metabolism. By binding to RANKL, OPG prevents it from interacting with its signaling receptor RANK on the surface of osteoclast precursor cells, thereby inhibiting osteoclast differentiation, activation, and survival. This results in reduced bone resorption and increased bone mass.

In addition to its role in bone homeostasis, OPG has also been implicated in various physiological and pathological processes, including immune regulation, cancer progression, and cardiovascular disease.

Dihydrotachysterol is a synthetic form of vitamin D that is used as a medication to treat hypocalcemia (low levels of calcium in the blood) in people with certain medical conditions, such as hypoparathyroidism and vitamin D deficiency. It works by increasing the absorption of calcium from the gut and promoting the release of calcium from bones into the bloodstream.

Dihydrotachysterol is available in tablet form and is typically taken once or twice a day, with the dosage adjusted based on the individual's response to treatment and serum calcium levels. Common side effects of dihydrotachysterol include hypercalcemia (high levels of calcium in the blood), nausea, vomiting, and constipation. It is important to monitor serum calcium levels regularly while taking this medication to prevent toxicity.

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Spontaneous fractures are bone breaks that occur without any identifiable trauma or injury. They are typically caused by underlying medical conditions that weaken the bones, making them more susceptible to breaking under normal stress or weight. The most common cause of spontaneous fractures is osteoporosis, a condition characterized by weak and brittle bones. Other potential causes include various bone diseases, certain cancers, long-term use of corticosteroids, and genetic disorders affecting bone strength.

It's important to note that while the term "spontaneous" implies that the fracture occurred without any apparent cause, it is usually the result of an underlying medical condition. Therefore, if you experience a spontaneous fracture, seeking medical attention is crucial to diagnose and manage the underlying cause to prevent future fractures and related complications.

Bone transplantation, also known as bone grafting, is a surgical procedure in which bone or bone-like material is transferred from one part of the body to another or from one person to another. The graft may be composed of cortical (hard outer portion) bone, cancellous (spongy inner portion) bone, or a combination of both. It can be taken from different sites in the same individual (autograft), from another individual of the same species (allograft), or from an animal source (xenograft). The purpose of bone transplantation is to replace missing bone, provide structural support, and stimulate new bone growth. This procedure is commonly used in orthopedic, dental, and maxillofacial surgeries to repair bone defects caused by trauma, tumors, or congenital conditions.

Osteocalcin is a protein that is produced by osteoblasts, which are the cells responsible for bone formation. It is one of the most abundant non-collagenous proteins found in bones and plays a crucial role in the regulation of bone metabolism. Osteocalcin contains a high affinity for calcium ions, making it essential for the mineralization of the bone matrix.

Once synthesized, osteocalcin is secreted into the extracellular matrix, where it binds to hydroxyapatite crystals, helping to regulate their growth and contributing to the overall strength and integrity of the bones. Osteocalcin also has been found to play a role in other physiological processes outside of bone metabolism, such as modulating insulin sensitivity, energy metabolism, and male fertility.

In summary, osteocalcin is a protein produced by osteoblasts that plays a critical role in bone formation, mineralization, and turnover, and has been implicated in various other physiological processes.

Osteocytes are the most abundant cell type in mature bone tissue. They are star-shaped cells that are located inside the mineralized matrix of bones, with their processes extending into small spaces called lacunae and canaliculi. Osteocytes are derived from osteoblasts, which are bone-forming cells that become trapped within the matrix they produce.

Osteocytes play a crucial role in maintaining bone homeostasis by regulating bone remodeling, sensing mechanical stress, and modulating mineralization. They communicate with each other and with osteoblasts and osteoclasts (bone-resorbing cells) through a network of interconnected processes and via the release of signaling molecules. Osteocytes can also respond to changes in their environment, such as hormonal signals or mechanical loading, by altering their gene expression and releasing factors that regulate bone metabolism.

Dysfunction of osteocytes has been implicated in various bone diseases, including osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Bone diseases that are related to endocrine disorders refer to conditions that affect the bones as a result of hormonal imbalances or abnormalities in the endocrine system. The endocrine system is responsible for producing and regulating hormones throughout the body, and any disruptions in this system can have widespread effects on various organs and tissues, including the bones.

There are several endocrine disorders that can lead to bone diseases:

1. Osteoporosis: This is a common bone disease characterized by weakened bones that are more susceptible to fractures. It can be caused by an imbalance in sex hormones, particularly a decrease in estrogen levels in women after menopause or due to certain medical conditions such as hyperthyroidism (overactive thyroid gland) or hyperparathyroidism (overactive parathyroid gland).
2. Hyperparathyroidism: This endocrine disorder occurs when one or more of the four parathyroid glands become overactive and produce too much parathyroid hormone (PTH). Excess PTH can lead to increased bone resorption, resulting in weakened bones and an increased risk of fractures.
3. Acromegaly: This is a rare endocrine disorder caused by excessive growth hormone (GH) production, usually due to a benign tumor of the pituitary gland. Chronic exposure to high levels of GH can lead to bone overgrowth and thickening, resulting in enlarged facial features, hands, and feet.
4. Hypothyroidism: This endocrine disorder occurs when the thyroid gland does not produce enough thyroid hormones. Low levels of thyroid hormones can slow down metabolism, leading to weight gain, fatigue, and other symptoms. In children, hypothyroidism can also affect bone growth and development, resulting in short stature and delayed puberty.
5. Cushing's syndrome: This endocrine disorder occurs when the body is exposed to high levels of cortisol, a stress hormone produced by the adrenal glands. Excessive cortisol can lead to weakened bones, muscle wasting, and other symptoms.

Treatment for bone changes associated with endocrine disorders typically involves addressing the underlying cause of the disorder. This may involve medication, surgery, or radiation therapy. In some cases, lifestyle modifications such as exercise and dietary changes may also be recommended to help improve bone health.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Rickets is a medical condition characterized by the softening and weakening of bones in children, primarily caused by deficiency of vitamin D, calcium, or phosphate. It leads to skeletal deformities, bone pain, and growth retardation. Prolonged lack of sunlight exposure, inadequate intake of vitamin D-rich foods, or impaired absorption or utilization of vitamin D can contribute to the development of rickets.

Bone Morphogenetic Proteins (BMPs) are a group of growth factors that play crucial roles in the development, growth, and repair of bones and other tissues. They belong to the Transforming Growth Factor-β (TGF-β) superfamily and were first discovered when researchers found that certain proteins extracted from demineralized bone matrix had the ability to induce new bone formation.

BMPs stimulate the differentiation of mesenchymal stem cells into osteoblasts, which are the cells responsible for bone formation. They also promote the recruitment and proliferation of these cells, enhancing the overall process of bone regeneration. In addition to their role in bone biology, BMPs have been implicated in various other biological processes, including embryonic development, wound healing, and the regulation of fat metabolism.

There are several types of BMPs (BMP-2, BMP-4, BMP-7, etc.) that exhibit distinct functions and expression patterns. Due to their ability to stimulate bone formation, recombinant human BMPs have been used in clinical applications, such as spinal fusion surgery and non-healing fracture treatment. However, the use of BMPs in medicine has been associated with certain risks and complications, including uncontrolled bone growth, inflammation, and cancer development, which necessitates further research to optimize their therapeutic potential.

Bone substitutes are materials that are used to replace missing or damaged bone in the body. They can be made from a variety of materials, including natural bone from other parts of the body or from animals, synthetic materials, or a combination of both. The goal of using bone substitutes is to provide structural support and promote the growth of new bone tissue.

Bone substitutes are often used in dental, orthopedic, and craniofacial surgery to help repair defects caused by trauma, tumors, or congenital abnormalities. They can also be used to augment bone volume in procedures such as spinal fusion or joint replacement.

There are several types of bone substitutes available, including:

1. Autografts: Bone taken from another part of the patient's body, such as the hip or pelvis.
2. Allografts: Bone taken from a deceased donor and processed to remove any cells and infectious materials.
3. Xenografts: Bone from an animal source, typically bovine or porcine, that has been processed to remove any cells and infectious materials.
4. Synthetic bone substitutes: Materials such as calcium phosphate ceramics, bioactive glass, and polymer-based materials that are designed to mimic the properties of natural bone.

The choice of bone substitute material depends on several factors, including the size and location of the defect, the patient's medical history, and the surgeon's preference. It is important to note that while bone substitutes can provide structural support and promote new bone growth, they may not have the same strength or durability as natural bone. Therefore, they may not be suitable for all applications, particularly those that require high load-bearing capacity.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Strontium isotopes are different forms of the element strontium that have different numbers of neutrons in their atomic nuclei. The most common strontium isotopes are Sr-84, Sr-86, Sr-87, and Sr-88, with atomic masses of 83.913, 85.909, 86.909, and 87.905 atomic mass units (amu), respectively.

Strontium-87 is a radioactive isotope that is produced naturally in the Earth's crust through the decay of rubidium-87. The ratio of strontium-87 to strontium-86 can be used as a geological dating tool, as well as a forensic tool for determining the origin of objects or materials.

In medical applications, strontium ranelate, which contains stable strontium isotopes, has been used in the treatment of osteoporosis due to its ability to increase bone density and reduce the risk of fractures. However, its use has been limited due to concerns about potential side effects, including cardiovascular risks.

The femur is the medical term for the thigh bone, which is the longest and strongest bone in the human body. It connects the hip bone to the knee joint and plays a crucial role in supporting the weight of the body and allowing movement during activities such as walking, running, and jumping. The femur is composed of a rounded head, a long shaft, and two condyles at the lower end that articulate with the tibia and patella to form the knee joint.

Osteonecrosis is a medical condition characterized by the death of bone tissue due to the disruption of blood supply. Also known as avascular necrosis, this process can lead to the collapse of the bone and adjacent joint surfaces, resulting in pain, limited mobility, and potential deformity if left untreated. Osteonecrosis most commonly affects the hips, shoulders, and knees, but it can occur in any bone. The condition may be caused by trauma, corticosteroid use, alcohol abuse, certain medical conditions (like sickle cell disease or lupus), or for no apparent reason (idiopathic).

Technetium Tc 99m Medronate is a radiopharmaceutical agent used in nuclear medicine for bone scintigraphy. It is a technetium-labeled bisphosphonate compound, which accumulates in areas of increased bone turnover and metabolism. This makes it useful for detecting and evaluating various bone diseases and conditions, such as fractures, tumors, infections, and arthritis.

The "Tc 99m" refers to the radioisotope technetium-99m, which has a half-life of approximately 6 hours and emits gamma rays that can be detected by a gamma camera. The medronate component is a bisphosphonate molecule that binds to hydroxyapatite crystals in bone tissue, allowing the radiolabeled compound to accumulate in areas of active bone remodeling.

Overall, Technetium Tc 99m Medronate is an important tool in nuclear medicine for diagnosing and managing various musculoskeletal disorders.

Clodronic acid is a medication that belongs to a class of drugs called bisphosphonates. It is used to treat and prevent osteoporosis in postmenopausal women and men with a high risk of fracture, as well as to treat Paget's disease of bone.

Clodronic acid works by inhibiting the activity of bone-resorbing cells called osteoclasts, which helps to slow down bone loss and increase bone density. This can help reduce the risk of fractures in people with osteoporosis.

The medication is available in several forms, including tablets and intravenous solutions. It is usually taken or administered once a day or once a week, depending on the specific formulation and the individual patient's needs.

Like all medications, clodronic acid can have side effects, including gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as muscle pain, joint pain, and headaches. In rare cases, it can also cause more serious side effects such as esophageal ulcers and bone necrosis of the jaw. It is important for patients to follow their doctor's instructions carefully when taking this medication and to report any unusual symptoms or side effects promptly.

Fibrous Dysplasia of Bone is a rare, benign bone disorder that is characterized by the replacement of normal bone tissue with fibrous (scar-like) and immature bone tissue. This results in weakened bones that are prone to fractures, deformities, and pain. The condition can affect any bone in the body but most commonly involves the long bones of the legs, arms, and skull. It can occur as an isolated finding or as part of a genetic disorder called McCune-Albright syndrome. The exact cause of fibrous dysplasia is not fully understood, but it is believed to result from a genetic mutation that occurs during early bone development. There is no cure for fibrous dysplasia, and treatment typically focuses on managing symptoms and preventing complications.

Osteopetrosis, also known as Albers-Schönberg disease or marble bone disease, is a group of rare genetic disorders characterized by increased bone density due to impaired bone resorption by osteoclasts. This results in brittle bones that are more susceptible to fractures and can also lead to various complications such as anemia, hearing loss, and vision problems. There are several types of osteopetrosis, which vary in severity and age of onset.

The medical definition of osteopetrosis is:

A genetic disorder characterized by defective bone resorption due to impaired osteoclast function, resulting in increased bone density, susceptibility to fractures, and potential complications such as anemia, hearing loss, and vision problems.

Physiologic calcification is the normal deposit of calcium salts in body tissues and organs. It is a natural process that occurs as part of the growth and development of the human body, as well as during the repair and remodeling of tissues.

Calcium is an essential mineral that plays a critical role in many bodily functions, including bone formation, muscle contraction, nerve impulse transmission, and blood clotting. In order to maintain proper levels of calcium in the body, excess calcium that is not needed for these functions may be deposited in various tissues as a normal part of the aging process.

Physiologic calcification typically occurs in areas such as the walls of blood vessels, the lungs, and the heart valves. While these calcifications are generally harmless, they can sometimes lead to complications, particularly if they occur in large amounts or in sensitive areas. For example, calcification of the coronary arteries can increase the risk of heart disease, while calcification of the lung tissue can cause respiratory symptoms.

It is important to note that pathologic calcification, on the other hand, refers to the abnormal deposit of calcium salts in tissues and organs, which can be caused by various medical conditions such as chronic kidney disease, hyperparathyroidism, and certain infections. Pathologic calcification is not a normal process and can lead to serious health complications if left untreated.

Receptor Activator of Nuclear Factor-kappa B (RANK) is a type I transmembrane protein and a member of the tumor necrosis factor receptor superfamily. It plays a crucial role in the regulation of bone metabolism through the activation of osteoclasts, which are cells responsible for bone resorption.

When RANK binds to its ligand, RANKL (Receptor Activator of Nuclear Factor-kappa B Ligand), it triggers a series of intracellular signaling events that lead to the activation and differentiation of osteoclast precursors into mature osteoclasts. This process is essential for maintaining bone homeostasis, as excessive osteoclast activity can result in bone loss and diseases such as osteoporosis.

In addition to its role in bone metabolism, RANK has also been implicated in the regulation of immune responses, as it is involved in the activation and differentiation of dendritic cells and T cells. Dysregulation of RANK signaling has been associated with various pathological conditions, including autoimmune diseases and cancer.

The tibia, also known as the shin bone, is the larger of the two bones in the lower leg and part of the knee joint. It supports most of the body's weight and is a major insertion point for muscles that flex the foot and bend the leg. The tibia articulates with the femur at the knee joint and with the fibula and talus bone at the ankle joint. Injuries to the tibia, such as fractures, are common in sports and other activities that put stress on the lower leg.

Photon Absorptiometry is a medical technique used to measure the absorption of photons (light particles) by tissues or materials. In clinical practice, it is often used as a non-invasive method for measuring bone mineral density (BMD). This technique uses a low-energy X-ray beam or gamma ray to penetrate the tissue and then measures the amount of radiation absorbed by the bone. The amount of absorption is related to the density and thickness of the bone, allowing for an assessment of BMD. It can be used to diagnose osteoporosis and monitor treatment response in patients with bone diseases. There are two types of photon absorptiometry: single-photon absorptiometry (SPA) and dual-photon absorptiometry (DPA). SPA uses one energy level, while DPA uses two different energy levels to measure BMD, providing more precise measurements.

Etidronic acid is a type of medication known as a bisphosphonate. It is used to treat conditions such as Paget's disease, osteoporosis, and certain types of cancer that have spread to the bones.

Etidronic acid works by inhibiting the activity of cells called osteoclasts, which are responsible for breaking down bone tissue. This helps to slow down the process of bone loss and can increase bone density, making bones stronger and less likely to break.

The medication is available in the form of a solution that is given intravenously (through a vein) in a hospital or clinic setting. It may be given as a single dose or as multiple doses over a period of time, depending on the condition being treated and the individual patient's needs.

As with any medication, etidronic acid can have side effects, including nausea, vomiting, diarrhea, and bone pain. It is important for patients to discuss the potential risks and benefits of this medication with their healthcare provider before starting treatment.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Calcium metabolism disorders refer to a group of medical conditions that affect the body's ability to properly regulate the levels of calcium in the blood and tissues. Calcium is an essential mineral that plays a critical role in many bodily functions, including bone health, muscle contraction, nerve function, and blood clotting.

There are several types of calcium metabolism disorders, including:

1. Hypocalcemia: This is a condition characterized by low levels of calcium in the blood. It can be caused by various factors such as vitamin D deficiency, hypoparathyroidism, and certain medications. Symptoms may include muscle cramps, spasms, and tingling sensations in the fingers and toes.
2. Hypercalcemia: This is a condition characterized by high levels of calcium in the blood. It can be caused by various factors such as hyperparathyroidism, cancer, and certain medications. Symptoms may include fatigue, weakness, confusion, and kidney stones.
3. Osteoporosis: This is a condition characterized by weak and brittle bones due to low calcium levels in the bones. It can be caused by various factors such as aging, menopause, vitamin D deficiency, and certain medications. Symptoms may include bone fractures and loss of height.
4. Paget's disease: This is a condition characterized by abnormal bone growth and deformities due to disordered calcium metabolism. It can be caused by various factors such as genetics, age, and certain medications. Symptoms may include bone pain, fractures, and deformities.

Treatment for calcium metabolism disorders depends on the underlying cause of the condition. It may involve supplements, medication, dietary changes, or surgery. Proper diagnosis and management are essential to prevent complications such as kidney stones, bone fractures, and neurological damage.

Bone Morphogenetic Protein 2 (BMP-2) is a growth factor that belongs to the transforming growth factor-beta (TGF-β) superfamily. It plays a crucial role in bone and cartilage formation, as well as in the regulation of wound healing and embryonic development. BMP-2 stimulates the differentiation of mesenchymal stem cells into osteoblasts, which are cells responsible for bone formation.

BMP-2 has been approved by the US Food and Drug Administration (FDA) as a medical device to promote bone growth in certain spinal fusion surgeries and in the treatment of open fractures that have not healed properly. It is usually administered in the form of a collagen sponge soaked with recombinant human BMP-2 protein, which is a laboratory-produced version of the natural protein.

While BMP-2 has shown promising results in some clinical applications, its use is not without risks and controversies. Some studies have reported adverse effects such as inflammation, ectopic bone formation, and increased rates of cancer, which have raised concerns about its safety and efficacy. Therefore, it is essential to weigh the benefits and risks of BMP-2 therapy on a case-by-case basis and under the guidance of a qualified healthcare professional.

In the context of nutrition and health, minerals are inorganic elements that are essential for various bodily functions, such as nerve impulse transmission, muscle contraction, maintaining fluid and electrolyte balance, and bone structure. They are required in small amounts compared to macronutrients (carbohydrates, proteins, and fats) and are obtained from food and water.

Some of the major minerals include calcium, phosphorus, magnesium, sodium, potassium, and chloride, while trace minerals or microminerals are required in even smaller amounts and include iron, zinc, copper, manganese, iodine, selenium, and fluoride.

It's worth noting that the term "minerals" can also refer to geological substances found in the earth, but in medical terminology, it specifically refers to the essential inorganic elements required for human health.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

The pelvic bones, also known as the hip bones, are a set of three irregularly shaped bones that connect to form the pelvic girdle in the lower part of the human body. They play a crucial role in supporting the spine and protecting the abdominal and pelvic organs.

