The direct continuation of the brachial trunk, originating at the bifurcation of the brachial artery opposite the neck of the radius. Its branches may be divided into three groups corresponding to the three regions in which the vessel is situated, the forearm, wrist, and hand.
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
Pathological conditions involving the CAROTID ARTERIES, including the common, internal, and external carotid arteries. ATHEROSCLEROSIS and TRAUMA are relatively frequent causes of carotid artery pathology.
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
The two principal arteries supplying the structures of the head and neck. They ascend in the neck, one on each side, and at the level of the upper border of the thyroid cartilage, each divides into two branches, the external (CAROTID ARTERY, EXTERNAL) and internal (CAROTID ARTERY, INTERNAL) carotid arteries.
Narrowing or stricture of any part of the CAROTID ARTERIES, most often due to atherosclerotic plaque formation. Ulcerations may form in atherosclerotic plaques and induce THROMBUS formation. Platelet or cholesterol emboli may arise from stenotic carotid lesions and induce a TRANSIENT ISCHEMIC ATTACK; CEREBROVASCULAR ACCIDENT; or temporary blindness (AMAUROSIS FUGAX). (From Adams et al., Principles of Neurology, 6th ed, pp 822-3)
Branch of the common carotid artery which supplies the exterior of the head, the face, and the greater part of the neck.
The excision of the thickened, atheromatous tunica intima of a carotid artery.
The separation and isolation of tissues for surgical purposes, or for the analysis or study of their structures.
Blood clot formation in any part of the CAROTID ARTERIES. This may produce CAROTID STENOSIS or occlusion of the vessel, leading to TRANSIENT ISCHEMIC ATTACK; CEREBRAL INFARCTION; or AMAUROSIS FUGAX.
The vessels carrying blood away from the heart.
The splitting of the vessel wall in one or both (left and right) internal carotid arteries (CAROTID ARTERY, INTERNAL). Interstitial hemorrhage into the media of the vessel wall can lead to occlusion of the internal carotid artery and aneurysm formation.
Aneurysm caused by a tear in the TUNICA INTIMA of a blood vessel leading to interstitial HEMORRHAGE, and splitting (dissecting) of the vessel wall, often involving the AORTA. Dissection between the intima and media causes luminal occlusion. Dissection at the media, or between the media and the outer adventitia causes aneurismal dilation.
A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control.
The innermost layer of an artery or vein, made up of one layer of endothelial cells and supported by an internal elastic lamina.
The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure.
The arterial blood vessels supplying the CEREBRUM.
The first branch of the SUBCLAVIAN ARTERY with distribution to muscles of the NECK; VERTEBRAE; SPINAL CORD; CEREBELLUM; and interior of the CEREBRUM.
Devices that provide support for tubular structures that are being anastomosed or for body cavities during skin grafting.
Radiography of the vascular system of the brain after injection of a contrast medium.
The middle layer of blood vessel walls, composed principally of thin, cylindrical, smooth muscle cells and elastic tissue. It accounts for the bulk of the wall of most arteries. The smooth muscle cells are arranged in circular layers around the vessel, and the thickness of the coat varies with the size of the vessel.
The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs.
The main artery of the thigh, a continuation of the external iliac artery.
Dissection in the neck to remove all disease tissues including cervical LYMPH NODES and to leave an adequate margin of normal tissue. This type of surgery is usually used in tumors or cervical metastases in the head and neck. The prototype of neck dissection is the radical neck dissection described by Crile in 1906.
A measurement of the thickness of the carotid artery walls. It is measured by B-mode ULTRASONOGRAPHY and is used as a surrogate marker for ATHEROSCLEROSIS.
Damages to the CAROTID ARTERIES caused either by blunt force or penetrating trauma, such as CRANIOCEREBRAL TRAUMA; THORACIC INJURIES; and NECK INJURIES. Damaged carotid arteries can lead to CAROTID ARTERY THROMBOSIS; CAROTID-CAVERNOUS SINUS FISTULA; pseudoaneurysm formation; and INTERNAL CAROTID ARTERY DISSECTION. (From Am J Forensic Med Pathol 1997, 18:251; J Trauma 1994, 37:473)
The artery formed by the union of the right and left vertebral arteries; it runs from the lower to the upper border of the pons, where it bifurcates into the two posterior cerebral arteries.
An abnormal balloon- or sac-like dilatation in the wall of AORTA.
Ultrasonography applying the Doppler effect combined with real-time imaging. The real-time image is created by rapid movement of the ultrasound beam. A powerful advantage of this technique is the ability to estimate the velocity of flow from the Doppler shift frequency.
Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
Non-invasive method of vascular imaging and determination of internal anatomy without injection of contrast media or radiation exposure. The technique is used especially in CEREBRAL ANGIOGRAPHY as well as for studies of other vascular structures.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Radiography of blood vessels after injection of a contrast medium.
Splitting of the vessel wall in the VERTEBRAL ARTERY. Interstitial hemorrhage into the media of the vessel wall can lead to occlusion of the vertebral artery, aneurysm formation, or THROMBOEMBOLISM. Vertebral artery dissection is often associated with TRAUMA and injuries to the head-neck region but can occur spontaneously.
Use of a balloon catheter for dilation of an occluded artery. It is used in treatment of arterial occlusive diseases, including renal artery stenosis and arterial occlusions in the leg. For the specific technique of BALLOON DILATION in coronary arteries, ANGIOPLASTY, BALLOON, CORONARY is available.
Artery arising from the brachiocephalic trunk on the right side and from the arch of the aorta on the left side. It distributes to the neck, thoracic wall, spinal cord, brain, meninges, and upper limb.
Arteries which arise from the abdominal aorta and distribute to most of the intestines.
Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6)
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues.
Reconstruction or repair of a blood vessel, which includes the widening of a pathological narrowing of an artery or vein by the removal of atheromatous plaque material and/or the endothelial lining as well, or by dilatation (BALLOON ANGIOPLASTY) to compress an ATHEROMA. Except for ENDARTERECTOMY, usually these procedures are performed via catheterization as minimally invasive ENDOVASCULAR PROCEDURES.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
Surgical excision, performed under general anesthesia, of the atheromatous tunica intima of an artery. When reconstruction of an artery is performed as an endovascular procedure through a catheter, it is called ATHERECTOMY.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
Either of two large arteries originating from the abdominal aorta; they supply blood to the pelvis, abdominal wall and legs.
Elements of limited time intervals, contributing to particular results or situations.
Surgical therapy of ischemic coronary artery disease achieved by grafting a section of saphenous vein, internal mammary artery, or other substitute between the aorta and the obstructed coronary artery distal to the obstructive lesion.
Arteries originating from the subclavian or axillary arteries and distributing to the anterior thoracic wall, mediastinal structures, diaphragm, pectoral muscles and mammary gland.
A group of pathological conditions characterized by sudden, non-convulsive loss of neurological function due to BRAIN ISCHEMIA or INTRACRANIAL HEMORRHAGES. Stroke is classified by the type of tissue NECROSIS, such as the anatomic location, vasculature involved, etiology, age of the affected individual, and hemorrhagic vs. non-hemorrhagic nature. (From Adams et al., Principles of Neurology, 6th ed, pp777-810)
Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
A spectrum of pathological conditions of impaired blood flow in the brain. They can involve vessels (ARTERIES or VEINS) in the CEREBRUM, the CEREBELLUM, and the BRAIN STEM. Major categories include INTRACRANIAL ARTERIOVENOUS MALFORMATIONS; BRAIN ISCHEMIA; CEREBRAL HEMORRHAGE; and others.
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
The nonstriated involuntary muscle tissue of blood vessels.
The continuation of the axillary artery; it branches into the radial and ulnar arteries.
Pathological outpouching or sac-like dilatation in the wall of any blood vessel (ARTERIES or VEINS) or the heart (HEART ANEURYSM). It indicates a thin and weakened area in the wall which may later rupture. Aneurysms are classified by location, etiology, or other characteristics.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
The largest of the cerebral arteries. It trifurcates into temporal, frontal, and parietal branches supplying blood to most of the parenchyma of these lobes in the CEREBRAL CORTEX. These are the areas involved in motor, sensory, and speech activities.
Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841)
The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Surgical insertion of BLOOD VESSEL PROSTHESES to repair injured or diseased blood vessels.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Artery originating from the internal carotid artery and distributing to the eye, orbit and adjacent facial structures.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
An abnormal balloon- or sac-like dilatation in the wall of the THORACIC AORTA. This proximal descending portion of aorta gives rise to the visceral and the parietal branches above the aortic hiatus at the diaphragm.
Blocking of a blood vessel in the SKULL by an EMBOLUS which can be a blood clot (THROMBUS) or other undissolved material in the blood stream. Most emboli are of cardiac origin and are associated with HEART DISEASES. Other non-cardiac sources of emboli are usually associated with VASCULAR DISEASES.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
Ultrasonography applying the Doppler effect, with the superposition of flow information as colors on a gray scale in a real-time image. This type of ultrasonography is well-suited to identifying the location of high-velocity flow (such as in a stenosis) or of mapping the extent of flow in a certain region.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
The veins and arteries of the HEART.
Vascular diseases characterized by thickening and hardening of the walls of ARTERIES inside the SKULL. There are three subtypes: (1) atherosclerosis with fatty deposits in the ARTERIAL INTIMA; (2) Monckeberg's sclerosis with calcium deposits in the media and (3) arteriolosclerosis involving the small caliber arteries. Clinical signs include HEADACHE; CONFUSION; transient blindness (AMAUROSIS FUGAX); speech impairment; and HEMIPARESIS.
A non-invasive technique using ultrasound for the measurement of cerebrovascular hemodynamics, particularly cerebral blood flow velocity and cerebral collateral flow. With a high-intensity, low-frequency pulse probe, the intracranial arteries may be studied transtemporally, transorbitally, or from below the foramen magnum.
A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.
The flow of BLOOD through or around an organ or region of the body.
A polygonal anastomosis at the base of the brain formed by the internal carotid (CAROTID ARTERY, INTERNAL), proximal parts of the anterior, middle, and posterior cerebral arteries (ANTERIOR CEREBRAL ARTERY; MIDDLE CEREBRAL ARTERY; POSTERIOR CEREBRAL ARTERY), the anterior communicating artery and the posterior communicating arteries.
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
Microsurgical revascularization to improve intracranial circulation. It usually involves joining the extracranial circulation to the intracranial circulation but may include extracranial revascularization (e.g., subclavian-vertebral artery bypass, subclavian-external carotid artery bypass). It is performed by joining two arteries (direct anastomosis or use of graft) or by free autologous transplantation of highly vascularized tissue to the surface of the brain.
Arteries arising from the external carotid or the maxillary artery and distributing to the temporal region.
Embolism or thrombosis involving blood vessels which supply intracranial structures. Emboli may originate from extracranial or intracranial sources. Thrombosis may occur in arterial or venous structures.
Transient complete or partial monocular blindness due to retinal ischemia. This may be caused by emboli from the CAROTID ARTERY (usually in association with CAROTID STENOSIS) and other locations that enter the central RETINAL ARTERY. (From Adams et al., Principles of Neurology, 6th ed, p245)
A method of hemostasis utilizing various agents such as Gelfoam, silastic, metal, glass, or plastic pellets, autologous clot, fat, and muscle as emboli. It has been used in the treatment of spinal cord and INTRACRANIAL ARTERIOVENOUS MALFORMATIONS, renal arteriovenous fistulas, gastrointestinal bleeding, epistaxis, hypersplenism, certain highly vascular tumors, traumatic rupture of blood vessels, and control of operative hemorrhage.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Application of a ligature to tie a vessel or strangulate a part.
Veins in the neck which drain the brain, face, and neck into the brachiocephalic or subclavian veins.
Ultrasonography applying the Doppler effect, with frequency-shifted ultrasound reflections produced by moving targets (usually red blood cells) in the bloodstream along the ultrasound axis in direct proportion to the velocity of movement of the targets, to determine both direction and velocity of blood flow. (Stedman, 25th ed)
Benign paraganglioma at the bifurcation of the COMMON CAROTID ARTERIES. It can encroach on the parapharyngeal space and produce dysphagia, pain, and cranial nerve palsies.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
A large vessel supplying the whole length of the small intestine except the superior part of the duodenum. It also supplies the cecum and the ascending part of the colon and about half the transverse part of the colon. It arises from the anterior surface of the aorta below the celiac artery at the level of the first lumbar vertebra.
The condition of an anatomical structure's being constricted beyond normal dimensions.
The largest branch of the celiac trunk with distribution to the spleen, pancreas, stomach and greater omentum.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
The arterial trunk that arises from the abdominal aorta and after a short course divides into the left gastric, common hepatic and splenic arteries.
Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels.
An irregularly shaped venous space in the dura mater at either side of the sphenoid bone.
Sudden ISCHEMIA in the RETINA due to blocked blood flow through the CENTRAL RETINAL ARTERY or its branches leading to sudden complete or partial loss of vision, respectively, in the eye.
A branch of the celiac artery that distributes to the stomach, pancreas, duodenum, liver, gallbladder, and greater omentum.
An idiopathic, segmental, nonatheromatous disease of the musculature of arterial walls, leading to STENOSIS of small and medium-sized arteries. There is true proliferation of SMOOTH MUSCLE CELLS and fibrous tissue. Fibromuscular dysplasia lesions are smooth stenosis and occur most often in the renal and carotid arteries. They may also occur in other peripheral arteries of the extremity.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
Radiographic visualization of the aorta and its branches by injection of contrast media, using percutaneous puncture or catheterization procedures.
Not an aneurysm but a well-defined collection of blood and CONNECTIVE TISSUE outside the wall of a blood vessel or the heart. It is the containment of a ruptured blood vessel or heart, such as sealing a rupture of the left ventricle. False aneurysm is formed by organized THROMBUS and HEMATOMA in surrounding tissue.
Operative procedures for the treatment of vascular disorders.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Surgical excision of one or more lymph nodes. Its most common use is in cancer surgery. (From Dorland, 28th ed, p966)
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Arteries originating from the subclavian or axillary arteries and distributing to the anterior thoracic wall, mediastinal structures, diaphragm, pectoral muscles, mammary gland and the axillary aspect of the chest wall.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Use of a balloon CATHETER to block the flow of blood through an artery or vein.
The part of a human or animal body connecting the HEAD to the rest of the body.
Radiography of the vascular system of the heart muscle after injection of a contrast medium.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
The first and largest artery branching from the aortic arch. It distributes blood to the right side of the head and neck and to the right arm.
The return of a sign, symptom, or disease after a remission.
Pathologic deposition of calcium salts in tissues.
Minimally invasive procedures, diagnostic or therapeutic, performed within the BLOOD VESSELS. They may be perfomed via ANGIOSCOPY; INTERVENTIONAL MAGNETIC RESONANCE IMAGING; INTERVENTIONAL RADIOGRAPHY; or INTERVENTIONAL ULTRASONOGRAPHY.
The degree to which BLOOD VESSELS are not blocked or obstructed.
Lesions formed within the walls of ARTERIES.
Narrowing or occlusion of the RENAL ARTERY or arteries. It is due usually to ATHEROSCLEROSIS; FIBROMUSCULAR DYSPLASIA; THROMBOSIS; EMBOLISM, or external pressure. The reduced renal perfusion can lead to renovascular hypertension (HYPERTENSION, RENOVASCULAR).
The act of constricting.
Specialized arterial vessels in the umbilical cord. They carry waste and deoxygenated blood from the FETUS to the mother via the PLACENTA. In humans, there are usually two umbilical arteries but sometimes one.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
NECROSIS occurring in the MIDDLE CEREBRAL ARTERY distribution system which brings blood to the entire lateral aspects of each CEREBRAL HEMISPHERE. Clinical signs include impaired cognition; APHASIA; AGRAPHIA; weak and numbness in the face and arms, contralaterally or bilaterally depending on the infarction.
Distensibility measure of a chamber such as the lungs (LUNG COMPLIANCE) or bladder. Compliance is expressed as a change in volume per unit change in pressure.
Delivery of drugs into an artery.
An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow.
Drugs used to cause dilation of the blood vessels.
The main trunk of the systemic arteries.
The tearing or bursting of the weakened wall of the aneurysmal sac, usually heralded by sudden worsening pain. The great danger of a ruptured aneurysm is the large amount of blood spilling into the surrounding tissues and cavities, causing HEMORRHAGIC SHOCK.
Maintenance of blood flow to an organ despite obstruction of a principal vessel. Blood flow is maintained through small vessels.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
A syndrome associated with defective sympathetic innervation to one side of the face, including the eye. Clinical features include MIOSIS; mild BLEPHAROPTOSIS; and hemifacial ANHIDROSIS (decreased sweating)(see HYPOHIDROSIS). Lesions of the BRAIN STEM; cervical SPINAL CORD; first thoracic nerve root; apex of the LUNG; CAROTID ARTERY; CAVERNOUS SINUS; and apex of the ORBIT may cause this condition. (From Miller et al., Clinical Neuro-Ophthalmology, 4th ed, pp500-11)
The continuation of the subclavian artery; it distributes over the upper limb, axilla, chest and shoulder.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
Tear or break of an organ, vessel or other soft part of the body, occurring in the absence of external force.
Resistance and recovery from distortion of shape.
The continuation of the femoral artery coursing through the popliteal fossa; it divides into the anterior and posterior tibial arteries.
Blocking of a blood vessel by an embolus which can be a blood clot or other undissolved material in the blood stream.
A branch of the external carotid artery which distributes to the deep structures of the face (internal maxillary) and to the side of the face and nose (external maxillary).
Complications that affect patients during surgery. They may or may not be associated with the disease for which the surgery is done, or within the same surgical procedure.
The larger of the two terminal branches of the brachial artery, beginning about one centimeter distal to the bend of the elbow. Like the RADIAL ARTERY, its branches may be divided into three groups corresponding to their locations in the forearm, wrist, and hand.
General or unspecified injuries to the neck. It includes injuries to the skin, muscles, and other soft tissues of the neck.
Left bronchial arteries arise from the thoracic aorta, the right from the first aortic intercostal or the upper left bronchial artery; they supply the bronchi and the lower trachea.
Disease having a short and relatively severe course.
Localized or diffuse reduction in blood flow through the vertebrobasilar arterial system, which supplies the BRAIN STEM; CEREBELLUM; OCCIPITAL LOBE; medial TEMPORAL LOBE; and THALAMUS. Characteristic clinical features include SYNCOPE; lightheadedness; visual disturbances; and VERTIGO. BRAIN STEM INFARCTIONS or other BRAIN INFARCTION may be associated.
Dysfunction of one or more cranial nerves causally related to a traumatic injury. Penetrating and nonpenetrating CRANIOCEREBRAL TRAUMA; NECK INJURIES; and trauma to the facial region are conditions associated with cranial nerve injuries.
Pathological processes involving any part of the AORTA.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Formation and development of a thrombus or blood clot in the blood vessel.
The new and thickened layer of scar tissue that forms on a PROSTHESIS, or as a result of vessel injury especially following ANGIOPLASTY or stent placement.
A dead body, usually a human body.
A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys.
Vascular filters or occlusive devices that provide mechanical protection of the distal end organ from blood clots or EMBOLISM-causing debri dislodged during ENDOVASCULAR PROCEDURES.
Diseases that do not exhibit symptoms.
Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project.
Polyester polymers formed from terephthalic acid or its esters and ethylene glycol. They can be formed into tapes, films or pulled into fibers that are pressed into meshes or woven into fabrics.
Pathological conditions of intracranial ARTERIES supplying the CEREBRUM. These diseases often are due to abnormalities or pathological processes in the ANTERIOR CEREBRAL ARTERY; MIDDLE CEREBRAL ARTERY; and POSTERIOR CEREBRAL ARTERY.
The aorta from the DIAPHRAGM to the bifurcation into the right and left common iliac arteries.
Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood.
Surgical union or shunt between ducts, tubes or vessels. It may be end-to-end, end-to-side, side-to-end, or side-to-side.
A branch arising from the internal iliac artery in females, that supplies blood to the uterus.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
Changes in the observed frequency of waves (as sound, light, or radio waves) due to the relative motion of source and observer. The effect was named for the 19th century Austrian physicist Johann Christian Doppler.
A medical specialty concerned with the diagnosis and treatment of diseases of the internal organ systems of adults.
Drugs used to cause constriction of the blood vessels.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Act of listening for sounds within the body.
Disorders of one or more of the twelve cranial nerves. With the exception of the optic and olfactory nerves, this includes disorders of the brain stem nuclei from which the cranial nerves originate or terminate.
Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status.
Arteries which supply the dura mater.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION).
Substances used to allow enhanced visualization of tissues.
A collection of blood outside the BLOOD VESSELS. Hematoma can be localized in an organ, space, or tissue.
The vein which drains the foot and leg.
Homopolymer of tetrafluoroethylene. Nonflammable, tough, inert plastic tubing or sheeting; used to line vessels, insulate, protect or lubricate apparatus; also as filter, coating for surgical implants or as prosthetic material. Synonyms: Fluoroflex; Fluoroplast; Ftoroplast; Halon; Polyfene; PTFE; Tetron.
Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls.
Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment.
The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).
Diagnostic and therapeutic procedures that are invasive or surgical in nature, and require the expertise of a specially trained radiologist. In general, they are more invasive than diagnostic imaging but less invasive than major surgery. They often involve catheterization, fluoroscopy, or computed tomography. Some examples include percutaneous transhepatic cholangiography, percutaneous transthoracic biopsy, balloon angioplasty, and arterial embolization.
Direct myocardial revascularization in which the internal mammary artery is anastomosed to the right coronary artery, circumflex artery, or anterior descending coronary artery. The internal mammary artery is the most frequent choice, especially for a single graft, for coronary artery bypass surgery.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
Criteria and standards used for the determination of the appropriateness of the inclusion of patients with specific conditions in proposed treatment plans and the criteria used for the inclusion of subjects in various clinical trials and other research protocols.
A noninflammatory, progressive occlusion of the intracranial CAROTID ARTERIES and the formation of netlike collateral arteries arising from the CIRCLE OF WILLIS. Cerebral angiogram shows the puff-of-smoke (moyamoya) collaterals at the base of the brain. It is characterized by endothelial HYPERPLASIA and FIBROSIS with thickening of arterial walls. This disease primarily affects children but can also occur in adults.
A repeat operation for the same condition in the same patient due to disease progression or recurrence, or as followup to failed previous surgery.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
The vessels carrying blood away from the capillary beds.
An autosomal dominant disorder of CONNECTIVE TISSUE with abnormal features in the heart, the eye, and the skeleton. Cardiovascular manifestations include MITRAL VALVE PROLAPSE, dilation of the AORTA, and aortic dissection. Other features include lens displacement (ectopia lentis), disproportioned long limbs and enlarged DURA MATER (dural ectasia). Marfan syndrome is associated with mutations in the gene encoding fibrillin, a major element of extracellular microfibrils of connective tissue.
Methods of creating machines and devices.
The deformation and flow behavior of BLOOD and its elements i.e., PLASMA; ERYTHROCYTES; WHITE BLOOD CELLS; and BLOOD PLATELETS.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.