The pelvic bones consist of three bones:

1. The ilium: This is the largest and uppermost bone, forming the majority of the hip bone and the broad, flaring part of the pelvis known as the wing of the ilium or the iliac crest, which can be felt on the side of the body.
2. The ischium: This is the lower and back portion of the pelvic bone that forms part of the sitting surface or the "sit bones."
3. The pubis: This is the front part of the pelvic bone, which connects to the other side at the pubic symphysis in the midline of the body.

The pelvic bones are joined together at the acetabulum, a cup-shaped socket that forms the hip joint and articulates with the head of the femur (thigh bone). The pelvic bones also have several openings for the passage of blood vessels, nerves, and reproductive and excretory organs.

The shape and size of the pelvic bones differ between males and females due to their different roles in childbirth and locomotion. Females typically have a wider and shallower pelvis than males to accommodate childbirth, while males usually have a narrower and deeper pelvis that is better suited for weight-bearing and movement.

Potassium citrate is a medication and dietary supplement that contains potassium and citrate. Medically, it is used to treat and prevent kidney stones, as well as to manage metabolic acidosis in people with chronic kidney disease. Potassium citrate works by increasing the pH of urine, making it less acidic, which can help to dissolve certain types of kidney stones and prevent new ones from forming. It is also used as an alkalizing agent in the treatment of various conditions that cause acidosis.

In addition to its medical uses, potassium citrate is also found naturally in some fruits and vegetables, such as oranges, grapefruits, lemons, limes, and spinach. It is often used as a food additive and preservative, and can be found in a variety of processed foods and beverages.

It's important to note that taking too much potassium citrate can lead to high levels of potassium in the blood, which can be dangerous. Therefore, it is important to follow the dosage instructions carefully and talk to your doctor before taking this medication if you have any medical conditions or are taking any other medications.

Osteosclerosis is a medical term that refers to an abnormal thickening and increased density of bone tissue. This condition can occur as a result of various diseases or conditions, such as certain types of bone cancer, Paget's disease of bone, fluoride poisoning, or chronic infection of the bone. Osteosclerosis can also be seen in some benign conditions, such as osteopetrosis, which is a rare genetic disorder characterized by an excessively hard and dense skeleton.

In some cases, osteosclerosis may not cause any symptoms and may only be discovered on X-rays or other imaging studies. However, in other cases, it can lead to complications such as bone pain, fractures, or deformities. Treatment for osteosclerosis depends on the underlying cause of the condition and may include medications, surgery, or other therapies.

The temporal bone is a paired bone that is located on each side of the skull, forming part of the lateral and inferior walls of the cranial cavity. It is one of the most complex bones in the human body and has several important structures associated with it. The main functions of the temporal bone include protecting the middle and inner ear, providing attachment for various muscles of the head and neck, and forming part of the base of the skull.

The temporal bone is divided into several parts, including the squamous part, the petrous part, the tympanic part, and the styloid process. The squamous part forms the lateral portion of the temporal bone and articulates with the parietal bone. The petrous part is the most medial and superior portion of the temporal bone and contains the inner ear and the semicircular canals. The tympanic part forms the lower and anterior portions of the temporal bone and includes the external auditory meatus or ear canal. The styloid process is a long, slender projection that extends downward from the inferior aspect of the temporal bone and serves as an attachment site for various muscles and ligaments.

The temporal bone plays a crucial role in hearing and balance, as it contains the structures of the middle and inner ear, including the oval window, round window, cochlea, vestibule, and semicircular canals. The stapes bone, one of the three bones in the middle ear, is entirely encased within the petrous portion of the temporal bone. Additionally, the temporal bone contains important structures for facial expression and sensation, including the facial nerve, which exits the skull through the stylomastoid foramen, a small opening in the temporal bone.

Hydroxycholecalciferols are metabolites of vitamin D that are formed in the liver and kidneys. They are important for maintaining calcium homeostasis in the body by promoting the absorption of calcium from the gut and reabsorption of calcium from the kidneys.

The two main forms of hydroxycholecalciferols are 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D). 25-hydroxyvitamin D is the major circulating form of vitamin D in the body and is used as a clinical measure of vitamin D status. It is converted to 1,25-dihydroxyvitamin D in the kidneys by the enzyme 1α-hydroxylase, which is activated in response to low serum calcium or high phosphate levels.

1,25-dihydroxyvitamin D is the biologically active form of vitamin D and plays a critical role in regulating calcium homeostasis by increasing intestinal calcium absorption and promoting bone health. Deficiency in hydroxycholecalciferols can lead to rickets in children and osteomalacia or osteoporosis in adults, characterized by weakened bones and increased risk of fractures.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Uremia is not a disease itself, but rather it's a condition that results from the buildup of waste products in the blood due to kidney failure. The term "uremia" comes from the word "urea," which is one of the waste products that accumulate when the kidneys are not functioning properly.

In uremia, the kidneys are unable to effectively filter waste and excess fluids from the blood, leading to a variety of symptoms such as nausea, vomiting, fatigue, itching, mental confusion, and ultimately, if left untreated, can lead to coma and death. It is a serious condition that requires immediate medical attention, often involving dialysis or a kidney transplant to manage the underlying kidney dysfunction.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Jaw diseases refer to a variety of conditions that affect the temporomandibular joint (TMJ) and the surrounding muscles, as well as dental disorders that can impact the jaw. Some common examples include:

1. Temporomandibular Joint Disorders (TMD): These are problems with the TMJ and the muscles that control jaw movement. Symptoms may include pain, clicking or popping sounds, and limited movement of the jaw.

2. Osteonecrosis of the Jaw: This is a condition where bone in the jaw dies due to lack of blood supply. It can be caused by radiation therapy, chemotherapy, or certain medications.

3. Dental Cavities: These are holes in the teeth caused by bacteria. If left untreated, they can cause pain, infection, and damage to the jawbone.

4. Periodontal Disease: This is an infection of the gums and bones that support the teeth. Advanced periodontal disease can lead to loss of teeth and damage to the jawbone.

5. Jaw Fractures: These are breaks in the jawbone, often caused by trauma.

6. Oral Cancer: This is a type of cancer that starts in the mouth or throat. If not treated early, it can spread to the jaw and other parts of the body.

7. Cysts and Tumors: These are abnormal growths in the jawbone or surrounding tissues. While some are benign (non-cancerous), others can be malignant (cancerous).

8. Osteomyelitis: This is an infection of the bone, often occurring in the lower jaw. It can cause pain, swelling, and fever.

9. Oral Thrush: This is a fungal infection that causes white patches on the inside of the mouth. If left untreated, it can spread to the jaw and other parts of the body.

10. Sinusitis: Inflammation of the sinuses can sometimes cause pain in the upper jaw.

Collagen Type I is the most abundant form of collagen in the human body, found in various connective tissues such as tendons, ligaments, skin, and bones. It is a structural protein that provides strength and integrity to these tissues. Collagen Type I is composed of three alpha chains, two alpha-1(I) chains, and one alpha-2(I) chain, arranged in a triple helix structure. This type of collagen is often used in medical research and clinical applications, such as tissue engineering and regenerative medicine, due to its excellent mechanical properties and biocompatibility.

X-ray microtomography, often referred to as micro-CT, is a non-destructive imaging technique used to visualize and analyze the internal structure of objects with high spatial resolution. It is based on the principles of computed tomography (CT), where multiple X-ray images are acquired at different angles and then reconstructed into cross-sectional slices using specialized software. These slices can be further processed to create 3D visualizations, allowing researchers and clinicians to examine the internal structure and composition of samples in great detail. Micro-CT is widely used in materials science, biology, medicine, and engineering for various applications such as material characterization, bone analysis, and defect inspection.

The skull is the bony structure that encloses and protects the brain, the eyes, and the ears. It is composed of two main parts: the cranium, which contains the brain, and the facial bones. The cranium is made up of several fused flat bones, while the facial bones include the upper jaw (maxilla), lower jaw (mandible), cheekbones, nose bones, and eye sockets (orbits).

The skull also provides attachment points for various muscles that control chewing, moving the head, and facial expressions. Additionally, it contains openings for blood vessels, nerves, and the spinal cord to pass through. The skull's primary function is to protect the delicate and vital structures within it from injury and trauma.

The parietal bone is one of the four flat bones that form the skull's cranial vault, which protects the brain. There are two parietal bones in the skull, one on each side, located posterior to the frontal bone and temporal bone, and anterior to the occipital bone. Each parietal bone has a squamous part, which forms the roof and sides of the skull, and a smaller, wing-like portion called the mastoid process. The parietal bones contribute to the formation of the coronal and lambdoid sutures, which are fibrous joints that connect the bones in the skull.

Infectious bone diseases are a category of medical conditions that result from an infection or inflammation caused by microorganisms such as bacteria, viruses, fungi, or parasites. These infections can affect the bones directly or spread to the bones from nearby tissues. Some common infectious bone diseases include:

1. Osteomyelitis: This is a bone infection that can occur in any bone in the body, but it most commonly affects the long bones of the arms and legs, as well as the vertebrae in the spine. It is usually caused by bacterial infections, such as Staphylococcus aureus, but it can also be caused by fungal or viral infections.
2. Septic arthritis: This is an infection of the joints that can spread to the nearby bones. It is usually caused by bacteria, such as Streptococcus pneumoniae or Staphylococcus aureus.
3. Tuberculosis (TB): This is a bacterial infection that can affect any part of the body, including the bones and joints. When it affects the bones, it is called skeletal tuberculosis.
4. Brucellosis: This is a bacterial infection that can be transmitted to humans through contact with infected animals or contaminated food products. It can cause fever, fatigue, and joint pain, and can also affect the bones.
5. Coccidioidomycosis: This is a fungal infection that is common in the southwestern United States. It can cause respiratory symptoms, such as cough and shortness of breath, and can also spread to the bones and joints.
6. Echinococcosis: This is a parasitic infection that is caused by tapeworms. It can affect various organs in the body, including the bones and joints.

Infectious bone diseases can cause a range of symptoms, including pain, swelling, redness, warmth, and difficulty moving the affected limb. Treatment typically involves antibiotics or antifungal medications to eliminate the infection, as well as pain management and supportive care to help manage symptoms. In some cases, surgery may be necessary to remove infected tissue or drain abscesses.

Osteogenesis Imperfecta (OI), also known as brittle bone disease, is a group of genetic disorders that mainly affect the bones. It is characterized by bones that break easily, often from little or no apparent cause. This happens because the body produces an insufficient amount of collagen or poor quality collagen, which are crucial for the formation of healthy bones.

The severity of OI can vary greatly, even within the same family. Some people with OI have only a few fractures in their lifetime while others may have hundreds. Other symptoms can include blue or gray sclera (the white part of the eye), hearing loss, short stature, curved or bowed bones, loose joints, and a triangular face shape.

There are several types of OI, each caused by different genetic mutations. Most types of OI are inherited in an autosomal dominant pattern, meaning only one copy of the altered gene is needed to cause the condition. However, some types are inherited in an autosomal recessive pattern, which means that two copies of the altered gene must be present for the condition to occur.

There is no cure for OI, but treatment can help manage symptoms and prevent complications. Treatment may include medication to strengthen bones, physical therapy, bracing, and surgery.

Technetium compounds refer to chemical substances that contain the radioactive technetium (Tc) element. Technetium is a naturally rare element and does not have any stable isotopes, making it only exist in trace amounts in the Earth's crust. However, it can be produced artificially in nuclear reactors.

Technetium compounds are widely used in medical imaging as radioactive tracers in diagnostic procedures. The most common technetium compound is Technetium-99m (Tc-99m), which has a half-life of 6 hours and emits gamma rays that can be detected by external cameras. Tc-99m is often bound to various pharmaceuticals, such as methylene diphosphonate (MDP) or human serum albumin (HSA), to target specific organs or tissues in the body.

Technetium compounds are used in a variety of diagnostic procedures, including bone scans, lung perfusion scans, myocardial perfusion imaging, and brain scans. They provide valuable information about organ function, blood flow, and tissue metabolism, helping doctors diagnose various medical conditions such as cancer, heart disease, and bone fractures.

It is important to note that technetium compounds should only be used under the supervision of trained medical professionals due to their radioactive nature. Proper handling, administration, and disposal procedures must be followed to ensure safety and minimize radiation exposure.

Alendronate is a medication that falls under the class of bisphosphonates. It is commonly used in the treatment and prevention of osteoporosis in postmenopausal women and men, as well as in the management of glucocorticoid-induced osteoporosis and Paget's disease of bone.

Alendronate works by inhibiting the activity of osteoclasts, which are cells responsible for breaking down and reabsorbing bone tissue. By reducing the activity of osteoclasts, alendronate helps to slow down bone loss and increase bone density, thereby reducing the risk of fractures.

The medication is available in several forms, including tablets and oral solutions, and is typically taken once a week for osteoporosis prevention and treatment. It is important to follow the dosing instructions carefully, as improper administration can reduce the drug's effectiveness or increase the risk of side effects. Common side effects of alendronate include gastrointestinal symptoms such as heartburn, stomach pain, and nausea.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Alveolar bone loss refers to the breakdown and resorption of the alveolar process of the jawbone, which is the part of the jaw that contains the sockets of the teeth. This type of bone loss is often caused by periodontal disease, a chronic inflammation of the gums and surrounding tissues that can lead to the destruction of the structures that support the teeth.

In advanced stages of periodontal disease, the alveolar bone can become severely damaged or destroyed, leading to tooth loss. Alveolar bone loss can also occur as a result of other conditions, such as osteoporosis, trauma, or tumors. Dental X-rays and other imaging techniques are often used to diagnose and monitor alveolar bone loss. Treatment may include deep cleaning of the teeth and gums, medications, surgery, or tooth extraction in severe cases.

Bone cements are medical-grade materials used in orthopedic and trauma surgery to fill gaps between bone surfaces and implants, such as artificial joints or screws. They serve to mechanically stabilize the implant and provide a smooth, load-bearing surface. The two most common types of bone cement are:

1. Polymethylmethacrylate (PMMA) cement: This is a two-component system consisting of powdered PMMA and liquid methyl methacrylate monomer. When mixed together, they form a dough-like consistency that hardens upon exposure to air. PMMA cement has been widely used for decades in joint replacement surgeries, such as hip or knee replacements.
2. Calcium phosphate (CP) cement: This is a two-component system consisting of a powdered CP compound and an aqueous solution. When mixed together, they form a paste that hardens through a chemical reaction at body temperature. CP cement has lower mechanical strength compared to PMMA but demonstrates better biocompatibility, bioactivity, and the ability to resorb over time.

Both types of bone cements have advantages and disadvantages, and their use depends on the specific surgical indication and patient factors.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Ergocalciferols are a form of vitamin D, specifically vitamin D2, that is found in some plants. They are not produced by the human body and must be obtained through diet or supplementation. Ergocalciferols can be converted into an active form of vitamin D in the body, which is important for maintaining healthy bones and calcium levels. However, vitamin D3 (cholecalciferol), which is produced by the body in response to sunlight exposure, is generally considered to be more effective at raising and maintaining vitamin D levels in the body than ergocalciferols.

Postmenopausal osteoporosis is a specific type of osteoporosis that occurs in women after they have gone through menopause. It is defined as a skeletal disorder characterized by compromised bone strength, leading to an increased risk of fractures. In this condition, the decline in estrogen levels that occurs during menopause accelerates bone loss, resulting in a decrease in bone density and quality, which can lead to fragility fractures, particularly in the hips, wrists, and spine.

It's important to note that while postmenopausal osteoporosis is more common in women, men can also develop osteoporosis due to other factors such as aging, lifestyle choices, and medical conditions.

Trandil, also known as Trapidil, is a pharmaceutical drug that functions as a vasodilator. It works by relaxing the smooth muscles in blood vessel walls, which results in the widening of these vessels and an improvement in blood flow. This medication has been used in the treatment of various cardiovascular conditions such as hypertension (high blood pressure) and angina pectoris (chest pain due to reduced blood flow to the heart). It is important to note that Trapidil may not be widely available or commonly used, and its usage might be subject to specific regulations and prescriptions by medical professionals.

The Haversian system, also known as the osteon, is the basic unit of structure in compact bone. It was first described by Clopton Havers in 1691. The Haversian system consists of a central canal called the Haversian canal, which contains blood vessels and nerve fibers. Surrounding the Haversian canal are concentric lamellae, which are layers of mineralized matrix. These lamellae are composed of collagen fibrils arranged in a parallel pattern.

Lacunae, or small spaces, are located between the lamellae and contain osteocytes, which are bone cells that help maintain bone health by regulating the exchange of nutrients and waste products between the bone tissue and the bloodstream. Canaliculi, or tiny channels, connect the lacunae to one another and to the Haversian canal, allowing for the movement of fluids and the exchange of nutrients and waste products.

The Haversian system is responsible for the strength and resilience of compact bone. It allows for the distribution of mechanical stresses and strains throughout the bone tissue, helping to prevent fractures. The Haversian systems are interconnected with one another through Volkmann's canals, which are perpendicular to the Haversian canals and allow for the exchange of fluids and nutrients between adjacent Haversian systems.

A bone cyst is a fluid-filled sac that develops within a bone. It can be classified as either simple (unicameral) or aneurysmal. Simple bone cysts are more common in children and adolescents, and they typically affect the long bones of the arms or legs. These cysts are usually asymptomatic unless they become large enough to weaken the bone and cause a fracture. Aneurysmal bone cysts, on the other hand, can occur at any age and can affect any bone, but they are most common in the leg bones and spine. They are characterized by rapidly growing blood-filled sacs that can cause pain, swelling, and fractures.

Both types of bone cysts may be treated with observation, medication, or surgery depending on their size, location, and symptoms. It is important to note that while these cysts can be benign, they should still be evaluated and monitored by a healthcare professional to ensure proper treatment and prevention of complications.

Hypophosphatemia is a medical condition characterized by abnormally low levels of phosphate (phosphorus) in the blood, specifically below 2.5 mg/dL. Phosphate is an essential electrolyte that plays a crucial role in various bodily functions such as energy production, bone formation, and maintaining acid-base balance.

Hypophosphatemia can result from several factors, including malnutrition, vitamin D deficiency, alcoholism, hormonal imbalances, and certain medications. Symptoms of hypophosphatemia may include muscle weakness, fatigue, bone pain, confusion, and respiratory failure in severe cases. Treatment typically involves correcting the underlying cause and administering phosphate supplements to restore normal levels.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

Imidazoles are a class of heterocyclic organic compounds that contain a double-bonded nitrogen atom and two additional nitrogen atoms in the ring. They have the chemical formula C3H4N2. In a medical context, imidazoles are commonly used as antifungal agents. Some examples of imidazole-derived antifungals include clotrimazole, miconazole, and ketoconazole. These medications work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes, leading to increased permeability and death of the fungal cells. Imidazoles may also have anti-inflammatory, antibacterial, and anticancer properties.

"N-substituted Glycine" refers to a class of compounds where the amino group (-NH2) of the simplest amino acid, glycine (NH2-CH2-COOH), has been replaced by an organic group. The "N-substitution" means that the substituent group is attached to the nitrogen atom of the amino group.

The general structure of an N-substituted glycine can be represented as R-NH-CH2-COOH, where "R" denotes the organic substituent group. This class of compounds has various biological activities and is used in pharmaceuticals, agrochemicals, and other chemical industries.

Examples of N-substituted glycines include sarcosine (N-methylglycine), where R is a methyl group (-CH3); betaine (N,N,N-trimethylglycine), where R is a trimethylammonium group (-N(CH3)3); and various other N-substituted glycines with different organic substituents.

Medullary sponge kidney (MSK) is a congenital kidney disorder characterized by abnormal dilations of the collecting ducts within the medulla of one or both kidneys. These dilations give the appearance of a "sponge-like" structure, hence the name of the condition.

In MSK, the affected collecting ducts become filled with small cysts or sacs that can trap calcium and other minerals, leading to the formation of recurring kidney stones and chronic kidney disease in some cases. The disorder can also cause urinary tract infections (UTIs) and hematuria (blood in the urine).