Arterial dissections complicating cerebral angiography and cerebrovascular interventions. (1/120)

BACKGROUND AND PURPOSE: Iatrogenic dissections are an uncommon complication of cerebral angiography. We retrospectively reviewed 12 cases of arterial dissections complicating cerebral angiography and cerebrovascular interventions to evaluate the clinical course of these dissections. METHODS: Cases from a large tertiary center performing a large number of neurovascular procedures were collected retrospectively. The patients' medical records and imaging studies were reviewed, with particular attention given to the cause of the dissection, the development of ischemic events resulting from the dissection, and the treatment used. RESULTS: Each of nine dissections affected a vertebral artery, each of two affected an internal carotid artery, and one affected a common carotid artery. The prevalence of iatrogenic dissections was 0.4%. Seven of the dissections were noted at the time of contrast material injection for the filming of cerebral angiograms. The other five dissections occurred during catheter or wire manipulations for interventional neuroradiologic procedures. Five of the patients in our series were treated with IV administered heparin for 24 to 48 hours. The other seven patients had recently suffered acute intracranial hemorrhage or undergone neurosurgery and could not undergo anticoagulant therapy. None of the patients developed symptoms of ischemia, but one was later found to have an asymptomatic infarct in the territory supplied by the dissected artery. CONCLUSION: Arterial dissections are an uncommon complication of cerebral angiography and cerebrovascular interventions and usually have a benign clinical course.  (+info)

Surgical treatment of extracranial internal carotid artery aneurysms. (2/120)

PURPOSE: Extracranial internal carotid artery aneurysms (EICAs) can be treated by carotid ligation or surgical reconstruction. In the consideration of the risk of stroke after internal carotid artery (ICA) occlusion, the aim of this study was to report the results of reconstructive surgery for these aneurysms, including lesions located at the base of the skull. METHODS: From 1980 to 1997, 25 ICA reconstructions were performed for EICA: 22 male patients and 3 female patients (mean age, 54.4 years). The cause was atherosclerosis (n = nine patients), dysplasia (n = 12 patients), trauma (n = three patients), and undetermined (n = one patient). The symptoms were focal in 15 cases (12 hemispheric, three ocular), nonfocal in three cases (trouble with balance and visual blurring), and glossopharyngeal nerve compression in one case. Six cases were asymptomatic, including three cases that were diagnosed during surveillance after ICA dissection. In nine cases, the upper limit of the EICA reached the base of the skull. A combined approach with an ear, nose, and throat surgeon allowed exposure and control of the ICA. RESULTS: After operation, there were no deaths, one temporary stroke, two transient ischemic attacks, and 11 cranial nerve palsies (one with sequelae). The ICA was patent on the postoperative angiogram in all but one case. During follow-up (mean, 66 months), there were two deaths (myocardial infarction), one occurrence of focal epileptic seizure at 2 months, and one transient ischemic attack at 2 years. In December 1998, duplex scanning showed patency of the reconstructed ICA in all but one surviving patient. CONCLUSION: Surgical reconstruction is a satisfactory therapeutic choice for EICA, even when located at the base of the skull.  (+info)

Surgical treatment of 50 carotid dissections: indications and results. (3/120)

PURPOSE: This article analyzes the course of 48 patients with 49 chronic carotid dissections (who were treated surgically at our institution after a median anticoagulation period of 9 months because of a persistent high-grade stenosis or an aneurysm) and the course of one additional patient with acute carotid dissection (who underwent early operative reconstruction 12 hours after onset because of fluctuating neurologic symptoms). METHODS: All medical and surgical records and imaging studies were reviewed retrospectively. All histologic specimens were reevaluated by a single pathologist to assess the cause of dissection. Follow-up of 41 patients (85%) after 70 months (range, 1-190 months) consisted of an examination of the extracranial vessels in the neck by Doppler ultrasound scanning and a questionnaire about the patients' medical history and their personal appraisals of cranial nerve function. RESULTS: Seventy percent of the dissections had developed spontaneously; 18% were caused by trauma; 12% of all patients (22% of the women) had a fibromuscular dysplasia. Indication for surgery was a high-grade persisting stenosis and a persisting or newly developed aneurysm. Flow restoration was achieved by resection and vein graft replacement in 40 cases (80%) and thromboendarterectomy and patch angioplasty in three cases (6%). Gradual dilatation was performed and effective in two cases (4%). Five internal carotid arteries (10%) had to be clipped because dissection extended into the skull base. One patient died of intracranial bleeding. Five patients (10%) experienced the development of a recurrent minor stroke (ipsilateral, 4 patients; contralateral, 1 patient). Cranial nerve damage could not be avoided in 29 cases (58%) but were transient in most of the cases. During follow-up, one patient died of unrelated reasons, and only one patient had experienced the development of a neurologic event of unknown cause. CONCLUSION: Chronic carotid dissection can be effectively treated by surgical reconstruction to prevent further ischemic or thromboembolic complications, if medical treatment for 6 months with anticoagulation failed or if carotid aneurysms and/or high-grade carotid stenosis persisted or have newly developed.  (+info)