MSK is usually asymptomatic and often discovered incidentally during imaging studies performed for other reasons. However, when symptoms do occur, they may include recurrent kidney stones, flank pain, UTIs, or hematuria. The exact cause of MSK remains unclear, but it appears to have a genetic component, as it can be associated with certain inherited syndromes such as Tuberous Sclerosis Complex and Ehlers-Danlos syndrome.

MSK is typically managed through preventative measures aimed at reducing the risk of kidney stone formation, such as increasing fluid intake, maintaining a healthy diet, and taking medications to lower urinary calcium levels if necessary. In some cases, surgery may be required to remove large or recurrent stones or to treat complications associated with the disorder.

Nephrolithiasis is a medical term that refers to the presence of stones or calculi in the kidney. These stones can form anywhere in the urinary tract, including the kidneys, ureters, bladder, and urethra. Nephrolithiasis is also commonly known as kidney stones.

Kidney stones are hard deposits made up of minerals and salts that crystallize in the urine. They can vary in size from tiny sand-like particles to larger pebble or even golf ball-sized masses. Kidney stones can cause pain, bleeding, and infection if they block the flow of urine through the urinary tract.

The formation of kidney stones is often associated with a variety of factors such as dehydration, high levels of calcium, oxalate, or uric acid in the urine, family history, obesity, and certain medical conditions like gout or inflammatory bowel disease. Treatment for nephrolithiasis depends on the size and location of the stone, as well as the severity of symptoms. Small stones may pass spontaneously with increased fluid intake, while larger stones may require medication, shock wave lithotripsy, or surgical removal.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

Mesenchymal Stromal Cells (MSCs) are a type of adult stem cells found in various tissues, including bone marrow, adipose tissue, and umbilical cord blood. They have the ability to differentiate into multiple cell types, such as osteoblasts, chondrocytes, and adipocytes, under specific conditions. MSCs also possess immunomodulatory properties, making them a promising tool in regenerative medicine and therapeutic strategies for various diseases, including autoimmune disorders and tissue injuries. It is important to note that the term "Mesenchymal Stem Cells" has been replaced by "Mesenchymal Stromal Cells" in the scientific community to better reflect their biological characteristics and potential functions.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Monoclonal gammopathy of undetermined significance (MGUS) is a medical condition characterized by the presence of a monoclonal protein, or M-protein, in the blood or urine, but without any signs or symptoms of related disorders. The M-protein is produced by a single clone of plasma cells, which are a type of white blood cell found in the bone marrow.

In MGUS, the level of M-protein is typically low (less than 3 grams per deciliter), and there are no signs of damage to organs such as the bones, kidneys, or nervous system. However, people with MGUS have a higher risk of developing certain related conditions, such as multiple myeloma, amyloidosis, or lymphoplasmacytic lymphoma, compared to those without MGUP.

MGUS is usually detected through routine blood or urine tests and is typically asymptomatic. However, in some cases, people with MGUS may experience symptoms such as fatigue, bone pain, or recurrent infections. If these symptoms occur, further testing may be necessary to determine if MGUS has progressed to a more serious condition.

It's important to note that MGUS is not a cancer itself, but rather a potential precursor to certain types of cancer. Regular monitoring with blood or urine tests and physical examinations is recommended for people diagnosed with MGUS to monitor for any changes that may indicate progression to a more serious condition.

The spine, also known as the vertebral column, is a complex structure in the human body that is part of the axial skeleton. It is composed of 33 individual vertebrae (except in some people where there are fewer due to fusion of certain vertebrae), intervertebral discs, facet joints, ligaments, muscles, and nerves.

The spine has several important functions:

1. Protection: The spine protects the spinal cord, which is a major component of the nervous system, by enclosing it within a bony canal.
2. Support: The spine supports the head and upper body, allowing us to maintain an upright posture and facilitating movement of the trunk and head.
3. Movement: The spine enables various movements such as flexion (bending forward), extension (bending backward), lateral flexion (bending sideways), and rotation (twisting).
4. Weight-bearing: The spine helps distribute weight and pressure evenly across the body, reducing stress on individual vertebrae and other structures.
5. Blood vessel and nerve protection: The spine protects vital blood vessels and nerves that pass through it, including the aorta, vena cava, and spinal nerves.

The spine is divided into five regions: cervical (7 vertebrae), thoracic (12 vertebrae), lumbar (5 vertebrae), sacrum (5 fused vertebrae), and coccyx (4 fused vertebrae, also known as the tailbone). Each region has unique characteristics that allow for specific functions and adaptations to the body's needs.

Femoral neoplasms refer to abnormal growths or tumors that develop in the femur, which is the long thigh bone in the human body. These neoplasms can be benign (non-cancerous) or malignant (cancerous). Benign femoral neoplasms are slow-growing and rarely spread to other parts of the body, while malignant neoplasms are aggressive and can invade nearby tissues and organs, as well as metastasize (spread) to distant sites.

There are various types of femoral neoplasms, including osteochondromas, enchondromas, chondrosarcomas, osteosarcomas, and Ewing sarcomas, among others. The specific type of neoplasm is determined by the cell type from which it arises and its behavior.

Symptoms of femoral neoplasms may include pain, swelling, stiffness, or weakness in the thigh, as well as a palpable mass or limited mobility. Diagnosis typically involves imaging studies such as X-rays, CT scans, or MRI, as well as biopsy to determine the type and grade of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches, depending on the type, size, location, and stage of the neoplasm.

Parathyroidectomy is a surgical procedure for the removal of one or more of the parathyroid glands. These glands are located in the neck and are responsible for producing parathyroid hormone (PTH), which helps regulate the levels of calcium and phosphorus in the body.

Parathyroidectomy is typically performed to treat conditions such as hyperparathyroidism, where one or more of the parathyroid glands become overactive and produce too much PTH. This can lead to high levels of calcium in the blood, which can cause symptoms such as weakness, fatigue, bone pain, kidney stones, and mental confusion.

There are different types of parathyroidectomy procedures, including:

* Partial parathyroidectomy: removal of one or more, but not all, of the parathyroid glands.
* Total parathyroidectomy: removal of all four parathyroid glands.
* Subtotal parathyroidectomy: removal of three and a half of the four parathyroid glands, leaving a small portion of one gland to prevent hypoparathyroidism (a condition where the body produces too little PTH).

The choice of procedure depends on the underlying condition and its severity. After the surgery, patients may need to have their calcium levels monitored and may require calcium and vitamin D supplements to maintain normal calcium levels in the blood.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

The frontal bone is the bone that forms the forehead and the upper part of the eye sockets (orbits) in the skull. It is a single, flat bone that has a prominent ridge in the middle called the superior sagittal sinus, which contains venous blood. The frontal bone articulates with several other bones, including the parietal bones at the sides and back, the nasal bones in the center of the face, and the zygomatic (cheek) bones at the lower sides of the orbits.

Core Binding Factor Alpha 1 Subunit, also known as CBF-A1 or RUNX1, is a protein that plays a crucial role in hematopoiesis, which is the process of blood cell development. It is a member of the core binding factor (CBF) complex, which regulates gene transcription and is essential for the differentiation and maturation of hematopoietic stem cells into mature blood cells.

The CBF complex consists of three subunits: CBF-A, CBF-B, and a histone deacetylase (HDAC). The CBF-A subunit can have several isoforms, including CBF-A1, which is encoded by the RUNX1 gene. Mutations in the RUNX1 gene have been associated with various hematological disorders, such as acute myeloid leukemia (AML), familial platelet disorder with propensity to develop AML, and thrombocytopenia with absent radii syndrome.

CBF-A1/RUNX1 functions as a transcription factor that binds to DNA at specific sequences called core binding factors, thereby regulating the expression of target genes involved in hematopoiesis. Proper regulation of these genes is essential for normal blood cell development and homeostasis.

Osteomyelitis is a medical condition characterized by an infection that involves the bone or the bone marrow. It can occur as a result of a variety of factors, including bacterial or fungal infections that spread to the bone from another part of the body, or direct infection of the bone through trauma or surgery.

The symptoms of osteomyelitis may include pain and tenderness in the affected area, fever, chills, fatigue, and difficulty moving the affected limb. In some cases, there may also be redness, swelling, and drainage from the infected area. The diagnosis of osteomyelitis typically involves imaging tests such as X-rays, CT scans, or MRI scans, as well as blood tests and cultures to identify the underlying cause of the infection.

Treatment for osteomyelitis usually involves a combination of antibiotics or antifungal medications to eliminate the infection, as well as pain management and possibly surgical debridement to remove infected tissue. In severe cases, hospitalization may be necessary to monitor and manage the condition.

Acid phosphatase is a type of enzyme that is found in various tissues and organs throughout the body, including the prostate gland, red blood cells, bone, liver, spleen, and kidneys. This enzyme plays a role in several biological processes, such as bone metabolism and the breakdown of molecules like nucleotides and proteins.

Acid phosphatase is classified based on its optimum pH level for activity. Acid phosphatases have an optimal activity at acidic pH levels (below 7.0), while alkaline phosphatases have an optimal activity at basic or alkaline pH levels (above 7.0).

In clinical settings, measuring the level of acid phosphatase in the blood can be useful as a tumor marker for prostate cancer. Elevated acid phosphatase levels may indicate the presence of metastatic prostate cancer or disease progression. However, it is important to note that acid phosphatase is not specific to prostate cancer and can also be elevated in other conditions, such as bone diseases, liver disorders, and some benign conditions. Therefore, acid phosphatase should be interpreted in conjunction with other diagnostic tests and clinical findings for a more accurate diagnosis.

Bone Morphogenetic Protein 7 (BMP-7) is a growth factor belonging to the transforming growth factor-beta (TGF-β) superfamily. It plays crucial roles in the development and maintenance of various tissues, including bones, cartilages, and kidneys. In bones, BMP-7 stimulates the differentiation of mesenchymal stem cells into osteoblasts, which are bone-forming cells, thereby promoting bone formation and regeneration. It also has potential therapeutic applications in the treatment of various musculoskeletal disorders, such as fracture healing, spinal fusion, and osteoporosis.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Bone marrow diseases, also known as hematologic disorders, are conditions that affect the production and function of blood cells in the bone marrow. The bone marrow is the spongy tissue inside bones where all blood cells are produced. There are various types of bone marrow diseases, including:

1. Leukemia: A cancer of the blood-forming tissues, including the bone marrow. Leukemia causes the body to produce large numbers of abnormal white blood cells, which can crowd out healthy blood cells and impair their function.
2. Lymphoma: A cancer that starts in the lymphatic system, which is part of the immune system. Lymphoma can affect the bone marrow and cause an overproduction of abnormal white blood cells.
3. Multiple myeloma: A cancer of the plasma cells, a type of white blood cell found in the bone marrow. Multiple myeloma causes an overproduction of abnormal plasma cells, which can lead to bone pain, fractures, and other complications.
4. Aplastic anemia: A condition in which the bone marrow does not produce enough new blood cells. This can lead to symptoms such as fatigue, weakness, and an increased risk of infection.
5. Myelodysplastic syndromes (MDS): A group of disorders in which the bone marrow does not produce enough healthy blood cells. MDS can lead to anemia, infections, and bleeding.
6. Myeloproliferative neoplasms (MPNs): A group of disorders in which the bone marrow produces too many abnormal white or red blood cells, or platelets. MPNs can lead to symptoms such as fatigue, itching, and an increased risk of blood clots.

Treatment for bone marrow diseases depends on the specific condition and its severity. Treatment options may include chemotherapy, radiation therapy, stem cell transplantation, or targeted therapies that target specific genetic mutations.

Dietary calcium is a type of calcium that is obtained through food sources. Calcium is an essential mineral that is necessary for many bodily functions, including bone formation and maintenance, muscle contraction, nerve impulse transmission, and blood clotting.

The recommended daily intake of dietary calcium varies depending on age, sex, and other factors. For example, the recommended daily intake for adults aged 19-50 is 1000 mg, while women over 50 and men over 70 require 1200 mg per day.

Good dietary sources of calcium include dairy products such as milk, cheese, and yogurt; leafy green vegetables like broccoli and kale; fortified cereals and juices; and certain types of fish, such as salmon and sardines. It is important to note that some foods can inhibit the absorption of calcium, including oxalates found in spinach and rhubarb, and phytates found in whole grains and legumes.

If a person is unable to get enough calcium through their diet, they may need to take calcium supplements. However, it is important to talk to a healthcare provider before starting any new supplement regimen, as excessive intake of calcium can lead to negative health effects.

Radionuclide imaging, also known as nuclear medicine, is a medical imaging technique that uses small amounts of radioactive material, called radionuclides or radiopharmaceuticals, to diagnose and treat various diseases and conditions. The radionuclides are introduced into the body through injection, inhalation, or ingestion and accumulate in specific organs or tissues. A special camera then detects the gamma rays emitted by these radionuclides and converts them into images that provide information about the structure and function of the organ or tissue being studied.

Radionuclide imaging can be used to evaluate a wide range of medical conditions, including heart disease, cancer, neurological disorders, gastrointestinal disorders, and bone diseases. The technique is non-invasive and generally safe, with minimal exposure to radiation. However, it should only be performed by qualified healthcare professionals in accordance with established guidelines and regulations.

The lumbar vertebrae are the five largest and strongest vertebrae in the human spine, located in the lower back region. They are responsible for bearing most of the body's weight and providing stability during movement. The lumbar vertebrae have a characteristic shape, with a large body in the front, which serves as the main weight-bearing structure, and a bony ring in the back, formed by the pedicles, laminae, and processes. This ring encloses and protects the spinal cord and nerves. The lumbar vertebrae are numbered L1 to L5, starting from the uppermost one. They allow for flexion, extension, lateral bending, and rotation movements of the trunk.

Hyperphosphatemia is a medical condition characterized by an excessively high level of phosphate (a form of the chemical element phosphorus) in the blood. Phosphate is an important component of various biological molecules, such as DNA, RNA, and ATP, and it plays a crucial role in many cellular processes, including energy metabolism and signal transduction.

In healthy individuals, the concentration of phosphate in the blood is tightly regulated within a narrow range to maintain normal physiological functions. However, when the phosphate level rises above this range (typically defined as a serum phosphate level greater than 4.5 mg/dL or 1.46 mmol/L), it can lead to hyperphosphatemia.

Hyperphosphatemia can result from various underlying medical conditions, including:

* Kidney dysfunction: The kidneys are responsible for filtering excess phosphate out of the blood and excreting it in the urine. When the kidneys fail to function properly, they may be unable to remove enough phosphate, leading to its accumulation in the blood.
* Hypoparathyroidism: The parathyroid glands produce a hormone called parathyroid hormone (PTH), which helps regulate calcium and phosphate levels in the body. In hypoparathyroidism, the production of PTH is insufficient, leading to an increase in phosphate levels.
* Hyperparathyroidism: In contrast, excessive production of PTH can also lead to hyperphosphatemia by increasing the release of phosphate from bones and decreasing its reabsorption in the kidneys.
* Excessive intake of phosphate-rich foods or supplements: Consuming large amounts of phosphate-rich foods, such as dairy products, nuts, and legumes, or taking phosphate supplements can raise blood phosphate levels.
* Tumor lysis syndrome: This is a complication that can occur after the treatment of certain types of cancer, particularly hematological malignancies. The rapid destruction of cancer cells releases large amounts of intracellular contents, including phosphate, into the bloodstream, leading to hyperphosphatemia.
* Rhabdomyolysis: This is a condition in which muscle tissue breaks down, releasing its contents, including phosphate, into the bloodstream. It can be caused by various factors, such as trauma, infection, or drug toxicity.

Hyperphosphatemia can have several adverse effects on the body, including calcification of soft tissues, kidney damage, and metabolic disturbances. Therefore, it is essential to diagnose and manage hyperphosphatemia promptly to prevent complications. Treatment options may include dietary modifications, medications that bind phosphate in the gastrointestinal tract, and dialysis in severe cases.

Phosphorus metabolism disorders refer to a group of conditions that affect the body's ability to properly regulate the levels and utilization of phosphorus. Phosphorus is an essential mineral that plays a critical role in many biological processes, including energy production, bone formation, and nerve function.

Disorders of phosphorus metabolism can result from genetic defects, kidney dysfunction, vitamin D deficiency, or other medical conditions. These disorders can lead to abnormal levels of phosphorus in the blood, which can cause a range of symptoms, including muscle weakness, bone pain, seizures, and respiratory failure.

Examples of phosphorus metabolism disorders include:

1. Hypophosphatemia: This is a condition characterized by low levels of phosphorus in the blood. It can be caused by various factors, such as malnutrition, vitamin D deficiency, and kidney dysfunction.
2. Hyperphosphatemia: This is a condition characterized by high levels of phosphorus in the blood. It can be caused by kidney failure, tumor lysis syndrome, and certain medications.
3. Hereditary hypophosphatemic rickets: This is a genetic disorder that affects the body's ability to regulate vitamin D and phosphorus metabolism. It can lead to weakened bones and skeletal deformities.
4. Oncogenic osteomalacia: This is a rare condition that occurs when tumors produce substances that interfere with phosphorus metabolism, leading to bone pain and weakness.

Treatment for phosphorus metabolism disorders depends on the underlying cause of the disorder and may include dietary changes, supplements, medications, or surgery.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

PHEX (Phosphate Regulating Endopeptidase Homolog, X-Linked) is a gene that encodes for an enzyme called phosphate regulating neutral endopeptidase. This enzyme is primarily expressed in osteoblasts, which are cells responsible for bone formation.

The main function of the PHEX protein is to regulate the levels of a hormone called fibroblast growth factor 23 (FGF23) by breaking it down. FGF23 plays an essential role in maintaining phosphate homeostasis by regulating its reabsorption in the kidneys and its absorption from the gut.

Inactivating mutations in the PHEX gene can lead to X-linked hypophosphatemia (XLH), a genetic disorder characterized by low levels of phosphate in the blood, impaired bone mineralization, and rickets. In XLH, the production of FGF23 is increased due to the lack of regulation by PHEX, leading to excessive excretion of phosphate in the urine and decreased absorption from the gut. This results in hypophosphatemia, impaired bone mineralization, and other skeletal abnormalities.

The cellular microenvironment refers to the sum of all physical and biochemical factors in the immediate vicinity of a cell that influence its behavior and function. This includes elements such as:

1. Extracellular matrix (ECM): The non-cellular component that provides structural support, anchorage, and biochemical cues to cells through various molecules like collagens, fibronectin, and laminins.
2. Soluble factors: These include growth factors, hormones, cytokines, and chemokines that bind to cell surface receptors and modulate cellular responses.
3. Neighboring cells: The types and states of nearby cells can significantly impact a cell's behavior through direct contact, paracrine signaling, or competition for resources.
4. Physical conditions: Variables such as temperature, pH, oxygen tension, and mechanical stresses (e.g., stiffness, strain) also contribute to the cellular microenvironment.
5. Biochemical gradients: Concentration gradients of molecules within the ECM or surrounding fluid can guide cell migration, differentiation, and other responses.

Collectively, these factors interact to create a complex and dynamic milieu that regulates various aspects of cellular physiology, including proliferation, differentiation, survival, and motility. Understanding the cellular microenvironment is crucial for developing effective therapies and tissue engineering strategies in regenerative medicine and cancer treatment.

Cathepsin K is a proteolytic enzyme, which belongs to the family of papain-like cysteine proteases. It is primarily produced by osteoclasts, which are specialized cells responsible for bone resorption. Cathepsin K plays a crucial role in the degradation and remodeling of the extracellular matrix, particularly in bone tissue.

This enzyme is capable of breaking down various proteins, including collagen, elastin, and proteoglycans, which are major components of the bone matrix. By doing so, cathepsin K helps osteoclasts to dissolve and remove mineralized and non-mineralized bone matrix during the process of bone resorption.