Endovascular management of extracranial carotid artery dissection achieved using stent angioplasty. (4/120)

BACKGROUND AND PURPOSE: Dissection of the carotid artery can, in certain cases, lead to significant stenosis, occlusion, or pseudoaneurysm formation, with subsequent hemodynamic and embolic infarcts, despite anticoagulant therapy. We sought to determine the therapeutic value of stent-supported angioplasty retrospectively in this subset of patients who are poor candidates for medical therapy. METHODS: Five men and five women (age range, 37-83 years; mean age, 51.2 years) with dissection of the internal (n=9) and common (n=1) carotid artery were successfully treated with percutaneous endovascular balloon angioplasty and stent placement. The etiology was spontaneous in five, iatrogenic in three, and traumatic in two. Seven of the treated lesions were left-sided and three were right-sided. RESULTS: The treatment significantly improved dissection-related stenosis from 74+/-5.5% to 5.5+/-2.8%. Two occlusive dissections were successfully recanalized using microcatheter techniques during the acute phase. Multiple overlapping stents were needed in four patients to eliminate the inflow zone and false lumen and establish an angiographically smooth outline within the true lumen. There was one case of retroperitoneal hemorrhage, but there were no procedural transient ischemic attacks (TIAs), minor or major strokes, or deaths (0%). Clinical outcome at latest follow-up (16.5+/-1.9 months) showed significant improvements compared with pretreatment modified Rankin score (0.7+/-0.3 vs 1.8+/-0.44) and Barthel index (99.5+/-0.5 vs 80.5+/-8.9). One delayed stroke occurred in a treated patient with contralateral carotid occlusion following a hypotensive uterine hemorrhage at 8 months; the remaining nine patients have remained free of TIA or stroke. CONCLUSION: In select cases of carotid dissection associated with critical hemodynamic insufficiency or thromboembolic events that occur despite medical therapy, endovascular stent placement appears to be a safe and effective method of restoring vessel lumen integrity, with good clinical outcome.  (+info)

Traumatic bilateral internal carotid artery dissection following airbag deployment in a patient with fibromuscular dysplasia. (5/120)

This case describes a 39-yr-old male, presenting with left hemiplegia after a road traffic accident involving frontal deceleration and airbag deployment. Brain computerized tomography (CT) scan revealed a right parietal lobe infarct. Contrast angiography demonstrated bilateral internal carotid artery dissection and fibromuscular dysplasia. The patient was treated with systemic heparinization. Neurological improvement, evidenced by full return of touch sensation, proprioception and nociception began 10 days after the injury. To our knowledge, this is the first case report of carotid artery dissection associated with airbag deployment. Forced neck extension in such settings may result in carotid artery dissection because of shear force injury at the junction of the extracranial and intrapetrous segments of the vessel. Clinicians should consider carotid artery injury when deterioration in neurological status occurs after airbag deployment. We propose that the risk of carotid artery dissection was increased by the presence of fibromuscular dysplasia.  (+info)

Aneurysmal forms of cervical artery dissection : associated factors and outcome. (6/120)

BACKGROUND AND PURPOSE: The natural history of aneurysmal forms of cervical artery dissection (CAD) is ill defined. The aims of this study were to assess (1) clinical and anatomic outcome of aneurysmal forms of extracranial internal carotid artery (ICA) and vertebral artery (VA) dissections and (2) factors associated with aneurysmal forms of CAD. METHODS: Seventy-one consecutive patients with CAD were reviewed. Aneurysmal forms of CAD were identified from all available angiograms by 2 neuroradiologists. The frequency of arterial risk factors, of multiple vessel dissections, and of artery redundancies was compared in patients with and without aneurysm. Patients with aneurysm were invited by mail to undergo a final clinical and radiological evaluation. RESULTS: Of the 71 patients, 35 (49.3%) had a total of 42 aneurysms. Thirty aneurysms were located on a symptomatic artery (ICA, 23; VA, 7) and 12 on an asymptomatic artery (ICA, 10; VA, 2). Patients with aneurysm had multiple dissections of cervical vessels (18/35 versus 7/36; P:=0.005) and arterial redundancies (20/35 versus 11/36; P:=0.02) more frequently than patients without aneurysm. They were also more often migrainous (odds ratio=2.7 [95% CI, 0.8 to 8.5]) and tobacco users (odds ratio=2.2 [95% CI, 0.7 to 6.3]). Clinical and anatomic follow-up information was available for 35 (100%) and 33 patients (94%), respectively. During a mean follow-up of >3 years, no patient had signs of cerebral ischemia, local compression, or rupture. At follow-up, 46% of the aneurysms involving symptomatic ICA were unchanged, 36% had disappeared, and 18% had decreased in size. Resolution was more common for VA than for ICA aneurysms (83% versus 36%). None of the aneurysms located on an asymptomatic ICA had disappeared. CONCLUSIONS: Although aneurysms due to CAD frequently persist, patients carry a very low risk of clinical complications. This favorable clinical outcome should be kept in mind before potential harmful treatment is contemplated.  (+info)

Mild hyperhomocyst(e)inemia: a possible risk factor for cervical artery dissection. (7/120)

BACKGROUND AND PURPOSE: The pathogenesis of cervical artery dissection (CAD) remains unknown in most cases. Hyperhomocyst(e)inemia [hyperH(e)], an independent risk factor for cerebrovascular disease, induces damage in endothelial cells in animal cell culture. Consecutive patients with CAD and age-matched control subjects have been studied by serum levels of homocyst(e)ine and the genotype of 5,10-methylenetetrahydrofolate reductase (MTHFR). METHODS: Twenty-six patients with CAD, admitted to our Stroke Unit (15 men and 11 women; 16 vertebral arteries, 10 internal carotid arteries), were compared with age-matched control subjects. All patients underwent duplex ultrasound, MR angiography, and/or conventional angiography. RESULTS: Mean plasma homocyst(e)ine level was 17.88 micromol/L (range 5.95 to 40.0 micromol/L) for patients with CAD and 6.0+/-0.99 micromol/L for controls (P:<0.001). The genetic analysis for the thermolabile form of MTHFR in CAD patients showed heterozygosity in 54% and homozygosity in 27%; comparable figures for controls were 40% (P:=0.4) and 10% (P:=0.1), respectively. CONCLUSIONS: Mild hyperH(e) might represent a risk factor for cervical artery dissection. The MTHFR mutation is not significantly associated with CAD. An interaction between different genetic and environmental factors probably takes place in the cascade of pathogenetic events leading to arterial wall damage.  (+info)

Thrombolytic therapy for acute extra-cranial artery dissection: report of two cases. (8/120)

Extra-cranial arterial dissection accounts for 10% of strokes in young people. Information on safety of thrombolytic administration in this group is limited. The literature, however, does not favor use of thrombolytics for myocardial ischemia when peripheral arterial dissection coexists. Based on the clinical and radiological features, two patients who presented with acute stroke secondary to arterial dissection were considered for thrombolysis. One of them received intra-venous recombinant tissue plasminogen activator (rtPA), and the other patient received intra-arterial rtPA. There were no post thrombolysis complications. This report supports feasibility of administering thrombolytics in acute ischemic strokes resulting from extra-cranial arterial dissection. Future larger studies are necessary to determine the efficacy, safety and long-term outcome in this patient population.  (+info)

The radial artery is a key blood vessel in the human body, specifically a part of the peripheral arterial system. Originating from the brachial artery in the upper arm, the radial artery travels down the arm and crosses over the wrist, where it can be palpated easily. It then continues into the hand, dividing into several branches to supply blood to the hand's tissues and digits.

The radial artery is often used for taking pulse readings due to its easy accessibility at the wrist. Additionally, in medical procedures such as coronary angiography or bypass surgery, the radial artery can be utilized as a site for catheter insertion. This allows healthcare professionals to examine the heart's blood vessels and assess cardiovascular health.

The carotid arteries are a pair of vital blood vessels in the human body that supply oxygenated blood to the head and neck. Each person has two common carotid arteries, one on each side of the neck, which branch off from the aorta, the largest artery in the body.

The right common carotid artery originates from the brachiocephalic trunk, while the left common carotid artery arises directly from the aortic arch. As they ascend through the neck, they split into two main branches: the internal and external carotid arteries.

The internal carotid artery supplies oxygenated blood to the brain, eyes, and other structures within the skull, while the external carotid artery provides blood to the face, scalp, and various regions of the neck.

Maintaining healthy carotid arteries is crucial for overall cardiovascular health and preventing serious conditions like stroke, which can occur when the arteries become narrowed or blocked due to the buildup of plaque or fatty deposits (atherosclerosis). Regular check-ups with healthcare professionals may include monitoring carotid artery health through ultrasound or other imaging techniques.