Apart from its function in bone metabolism, cathepsin K has also been implicated in several pathological conditions, such as osteoporosis, rheumatoid arthritis, and tumor metastasis to bones. Inhibitors of cathepsin K are being investigated as potential therapeutic agents for the treatment of these disorders.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Tumor Necrosis Factor (TNF) Receptors are cell surface receptors that bind to tumor necrosis factor cytokines. They play crucial roles in the regulation of a variety of immune cell functions, including inflammation, immunity, and cell survival or death (apoptosis).

There are two major types of TNF receptors: TNFR1 (also known as p55 or CD120a) and TNFR2 (also known as p75 or CD120b). TNFR1 is widely expressed in most tissues, while TNFR2 has a more restricted expression pattern and is mainly found on immune cells.

TNF receptors have an intracellular domain called the death domain, which can trigger signaling pathways leading to apoptosis when activated by TNF ligands. However, they can also activate other signaling pathways that promote cell survival, differentiation, and inflammation. Dysregulation of TNF receptor signaling has been implicated in various diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.

Aurintricarboxylic acid (ATA) is a polyphenolic compound with antioxidant and anti-inflammatory properties. Its chemical formula is C14H8O8. It is known to inhibit several enzymes, including lipoxygenases, cyclooxygenases, and phospholipases, and has been studied for its potential therapeutic effects in various diseases such as cancer, neurodegenerative disorders, and cardiovascular diseases. However, more research is needed to fully understand its mechanisms of action and clinical applications.

Primary hyperparathyroidism is a medical condition characterized by excessive secretion of parathyroid hormone (PTH) from one or more of the parathyroid glands in the neck. These glands are normally responsible for regulating calcium levels in the body by releasing PTH, which helps to maintain an appropriate balance of calcium and phosphate in the bloodstream.

In primary hyperparathyroidism, the parathyroid gland(s) become overactive and produce too much PTH, leading to elevated calcium levels (hypercalcemia) in the blood. This can result in a variety of symptoms, such as fatigue, weakness, bone pain, kidney stones, and cognitive impairment, although some individuals may not experience any symptoms at all.

The most common cause of primary hyperparathyroidism is a benign tumor called an adenoma that develops in one or more of the parathyroid glands. In rare cases, primary hyperparathyroidism can be caused by cancer of the parathyroid gland(s) or by enlargement of all four glands (four-gland hyperplasia). Treatment typically involves surgical removal of the affected parathyroid gland(s), which is usually curative.

Maxillary diseases refer to conditions that affect the maxilla, which is the upper bone of the jaw. This bone plays an essential role in functions such as biting, chewing, and speaking, and also forms the upper part of the oral cavity, houses the upper teeth, and supports the nose and the eyes.

Maxillary diseases can be caused by various factors, including infections, trauma, tumors, congenital abnormalities, or systemic conditions. Some common maxillary diseases include:

1. Maxillary sinusitis: Inflammation of the maxillary sinuses, which are air-filled cavities located within the maxilla, can cause symptoms such as nasal congestion, facial pain, and headaches.
2. Periodontal disease: Infection and inflammation of the tissues surrounding the teeth, including the gums and the alveolar bone (which is part of the maxilla), can lead to tooth loss and other complications.
3. Maxillary fractures: Trauma to the face can result in fractures of the maxilla, which can cause pain, swelling, and difficulty breathing or speaking.
4. Maxillary cysts and tumors: Abnormal growths in the maxilla can be benign or malignant and may require surgical intervention.
5. Oral cancer: Cancerous lesions in the oral cavity, including the maxilla, can cause pain, swelling, and difficulty swallowing or speaking.

Treatment for maxillary diseases depends on the specific condition and its severity. Treatment options may include antibiotics, surgery, radiation therapy, or chemotherapy. Regular dental check-ups and good oral hygiene practices can help prevent many maxillary diseases.

'Leg bones' is a general term that refers to the bones in the leg portion of the lower extremity. In humans, this would specifically include:

1. Femur: This is the thigh bone, the longest and strongest bone in the human body. It connects the hip bone to the knee.

2. Patella: This is the kneecap, a small triangular bone located at the front of the knee joint.

3. Tibia and Fibula: These are the bones of the lower leg. The tibia, or shin bone, is the larger of the two and bears most of the body's weight. It connects the knee to the ankle. The fibula, a slender bone, runs parallel to the tibia on its outside.

Please note that in medical terminology, 'leg bones' doesn't include the bones of the foot (tarsal bones, metatarsal bones, and phalanges), which are often collectively referred to as the 'foot bones'.

Renal tubular acidosis (RTA) is a medical condition that occurs when the kidneys are unable to properly excrete acid into the urine, leading to an accumulation of acid in the bloodstream. This results in a state of metabolic acidosis.

There are several types of RTA, but renal tubular acidosis type 1 (also known as distal RTA) is characterized by a defect in the ability of the distal tubules to acidify the urine, leading to an inability to lower the pH of the urine below 5.5, even in the face of metabolic acidosis. This results in a persistently alkaline urine, which can lead to calcium phosphate stones and bone demineralization.

Type 1 RTA is often caused by inherited genetic defects, but it can also be acquired due to various kidney diseases, drugs, or autoimmune disorders. Symptoms of type 1 RTA may include fatigue, weakness, muscle cramps, decreased appetite, and vomiting. Treatment typically involves alkali therapy to correct the acidosis and prevent complications.

Bone marrow neoplasms are a type of cancer that originates in the bone marrow, which is the spongy tissue inside bones where blood cells are produced. These neoplasms can be divided into two main categories: hematologic (or liquid) malignancies and solid tumors.

Hematologic malignancies include leukemias, lymphomas, and multiple myeloma. Leukemias are cancers of the white blood cells, which normally fight infections. In leukemia, the bone marrow produces abnormal white blood cells that do not function properly, leading to an increased risk of infection, anemia, and bleeding.

Lymphomas are cancers of the lymphatic system, which helps to fight infections and remove waste from the body. Lymphoma can affect the lymph nodes, spleen, thymus gland, and bone marrow. There are two main types of lymphoma: Hodgkin's lymphoma and non-Hodgkin's lymphoma.

Multiple myeloma is a cancer of the plasma cells, which are a type of white blood cell that produces antibodies to help fight infections. In multiple myeloma, abnormal plasma cells accumulate in the bone marrow and produce large amounts of abnormal antibodies, leading to bone damage, anemia, and an increased risk of infection.

Solid tumors of the bone marrow are rare and include conditions such as chordomas, Ewing sarcomas, and osteosarcomas. These cancers originate in the bones themselves or in other tissues that support the bones, but they can also spread to the bone marrow.

Treatment for bone marrow neoplasms depends on the type and stage of cancer, as well as the patient's overall health. Treatment options may include chemotherapy, radiation therapy, stem cell transplantation, targeted therapy, or a combination of these approaches.

A bone marrow examination is a medical procedure in which a sample of bone marrow, the spongy tissue inside bones where blood cells are produced, is removed and examined. This test is used to diagnose or monitor various conditions affecting blood cell production, such as infections, leukemia, anemia, and other disorders of the bone marrow.

The sample is typically taken from the hipbone (iliac crest) or breastbone (sternum) using a special needle. The procedure may be done under local anesthesia or with sedation to minimize discomfort. Once the sample is obtained, it is examined under a microscope for the presence of abnormal cells, changes in cell size and shape, and other characteristics that can help diagnose specific conditions. Various stains, cultures, and other tests may also be performed on the sample to provide additional information.

Bone marrow examination is an important diagnostic tool in hematology and oncology, as it allows for a detailed assessment of blood cell production and can help guide treatment decisions for patients with various blood disorders.

A femoral fracture is a medical term that refers to a break in the thigh bone, which is the longest and strongest bone in the human body. The femur extends from the hip joint to the knee joint and is responsible for supporting the weight of the upper body and allowing movement of the lower extremity. Femoral fractures can occur due to various reasons such as high-energy trauma, low-energy trauma in individuals with weak bones (osteoporosis), or as a result of a direct blow to the thigh.

Femoral fractures can be classified into different types based on their location, pattern, and severity. Some common types of femoral fractures include:

1. Transverse fracture: A break that occurs straight across the bone.
2. Oblique fracture: A break that occurs at an angle across the bone.
3. Spiral fracture: A break that occurs in a helical pattern around the bone.
4. Comminuted fracture: A break that results in multiple fragments of the bone.
5. Open or compound fracture: A break in which the bone pierces through the skin.
6. Closed or simple fracture: A break in which the bone does not pierce through the skin.

Femoral fractures can cause severe pain, swelling, bruising, and difficulty walking or bearing weight on the affected leg. Diagnosis typically involves a physical examination, medical history, and imaging tests such as X-rays or CT scans. Treatment may involve surgical intervention, including the use of metal rods, plates, or screws to stabilize the bone, followed by rehabilitation and physical therapy to restore mobility and strength.

The metacarpal bones are the long slender bones that make up the middle part of the hand, located between the carpals (wrist bones) and the phalanges (finger bones). There are five metacarpal bones in total, with one for each finger and thumb. Each bone has a base attached to the carpals, a shaft, and a head that connects to the phalanges. The metacarpal bones play a crucial role in hand function, providing stability and support during gripping and manipulation movements.

Boronic acids are organic compounds that contain a boron atom bonded to two carbon atoms and a hydroxyl group. The general formula for a boronic acid is RB(OH)2, where R represents a organic group. Boronic acids are important reagents in organic synthesis and have been used in the preparation of pharmaceuticals, agrochemicals, and materials science. They can also form stable complexes with many diols and phenols, which is the basis for their use in the detection and quantification of sugars, as well as in the design of boronic acid-based drugs that target diseases such as cancer and diabetes.

Vitamin D deficiency is a condition characterized by insufficient levels of vitamin D in the body, typically defined as a serum 25-hydroxyvitamin D level below 20 nanograms per milliliter (ng/mL) or 50 nanomoles per liter (nmol/L). Vitamin D is an essential fat-soluble vitamin that plays a crucial role in maintaining healthy bones and teeth by regulating the absorption of calcium and phosphorus. It also has various other functions in the body, including modulation of cell growth, immune function, and neuromuscular activity.

Vitamin D can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements, but the majority of vitamin D is produced in the skin upon exposure to sunlight. Deficiency can occur due to inadequate dietary intake, insufficient sun exposure, or impaired absorption or metabolism of vitamin D.

Risk factors for vitamin D deficiency include older age, darker skin tone, obesity, malabsorption syndromes, liver or kidney disease, and certain medications. Symptoms of vitamin D deficiency can be subtle and nonspecific, such as fatigue, bone pain, muscle weakness, and mood changes. However, prolonged deficiency can lead to more severe health consequences, including osteoporosis, osteomalacia, and increased risk of fractures.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Hypophosphatasia is a rare inherited metabolic disorder characterized by defective bone mineralization due to deficiency of alkaline phosphatase, an enzyme that is crucial for the formation of strong and healthy bones. This results in skeletal abnormalities, including softening and weakening of the bones (rickets in children and osteomalacia in adults), premature loss of teeth, and an increased risk of fractures.

The disorder can vary widely in severity, from mild cases with few symptoms to severe forms that can lead to disability or even be life-threatening in infancy. Hypophosphatasia is caused by mutations in the ALPL gene, which provides instructions for making the tissue non-specific alkaline phosphatase (TNSALP) enzyme. Inheritance is autosomal recessive, meaning an individual must inherit two copies of the mutated gene (one from each parent) to have the condition.

Bone Morphogenetic Protein 4 (BMP-4) is a growth factor that belongs to the transforming growth factor-beta (TGF-β) superfamily. It plays crucial roles in various biological processes, including embryonic development, cell growth, and differentiation. In the skeletal system, BMP-4 stimulates the formation of bone and cartilage by inducing the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts. It also regulates the maintenance and repair of bones throughout life. An imbalance in BMP-4 signaling has been associated with several skeletal disorders, such as heterotopic ossification and osteoarthritis.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

The metatarsal bones are a group of five long bones in the foot that connect the tarsal bones in the hindfoot to the phalanges in the forefoot. They are located between the tarsal and phalangeal bones and are responsible for forming the arch of the foot and transmitting weight-bearing forces during walking and running. The metatarsal bones are numbered 1 to 5, with the first metatarsal being the shortest and thickest, and the fifth metatarsal being the longest and thinnest. Each metatarsal bone has a base, shaft, and head, and they articulate with each other and with the surrounding bones through joints. Any injury or disorder affecting the metatarsal bones can cause pain and difficulty in walking or standing.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

The tarsal bones are a group of seven articulating bones in the foot that make up the posterior portion of the foot, located between the talus bone of the leg and the metatarsal bones of the forefoot. They play a crucial role in supporting the body's weight and facilitating movement.

There are three categories of tarsal bones:

1. Proximal row: This includes the talus, calcaneus (heel bone), and navicular bones. The talus articulates with the tibia and fibula to form the ankle joint, while the calcaneus is the largest tarsal bone and forms the heel. The navicular bone is located between the talus and the cuneiform bones.

2. Intermediate row: This includes the cuboid bone, which is located laterally (on the outside) to the navicular bone and articulates with the calcaneus, fourth and fifth metatarsals, and the cuneiform bones.

3. Distal row: This includes three cuneiform bones - the medial, intermediate, and lateral cuneiforms - which are located between the navicular bone proximally and the first, second, and third metatarsal bones distally. The medial cuneiform is the largest of the three and articulates with the navicular bone, first metatarsal, and the intermediate cuneiform. The intermediate cuneiform articulates with the medial and lateral cuneiforms and the second metatarsal. The lateral cuneiform articulates with the intermediate cuneiform, cuboid, and fourth metatarsal.

Together, these bones form a complex network of joints that allow for movement and stability in the foot. Injuries or disorders affecting the tarsal bones can result in pain, stiffness, and difficulty walking.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

CCR1 (C-C chemokine receptor type 1) is a type of protein found on the surface of certain immune cells, including monocytes, neutrophils, and dendritic cells. It belongs to the family of G protein-coupled receptors that play a crucial role in the immune system's response to infection and inflammation.

CCR1 receptors bind to specific chemokines, which are small signaling proteins that help regulate the movement of immune cells throughout the body. When a chemokine binds to the CCR1 receptor, it triggers a series of intracellular signals that ultimately lead to the activation and migration of immune cells to the site of infection or inflammation.

CCR1 has been implicated in various physiological and pathological processes, including the development of atherosclerosis, rheumatoid arthritis, multiple sclerosis, and certain types of cancer. As such, CCR1 has become a target for the development of new therapies aimed at modulating the immune response in these conditions.

Parathyroid Hormone-Related Protein (PTHrP) is a protein that is encoded by the PTHLH gene in humans. It is structurally similar to parathyroid hormone (PTH) and was initially identified due to its role in humoral hypercalcemia of malignancy, a condition characterized by high levels of calcium in the blood caused by certain types of cancer.

PTHrP has a variety of functions in the body, including regulation of calcium and phosphate homeostasis, cell growth and differentiation, and bone metabolism. It acts through a specific G protein-coupled receptor called the PTH/PTHrP receptor, which is found in many tissues throughout the body, including bone, kidney, and cartilage.

In contrast to PTH, which is primarily produced by the parathyroid glands and regulates calcium levels in the blood, PTHrP is produced by many different types of cells throughout the body. Its expression is regulated in a tissue-specific manner, and its functions can vary depending on the context in which it is produced.

Overall, PTHrP plays important roles in normal physiology as well as in various disease states, including cancer, bone disorders, and developmental abnormalities.

Dihydroxycholecalciferols are a form of calcifediol, which is a type of secosteroid hormone that is produced in the body as a result of the exposure to sunlight and the dietary intake of vitamin D. The term "dihydroxycholecalciferols" specifically refers to the compounds 1,25-dihydroxycholecalciferol (calcitriol) and 24,25-dihydroxycholecalciferol. These compounds are produced in the body through a series of chemical reactions involving enzymes that convert vitamin D into its active forms.

Calcitriol is the biologically active form of vitamin D and plays an important role in regulating the levels of calcium and phosphorus in the blood, as well as promoting the absorption of these minerals from the gut. It also has other functions, such as modulating cell growth and immune function.

24,25-dihydroxycholecalciferol is a less active form of vitamin D that is produced in larger quantities than calcitriol. Its exact role in the body is not well understood, but it is thought to have some effects on calcium metabolism and may play a role in regulating the levels of other hormones in the body.

Dihydroxycholecalciferols are typically measured in the blood as part of an evaluation for vitamin D deficiency or to monitor treatment with vitamin D supplements. Low levels of these compounds can indicate a deficiency, while high levels may indicate excessive intake or impaired metabolism.

Technetium is not a medical term itself, but it is a chemical element with the symbol Tc and atomic number 43. However, in the field of nuclear medicine, which is a branch of medicine that uses small amounts of radioactive material to diagnose or treat diseases, Technetium-99m (a radioisotope of technetium) is commonly used for various diagnostic procedures.

Technetium-99m is a metastable nuclear isomer of technetium-99, and it emits gamma rays that can be detected outside the body to create images of internal organs or tissues. It has a short half-life of about 6 hours, which makes it ideal for diagnostic imaging since it decays quickly and reduces the patient's exposure to radiation.

Technetium-99m is used in a variety of medical procedures, such as bone scans, lung scans, heart scans, liver-spleen scans, brain scans, and kidney scans, among others. It can be attached to different pharmaceuticals or molecules that target specific organs or tissues, allowing healthcare professionals to assess their function or identify any abnormalities.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. It is a complex phenomenon that can result from various stimuli, such as thermal, mechanical, or chemical irritation, and it can be acute or chronic. The perception of pain involves the activation of specialized nerve cells called nociceptors, which transmit signals to the brain via the spinal cord. These signals are then processed in different regions of the brain, leading to the conscious experience of pain. It's important to note that pain is a highly individual and subjective experience, and its perception can vary widely among individuals.

I'm not able to directly access real-time medical databases or search functions, but I can provide you with some information on the topic.

Bone demineralization is a process often associated with various medical and scientific techniques. It generally refers to the reduction of mineral content in bones, which can occur due to certain medical conditions, aging, or as part of laboratory procedures.

A bone demineralization technique in a laboratory setting typically involves the use of chemical solutions to remove minerals, mainly calcium and phosphate, from bone samples. This process is often used in research and scientific studies to isolate the organic matrix of bones, allowing for the study of its properties and components, such as collagen.

The demineralization process usually involves soaking bone specimens in a weak acid solution, like ethylenediaminetetraacetic acid (EDTA) or acetic acid, for several days to weeks, depending on the size and density of the bones. The procedure must be carefully controlled to avoid damaging the organic matrix while ensuring complete demineralization.

Keep in mind that this is a simplified explanation, and specific techniques and protocols may vary based on the research question and bone type being studied.

'Foot bones,' also known as the tarsal and metatarsal bones, are the 26 bones that make up the foot in humans. The foot is divided into three parts: the hindfoot, midfoot, and forefoot.

The hindfoot contains two bones: the talus, which connects to the leg bone (tibia), and the calcaneus (heel bone). These bones form the ankle joint and heel.

The midfoot is made up of five irregularly shaped bones called the navicular, cuboid, and three cuneiform bones. These bones help form the arch of the foot and connect the hindfoot to the forefoot.

The forefoot contains the metatarsals (five long bones) and the phalanges (14 small bones). The metatarsals connect the midfoot to the toes, while the phalanges make up the toes themselves.

These bones work together to provide stability, support, and movement for the foot, allowing us to walk, run, and jump.

Prostatic neoplasms refer to abnormal growths in the prostate gland, which can be benign or malignant. The term "neoplasm" simply means new or abnormal tissue growth. When it comes to the prostate, neoplasms are often referred to as tumors.

Benign prostatic neoplasms, such as prostate adenomas, are non-cancerous overgrowths of prostate tissue. They usually grow slowly and do not spread to other parts of the body. While they can cause uncomfortable symptoms like difficulty urinating, they are generally not life-threatening.