Carotid artery diseases refer to conditions that affect the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the head and neck. The most common type of carotid artery disease is atherosclerosis, which occurs when fatty deposits called plaques build up in the inner lining of the arteries.

These plaques can cause the arteries to narrow or become blocked, reducing blood flow to the brain and increasing the risk of stroke. Other carotid artery diseases include carotid artery dissection, which occurs when there is a tear in the inner lining of the artery, and fibromuscular dysplasia, which is a condition that affects the muscle and tissue in the walls of the artery.

Symptoms of carotid artery disease may include neck pain or pulsations, transient ischemic attacks (TIAs) or "mini-strokes," and strokes. Treatment options for carotid artery disease depend on the severity and type of the condition but may include lifestyle changes, medications, endarterectomy (a surgical procedure to remove plaque from the artery), or angioplasty and stenting (procedures to open blocked arteries using a balloon and stent).

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

The common carotid artery is a major blood vessel in the neck that supplies oxygenated blood to the head and neck. It originates from the brachiocephalic trunk or the aortic arch and divides into the internal and external carotid arteries at the level of the upper border of the thyroid cartilage. The common carotid artery is an important structure in the circulatory system, and any damage or blockage to it can have serious consequences, including stroke.

Carotid stenosis is a medical condition that refers to the narrowing or constriction of the lumen (inner space) of the carotid artery. The carotid arteries are major blood vessels that supply oxygenated blood to the head and neck. Carotid stenosis usually results from the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, on the inner walls of the artery. This process is called atherosclerosis.

As the plaque accumulates, it causes the artery to narrow, reducing blood flow to the brain. Severe carotid stenosis can increase the risk of stroke, as a clot or debris from the plaque can break off and travel to the brain, blocking a smaller blood vessel and causing tissue damage or death.

Carotid stenosis is typically diagnosed through imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include lifestyle modifications (such as quitting smoking, controlling blood pressure, and managing cholesterol levels), medications to reduce the risk of clots, or surgical procedures like endarterectomy or stenting to remove or bypass the blockage.

The external carotid artery is a major blood vessel in the neck that supplies oxygenated blood to the structures of the head and neck, excluding the brain. It originates from the common carotid artery at the level of the upper border of the thyroid cartilage, then divides into several branches that supply various regions of the head and neck, including the face, scalp, ears, and neck muscles.

The external carotid artery has eight branches:

1. Superior thyroid artery: Supplies blood to the thyroid gland, larynx, and surrounding muscles.
2. Ascending pharyngeal artery: Supplies blood to the pharynx, palate, and meninges of the brain.
3. Lingual artery: Supplies blood to the tongue and floor of the mouth.
4. Facial artery: Supplies blood to the face, nose, lips, and palate.
5. Occipital artery: Supplies blood to the scalp and muscles of the neck.
6. Posterior auricular artery: Supplies blood to the ear and surrounding muscles.
7. Maxillary artery: Supplies blood to the lower face, nasal cavity, palate, and meninges of the brain.
8. Superficial temporal artery: Supplies blood to the scalp, face, and temporomandibular joint.

The external carotid artery is an essential structure for maintaining adequate blood flow to the head and neck, and any damage or blockage can lead to serious medical conditions such as stroke or tissue necrosis.

Carotid endarterectomy is a surgical procedure to remove plaque buildup (atherosclerosis) from the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the brain. The surgery involves making an incision in the neck, opening the carotid artery, and removing the plaque from the inside of the artery wall. The goal of the procedure is to restore normal blood flow to the brain and reduce the risk of stroke caused by the narrowing or blockage of the carotid arteries.

In medical terms, dissection refers to the separation of the layers of a biological tissue or structure by cutting or splitting. It is often used to describe the process of surgically cutting through tissues, such as during an operation to separate organs or examine their internal structures.

However, "dissection" can also refer to a pathological condition in which there is a separation of the layers of a blood vessel wall by blood, creating a false lumen or aneurysm. This type of dissection is most commonly seen in the aorta and can be life-threatening if not promptly diagnosed and treated.

In summary, "dissection" has both surgical and pathological meanings related to the separation of tissue layers, and it's essential to consider the context in which the term is used.

Carotid artery thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) inside the carotid artery, which is one of the major blood vessels that supplies oxygenated blood to the head and neck. This condition can lead to serious complications such as a stroke or transient ischemic attack (TIA), also known as a "mini-stroke," if the clot dislodges and travels to the brain, blocking the flow of blood and oxygen.

Carotid artery thrombosis can result from various factors, including atherosclerosis (the buildup of fats, cholesterol, and other substances in the artery walls), hypertension (high blood pressure), diabetes, smoking, and genetic predisposition. Symptoms may include neck pain or stiffness, weakness or numbness in the face or limbs, difficulty speaking or understanding speech, vision problems, and sudden severe headaches. Diagnosis typically involves imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include anticoagulant or antiplatelet medications, endovascular procedures to remove the clot, or surgery to clean out the artery (carotid endarterectomy).

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

A carotid artery, internal, dissection is a medical condition that affects the internal carotid artery, which is a major blood vessel in the neck that supplies oxygenated blood to the brain. In this condition, there is a separation (dissection) of the layers of the artery wall, causing blood to accumulate in the space between the layers. This can lead to narrowing or blockage of the artery, reducing blood flow to the brain and increasing the risk of stroke. Internal carotid artery dissection can be caused by trauma, high blood pressure, connective tissue disorders, or spontaneously. Symptoms may include neck pain, headache, facial pain, visual disturbances, weakness or numbness in the arms or legs, difficulty speaking or understanding speech, and dizziness or loss of balance.

A dissecting aneurysm is a serious and potentially life-threatening condition that occurs when there is a tear in the inner layer of the artery wall, allowing blood to flow between the layers of the artery wall. This can cause the artery to bulge or balloon out, leading to a dissection aneurysm.

Dissecting aneurysms can occur in any artery, but they are most commonly found in the aorta, which is the largest artery in the body. When a dissecting aneurysm occurs in the aorta, it is often referred to as a "dissecting aortic aneurysm."

Dissecting aneurysms can be caused by various factors, including high blood pressure, atherosclerosis (hardening and narrowing of the arteries), genetic disorders that affect the connective tissue, trauma, or illegal drug use (such as cocaine).

Symptoms of a dissecting aneurysm may include sudden severe chest or back pain, which can feel like ripping or tearing, shortness of breath, sweating, lightheadedness, or loss of consciousness. If left untreated, a dissecting aneurysm can lead to serious complications, such as rupture of the artery, stroke, or even death.

Treatment for a dissecting aneurysm typically involves surgery or endovascular repair to prevent further damage and reduce the risk of rupture. The specific treatment approach will depend on various factors, including the location and size of the aneurysm, the patient's overall health, and their medical history.

The carotid body is a small chemoreceptor organ located near the bifurcation of the common carotid artery into the internal and external carotid arteries. It plays a crucial role in the regulation of respiration, blood pressure, and pH balance by detecting changes in the chemical composition of the blood, particularly oxygen levels, carbon dioxide levels, and hydrogen ion concentration (pH).

The carotid body contains specialized nerve endings called glomus cells that are sensitive to changes in these chemical parameters. When there is a decrease in oxygen or an increase in carbon dioxide or hydrogen ions, the glomus cells release neurotransmitters such as acetylcholine and dopamine, which activate afferent nerve fibers leading to the brainstem's nucleus tractus solitarius. This information is then integrated with other physiological signals in the brainstem, resulting in appropriate adjustments in breathing rate, depth, and pattern, as well as changes in heart rate and blood vessel diameter to maintain homeostasis.

Dysfunction of the carotid body can lead to various disorders, such as hypertension, sleep apnea, and chronic lung disease. In some cases, overactivity of the carotid body may result in conditions like primary breathing pattern disorders or pseudohypoxia, where the body responds as if it is experiencing hypoxia despite normal oxygen levels.

Tunica intima, also known as the intima layer, is the innermost layer of a blood vessel, including arteries and veins. It is in direct contact with the flowing blood and is composed of simple squamous endothelial cells that form a continuous, non-keratinized, stratified epithelium. These cells play a crucial role in maintaining vascular homeostasis by regulating the passage of molecules and immune cells between the blood and the vessel wall, as well as contributing to the maintenance of blood fluidity and preventing coagulation.

The tunica intima is supported by a thin layer of connective tissue called the basement membrane, which provides structural stability and anchorage for the endothelial cells. Beneath the basement membrane lies a loose network of elastic fibers and collagen, known as the internal elastic lamina, that separates the tunica intima from the middle layer, or tunica media.

In summary, the tunica intima is the innermost layer of blood vessels, primarily composed of endothelial cells and a basement membrane, which regulates various functions to maintain vascular homeostasis.

The carotid sinus is a small, dilated area located at the bifurcation (or fork) of the common carotid artery into the internal and external carotid arteries. It is a baroreceptor region, which means it contains specialized sensory nerve endings that can detect changes in blood pressure. When the blood pressure increases, the walls of the carotid sinus stretch, activating these nerve endings and sending signals to the brain. The brain then responds by reducing the heart rate and relaxing the blood vessels, which helps to lower the blood pressure back to normal.

The carotid sinus is an important part of the body's autonomic nervous system, which regulates various involuntary functions such as heart rate, blood pressure, and digestion. It plays a crucial role in maintaining cardiovascular homeostasis and preventing excessive increases in blood pressure that could potentially damage vital organs.