Malignant prostatic neoplasms, on the other hand, are cancerous growths. The most common type of prostate cancer is adenocarcinoma, which arises from the glandular cells in the prostate. Prostate cancer often grows slowly and may not cause any symptoms for many years. However, some types of prostate cancer can be aggressive and spread quickly to other parts of the body, such as the bones or lymph nodes.

It's important to note that while prostate neoplasms can be concerning, early detection and treatment can significantly improve outcomes for many men. Regular check-ups with a healthcare provider are key to monitoring prostate health and catching any potential issues early on.

Spinal diseases refer to a range of medical conditions that affect the spinal column, which is made up of vertebrae (bones), intervertebral discs, facet joints, nerves, ligaments, and muscles. These diseases can cause pain, discomfort, stiffness, numbness, weakness, or even paralysis, depending on the severity and location of the condition. Here are some examples of spinal diseases:

1. Degenerative disc disease: This is a condition where the intervertebral discs lose their elasticity and height, leading to stiffness, pain, and decreased mobility.
2. Herniated disc: This occurs when the inner material of the intervertebral disc bulges or herniates out through a tear in the outer layer, causing pressure on the spinal nerves and resulting in pain, numbness, tingling, or weakness in the affected area.
3. Spinal stenosis: This is a narrowing of the spinal canal or the neural foramen (the openings where the spinal nerves exit the spinal column), which can cause pressure on the spinal cord or nerves and result in pain, numbness, tingling, or weakness.
4. Scoliosis: This is a curvature of the spine that can occur in children or adults, leading to an abnormal posture, back pain, and decreased lung function.
5. Osteoarthritis: This is a degenerative joint disease that affects the facet joints in the spine, causing pain, stiffness, and decreased mobility.
6. Ankylosing spondylitis: This is a chronic inflammatory disease that affects the spine and sacroiliac joints, leading to pain, stiffness, and fusion of the vertebrae.
7. Spinal tumors: These are abnormal growths that can occur in the spinal column, which can be benign or malignant, causing pain, neurological symptoms, or even paralysis.
8. Infections: Bacterial or viral infections can affect the spine, leading to pain, fever, and other systemic symptoms.
9. Trauma: Fractures, dislocations, or sprains of the spine can occur due to accidents, falls, or sports injuries, causing pain, neurological deficits, or even paralysis.

Low-Density Lipoprotein Receptor-Related Protein 5 (LRP5) is a gene that encodes a single transmembrane protein, which belongs to the low-density lipoprotein receptor family. This protein plays crucial roles in various biological processes such as bone formation, vascular biology, and cancer progression. It functions as a co-receptor for Wnt signaling pathways that regulate gene expression involved in cell proliferation, differentiation, and migration.

In the context of lipid metabolism, LRP5 has been shown to modulate lipoprotein particle uptake and cholesterol homeostasis through its interaction with LDL receptors. Mutations in the LRP5 gene have been associated with several diseases, including osteoporosis, familial exudative vitreoretinopathy, and adiposity-associated disorders.

In summary, Low-Density Lipoprotein Receptor-Related Protein 5 is a multifunctional receptor involved in various physiological processes, including bone formation, lipid metabolism, and cell signaling.

I'm sorry for any confusion, but "pyrazines" is not a term commonly used in medical definitions. Pyrazines are actually a class of organic compounds that contain a ring made up of two nitrogen atoms and three carbon atoms. They are found in various foods and contribute to their flavors. If you have any questions about organic chemistry or food science, I'd be happy to try to help!

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

SCID mice is an acronym for Severe Combined Immunodeficiency mice. These are genetically modified mice that lack a functional immune system due to the mutation or knockout of several key genes required for immunity. This makes them ideal for studying the human immune system, infectious diseases, and cancer, as well as testing new therapies and treatments in a controlled environment without the risk of interference from the mouse's own immune system. SCID mice are often used in xenotransplantation studies, where human cells or tissues are transplanted into the mouse to study their behavior and interactions with the human immune system.

The radius is one of the two bones in the forearm in humans and other vertebrates. In humans, it runs from the lateral side of the elbow to the thumb side of the wrist. It is responsible for rotation of the forearm and articulates with the humerus at the elbow and the carpals at the wrist. Any medical condition or injury that affects the radius can impact the movement and function of the forearm and hand.

Orthopedics is a branch of medicine that deals with the prevention, diagnosis, and treatment of disorders of the musculoskeletal system, which includes the bones, joints, muscles, ligaments, tendons, and nerves. The goal of orthopedic care is to help patients maintain or restore their mobility, function, and quality of life through a variety of treatments, including medication, physical therapy, bracing, and surgery. Orthopedic surgeons are medical doctors who have completed additional training in the diagnosis and treatment of musculoskeletal conditions, and they may specialize in specific areas such as sports medicine, spine care, joint replacement, or pediatric orthopedics.

Procollagen is the precursor protein of collagen, which is a major structural protein in the extracellular matrix of various connective tissues, such as tendons, ligaments, skin, and bones. Procollagen is synthesized inside the cell (in the rough endoplasmic reticulum) and then processed by enzymes to remove specific segments, resulting in the formation of tropocollagen, which are the basic units of collagen fibrils.

Procollagen consists of three polypeptide chains (two alpha-1 and one alpha-2 chain), each containing a central triple-helical domain flanked by non-helical regions at both ends. These non-helical regions, called propeptides, are cleaved off during the processing of procollagen to tropocollagen, allowing the individual collagen molecules to align and form fibrils through covalent cross-linking.

Abnormalities in procollagen synthesis or processing can lead to various connective tissue disorders, such as osteogenesis imperfecta (brittle bone disease) and Ehlers-Danlos syndrome (a group of disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility).

Aneurysmal bone cyst (ABC) is a benign but locally aggressive tumor that typically involves the metaphysis of long bones in children and adolescents. It is characterized by blood-filled spaces or cysts separated by fibrous septa containing osteoclast-type giant cells, spindle cells, and capillary vessels.

ABCs can also arise in other locations such as the vertebral column, pelvis, and skull. They may cause bone pain, swelling, or pathologic fractures. The exact cause of ABC is unknown, but it is thought to be related to a reactive process to a primary bone lesion or trauma.

Treatment options for ABC include curettage and bone grafting, intralesional injection of corticosteroids or bone marrow aspirate, and adjuvant therapy with phenol or liquid nitrogen. In some cases, radiation therapy may be used, but it is generally avoided due to the risk of secondary malignancies. Recurrence rates after treatment range from 10-30%.

Chronic Renal Insufficiency (CRI) is a medical condition characterized by a gradual and progressive loss of kidney function over a period of months or years. It is also known as Chronic Kidney Disease (CKD). The main function of the kidneys is to filter waste products and excess fluids from the blood, which are then excreted in the urine. When the kidneys become insufficient, these waste products and fluids accumulate in the body, leading to various complications.

CRI is defined as a glomerular filtration rate (GFR) of less than 60 ml/min/1.73m2 for three months or more, regardless of cause. GFR is a measure of kidney function that estimates how well the kidneys are filtering waste products from the blood. The condition is classified into five stages based on the severity of the disease and the GFR value.

Stage 1: GFR greater than or equal to 90 ml/min/1.73m2
Stage 2: GFR between 60-89 ml/min/1.73m2
Stage 3: GFR between 30-59 ml/min/1.73m2
Stage 4: GFR between 15-29 ml/min/1.73m2
Stage 5: GFR less than 15 ml/min/1.73m2 or dialysis

CRI can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and other genetic or acquired disorders. Symptoms of CRI may include fatigue, weakness, loss of appetite, swelling in the legs and ankles, shortness of breath, and changes in urination patterns. Treatment for CRI focuses on slowing down the progression of the disease, managing symptoms, and preventing complications. This may involve lifestyle modifications, medication, dialysis, or kidney transplantation.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Cholecalciferol is the chemical name for Vitamin D3. It is a fat-soluble vitamin that is essential for the regulation of calcium and phosphate levels in the body, which helps to maintain healthy bones and teeth. Cholecalciferol can be synthesized by the skin upon exposure to sunlight or obtained through dietary sources such as fatty fish, liver, and fortified foods. It is also available as a dietary supplement.

Oral administration is a route of giving medications or other substances by mouth. This can be in the form of tablets, capsules, liquids, pastes, or other forms that can be swallowed. Once ingested, the substance is absorbed through the gastrointestinal tract and enters the bloodstream to reach its intended target site in the body. Oral administration is a common and convenient route of medication delivery, but it may not be appropriate for all substances or in certain situations, such as when rapid onset of action is required or when the patient has difficulty swallowing.

Ovariectomy is a surgical procedure in which one or both ovaries are removed. It is also known as "ovary removal" or "oophorectomy." This procedure is often performed as a treatment for various medical conditions, including ovarian cancer, endometriosis, uterine fibroids, and pelvic pain. Ovariectomy can also be part of a larger surgical procedure called an hysterectomy, in which the uterus is also removed.

In some cases, an ovariectomy may be performed as a preventative measure for individuals at high risk of developing ovarian cancer. This is known as a prophylactic ovariectomy. After an ovariectomy, a person will no longer have menstrual periods and will be unable to become pregnant naturally. Hormone replacement therapy may be recommended in some cases to help manage symptoms associated with the loss of hormones produced by the ovaries.

Hydroxyproline is not a medical term per se, but it is a significant component in the medical field, particularly in the study of connective tissues and collagen. Here's a scientific definition:

Hydroxyproline is a modified amino acid that is formed by the post-translational modification of the amino acid proline in collagen and some other proteins. This process involves the addition of a hydroxyl group (-OH) to the proline residue, which alters its chemical properties and contributes to the stability and structure of collagen fibers. Collagen is the most abundant protein in the human body and is a crucial component of connective tissues such as tendons, ligaments, skin, and bones. The presence and quantity of hydroxyproline can serve as a marker for collagen turnover and degradation, making it relevant to various medical and research contexts, including the study of diseases affecting connective tissues like osteoarthritis, rheumatoid arthritis, and Ehlers-Danlos syndrome.

Bone Morphogenetic Protein 6 (BMP-6) is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins. It plays crucial roles in bone and cartilage formation, as well as in the regulation of iron metabolism. BMP-6 stimulates the differentiation of mesenchymal stem cells into osteoblasts, which are bone-forming cells, and contributes to the maintenance of bone homeostasis. Additionally, BMP-6 is involved in the process of hepcidin regulation, a hormone that controls iron absorption and recycling in the body. Dysregulation of BMP-6 has been implicated in various diseases, including skeletal disorders and iron metabolism-related conditions.

Calcifediol is the medical term for 25-hydroxyvitamin D, which is a form of vitamin D that is produced in the liver when it processes vitamin D from sunlight or from dietary sources. It is an important precursor to the active form of vitamin D, calcitriol, and is often used as a supplement for people who have low levels of vitamin D. Calcifediol is converted to calcitriol in the kidneys, where it plays a role in regulating calcium and phosphate levels in the body, which are important for maintaining healthy bones and teeth.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Chondrocalcinosis is a medical condition characterized by the deposition of calcium pyrophosphate dihydrate crystals in the fibrous cartilage (also known as chondral or articular cartilage) and/or the joint cavity (synovial fluid). This cartilage is present in various parts of the body, including the ears, nose, respiratory tract, and connective tissues such as those found in joints.

Calcium pyrophosphate dihydrate crystals are normally present in small amounts within the body; however, an overabundance of these crystals can lead to chondrocalcinosis. The condition is often associated with osteoarthritis and can affect people of all ages but is more common in older adults.

Chondrocalcinosis may not always cause symptoms, but when it does, they can include joint pain, stiffness, swelling, and warmth. These symptoms are similar to those seen in other forms of arthritis, making chondrocalcinosis difficult to diagnose based on symptoms alone. Diagnosis typically involves imaging techniques such as X-rays or ultrasounds, as well as joint fluid analysis to identify the presence of calcium pyrophosphate dihydrate crystals.

Treatment for chondrocalcinosis is generally focused on managing symptoms and addressing any underlying conditions that may contribute to the development or progression of the disease. This can include medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation, joint aspiration to remove excess fluid and crystals from the affected area, and physical therapy to maintain joint mobility and strength. In some cases, surgery may be necessary to repair or replace damaged joints.

Neoplasm metastasis is the spread of cancer cells from the primary site (where the original or primary tumor formed) to other places in the body. This happens when cancer cells break away from the original (primary) tumor and enter the bloodstream or lymphatic system. The cancer cells can then travel to other parts of the body and form new tumors, called secondary tumors or metastases.

Metastasis is a key feature of malignant neoplasms (cancers), and it is one of the main ways that cancer can cause harm in the body. The metastatic tumors may continue to grow and may cause damage to the organs and tissues where they are located. They can also release additional cancer cells into the bloodstream or lymphatic system, leading to further spread of the cancer.

The metastatic tumors are named based on the location where they are found, as well as the type of primary cancer. For example, if a patient has a primary lung cancer that has metastasized to the liver, the metastatic tumor would be called a liver metastasis from lung cancer.

It is important to note that the presence of metastases can significantly affect a person's prognosis and treatment options. In general, metastatic cancer is more difficult to treat than cancer that has not spread beyond its original site. However, there are many factors that can influence a person's prognosis and response to treatment, so it is important for each individual to discuss their specific situation with their healthcare team.

Bone plates are medical devices used in orthopedic surgery to stabilize and hold together fractured or broken bones during the healing process. They are typically made of surgical-grade stainless steel, titanium, or other biocompatible materials. The plate is shaped to fit the contour of the bone and is held in place with screws that are inserted through the plate and into the bone on either side of the fracture. This provides stability and alignment to the broken bones, allowing them to heal properly. Bone plates can be used to treat a variety of fractures, including those that are complex or unstable. After healing is complete, the bone plate may be left in place or removed, depending on the individual's needs and the surgeon's recommendation.

Osseointegration is a direct structural and functional connection between living bone and the surface of an implant. It's a process where the bone grows in and around the implant, which is typically made of titanium or another biocompatible material. This process provides a solid foundation for dental prosthetics, such as crowns, bridges, or dentures, or for orthopedic devices like artificial limbs. The success of osseointegration depends on various factors, including the patient's overall health, the quality and quantity of available bone, and the surgical technique used for implant placement.

The periosteum is a highly vascularized and innervated tissue that surrounds the outer surface of bones, except at the articular surfaces. It consists of two layers: an outer fibrous layer containing blood vessels, nerves, and fibroblasts; and an inner cellular layer called the cambium or osteogenic layer, which contains progenitor cells capable of bone formation and repair.

The periosteum plays a crucial role in bone growth, remodeling, and healing by providing a source of osteoprogenitor cells and blood supply. It also contributes to the sensation of pain in response to injury or inflammation of the bone. Additionally, the periosteum can respond to mechanical stress by activating bone formation, making it an essential component in orthopedic treatments such as distraction osteogenesis.

Macrophage Colony-Stimulating Factor (M-CSF) is a growth factor that belongs to the family of colony-stimulating factors (CSFs). It is a glycoprotein hormone that plays a crucial role in the survival, proliferation, and differentiation of mononuclear phagocytes, including macrophages. M-CSF binds to its receptor, CSF1R, which is expressed on the surface of monocytes, macrophages, and their precursors.

M-CSF stimulates the production of mature macrophages from monocyte precursors in the bone marrow and enhances the survival and function of mature macrophages in peripheral tissues. It also promotes the activation of macrophages, increasing their ability to phagocytize and destroy foreign particles, microorganisms, and tumor cells.

In addition to its role in the immune system, M-CSF has been implicated in various physiological processes, including hematopoiesis, bone remodeling, angiogenesis, and female reproduction. Dysregulation of M-CSF signaling has been associated with several pathological conditions, such as inflammatory diseases, autoimmune disorders, and cancer.

... refers to the medical conditions which affect the bone. A bone disease is also called an "osteopathy", but because ... or Paget's disease of bone) Osteitis fibrosa cystica (or Osteitis fibrosa, or Von Recklinghausen's disease of bone) Osteitis ... ISBN 0-07-138076-0. "Paget's Disease of Bone". The Lecturio Medical Concept Library. Retrieved 27 August 2021. "Osteochondritis ... of bone Greenstick fracture Gout Hypophosphatasia Hereditary multiple exostoses Klippel-Feil syndrome Metabolic bone disease ...
... is an abnormality of bones caused by a broad spectrum of disorders. Most commonly these disorders are ... McWilliams, D. A.; Leeson, S. (2001). "METABOLIC BONE DISEASE IN LIZARDS: PREVALENCE AND POTENTIAL FOR MONITORING BONE HEALTH ... replacement of phosphate often corrects or improves the metabolic bone disorder. Metabolic bone disease in captive reptiles is ... osteoporosis osteomalacia (adults) & rickets (children) osteitis fibrosa cystica Paget's disease of bone pyramiding (turtles) ...
An infectious bone disease is a bone disease primarily associated with an infection. An example is osteomyelitis. Root, Richard ... v t e (Articles with short description, Short description matches Wikidata, All stub articles, Musculoskeletal disease stubs, ... K. (1999). Clinical Infectious Diseases: A Practical Approach. Oxford University Press. p. 741. ISBN 9780195081039. Retrieved 5 ...
An endocrine bone disease is a bone disease associated with a disorder of the endocrine system. An example is osteitis fibrosa ... There are many bone disorders such as osteoporosis, Paget's disease, hypothyroidism. Although there are many forms of bone ... The cells of our bone that is involved in bone formation and bone breakdown is osteoblast and osteoclast respectively. ... Osteoclasts are cells of bones that promote bone demineralization or bone resorption. In contrast, Osteoblast promotes calcium ...
... and does not spread from bone to bone. Rarely, a bone affected by Paget's disease can transform into a malignant bone cancer. ... Paget's Disease of Bone Overview - NIH Osteoporosis and Related Bone Diseases ~ National Resource Center (Webarchive template ... Charles, Julia F.; Siris, Ethel S.; Roodman, G. David (2018). "Paget Disease of Bone". Primer on the Metabolic Bone Diseases ... Bone scans are useful in determining the extent and activity of the condition. If a bone scan suggests Paget's disease, the ...
In periodontal disease, not only does the bone that supports the teeth, known as alveolar bone, reduce in height in relation to ... Horizontal bone loss manifests as a somewhat even degree of bone resorption so that the height of the bone in relation to the ... The bone destruction patterns that occur as a result of periodontal disease generally take on characteristic forms. There are ... Carranza, FA: Bone Loss and Patterns of Bone Destruction. In Newman, MG; Takei, HH; Carranza, FA; editors: Carranza's Clinical ...
... bone modeling) and bone structure and function during adulthood (bone remodeling). As a result, bone abnormalities are found ... Chronic Kidney Disease-Mineral and Bone Disorder (NIDDKD) Current Concepts and Management Strategies in Chronic Kidney Disease- ... and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder: Synopsis of the Kidney Disease: Improving Global Outcomes ... Chronic kidney disease-mineral and bone disorder (CKD-MBD) is one of the many complications associated with chronic kidney ...
... a disease that thins and weakens bones, resulting in low bone density and fractures. Estrogen deficiency plays an important ... low estrogen levels increase bone resorption via osteoclasts and osteocytes, cells that help with bone remodeling, making bones ... Office of the Surgeon General (US) (2004). Diseases of Bone. Office of the Surgeon General (US). Alswat KA (May 2017). "Gender ... Estrogen deficiency is also associated with an increased risk of cardiovascular disease, and has been linked to diseases like ...
Glorieux, Francis H.; Pettifor, John M.; Jüppner, Harald (2011). Pediatric Bone: Biology & Diseases. Academic Press. p. 46. ... Bilezikian, John P.; Raisz, Lawrence G.; Martin, T. John Martin (2008). Principles of Bone Biology. Academic Press. p. 610. ... v t e (Articles with short description, Short description is different from Wikidata, Endocrine diseases, All stub articles, ...
... to detect bone diseases and tumors; to determine the cause of bone pain or inflammation. This test is to rule out other cysts ( ... Bone Grafting: Bone grafting is proceeded with after curettage; the empty cavity is transplanted with donor bone tissue, bone ... 2020). "3. Bone tumours: simple bone cyst". Soft Tissue and Bone Tumours: WHO Classification of Tumours. Vol. 3 (5th ed.). Lyon ... A unicameral bone cyst, also known as a simple bone cyst, is a cavity filled with a yellow-colored fluid. It is considered to ...
and other metabolic bone diseases. He has published over 400 scholarly articles and has delivered numerous prestigious ... He has been the Director of the Centre for Bone and Periodontal Research and also holds the position of Senior Scientist at the ... He has been Director of the Centre for Advanced Bone and Periodontal Research, as well as Director of the Calcium Research ... He received the Lawrence G. Raisz Award (inaugural) of the American Society for Bone and Mineral Research (ASBMR) in 2010, the ...
Roodman GD, Windle JJ (February 2005). "Paget disease of bone". The Journal of Clinical Investigation. 115 (2): 200-208. doi: ... A slow virus disease is a disease that, after an extended period of latency, follows a slow, progressive course spanning months ... Slow viruses cause a variety of diseases, including cancer. §JC virus & BK virus only cause disease in immunocompromised ... and Paget's disease of bone (osteitis deformans), which may be associated with paramyxoviruses, especially the measles virus ...
These include osteoporosis, high blood calcium due to cancer, bone breakdown due to cancer, Paget's disease of bone and ... allowing the bone-forming cells time to rebuild normal bone and allowing bone remodeling. Zoledronic acid has been found to ... "Paget's Disease of Bone". www.rheumatology.org. Retrieved 2015-07-09. Vondracek SF (April 2010). "Managing osteoporosis in ... and for ten days following Aclasta in patients with Paget's disease of the bone. Monitoring for other mineral metabolism ...
... numerous antibiotics Bone disease (bone ALP): Paget's disease, osteosarcoma, bone metastases of prostatic cancer (High / very ... bone diseases such as Paget disease, liver diseases such as hepatitis, blood disorders, or other conditions. Elevated alkaline ... Other bone metastases Renal osteodystrophy Fractured bone Skeletal involvement of other primary diseases: Osteomalacia, rickets ... "Paget's Disease of Bone". The Lecturio Medical Concept Library. Retrieved 9 July 2021. L Tibi; A W Patrick; P Leslie; A D Toft ...
... or Paget's disease of bone) Osteitis fibrosa cystica (or Osteitis fibrosa, or Von Recklinghausen's disease of bone) Osteitis ... "Paget's Disease of Bone". The Lecturio Medical Concept Library. Retrieved 27 August 2021. Frawley, Ed. "Panosteitis or PANO" ( ... Osteitis is inflammation of bone. More specifically, it can refer to one of the following conditions: Osteomyelitis, or ... pubis Radiation osteitis Osteitis condensans ilii Panosteitis, a long bone condition in large breed dogs In horses, pedal ...
Metabolic bone disease (MBD) is a collective term for several common diseases/illnesses that can be fatal and is probably the ... "Metabolic Bone Disease MDB". Bearded Dragons World. July 2019. Retrieved 21 May 2022. "Bearded Dragon Egg Bound". Bearded ... Hypocalcemia is most often tied to metabolic bone disease. Low levels of calcium can result in twitching muscles, or seizures. ... Bearded dragons require UVB to enable vitamin D3 synthesis and to prevent illnesses like metabolic bone disease. Vitamin D3 is ...
Osteogenic bone metastasis caused by carcinoma of prostate and breast Paget's disease of bone Myelofibrosis (primary disorder ... Camurati-Engelmann disease) SOST-related sclerosing bone dysplasias Sclerosis of the bones of the thoracic spine due to ... It makes bones heavier, but also more fragile. In those animal groups, osteosclerosis often occurs together with bone ... There are white portions of the bone which appear due to the increased number of bone trabeculae.[citation needed] In the ...
Abnormal bone growth such as shortening or thickening and deformity may be observed in patients of Ollier disease. These bone ... and metatarsal bones in patients of Ollier disease due to the affinity of enchondromas to long tubular bones such as the femur ... Bone lesions generally present as cellular during childhood and become more solitary over time. People with Ollier disease are ... While chondrosarcoma is the most common form of a secondary malignant bone neoplasm found in cases of Ollier disease, other ...
... brittle bone disease (osteogenesis imperfecta); cerebral palsy (CP); cleft palate or lip; club foot (talipes); dissociative ...
"An undescribed disease of bone", but he had already been writing on haemochromatosis and he began studying this disease in ... Sheldon, J. H. (January 1929). "An undescribed disease of bone". British Journal of Surgery. 16 (63): 405-430. doi:10.1002/bjs. ... Sheldon, J. H. (July 1938). "Clinical Reports and Demonstrations: Section for the Study of Disease in Children. Arterial ...
"Bone disease in primary hyperparathyrodism". Therapeutic Advances in Musculoskeletal Disease. 4 (5): 357-68. doi:10.1177/ ... Sprenger-Mähr H, Zitt E, Kronbichler A, Cejna M, Lhotta K (November 2019). "A hemodialysis patient with bone disease after ... The osteoclasts consume the trabecular bone that osteoblasts lay down and this front of reparative bone deposition followed by ... it is increasingly rare for primary hyperparathyroidism to present with accompanying bone disease. This is not the case in less ...
Metabolic Bone and Stone Disease. BEC Nordin, AG NEED, HA Morris: Churchill Livingstone, 1993. p 328-9 Principles and Practice ... The three-phase bone scan may be the most sensitive method of detecting early heterotopic bone formation. However, an ... Bone. 2022 Feb;155:116287. DOI: 10.1016/j.bone.2021.116287. PMID 34896358. Morley, John; Marsh, Sarah; Drakoulakis, Emmanuil; ... Heterotopic ossification (HO) is the process by which bone tissue forms outside of the skeleton in muscles and soft tissue. In ...
"Bone disease in primary hypercalciuria". Clinical Cases in Mineral and Bone Metabolism. 5 (2): 118-126. ISSN 1724-8914. PMC ... Bone resorption involves the breaking down of bone tissue and the transfer of calcium ions into the blood. Bone resorption is ... The most studied disease is Dent's disease, which is attributed to a mutation in CLCN5 or OCRL1 genes. However, IH patients ... Bone loss is unique to nephroliths patients with IH, proposing it has an unidentified role in the increased bone fragility and ...
The Journal of Bone and Mineral Research ( JBMR) , JBMRPlus, and the Primer on the Metabolic Bone Diseases and Disorders of ... Burning bone fat a key to better bone health". Science Daily. 18 May 2017. "Why are our bones full of fat? The secrets of bone ... high-fat diets induces low bone mineral density and reduces bone formation in rats". Journal of Bone and Mineral Research. 25 ( ... Report from the First European Meeting on Bone Marrow Adiposity (BMA 2015)". Bone. 93: 212-215. doi:10.1016/j.bone.2015.11.013 ...
Couzin, Jennifer (2006). "Bone Disease Gene Finally Found". Science. 312 (5773): 514-515. doi:10.1126/science.312.5773.514b. ... In search of a gene linked to a poorly known bone disease known as Fibrodysplasia ossificans progressiva (FOP), scientist ... This would go on to allow deeper research about the disease, and potentially allow for the development of a treatment for the ... disease. In May 2010, Medical editor Christine Soares proposed that a "modern all-points bulletin" may take the shape of what ...
Veilleux LN, Rauch F (October 2017). "Muscle-Bone Interactions in Pediatric Bone Diseases". Current Osteoporosis Reports. 15 (5 ... People with cerebral palsy are at risk of low bone mineral density. The shafts of the bones are often thin (gracile), and ... In cerebral palsy unequal growth between muscle-tendon units and bone eventually leads to bone and joint deformities. At first ... Adults with cerebral palsy may have ischemic heart disease, cerebrovascular disease, cancer, and trauma more often. Obesity in ...
3. Versuche an Hunden" [Studies of rickets and related bone diseases. 3. Experiments on dogs]. Archiv für wissenschaftliche und ... This disease was later named Marek's disease. In the birds examined by Marek, the signs of the disease appeared in the nervous ... "Studies of rickets and related bone diseases. 3. Experiments on dogs". CAB Direct. Retrieved December 31, 2019. "Studies on ... Marek is best known for his discovery of the poultry disease that would eventually bear his name, Marek's disease. In his ...
"Nuclear Receptors in Bone Physiology and Diseases". Physiological Reviews. 93 (2): 481-523. doi:10.1152/physrev.00008.2012. ... Deficiencies in nuclear receptor-mediated pathways play a key role in the development of disease, like osteoporosis. when a ... estrogen deficiency is a cause of osteoporosis and the inability to undergo a proper signaling cascade prevents bone growth and ...
Veerman, Elmar; Hamersma, Herman (17 November 2000). "Net closes around bone disease of Urk". Cicero (18): 2. ISSN 0920-2900. ... As the disease is recessive, a child will only be affected by the disease if both of the parents are carriers and the child is ... Van Buchem disease, or hyperostosis corticalis generalisata, is an autosomal recessive skeletal disease which is characterised ... by uninhibited bone growth, especially in the mandible, skull and ribs. The disease was first described in 1955 by Prof. ...
"Osteoporosis Overview". NIH Osteoporosis and Related Bone Diseases National Resource Center. "Scientists discover new bone- ... A bone growth factor is a growth factor that stimulates the growth of bone tissue. Known bone growth factors include insulin- ... Osteoporosis is a bone disease where bone mass is less than the average and can increase fractures. Some causes that lead to ... and acts as a central component in the coupling of bone formation and its resorption during bone remodeling. Bone Morphogenic ...
It can cause pain and damage in the bones. Learn more. ... Pagets disease of bone causes your bones to grow too large and ... What is Pagets disease of bone?. Pagets disease of bone is a chronic bone disorder. Normally, there is a process in which ... Pagets Disease of Bone (American College of Rheumatology) * Pagets Disease of Bone (National Institute of Arthritis and ... It does not spread to normal bones.. What other problems can Pagets disease of bone cause?. Pagets disease can lead to other ...
Bone disease refers to the medical conditions which affect the bone. A bone disease is also called an "osteopathy", but because ... or Pagets disease of bone) Osteitis fibrosa cystica (or Osteitis fibrosa, or Von Recklinghausens disease of bone) Osteitis ... ISBN 0-07-138076-0. "Pagets Disease of Bone". The Lecturio Medical Concept Library. Retrieved 27 August 2021. "Osteochondritis ... of bone Greenstick fracture Gout Hypophosphatasia Hereditary multiple exostoses Klippel-Feil syndrome Metabolic bone disease ...
The orthopedic surgeon has 2 major tasks to perform when treating patients who develop bone metastases. The first task is to ... encoded search term (Metastatic Bone Disease) and Metastatic Bone Disease What to Read Next on Medscape ... Metastatic bone disease occurs when cancer spreads from a primary organ site to bone. The spine is the most common location of ... Development of a scoring system for survival following surgery for metastatic bone disease. Bone Joint J. 2021 Nov. 103-B (11): ...
Pagets disease of the bone is a rare condition affecting the elderly and it primarily involves a faulty bone metabolism. ... Pagets disease of the bone - What is Pagets disease of the bone? ... Pagets disease almost always looks "hot" and active on a bone scan. As the disease progresses over a long time the spots area ... Bone scan to diagnose Pagets disease. A bone scan or a PET (Positron Emission tomography) scan is advised for patients with ...
Tuberculosis in patients who had recently undergone spinal surgery that used a single lot of bone repair product. ... CDC is working to respond to tuberculosis (TB) disease cases associated with viable bone matrix material. The cases appear to ... Tuberculosis (TB) Disease Associated with Suspected Contaminated Viable Bone Matrix Material Used in Surgical and Dental ... Source: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), ...
... , Pagets Disease, Paget Disease of Bone, Paget Disease, Osteitis Deformans, Pagetic Lesion. ... Pagets Disease of Bone. Pagets Disease of Bone Aka: Pagets Disease of Bone, Pagets Disease, Paget Disease of Bone, Paget ... Paget Disease of Bone. *Benign skeletal condition of increased focal bone resorption and disordered bone formation ... Focal bone resorption and disordered bone formation. *Phase 1: Intense Osteoclastic activity. *Bone resorption predominates ...
Studies defining the scope of bone-related disease in NMD are scant. The available evidence is discussed, focusing on abnormal ... This article reviews the recent literature regarding bone health as it relates to the patient living with neuromuscular disease ... Bone health and associated metabolic complications in neuromuscular diseases Phys Med Rehabil Clin N Am. 2012 Nov;23(4):773-99. ... This article reviews the recent literature regarding bone health as it relates to the patient living with neuromuscular disease ...
... a Northwestern researchers effort to lead a paradigm shift in the medical communitys beliefs about the cause of valve disease ... Bone And Cartilage Growth To Blame For Heart Valve Disease. Date:. April 12, 2006. Source:. Northwestern Memorial Hospital. ... "Bone And Cartilage Growth To Blame For Heart Valve Disease." ScienceDaily. www.sciencedaily.com. /. releases. /. 2006. /. 04. / ... 2006, April 12). Bone And Cartilage Growth To Blame For Heart Valve Disease. ScienceDaily. Retrieved December 4, 2023 from www. ...
Pagets disease of bone is characterised by repeated episodes of increased bone resorption followed by excessive attempts at ... But your bones are constantly building new bone and breaking down old bone in a process called bone remodelling. The ... Bones affected by Pagets disease can also be painful.. Causes. The exact cause of Pagets disease is not known. However, your ... Pagets disease is a treatable condition that affects the bones, mainly in older people. Affected bones become enlarged, ...
Bones, and Joints ;The muscles, bones and joints are usually called collect ... Diseases of the Muscles, Bones, and Joints. George T. Lewith MA MRCGP MRCP2 min read ... The muscles, bones and joints are usually called collectively the musculo-skeletal system. When disease or damage occurs to ... Rheumatoid arthritis is far less common than osteoarthritis and represents a completely different disease process. The small, ...
Create healthcare diagrams like this example called Diseases Treatable with a Bone Marrow or Cord Blood Transplant in minutes ... Diseases Treatable with a Bone Marrow or Cord Blood Transplant. Create healthcare diagrams like this example called Diseases ... Bone Marrow/ Cord Blood Transplant. Sickle cell disease and thalassemia Severe aplastic anemia and other marrow failure states ... Diseases Treatable with a Bone Marrow or Cord Blood Transplant. Familial erythrophagocytic lymphohistiocytosis and other ...
Osteomyelitis of Parietal Bone in Melioidosis. Emerging Infectious Diseases. 2007;13(8):1257. doi:10.3201/eid1308.070479.. ... usually part of a disseminated infection involving metaphyseal regions of long bones and vertebral bodies. Localized bone ... To the Editor: In Europe and the United States, melioidosis is a rare disease, with no cases reported thus far from Slovenia. ... The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website. ...
The collagen defects result from dominant mutations, requiring only one copy of a mutant gene to cause bone disease. The NIH ... Gene Discovered for Form of Brittle Bone Disease. Researchers at the National Institutes of Health have discovered that a ... The NIH team was led by Joan Marini, M.D., Ph.D., Chief of NIHs Bone and Extracellular Matrix Branch and was assisted by ... The mice had deformed brittle bones. Next, Drs. Morello and Lee studied a family with an unexplained form of OI, learning that ...
Bone diseases. Bone cancer treatment. Primary bone cancer is the name given to any form of cancer that begins in the bone. In ... Osteogenesis Imperfecta or OI is also referred to as the Brittle Bone Disease. It is a genetic bone disorder which makes the ... Bone marrow cancer. Bone marrow is the tissue found in the center of the bone. This soft tissue contains stem cells that ... Bone cancer symptoms. Bone cancer is a condition that consists of a tumor (neopalstic growth) on the bone. It is undoubtedly ...
Brian G.M. Durie answers a patients question regarding how bone disease in myeloma is treated. He discusses bisphosphonates ... Brian G.M. Durie answers a patients question regarding how bone disease in myeloma is treated. He discusses bisphosphonates ... AskDrDurie: Has there been any change in recommendations used to treat bone disease in myeloma? ... AskDrDurie: Has there been any change in recommendations used to treat bone disease in myeloma? ...
Brittle bone disease: overview of osteogenesis imperfecta. Hospital for Special Surgery in NYC is nationally ranked #1 in ... Osteogenesis Imperfecta / Brittle Bone Disease. Osteogenesis imperfecta (OI) or "brittle bone disease" is a congenital disorder ... People with OI are vulnerable to frequent bone fractures, brittle teeth, loose ligaments, muscle weakness, hearing loss, spinal ... They are also usually short in stature because the condition impedes the growth of their bones. ...
gillette STORIES Tag: brittle bone disease. Home / Gillette STORIES / Tag: brittle bone disease. ...
Overview of Pagets disease, and how to treat it in a natural way. ... Patients affected by Pagets disease experience bone pain in the bones that have developed this condition. The bones that are ... People suffering from this chronic bone disorder generally experience bone fracture in the thigh bone (femur) and the shin bone ... Pagets Disease Of Bone. Pagets disease, whose name has been derived from the famous British surgeon Sir James Paget, is a ...
Re-establishing the regenerative potential is the key to cure these diseases by regenerative medicine. Multipotent stem cells ... Their intrinsic regenerative capacities are disturbed in many hematological and musculoskeletal diseases. ... Blood and bone - conjoined twins in health and disease: bone marrow analogs for hematological and musculoskeletal diseases. ... This versatility will enable us to create biomimetic human in vitro models of the human bone marrow in health and disease, ...
The weak tendons and fragile bones characteristic of osteogenesis imperfecta, or brittle bone disease, stem from a genetic ... Tiny rifts create fragility of brittle bone disease. Written by: ceemit. Home » News » 2009 News Releases » Tiny rifts create ... The image below it depicts a fibril with brittle bone disease displaying the small rifts (in orange) that form in collagen ... About 1 in 10,000 people are diagnosed with brittle bone disease annually, and defective collagen is implicated in many other ...