Cerebral arteries refer to the blood vessels that supply oxygenated blood to the brain. These arteries branch off from the internal carotid arteries and the vertebral arteries, which combine to form the basilar artery. The major cerebral arteries include:

1. Anterior cerebral artery (ACA): This artery supplies blood to the frontal lobes of the brain, including the motor and sensory cortices responsible for movement and sensation in the lower limbs.
2. Middle cerebral artery (MCA): The MCA is the largest of the cerebral arteries and supplies blood to the lateral surface of the brain, including the temporal, parietal, and frontal lobes. It is responsible for providing blood to areas involved in motor function, sensory perception, speech, memory, and vision.
3. Posterior cerebral artery (PCA): The PCA supplies blood to the occipital lobe, which is responsible for visual processing, as well as parts of the temporal and parietal lobes.
4. Anterior communicating artery (ACoA) and posterior communicating arteries (PComAs): These are small arteries that connect the major cerebral arteries, forming an important circulatory network called the Circle of Willis. The ACoA connects the two ACAs, while the PComAs connect the ICA with the PCA and the basilar artery.

These cerebral arteries play a crucial role in maintaining proper brain function by delivering oxygenated blood to various regions of the brain. Any damage or obstruction to these arteries can lead to serious neurological conditions, such as strokes or transient ischemic attacks (TIAs).

The vertebral artery is a major blood vessel that supplies oxygenated blood to the brain and upper spinal cord. It arises from the subclavian artery, then ascends through the transverse processes of several cervical vertebrae before entering the skull through the foramen magnum. Inside the skull, it joins with the opposite vertebral artery to form the basilar artery, which supplies blood to the brainstem and cerebellum. The vertebral artery also gives off several important branches that supply blood to various regions of the brainstem and upper spinal cord.

A stent is a small mesh tube that's used to treat narrow or weak arteries. Arteries are blood vessels that carry blood away from your heart to other parts of your body. A stent is placed in an artery as part of a procedure called angioplasty. Angioplasty restores blood flow through narrowed or blocked arteries by inflating a tiny balloon inside the blocked artery to widen it.

The stent is then inserted into the widened artery to keep it open. The stent is usually made of metal, but some are coated with medication that is slowly and continuously released to help prevent the formation of scar tissue in the artery. This can reduce the chance of the artery narrowing again.

Stents are also used in other parts of the body, such as the neck (carotid artery) and kidneys (renal artery), to help maintain blood flow and prevent blockages. They can also be used in the urinary system to treat conditions like ureteropelvic junction obstruction or narrowing of the urethra.

Cerebral angiography is a medical procedure that involves taking X-ray images of the blood vessels in the brain after injecting a contrast dye into them. This procedure helps doctors to diagnose and treat various conditions affecting the blood vessels in the brain, such as aneurysms, arteriovenous malformations, and stenosis (narrowing of the blood vessels).

During the procedure, a catheter is inserted into an artery in the leg and threaded through the body to the blood vessels in the neck or brain. The contrast dye is then injected through the catheter, and X-ray images are taken to visualize the blood flow through the brain's blood vessels.

Cerebral angiography provides detailed images of the blood vessels in the brain, allowing doctors to identify any abnormalities or blockages that may be causing symptoms or increasing the risk of stroke. Based on the results of the cerebral angiography, doctors can develop a treatment plan to address these issues and prevent further complications.

The tunica media is the middle layer of the wall of a blood vessel or hollow organ in the body. It is primarily composed of smooth muscle cells and elastic fibers, which allow the vessel or organ to expand and contract. This layer helps regulate the diameter of the lumen (the inner space) of the vessel or organ, thereby controlling the flow of fluids such as blood or lymph through it. The tunica media plays a crucial role in maintaining proper organ function and blood pressure regulation.

The pulmonary artery is a large blood vessel that carries deoxygenated blood from the right ventricle of the heart to the lungs for oxygenation. It divides into two main branches, the right and left pulmonary arteries, which further divide into smaller vessels called arterioles, and then into a vast network of capillaries in the lungs where gas exchange occurs. The thin walls of these capillaries allow oxygen to diffuse into the blood and carbon dioxide to diffuse out, making the blood oxygen-rich before it is pumped back to the left side of the heart through the pulmonary veins. This process is crucial for maintaining proper oxygenation of the body's tissues and organs.

The femoral artery is the major blood vessel that supplies oxygenated blood to the lower extremity of the human body. It is a continuation of the external iliac artery and becomes the popliteal artery as it passes through the adductor hiatus in the adductor magnus muscle of the thigh.

The femoral artery is located in the femoral triangle, which is bound by the sartorius muscle anteriorly, the adductor longus muscle medially, and the biceps femoris muscle posteriorly. It can be easily palpated in the groin region, making it a common site for taking blood samples, measuring blood pressure, and performing surgical procedures such as femoral artery catheterization and bypass grafting.

The femoral artery gives off several branches that supply blood to the lower limb, including the deep femoral artery, the superficial femoral artery, and the profunda femoris artery. These branches provide blood to the muscles, bones, skin, and other tissues of the leg, ankle, and foot.

Neck dissection is a surgical procedure that involves the removal of lymph nodes and other tissues from the neck. It is typically performed as part of cancer treatment, particularly in cases of head and neck cancer, to help determine the stage of the cancer, prevent the spread of cancer, or treat existing metastases. There are several types of neck dissections, including radical, modified radical, and selective neck dissection, which vary based on the extent of tissue removal. The specific type of neck dissection performed depends on the location and extent of the cancer.

Carotid intima-media thickness (CIMT) is a measurement of the thickness of the inner two layers of the carotid artery, which are the intima and media layers. This measurement is used as a marker for assessing cardiovascular disease risk, particularly the risk of atherosclerosis, or the buildup of plaque in the arteries.

CIMT can be measured using ultrasound imaging, and it is typically measured at several points along the length of the common carotid artery, as well as at the bifurcation where the common carotid artery divides into the internal and external carotid arteries. Increased CIMT has been associated with an increased risk of cardiovascular events such as heart attack and stroke.

It is important to note that while CIMT can provide valuable information about a person's cardiovascular health, it should not be used as the sole determinant of cardiovascular disease risk. Other factors, such as age, family history, smoking status, blood pressure, cholesterol levels, and diabetes status, should also be taken into account when assessing cardiovascular disease risk.

Carotid artery injuries refer to damages or traumas that affect the carotid arteries, which are a pair of major blood vessels located in the neck that supply oxygenated blood to the head and neck. These injuries can occur due to various reasons such as penetrating or blunt trauma, iatrogenic causes (during medical procedures), or degenerative diseases.

Carotid artery injuries can be categorized into three types:

1. Blunt carotid injury (BCI): This type of injury is caused by a sudden and severe impact to the neck, which can result in intimal tears, dissection, or thrombosis of the carotid artery. BCIs are commonly seen in motor vehicle accidents, sports-related injuries, and assaults.
2. Penetrating carotid injury: This type of injury is caused by a foreign object that penetrates the neck and damages the carotid artery. Examples include gunshot wounds, stab wounds, or other sharp objects that pierce the skin and enter the neck.
3. Iatrogenic carotid injury: This type of injury occurs during medical procedures such as endovascular interventions, surgical procedures, or the placement of central lines.

Symptoms of carotid artery injuries may include:

* Stroke or transient ischemic attack (TIA)
* Neurological deficits such as hemiparesis, aphasia, or visual disturbances
* Bleeding from the neck or mouth
* Pulsatile mass in the neck
* Hypotension or shock
* Loss of consciousness

Diagnosis of carotid artery injuries may involve imaging studies such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), or conventional angiography. Treatment options include endovascular repair, surgical repair, or anticoagulation therapy, depending on the severity and location of the injury.

The basilar artery is a major blood vessel that supplies oxygenated blood to the brainstem and cerebellum. It is formed by the union of two vertebral arteries at the lower part of the brainstem, near the junction of the medulla oblongata and pons.

The basilar artery runs upward through the center of the brainstem and divides into two posterior cerebral arteries at the upper part of the brainstem, near the midbrain. The basilar artery gives off several branches that supply blood to various parts of the brainstem, including the pons, medulla oblongata, and midbrain, as well as to the cerebellum.

The basilar artery is an important part of the circle of Willis, a network of arteries at the base of the brain that ensures continuous blood flow to the brain even if one of the arteries becomes blocked or narrowed.

An aortic aneurysm is a medical condition characterized by the abnormal widening or bulging of the wall of the aorta, which is the largest artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. When the aortic wall weakens, it can stretch and balloon out, forming an aneurysm.

Aortic aneurysms can occur anywhere along the aorta but are most commonly found in the abdominal section (abdominal aortic aneurysm) or the chest area (thoracic aortic aneurysm). The size and location of the aneurysm, as well as the patient's overall health, determine the risk of rupture and associated complications.

Aneurysms often do not cause symptoms until they become large or rupture. Symptoms may include:

* Pain in the chest, back, or abdomen
* Pulsating sensation in the abdomen
* Difficulty breathing
* Hoarseness
* Coughing or vomiting

Risk factors for aortic aneurysms include age, smoking, high blood pressure, family history, and certain genetic conditions. Treatment options depend on the size and location of the aneurysm and may include monitoring, medication, or surgical repair.