... NIH-Funded Research ... Periodontitis involves an elevated inflammatory response and greater bone resorption, or the breakdown of bone tissue, by ... Biotech Cancer Coronavirus/COVID-19 Clinical Trials Diabetes Genetics Infectious Disease Neuro Obesity Women?s Health View all ... Because bone loss and fracture risk are serious concerns for people with diabetes, Xin Li, PhD, associate professor of basic ...
The weak tendons and fragile bones characteristic of osteogenesis imperfecta, or brittle bone disease, stem from a genetic ... Tiny rifts create fragility of brittle bone disease. Written by: ceemit. Home » News » 2009 News in Brief » Tiny rifts create ... This creates a tiny rift in the tissue, which when repeated in many molecules, leads to brittle tissue, broken bones, deformity ... the basic building block of bone and tendon. According to Professor Markus Buehler of MIT, that minuscule encoding error ...
Emily Meier, MD, Director of the Sickle Cell Disease Program, discusses bone marrow transplants at Childrens National and some ...
Angiography Bone disease Carotid space Congenital Cranial nerve CT DWI External auditory canal Hearing loss Infection ... space Salivary glands Sinonasal Skull base Sublingual space Submandibular space Suprahyoid neck Surgical Syndrome T-bone ...
Diseases Aging & Age-Related Disease Cancer & Neoplastic Disease Cardiovascular Disease COVID-19 Developmental Disease Diabetes ... Infectious Disease Liver Disease Neurological Disease Obesity & Metabolic Syndrome Renal Disease Respiratory Disease Sensory ... Paget disease is a feature of several Mendelian diseases including Paget disease of bone 3 (OMIM:167250).. ... and the increase in bone resorption is followed by an increase in new bone formation, altering bone architecture. ...
... recovery and follow-up care for Paget disease of the bone. ... Learn about Paget disease of the bone, find a doctor, ... Paget disease is commonly treated when:. *Certain bones, such as weight-bearing bones, are involved and the risk of fracture is ... This is followed by abnormal bone formation. The new area of bone is larger, but weaker. The new bone is also filled with new ... Pagets disease of bone. In: Jameson JL, De Groot LJ, de Kretser DM, et al, eds. Endocrinology: Adult and Pediatric. 7th ed. ...
Osteogenesis Imperfecta (Brittle Bone Disease). Osteogenesis imperfecta, commonly known as brittle bone disease, is a lifelong ... We treat brittle bone disease at CURE Childrens Hospitals in Ethiopia, Kenya, Malawi, Niger, Philippines, Zambia, and Zimbabwe ... We treat brittle bone disease at CURE Childrens Hospitals in Ethiopia, Kenya, Malawi, Niger, Philippines, Zambia, and Zimbabwe ... Once broken bones are stabilized, surgeons place metal rods and pins into the childs bones to prevent more breaks and abnormal ...
... Experts recommend that older women have regular bone density tests ... Bone Mass Measurement: What the Numbers Mean:. http://www.niams.nih.gov/Health_Info/Bone/Bone_Health/bone_mass_measure.asp ... When low bone density is identified early through screening, lifestyle changes and therapies can help protect bone health and ... More than 40 million people nationwide either have osteoporosis or are at increased risk for broken bones because of low bone ...
US-4911931-A chemical patent summary.
Bone disease characterised by a decrease in bone mineral density and bone mass, resulting in an increased risk of fracture (a ... "HCV exposed HIV-positive individuals have an increased risk of kidney disease and bone-related events which does not seem to be ... The author of an accompanying editorial suggests that behavioural factors may be behind the increased risk of bone disease and ... People with HIV/HCV co-infection at increased risk of kidney disease and bone disorders ...
  • And because the abnormal bone is weaker and more brittle than normal, it is prone to fractures. (mydr.com.au)
  • Researchers at the National Institutes of Health have discovered that a previously unexplained fatal form of Osteogenesis Imperfecta - a disorder that weakens bones and which may cause frequent fractures - results from a genetic defect in a protein involved in the production of collagen. (nih.gov)
  • People with OI are vulnerable to frequent bone fractures, brittle teeth, loose ligaments, muscle weakness, hearing loss, spinal curvature and skeletal dysplasia . (hss.edu)
  • Without the right amount of collagen, bones are weak and highly susceptible to trauma, causing frequent fractures and breaks. (cure.org)
  • With osteogenesis imperfecta, the goal is to keep the child walking, to protect the bone from breaking all the time so that they can walk, and also decrease the number of fractures that they have in a lifetime. (cure.org)
  • Osteoporosis is a disorder marked by weakened bones and an increased risk of fractures. (seniorwomen.com)
  • When low bone density is identified early through screening, lifestyle changes and therapies can help protect bone health and reduce the risk of fractures. (seniorwomen.com)
  • The women were participants in the Study of Osteoporotic Fractures, a long-term nationwide study supported by NIH's National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institute on Aging (NIA) and National Center for Research Resources (NCRR). (seniorwomen.com)
  • Hepatitis C virus (HCV) infection in people with HIV co-infection is associated with an increased risk of liver disease and liver-related death and also several important non-liver related disorders, including kidney disease and osteoporosis and fractures, according to data from the Swiss HIV Cohort published in the online edition of Clinical Infectious Diseases . (aidsmap.com)
  • The condition occurs when loss of bone mass leads to a high risk of fractures and affects millions of Americans yearly. (zmescience.com)
  • Although the bones are dense, fractures are common in osteopetrosis because of reduced bone quality. (biomedcentral.com)
  • Osteosclerotic patients also have increased BMD but fractures are rare, because bone quality is normal. (biomedcentral.com)
  • FIO manifests clinically with generalized bone pain and multiple fractures of both the axial and appendicular skeletons. (medscape.com)
  • Patient 1 was a 48-year-old Indian man who presented with a 10-year history of generalized bone pain, multiple fractures, and muscle weakness and was bed-bound at the time of presentation. (medscape.com)
  • Future directions are discussed, including the urgent need for studies both to determine the nature and extent of poor bone health, and to evaluate the therapeutic effect of available osteoporosis treatments in patients with NMD. (nih.gov)
  • Experts recommend that older women have regular bone density tests to screen for osteoporosis. (seniorwomen.com)
  • More than 40 million people nationwide either have osteoporosis or are at increased risk for broken bones because of low bone mineral density (osteopenia). (seniorwomen.com)
  • Osteoporosis is often called a "silent disease" because it usually progresses slowly and without symptoms until a fracture occurs. (seniorwomen.com)
  • To help doctors decide how often to repeat bone density tests in women who don't have osteoporosis at their initial screening, a research team led by Dr. Margaret Gourlay of the University of North Carolina at Chapel Hill analyzed data on nearly 5,000 women, age 67 or older. (seniorwomen.com)
  • As reported in the January 19, 2012, issue of the New England Journal of Medicine, the scientists found that less than 1% of women who initially had normal bone mineral density went on to develop osteoporosis during the study. (seniorwomen.com)
  • Only 5% of those with mildly low bone density at the start made the transition to osteoporosis. (seniorwomen.com)
  • Our study found it would take about 15 years for 10% of women in the highest bone density ranges to develop osteoporosis. (seniorwomen.com)
  • In this large nationwide community-based HIV cohort study HCV exposure was associated with an increased risk of kidney disease and osteoporosis," comment the authors. (aidsmap.com)
  • Some scientists say that observing how these stem cells interact when they transform into bone tissue could lead to new treatment and drugs for diseases such as osteoporosis. (zmescience.com)
  • Already, the Bone CLARITY method is being used in collaboration with a biotech company to test a new drug for osteoporosis. (zmescience.com)
  • The concept of peak bone mass has been widely used in developing strategies for the prevention of osteoporosis in the general population. (bmj.com)
  • Mount Sinai and The Yale School of Medicine have generated a mouse model that recapitulates all features of Gaucher Disease, including severe osteoporosis. (mssm.edu)
  • The most common form of bone disease is osteoporosis, which is characterized by reduced bone mineral density (BMD) and an increased risk of fracture. (biomedcentral.com)
  • If Osteoporosis is not your cup of tea, have you thought about macular degenerative eye disease - macular degeneration? (secrets-about-vitamins.com)
  • Osteopenia is referred to as a medical condition wherein bone mineral density is lower than the normal value. (ihealthdirectory.com)
  • Bone mineral density is a measurement of the level of minerals in the bones, indicating how dense and strong the bones are. (ihealthdirectory.com)
  • Structures that are dense (such as bone) will appear white, air will be black, and other structures will be shades of gray depending on density. (mountsinai.org)
  • A study of nearly 5,000 women now reports that patients with healthy bone density on their first test might safely wait 15 years before getting rescreened. (seniorwomen.com)
  • That's why the US Preventive Services Task Force recommends routine screening of bone mineral density for women ages 65 and older. (seniorwomen.com)
  • Researchers divided the women divided into 4 groups based on initial bone density tests that were either normal or showed mild, moderate or advanced osteopenia. (seniorwomen.com)
  • They were given 2 to 5 bone density tests at varying intervals during the 15-year study period. (seniorwomen.com)
  • If a woman's bone density at age 67 is very good, then she doesn't need to be rescreened in 2 years or 3 years, because we're not likely to see much change," Gourlay says. (seniorwomen.com)
  • Bone disease characterised by a decrease in bone mineral density and bone mass, resulting in an increased risk of fracture (a broken bone). (aidsmap.com)
  • Azathioprine did not negatively influence the steroid effect on bone mineral density. (lu.se)
  • CONCLUSIONS: Azathioprine does not seem to affect bone mineral density by itself. (lu.se)
  • Mueller joined the School of Medicine in 1998 as a technologist, measuring bone mineral density. (wustl.edu)
  • Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. (bmj.com)
  • OBJECTIVES--To determine the prevalence of vertebral fracture in postmenopausal women with steroid treated rheumatoid arthritis (RA), and whether the risk of vertebral fracture could be predicted from measurements of bone mineral density (BMD). (bmj.com)
  • METHODS In 22 prepubertal children with CF and mild lung disease, the relation between total body bone mineral density (BMD) and measures of body composition, biochemistry, lung function, and physical activity was studied. (bmj.com)
  • Bone strength is principally determined by bone density and bone volume, and several studies have shown the correlation between low bone mass and increased risk of fracture at, for example, the femoral neck. (bmj.com)
  • Femoral neck bone mineral density was obtained from DXA femur file. (cdc.gov)
  • Journal of Bone and Mineral Metabolism. (wikipedia.org)
  • Paget's disease of the bone is a rare condition affecting the elderly and it primarily involves a faulty bone metabolism. (news-medical.net)
  • Calcitonin: This hormone is involved in bone metabolism. (mountsinai.org)
  • Bone metabolism is affected by factors such as nutrition, exercise, medical illnesses and medications, as well as hormones including parathyroid hormone, vitamin D, estrogen, and testosterone. (rochester.edu)
  • Abnormalities in bone metabolism can result in bone disorders and imbalance of minerals such as calcium and phosphorus. (rochester.edu)
  • The Metabolic Bone Clinic at the University of Rochester Division of Endocrinology focuses on the evaluation and care of patients with conditions that affect bone and mineral metabolism. (rochester.edu)
  • Serum measures of mineral bone metabolism ( calcium , phosphate , parathyroid hormone , 25-hydroxy vitamin D , FGF23, osteopontin ) were measured at enrollment. (bvsalud.org)
  • The consideration of how material properties change in diseases could lead to a new paradigm in the study of genetic disorders that expands beyond the biochemical approach," said Buehler. (mit.edu)
  • The broader category of protein-based diseases contains even neuronal disorders such as Alzheimer's disease. (mit.edu)
  • The Brittle Bone Disorders Consortium (BBDC) brings together physicians, researchers, and educators to learn more about osteogenesis imperfecta (OI), a genetic disorder that mainly affects the development of the bones. (rarediseasesnetwork.org)
  • Mineral bone disorders and kidney disease in hospitalized children with sickle cell anemia. (bvsalud.org)
  • Mineral bone disorders (MBD) are common in sickle cell anemia (SCA). (bvsalud.org)
  • They are disorders of growth and remodeling of bone and cartilage. (medscape.com)
  • Women generally have more work-related cases of carpal tunnel syndrome, tendonitis, respiratory diseases, infectious diseases, and anxiety and stress disorders. (cdc.gov)
  • Job stress has been linked with heart disease, muscle/bone disorders, depression, and burnout. (cdc.gov)
  • Periodontitis involves an elevated inflammatory response and greater bone resorption, or the breakdown of bone tissue, by osteoclasts. (newswise.com)
  • Succinate activates the succinate receptor to stimulate the development of osteoclasts and bone resorption. (newswise.com)
  • Increased numbers of larger than normal osteoclasts initiate the process at affected skeletal sites, and the increase in bone resorption is followed by an increase in new bone formation, altering bone architecture. (mcw.edu)
  • Osteopetrosis is characterised by increased BMD, and failure of osteoclastic bone resorption due to mutations in genes that encode proteins that are essential for osteoclast activity like the chloride pump and proton pump, or mutations in genes like cathepsin K, which breakdown bone matrix. (biomedcentral.com)
  • Urine tests also show signs of excess Calcium and rapid bone turnover. (news-medical.net)
  • Due to high blood levels of Calcium from increased bone breakdown kidney stones may occur. (news-medical.net)
  • This bone disorder is characterized by acute degeneration of the bones and simultaneous formation of bones that are lacking in calcium and, hence, compared to the normal bones they are easily broken . (herbs2000.com)
  • This process, which is known as 'bone remodelling', is crucial to sustain the standard levels of calcium in the bones. (herbs2000.com)
  • As a general rule, individuals who have developed Paget's disease should be given calcium in a dosage of anything between 1,000 mg and 1,500 mg, sufficient exposure to sunlight and a minimum of 400 units of vitamin D every day. (herbs2000.com)
  • After they removed the calcium molecules from the bones which contribute to opacity, the team infused the bones with a hydrogel that locks cellular components in place and preserve the architecture of the sample. (zmescience.com)
  • these data provide a cautionary note regarding age-appropriate calcium requirements for optimal bone health in children," say the researchers. (isn-online.org)
  • Certain bones, such as weight-bearing bones, are involved and the risk of fracture is higher. (mountsinai.org)
  • Here various audiometry and hearing tests are performed to detect if hearing loss is due to nerve affliction or due to bone deformities. (news-medical.net)
  • It is a genetic bone disorder which makes the bones fragile. (ihealthdirectory.com)
  • The weak tendons and fragile bones characteristic of osteogenesis imperfecta, or brittle bone disease, stem from a genetic mutation that causes the incorrect substitution of a single amino acid in the chain of thousands of amino acids making up a collagen molecule, the basic building block of bone and tendon. (mit.edu)
  • We study osteogenesis imperfecta (OI), which is a rare, genetic connective tissue disorder most characterized by bone fragility. (rarediseasesnetwork.org)
  • Gaucher Disease is a genetic disorder that has an incidence of up to one in 850 live births in the Ashkenazi Jewish population. (mssm.edu)
  • Bone diseases are a common cause of morbidity and mortality in developed countries, and genetic factors play an important role in the pathogenesis of these diseases. (biomedcentral.com)
  • From a clinical standpoint, advances in knowledge about the genetic basis of bone disease offers the prospect of developing new markers for assessing fracture risk and the identification of new molecular targets that will form the basis for the design of new treatments. (biomedcentral.com)
  • Whether this study's findings will extend to other patients with FIO is uncertain, Dr. Drake cautioned, particularly because the subjects were brothers, "and thus may have had an unrecognized genetic basis for their disease which might be absent in others with FIO. (medscape.com)
  • CDC and the Council of State and Territorial Epidemiologists (CSTE) have established a policy that requires state health departments to report cases of selected diseases ( Table 1 ) to CDC's National Notifiable Diseases Surveillance System (NNDSS) (1,2). (cdc.gov)
  • The well-known forms of Osteogenesis Imperfecta (OI) result from a defect in the genes for type I collagen, which serves as a kind of molecular scaffolding that holds together bone, tendons, skin and other tissues. (nih.gov)
  • Osteogenesis Imperfecta or OI is also referred to as the Brittle Bone Disease. (ihealthdirectory.com)
  • Osteogenesis imperfecta (OI) or "brittle bone disease" is a congenital disorder in which a person is born with very brittle bones, usually due to either a complete lack of or incorrectly formed type I collagen. (hss.edu)
  • To avoid complications, it is important to find and treat Paget's disease early. (medlineplus.gov)
  • Surgery is sometimes needed for certain complications of the disease. (medlineplus.gov)
  • Individuals who have developed Paget's disease are also likely to suffer from certain complications, such as the bones in the affected areas being inclined to breakage or fracture owing to even slight trauma. (herbs2000.com)
  • Paget's disease may also cause additional complications, including hypertension , sarcoma, gout , osteoarthritis , renal calculi, heart failure as well as a wobble walk attributable to softening of the pelvic bones. (herbs2000.com)
  • Emily Meier, MD, Director of the Sickle Cell Disease Program , discusses bone marrow transplants at Children's National and some of the complications of sickle cell disease. (childrensnational.org)
  • However, it is less clear if the infection is also associated with an increased risk of serious non-liver-related events, such as diabetes, cardiovascular disease, malignancies and bone complications. (aidsmap.com)
  • This creates a tiny rift in the tissue, which when repeated in many molecules, leads to brittle tissue, broken bones, deformity and, in the most severe form of the disease, death. (mit.edu)
  • This results in deformity of the affected bones. (mountsinai.org)
  • Biopsies should be obtained from any soft-tissue mass or, if no soft-tissue mass is present, from the most accessible bone in a mechanically safe area (eg, metaphysis vs diaphysis, acetabulum vs subtrochanteric femur). (medscape.com)
  • The bones that are usually affected by this health condition comprise the femur (thigh bone), the spine , the skull, the pelvis, the humerus (bone of the upper arm), and the clavicle (collar bone). (herbs2000.com)
  • The types of bones selected for the study were the femur and tibia, as well as some bones of the vertebral column. (zmescience.com)
  • The collagen defects result from dominant mutations, requiring only one copy of a mutant gene to cause bone disease. (nih.gov)
  • This approach to the study of disease, referred to as "materiomics" by the lead researcher on the project, Professor Markus Buehler of MIT's Department of Civil and Environmental Engineering, could prove valuable in the study of other diseases - particularly collagen- and other protein-based diseases - where a material's behavior and breakdown play a critical role. (mit.edu)
  • He sees the application of this approach to collagen-based diseases as a starting point that could lead to a similar analysis of the mechanical properties of tissue involved in other protein-based diseases. (mit.edu)
  • About 1 in 10,000 people are diagnosed with brittle bone disease annually, and defective collagen is implicated in many other medical conditions, including Alport syndrome (kidney disease) and Ehlers-Danlos syndrome (overly-flexible skin and joints). (mit.edu)
  • Several candidate genes have been identified that regulate BMD and susceptibility to fracture, including bone morphogenic protein 2, collagen type I alpha 1, the vitamin D receptor, the estrogen receptor and lipoprotein receptor related protein 5 (LRP5). (biomedcentral.com)
  • The underlying abnormality in FIO appears to be an acquired defect in bone collagen fibrillary arrangement. (medscape.com)
  • FIO is an ultra-rare skeletal disorder in which the collagen matrix (on which bone mineral is deposited) is disorganized, Dr. Matthew Drake of the Mayo Clinic told Reuters Health in an email, adding that no recognized therapy exists. (medscape.com)
  • The mice had deformed brittle bones. (nih.gov)
  • Paget's disease of the bone (PDB) is characterised by focal abnormalities of increased bone turnover. (biomedcentral.com)
  • In addition, he commented, "whether rhGH can be used long-term is unclear, as we know that long-term exposure to high levels of growth hormone in adults may lead to adverse outcomes," such as an increased risk of diabetes, increased bone growth leading to joint abnormalities and increased pressure on nerves, which can result in carpal tunnel syndrome. (medscape.com)
  • We evaluated the prevalence of markers of SCA-related MBD (sMBD) in hospitalized children and assessed the relationship between sMBD and individual mineral abnormalities with kidney disease . (bvsalud.org)
  • There is excessive breakdown and regrowth of bone. (medlineplus.gov)
  • Normally, the building of new bone and the breakdown of old bone is in a state of balance, which is why, for most of us, our skeletons stay the same size once we have stopped growing. (mydr.com.au)
  • In people with Paget disease, there is an abnormal breakdown of bone tissue in specific areas. (mountsinai.org)
  • Drug therapy helps prevent further bone breakdown and formation. (mountsinai.org)
  • According to the researchers, this condition is very similar to Paget's disease, a bone metabolic disorder that is characterized by a breakdown in communication between bone building cells and bone destroying cells. (earth.com)