Ultrasonography, Doppler, and Duplex are diagnostic medical techniques that use sound waves to create images of internal body structures and assess their function. Here are the definitions for each:

1. Ultrasonography: Also known as ultrasound, this is a non-invasive imaging technique that uses high-frequency sound waves to produce images of internal organs and tissues. A small handheld device called a transducer is placed on the skin surface, which emits and receives sound waves. The returning echoes are then processed to create real-time visual images of the internal structures.
2. Doppler: This is a type of ultrasound that measures the velocity and direction of blood flow in the body by analyzing the frequency shift of the reflected sound waves. It can be used to assess blood flow in various parts of the body, such as the heart, arteries, and veins.
3. Duplex: Duplex ultrasonography is a combination of both gray-scale ultrasound and Doppler ultrasound. It provides detailed images of internal structures, as well as information about blood flow velocity and direction. This technique is often used to evaluate conditions such as deep vein thrombosis, carotid artery stenosis, and peripheral arterial disease.

In summary, ultrasonography is a diagnostic imaging technique that uses sound waves to create images of internal structures, Doppler is a type of ultrasound that measures blood flow velocity and direction, and duplex is a combination of both techniques that provides detailed images and information about blood flow.

Arterial occlusive diseases are medical conditions characterized by the blockage or narrowing of the arteries, which can lead to a reduction in blood flow to various parts of the body. This reduction in blood flow can cause tissue damage and may result in serious complications such as tissue death (gangrene), organ dysfunction, or even death.

The most common cause of arterial occlusive diseases is atherosclerosis, which is the buildup of plaque made up of fat, cholesterol, calcium, and other substances in the inner lining of the artery walls. Over time, this plaque can harden and narrow the arteries, restricting blood flow. Other causes of arterial occlusive diseases include blood clots, emboli (tiny particles that travel through the bloodstream and lodge in smaller vessels), inflammation, trauma, and certain inherited conditions.

Symptoms of arterial occlusive diseases depend on the location and severity of the blockage. Common symptoms include:

* Pain, cramping, or fatigue in the affected limb, often triggered by exercise and relieved by rest (claudication)
* Numbness, tingling, or weakness in the affected limb
* Coldness or discoloration of the skin in the affected area
* Slow-healing sores or wounds on the toes, feet, or legs
* Erectile dysfunction in men

Treatment for arterial occlusive diseases may include lifestyle changes such as quitting smoking, exercising regularly, and eating a healthy diet. Medications to lower cholesterol, control blood pressure, prevent blood clots, or manage pain may also be prescribed. In severe cases, surgical procedures such as angioplasty, stenting, or bypass surgery may be necessary to restore blood flow.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

Magnetic Resonance Angiography (MRA) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to create detailed images of the blood vessels or arteries within the body. It is a type of Magnetic Resonance Imaging (MRI) that focuses specifically on the circulatory system.

MRA can be used to diagnose and evaluate various conditions related to the blood vessels, such as aneurysms, stenosis (narrowing of the vessel), or the presence of plaques or tumors. It can also be used to plan for surgeries or other treatments related to the vascular system. The procedure does not use radiation and is generally considered safe, although people with certain implants like pacemakers may not be able to have an MRA due to safety concerns.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Angiography is a medical procedure in which an x-ray image is taken to visualize the internal structure of blood vessels, arteries, or veins. This is done by injecting a radiopaque contrast agent (dye) into the blood vessel using a thin, flexible catheter. The dye makes the blood vessels visible on an x-ray image, allowing doctors to diagnose and treat various medical conditions such as blockages, narrowing, or malformations of the blood vessels.

There are several types of angiography, including:

* Cardiac angiography (also called coronary angiography) - used to examine the blood vessels of the heart
* Cerebral angiography - used to examine the blood vessels of the brain
* Peripheral angiography - used to examine the blood vessels in the limbs or other parts of the body.

Angiography is typically performed by a radiologist, cardiologist, or vascular surgeon in a hospital setting. It can help diagnose conditions such as coronary artery disease, aneurysms, and peripheral arterial disease, among others.

Vertebral artery dissection is a medical condition that involves a tear in the inner lining (the tunica intima) of the vertebral artery, one of the major blood vessels supplying oxygenated blood to the brain. This tear allows blood to enter the vessel wall, creating a false lumen and leading to narrowing or blockage of the true lumen. The dissection can occur spontaneously or following trauma to the neck, and it can result in decreased blood flow to the brainstem and cerebellum, potentially causing symptoms such as headache, neck pain, dizziness, vertigo, double vision, difficulty swallowing, slurred speech, and weakness or numbness on one side of the body. Vertebral artery dissection is a serious condition that requires prompt medical attention and management to prevent potential complications such as stroke.

Angioplasty, balloon refers to a medical procedure used to widen narrowed or obstructed blood vessels, particularly the coronary arteries that supply blood to the heart muscle. This procedure is typically performed using a catheter-based technique, where a thin, flexible tube called a catheter is inserted into an artery, usually through the groin or wrist, and guided to the site of the narrowing or obstruction in the coronary artery.

Once the catheter reaches the affected area, a small balloon attached to the tip of the catheter is inflated, which compresses the plaque against the artery wall and stretches the artery, thereby restoring blood flow. The balloon is then deflated and removed, along with the catheter.

Balloon angioplasty is often combined with the placement of a stent, a small metal mesh tube that helps to keep the artery open and prevent it from narrowing again. This procedure is known as percutaneous coronary intervention (PCI) or coronary angioplasty and stenting.

Overall, balloon angioplasty is a relatively safe and effective treatment for coronary artery disease, although complications such as bleeding, infection, or re-narrowing of the artery can occur in some cases.

The subclavian artery is a major blood vessel that supplies the upper limb and important structures in the neck and head. It arises from the brachiocephalic trunk (in the case of the right subclavian artery) or directly from the aortic arch (in the case of the left subclavian artery).

The subclavian artery has several branches, including:

1. The vertebral artery, which supplies blood to the brainstem and cerebellum.
2. The internal thoracic artery (also known as the mammary artery), which supplies blood to the chest wall, breast, and anterior mediastinum.
3. The thyrocervical trunk, which gives rise to several branches that supply the neck, including the inferior thyroid artery, the suprascapular artery, and the transverse cervical artery.
4. The costocervical trunk, which supplies blood to the neck and upper back, including the posterior chest wall and the lower neck muscles.

The subclavian artery is a critical vessel in maintaining adequate blood flow to the upper limb, and any blockage or damage to this vessel can lead to significant morbidity, including arm pain, numbness, weakness, or even loss of function.

The mesenteric arteries are the arteries that supply oxygenated blood to the intestines. There are three main mesenteric arteries: the superior mesenteric artery, which supplies blood to the small intestine (duodenum to two-thirds of the transverse colon) and large intestine (cecum, ascending colon, and the first part of the transverse colon); the inferior mesenteric artery, which supplies blood to the distal third of the transverse colon, descending colon, sigmoid colon, and rectum; and the middle colic artery, which is a branch of the superior mesenteric artery that supplies blood to the transverse colon. These arteries are important in maintaining adequate blood flow to the intestines to support digestion and absorption of nutrients.

A Transient Ischemic Attack (TIA), also known as a "mini-stroke," is a temporary period of symptoms similar to those you'd get if you were having a stroke. A TIA doesn't cause permanent damage and is often caused by a temporary decrease in blood supply to part of your brain, which may last as little as five minutes.

Like an ischemic stroke, a TIA occurs when a clot or debris blocks blood flow to part of your nervous system. However, unlike a stroke, a TIA doesn't leave lasting damage because the blockage is temporary.

Symptoms of a TIA can include sudden onset of weakness, numbness or paralysis in your face, arm or leg, typically on one side of your body. You could also experience slurred or garbled speech, or difficulty understanding others. Other symptoms can include blindness in one or both eyes, dizziness, or a severe headache with no known cause.

Even though TIAs usually last only a few minutes, they are a serious condition and should not be ignored. If you suspect you or someone else is experiencing a TIA, seek immediate medical attention. TIAs can be a warning sign that a full-blown stroke is imminent.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Digital subtraction angiography (DSA) is a medical imaging technique used to visualize the blood vessels and blood flow within the body. It combines the use of X-ray technology with digital image processing to produce detailed images of the vascular system.

In DSA, a contrast agent is injected into the patient's bloodstream through a catheter, which is typically inserted into an artery in the leg and guided to the area of interest using fluoroscopy. As the contrast agent flows through the blood vessels, X-ray images are taken at multiple time points.

The digital subtraction process involves taking a baseline image without contrast and then subtracting it from subsequent images taken with contrast. This allows for the removal of background structures and noise, resulting in clearer images of the blood vessels. DSA can be used to diagnose and evaluate various vascular conditions, such as aneurysms, stenosis, and tumors, and can also guide interventional procedures such as angioplasty and stenting.

Angioplasty is a medical procedure used to open narrowed or blocked blood vessels, often referred to as coronary angioplasty when it involves the heart's blood vessels (coronary arteries). The term "angio" refers to an angiogram, which is a type of X-ray image that reveals the inside of blood vessels.