  • The muscles, bones and joints are usually called collectively the musculo-skeletal system. (healthy.net)
  • In adults, Paget's disease generally has an effect on the older skeletal bone and, according to rough estimate, approximately one per cent of the adult population in the United States, suffers from Paget's disease. (herbs2000.com)
  • However, this pain pattern can be present in patients with osteomyelitis and Paget disease, and in these instances, it is also nonspecific. (medscape.com)
  • The condition is named after Sir James Paget, a British doctor who described the disease in the 1870s. (mydr.com.au)
  • Paget's disease, whose name has been derived from the famous British surgeon Sir James Paget, is a bone disorder. (herbs2000.com)
  • In effect, Dr. Paget was the first to identify as well as explain this persistent bone disease in the latter part of the 19th century. (herbs2000.com)
  • Paget disease is a feature of several Mendelian diseases including Paget disease of bone 3 (OMIM:167250). (mcw.edu)
  • Paget disease is a disorder that involves abnormal bone destruction and regrowth. (mountsinai.org)
  • The cause of Paget disease is unknown. (mountsinai.org)
  • Paget disease is often diagnosed when an x-ray is done for another reason. (mountsinai.org)
  • Not all people with Paget disease need to be treated. (mountsinai.org)
  • Currently, there are several classes of drugs used to treat Paget disease. (mountsinai.org)
  • Additional information about OI is available from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, at http://www.niams.nih.gov/bone/oi.htm . (nih.gov)
  • Their intrinsic regenerative capacities are disturbed in many hematological and musculoskeletal diseases. (europa.eu)
  • Due to the limitations of such studies in human beings and animals, I propose to develop human in vitro models of healthy bone marrow, which can be induced to develop hematological and musculoskeletal diseases with high incidence, namely leukemia, multiple myeloma and bone metastasis. (europa.eu)
  • Patients with metastatic bone disease are generally treated with surgery or radiation therapy. (medscape.com)
  • The goals of surgical intervention for spinal surgery in patients with metastatic bone disease includes decreasing or eliminating pain, decompressing neural elements to protect cord function, and mechanically stabilizing the spine. (medscape.com)
  • It is usually quite elevated in patients with Paget's disease. (news-medical.net)
  • A bone scan or a PET (Positron Emission tomography) scan is advised for patients with Paget's disease. (news-medical.net)
  • CDC recommends that all patients who received these products (#TDS222820) begin treatment for TB disease , even if they do not have any symptoms. (cdc.gov)
  • Patients affected by Paget's disease experience bone pain in the bones that have developed this condition. (herbs2000.com)
  • 15 patients with Paget's bone disease were treated with varying schedules of porcine (3.8-157.5 MRCU/kg per wk) and/or salmon (1.5-210 MRCU/kg per wk) calcitonins over periods ranging from 4 to 24 months. (jci.org)
  • In spite of return of disease activity comparable to baseline levels, 3/5 resistant subjects treated with salmon calcitonin failed to develop hypocalcemia after injection of 300-1000 MRCU of salmon calcitonin, but two of these patients developed hypocalcemia in response to the porcine hormone. (jci.org)
  • We work with patients to create an individual diet, lifestyle and treatment plan to improve bone health. (rochester.edu)
  • OBJECTIVES: To ascertain whether patients with Crohn's disease treated with azathioprine maintained bone mineral mass better than patients treated with steroids alone. (lu.se)
  • SUBJECTS: A total of 59 patients with ileocolonic, ileocaecal or colonic Crohn's disease. (lu.se)
  • However, by being steroid-saving, it seems to conserve bone mineral mass in patients with Crohn's disease. (lu.se)
  • Patients who reached stringent remission according to the Simplified Disease Activity Index (SDAI≤3.3) were extracted to eliminate the activity related (ie, reversible) component of disability. (bmj.com)
  • CONCLUSIONS--We conclude that patients with steroid treated RA may have abnormal bone quality, and that LS-BMD cannot be used to predict the risk of vertebral fracture in these patients. (bmj.com)
  • Galileo Research Fact Sheet #142: Can Galileo Therapy improve bone parameters in Pompe disease patients? (galileo-training.com)
  • Bone pain resolved enough in both patients to allow them to perform most of their activities of daily living. (medscape.com)
  • Then when we developed a half-matched protocol, half of the patients eventually rejected the cells, and the disease came back. (medlineplus.gov)
  • Bone marrow transplants are not working in 100% of patients. (medlineplus.gov)
  • To quantify and compare the level of alveolar bone loss on panoramic and periapical radiographs of five (5) patients presenting periodontitis. (bvsalud.org)
  • On the panoramic and periapical radiographs of five patients, the measurements from the cement-enamel junction (CEJ) to the alveolar bone crest (ABC), at the mesial and distal surfaces of the upper and lower incisors, lower first premolars and first molars, were performed. (bvsalud.org)
  • Unlike those with achondroplasia or hypochondroplasia, patients with diastrophic dysplasia have epiphyseal involvement and are at risk for degenerative joint disease. (medscape.com)
  • Proceedings: A simplified approach to metabolic bone disease. (bmj.com)
  • On X rays the affected bone shows up as large, dense white and deformed. (news-medical.net)
  • Osteochondrodysplasia is a general term for a disorder of the development of bone and cartilage. (wikipedia.org)
  • Sore joints or arthritis due to damage to the cartilage which lines the ends of bones. (mydr.com.au)
  • Background Joint destruction in rheumatoid arthritis is comprised of cartilage and bone damage, which can be evaluated radiographically separately by the joint space narrowing (JSN) and erosion (ERO) scores. (bmj.com)
  • While pathogenetically the influx of immune and inflammatory cells signifies synovitis, its invasion into the adjacent bone and the consumption of cartilage constitute the destructive elements of the disease. (bmj.com)
  • Newswise - The National Institute of Dental & Craniofacial Research, part of the National Institutes of Health, has awarded a grant to researchers at New York University College of Dentistry (NYU Dentistry) to explore the biological mechanisms that contribute to poor oral health and related bone loss among people with diabetes. (newswise.com)
  • Diabetes may accelerate periodontitis through metabolic dysregulation, shifts in bacterial colonization, inflammation, and bone loss. (newswise.com)
  • Because bone loss and fracture risk are serious concerns for people with diabetes, Xin Li, PhD, associate professor of basic science and craniofacial biology at NYU College of Dentistry, has been working to understand the underlying mechanism for periodontal bone loss in people with diabetes. (newswise.com)
  • Using mouse models, the researchers will investigate whether succinate signaling alters the oral microbiome, study the role of succinate as an inflammatory and immune mediator, and determine whether blocking succinate signaling can thwart diabetes-related periodontal bone loss. (newswise.com)
  • Because we've found that succinate has significant implications for periodontal disease, we hope that by understanding this novel mechanism, we can help prevent periodontal bone loss in those with diabetes," said Deepak Saxena, PhD, associate professor of basic science and craniofacial biology at NYU College of Dentistry and one of the project's principal investigators. (newswise.com)
  • Restricting analysis to HCV-positive people showed that ongoing HCV replication was associated with liver disease and death and an increased risk of diabetes. (aidsmap.com)
  • The Endocrine Division uses technology, research, and novel gene therapies to enable physician-scientists in the Division of Endocrinology, Diabetes, and Bone Disease to identify new treatments. (mssm.edu)
  • Andrea Dunaif, MD, is the Chief of the Hilda and J. Lester Gabrilove Division of Endocrinology, Diabetes and Bone Disease. (mssm.edu)
  • Carol J. Levy, MD, CDE is a Professor in the Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, and a Professor in the Department of Obstetrics, Gynecology and Reproductive Science. (mountsinai.org)
  • As a child, she was diagnosed with type 1 diabetes and the patience and respect she received from clinicians along the way (including her obstetrician for her own pregnancies) reinforced her belief that a patient who understands the purpose of a treatment is one who is able to best able to manage his//her disease. (mountsinai.org)
  • This is targeted to maintain a transferrin saturation level of 20% or higher and serum ferritin level of 100 ng/dL or higher in children with chronic kidney disease. (medscape.com)
  • Any bone in the body can develop Paget's disease, but it particularly affects the skull, spine, pelvis, legs and arms. (mydr.com.au)
  • Osteosarcoma is a type of bone tumor that is prevalent in children and the elderly, and many times it is commonly found in the knee area. (ihealthdirectory.com)
  • A small number of people may develop a cancer of the bone called osteosarcoma. (mountsinai.org)
  • Centers for Disease Control and Prevention. (cdc.gov)
  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website. (cdc.gov)
  • I'm Commander Ibad Khan and I'm representing the Clinician Outreach and Communication Activity, COCA, with the Emergency Risk Communication Branch at the Centers for Disease Control and Prevention. (cdc.gov)
  • Researchers do not know for sure what causes Paget's disease. (medlineplus.gov)
  • Remarkably, American researchers recently showed how to grow intact and transparent bones. (zmescience.com)
  • To determine stem cell populations in the bone, researchers usually slice the bone into thin sections then extrapolate the number of stem cells. (zmescience.com)
  • Common symptoms of the condition are frequent broken bones, gradual bending of the leg and arm bones, short stature, weak muscles, and, in time, loss of the ability to walk. (cure.org)
  • Once broken bones are stabilized, surgeons place metal rods and pins into the child's bones to prevent more breaks and abnormal bending. (cure.org)
  • Bisphosphonates: These drugs are the first treatment, and they help decrease bone remodeling. (mountsinai.org)
  • Metastatic bone disease occurs when cancer spreads from a primary organ site to bone. (medscape.com)
  • The spine is the most common location of metastatic disease. (medscape.com)
  • For the management of long-bone metastatic disease accompanied by an impending or completed fracture, open internal fixation is usually the preferred method of treatment. (medscape.com)
  • Ryan White Center for Pediatric Infectious Diseases and Global Health, Indianapolis, IN, United States. (bvsalud.org)
  • This report provides updated uniform criteria * for state health department personnel to use when reporting the nationally notifiable infectious diseases listed in Part 1 of this report. (cdc.gov)
  • This report supersedes the 1990 report, which included infectious diseases and one noninfectious condition (i.e., spinal cord injury). (cdc.gov)
  • Previously my team and I developed a simplified bone marrow analog that bases on macroporous, cell-laden biomaterials with tunable physical, biochemical and biological properties. (europa.eu)
  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. (wikipedia.org)
  • KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)" (PDF). (wikipedia.org)
  • To address this paucity of data, Denburg and colleagues evaluated fracture burden in 537 children aged 1-16 years enrolled in the prospective Chronic Kidney Disease in Children study to determine the gender-specific incidence of fracture and to identify risk factors for fracture in this population. (isn-online.org)
  • In adults with chronic kidney disease, interventions to slow the progression of kidney disease that have been proven to be effective include strict blood pressure control and angiotensin-converting enzyme (ACE) inhibitor or angiotensin II receptor-blocker (ARB) therapy, lipid lowering therapy, and correction of anemia. (medscape.com)
  • In addition, antihypertensive therapy is used for both renal protection and cardiovascular protection, because chronic kidney disease is associated with a marked increase in cardiovascular risk. (medscape.com)
  • According to the recommendations of the Pediatric Work Group of Kidney Disease Outcomes Quality Initiative (KDOQI) for chronic kidney disease (CKD), all children with evidence of CKD should be referred to a pediatric nephrologist for consultation and comanagement. (medscape.com)
  • Recombinant human erythropoietin (rHuEPO) has been used for chronic kidney disease (CKD)-associated anemia since 1986. (medscape.com)
  • The Kidney Disease Improving Global Outcomes (KDIGO) guidelines were used to define SCA-associated acute kidney injury (AKI). (bvsalud.org)
  • Acute kidney disease (AKD) was defined as a composite of AKI, an eGFR Cystatin C GFR equation, or evidence of structural injury (positive biomarker test or albuminuria ). (bvsalud.org)
  • Biomarkers of kidney injury and bone health may help risk stratify children at risk of sMBD. (bvsalud.org)
  • if your child has ever had or still has a liver disease (such as hepatitis) · if your child is suffering from or has ever suffered from kidney disease. (who.int)
  • Generally, people affected by Paget's disease do not have any symptoms, at least in the initial stages of developing this chronic bone disorder, and it is interesting to note that it is often identified when the X-rays of the patient are taken for diagnosing other medical conditions. (herbs2000.com)
  • It is well known that chronic HCV infection is associated with an increased risk of serious liver disease and liver-related death. (aidsmap.com)
  • The CDC Surveillance Coordination Group has established a steering committee that is charged with the development of a broad range of case definitions for noninfectious conditions (e.g., environmental or occupational conditions, chronic diseases, adverse reproductive health events, and injuries). (cdc.gov)
  • Aortic valve disease can lead to heart failure, arrhythmia, infections in the heart, and sudden death may occur in 15 to 20 percent of people who have symptoms. (sciencedaily.com)
  • In Australia, about 2-4% of people over the age of 55 will have some degree of Paget's disease, although for most people it will cause no symptoms or major problems. (mydr.com.au)
  • Many people with Paget's disease are unaware they have the condition because they have no symptoms or only mild symptoms. (mydr.com.au)
  • The symptoms of Paget's disease depend on where in the body the abnormal new bone is being produced. (mydr.com.au)
  • Because most people with Paget's disease have no symptoms, the disease is often diagnosed by chance after tests have been carried out for another reason. (mydr.com.au)
  • The disease has a wide spectrum of signs and symptoms ( 4 ). (cdc.gov)
  • Ten days later, high-grade fever up to 40°C developed, without any other signs or symptoms of disease. (cdc.gov)
  • It is worth mentioning here two main factors - the affected bones as well as the severity of the condition determine the symptoms of Paget's disease. (herbs2000.com)
  • Rare bone diseases such as osteopetrosis and hereditary osteoscleroses are also caused by mutations in genes that affect bone cell function. (biomedcentral.com)
  • However, the condition has been around for thousands of years, with some skeletons from ancient Egypt known to have evidence of large, misshapen bones. (mydr.com.au)
  • Our work is focused on the pathophysiology and development of novel cellular therapies to cure severe combined immunodeficiencies caused by RAG genes and inherited bone defects due to osteoclast dysfunction. (hsr.it)
  • Affected bones become enlarged, misshapen and weaker than normal. (mydr.com.au)
  • As a result of new abnormal bone being produced, affected bones become enlarged and misshapen. (mydr.com.au)
  • In effect, when the affected bones become enlarged they may squeeze the nearby nerves, thereby resulting in lack of sensation and tingling in the area. (herbs2000.com)
  • By maximising peak bone mass in adolescence or young adulthood, along with strategies to reduce the rate of bone mineral loss, fracture risk and development of thoracic kyphosis may be substantially reduced. (bmj.com)
  • Rheumatoid arthritis is far less common than osteoarthritis and represents a completely different disease process. (healthy.net)
  • Sickle cell disease (SCD) specialists have performed bone marrow transplants in children since the 1990s. (medlineplus.gov)
  • I'm hoping our research can go beyond sickle cell disease to have a bigger impact. (medlineplus.gov)
  • We are trying to create a state where instead of completely replacing bone marrow with that of their donors, we are creating a mixture of donor and patient cells because we now know that as low as 20% donor cells is enough to reverse sickle cell disease. (medlineplus.gov)
  • It's an exciting time for sickle cell disease research. (medlineplus.gov)
  • The number one disease among newborn babies is sickle cell disease. (medlineplus.gov)
  • Osteomalacia is a condition where there is softening of the bones which is caused by defective bone mineralization. (ihealthdirectory.com)
  • Bone biopsies showed "dramatic improvement" in mineralization. (medscape.com)
  • When disease or damage occurs to this system it nearly always results in pain, and most people use words such as rheumatism or arthritis to describe this type of pain. (healthy.net)
  • The disease occurs worldwide, but is more common in Europe, Australia, and New Zealand. (mountsinai.org)
  • In comparison to cancers that occur in organs, or that spreads to bone tissue, bone cancer can be considered fairly uncommon. (ihealthdirectory.com)
  • Bone marrow is the tissue found in the center of the bone. (ihealthdirectory.com)
  • In what may be the first detailed molecular-based multi-scale analysis of the role of a materials' failure in human disease, a paper in the Aug. 5 issue of Biophysical Journal describes exactly how the substituted amino acid repels other amino acids rather than forming chemical bonds with them, creating a radically altered structure at the nanoscale that results in severely compromised tissue at the macroscale. (mit.edu)
  • They learned that the mutations creating the most severe form of the disease also correlate with the greatest magnitude of adverse effects in creating more pronounced rifts in the tissue, which lead to the deterioration and failure of the tissue. (mit.edu)
  • The bones in our bodies are living tissue. (rochester.edu)
  • Just like skin, bone sheds old tissue and grows a new one from stem cells sourced from the bone marrow. (zmescience.com)
  • In addition, OI is a pleiotropic connective tissue disease that affects more than bone, and the phenotype can be highly variable depending upon genotype. (rarediseasesnetwork.org)
  • No relation was found between BMD and anthropometric indices, fat free soft tissue, degree of lung disease, degree of fat malabsorption, dietary energy intake, or level of physical activity. (bmj.com)
  • Since the 1990s, to do a bone marrow transplant, a patient had to have a sibling with a complete tissue match and take a medication that suppresses their immune system (Cyclophosphamide), as well as high dose chemotherapy. (medlineplus.gov)
  • Vision loss , if Paget's disease in the skull affects the nerves. (medlineplus.gov)
  • Hearing loss may be the first to be detected in Paget's disease affecting the skull bones. (news-medical.net)
  • In case the disease affects the skull bones, the patient may experience headaches , lack of eyesight as well as impaired hearing . (herbs2000.com)
  • For example, hormones from bone send the brain signals to regulate appetite, and studying the interface between the skull and the brain is a vital part of neuroscience. (zmescience.com)
  • Nevertheless, people enduring this health condition may possibly suffer from bone pains, fracture, and malformation of bones as well as arthritis . (herbs2000.com)
  • In some cases, the legs may even bend over, whereas if the hip or knee is affected by Paget's disease, it may result in limping, arthritis and even aches and rigidity of the bones in these body parts. (herbs2000.com)
  • Method: Descriptive, univariate, and multivariate regression analyses were employed to assess key psychosocial, disease, and host factors among the sample (N =141) of adults with arthritis, aged [UNKNOWN] 50 years old. (cdc.gov)
  • We hypothesize that targeting succinate signaling will prevent the acceleration of periodontal disease. (newswise.com)
  • The new NIDCR grant will fund research to determine whether elevated levels of succinate accelerate the progression of periodontal disease. (newswise.com)
  • Periapical radiograph can be considered the best radiographic method to evaluate the alveolar bone loss level and, consequently, to help the diagnosis of the periodontal disease. (bvsalud.org)
  • However, the panoramic radiograph is still a valid method for evaluating the level of bone loss caused by the periodontal disease, although the dentist should be aware of the limitation and characteristics of this radiographic technique. (bvsalud.org)
  • In severe Paget's disease, the heart has to work harder to pump blood to affected bones. (medlineplus.gov)
  • Heart failure is detected in severe Paget's disease. (news-medical.net)
  • Less commonly, Paget's disease can affect the heart, because the abnormal new bone needs its own blood supply. (mydr.com.au)
  • As a result, the body absorbs old bone and forms abnormal new bone. (earth.com)
  • Paget's disease is a treatable condition that affects the bones, mainly in older people. (mydr.com.au)
  • Create healthcare diagrams like this example called Diseases Treatable with a Bone Marrow or Cord Blood Transplant in minutes with SmartDraw. (smartdraw.com)
  • It is important to confirm the diagnosis of Paget's disease. (news-medical.net)
  • Retrieved on October 01, 2023 from https://www.news-medical.net/health/Diagnosis-of-Pagets-disease-of-the-bone.aspx. (news-medical.net)
  • MEDLINE and Embase were searched for cohort studies (January 1st 2010 to September 1st 2020) that reported the prevalence of cardiovascular, bone, renal and neurocognitive disease in WLWH >18 years. (natap.org)
  • The data suggests a high burden of cardiovascular, bone, renal and neurocognitive disease in WLWH compared to HIV negative women. (natap.org)
  • How about cardiovascular or heart disease? (secrets-about-vitamins.com)
  • At Mount Sinai Morningside, The New York Obesity Research Center is the only federally funded obesity research center and the mission is to reduce the incidence of obesity and related diseases through leadership in basic obesity research, clinical research, epidemiology and public health, patient care, and public education. (mssm.edu)
  • In some cases, the affected bones may impinge the cranial nerves leading to hearing loss as well as loss of vision accompanied by vertigo and tinnitus . (herbs2000.com)