The procedure typically involves the following steps:

1. A thin, flexible catheter (tube) is inserted into a blood vessel, usually through a small incision in the groin or arm.
2. The catheter is guided to the narrowed or blocked area using real-time X-ray imaging.
3. Once in place, a tiny balloon attached to the tip of the catheter is inflated to widen the blood vessel and compress any plaque buildup against the artery walls.
4. A stent (a small mesh tube) may be inserted to help keep the blood vessel open and prevent it from narrowing again.
5. The balloon is deflated, and the catheter is removed.

Angioplasty helps improve blood flow, reduce symptoms such as chest pain or shortness of breath, and lower the risk of heart attack in patients with blocked arteries. It's important to note that angioplasty is not a permanent solution for coronary artery disease, and lifestyle changes, medications, and follow-up care are necessary to maintain long-term cardiovascular health.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

Endarterectomy is a surgical procedure in which the inner lining of an artery (the endothelium) that has become thickened, damaged, or narrowed due to the buildup of fatty deposits, called plaques, is removed. This process helps restore normal blood flow through the artery and reduces the risk of serious complications such as stroke or limb loss.

The procedure typically involves making an incision in the affected artery, carefully removing the plaque and inner lining, and then closing the artery with sutures or a patch graft. Endarterectomy is most commonly performed on the carotid arteries in the neck, but it can also be done on other arteries throughout the body, including the femoral artery in the leg and the iliac artery in the pelvis.

Endarterectomy is usually recommended for patients with significant narrowing of their arteries who are experiencing symptoms such as pain, numbness, or weakness in their limbs, or who have a high risk of stroke due to carotid artery disease. The procedure is generally safe and effective, but like any surgery, it carries risks such as bleeding, infection, and damage to nearby nerves or tissues.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

The iliac arteries are major branches of the abdominal aorta, the large artery that carries oxygen-rich blood from the heart to the rest of the body. The iliac arteries divide into two branches, the common iliac arteries, which further bifurcate into the internal and external iliac arteries.

The internal iliac artery supplies blood to the lower abdomen, pelvis, and the reproductive organs, while the external iliac artery provides blood to the lower extremities, including the legs and feet. Together, the iliac arteries play a crucial role in circulating blood throughout the body, ensuring that all tissues and organs receive the oxygen and nutrients they need to function properly.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Coronary artery bypass surgery, also known as coronary artery bypass grafting (CABG), is a surgical procedure used to improve blood flow to the heart in patients with severe coronary artery disease. This condition occurs when the coronary arteries, which supply oxygen-rich blood to the heart muscle, become narrowed or blocked due to the buildup of fatty deposits, called plaques.

During CABG surgery, a healthy blood vessel from another part of the body is grafted, or attached, to the coronary artery, creating a new pathway for oxygen-rich blood to flow around the blocked or narrowed portion of the artery and reach the heart muscle. This bypass helps to restore normal blood flow and reduce the risk of angina (chest pain), shortness of breath, and other symptoms associated with coronary artery disease.

There are different types of CABG surgery, including traditional on-pump CABG, off-pump CABG, and minimally invasive CABG. The choice of procedure depends on various factors, such as the patient's overall health, the number and location of blocked arteries, and the presence of other medical conditions.

It is important to note that while CABG surgery can significantly improve symptoms and quality of life in patients with severe coronary artery disease, it does not cure the underlying condition. Lifestyle modifications, such as regular exercise, a healthy diet, smoking cessation, and medication therapy, are essential for long-term management and prevention of further progression of the disease.

The mammary arteries are a set of blood vessels that supply oxygenated blood to the mammary glands, which are the structures in female breasts responsible for milk production during lactation. The largest mammary artery, also known as the internal thoracic or internal mammary artery, originates from the subclavian artery and descends along the inner side of the chest wall. It then branches into several smaller arteries that supply blood to the breast tissue. These include the anterior and posterior intercostal arteries, lateral thoracic artery, and pectoral branches. The mammary arteries are crucial in maintaining the health and function of the breast tissue, and any damage or blockage to these vessels can lead to various breast-related conditions or diseases.

A stroke, also known as cerebrovascular accident (CVA), is a serious medical condition that occurs when the blood supply to part of the brain is interrupted or reduced, leading to deprivation of oxygen and nutrients to brain cells. This can result in the death of brain tissue and cause permanent damage or temporary impairment to cognitive functions, speech, memory, movement, and other body functions controlled by the affected area of the brain.

Strokes can be caused by either a blockage in an artery that supplies blood to the brain (ischemic stroke) or the rupture of a blood vessel in the brain (hemorrhagic stroke). A transient ischemic attack (TIA), also known as a "mini-stroke," is a temporary disruption of blood flow to the brain that lasts only a few minutes and does not cause permanent damage.

Symptoms of a stroke may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; severe headache with no known cause; and confusion or disorientation. Immediate medical attention is crucial for stroke patients to receive appropriate treatment and prevent long-term complications.

Brain ischemia is the medical term used to describe a reduction or interruption of blood flow to the brain, leading to a lack of oxygen and glucose delivery to brain tissue. This can result in brain damage or death of brain cells, known as infarction. Brain ischemia can be caused by various conditions such as thrombosis (blood clot formation), embolism (obstruction of a blood vessel by a foreign material), or hypoperfusion (reduced blood flow). The severity and duration of the ischemia determine the extent of brain damage. Symptoms can range from mild, such as transient ischemic attacks (TIAs or "mini-strokes"), to severe, including paralysis, speech difficulties, loss of consciousness, and even death. Immediate medical attention is required for proper diagnosis and treatment to prevent further damage and potential long-term complications.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Cerebrovascular disorders are a group of medical conditions that affect the blood vessels of the brain. These disorders can be caused by narrowing, blockage, or rupture of the blood vessels, leading to decreased blood flow and oxygen supply to the brain. The most common types of cerebrovascular disorders include:

1. Stroke: A stroke occurs when a blood vessel in the brain becomes blocked or bursts, causing a lack of oxygen and nutrients to reach brain cells. This can lead to permanent damage or death of brain tissue.
2. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA occurs when blood flow to the brain is temporarily blocked, often by a blood clot. Symptoms may last only a few minutes to a few hours and typically resolve on their own. However, a TIA is a serious warning sign that a full-blown stroke may occur in the future.
3. Aneurysm: An aneurysm is a weakened or bulging area in the wall of a blood vessel. If left untreated, an aneurysm can rupture and cause bleeding in the brain.
4. Arteriovenous malformation (AVM): An AVM is a tangled mass of abnormal blood vessels that connect arteries and veins. This can lead to bleeding in the brain or stroke.
5. Carotid stenosis: Carotid stenosis occurs when the carotid arteries, which supply blood to the brain, become narrowed or blocked due to plaque buildup. This can increase the risk of stroke.
6. Vertebrobasilar insufficiency: This condition occurs when the vertebral and basilar arteries, which supply blood to the back of the brain, become narrowed or blocked. This can lead to symptoms such as dizziness, vertigo, and difficulty swallowing.

Cerebrovascular disorders are a leading cause of disability and death worldwide. Risk factors for these conditions include age, high blood pressure, smoking, diabetes, high cholesterol, and family history. Treatment may involve medications, surgery, or lifestyle changes to reduce the risk of further complications.

Catheterization is a medical procedure in which a catheter (a flexible tube) is inserted into the body to treat various medical conditions or for diagnostic purposes. The specific definition can vary depending on the area of medicine and the particular procedure being discussed. Here are some common types of catheterization:

1. Urinary catheterization: This involves inserting a catheter through the urethra into the bladder to drain urine. It is often performed to manage urinary retention, monitor urine output in critically ill patients, or assist with surgical procedures.
2. Cardiac catheterization: A procedure where a catheter is inserted into a blood vessel, usually in the groin or arm, and guided to the heart. This allows for various diagnostic tests and treatments, such as measuring pressures within the heart chambers, assessing blood flow, or performing angioplasty and stenting of narrowed coronary arteries.
3. Central venous catheterization: A catheter is inserted into a large vein, typically in the neck, chest, or groin, to administer medications, fluids, or nutrition, or to monitor central venous pressure.
4. Peritoneal dialysis catheterization: A catheter is placed into the abdominal cavity for individuals undergoing peritoneal dialysis, a type of kidney replacement therapy.
5. Neurological catheterization: In some cases, a catheter may be inserted into the cerebrospinal fluid space (lumbar puncture) or the brain's ventricular system (ventriculostomy) to diagnose or treat various neurological conditions.

These are just a few examples of catheterization procedures in medicine. The specific definition and purpose will depend on the medical context and the particular organ or body system involved.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

The brachial artery is a major blood vessel in the upper arm. It supplies oxygenated blood to the muscles and tissues of the arm, forearm, and hand. The brachial artery originates from the axillary artery at the level of the shoulder joint and runs down the medial (inner) aspect of the arm, passing through the cubital fossa (the depression on the anterior side of the elbow) where it can be palpated during a routine blood pressure measurement. At the lower end of the forearm, the brachial artery bifurcates into the radial and ulnar arteries, which further divide into smaller vessels to supply the hand and fingers.

An aneurysm is a localized, balloon-like bulge in the wall of a blood vessel. It occurs when the pressure inside the vessel causes a weakened area to swell and become enlarged. Aneurysms can develop in any blood vessel, but they are most common in arteries at the base of the brain (cerebral aneurysm) and the main artery carrying blood from the heart to the rest of the body (aortic aneurysm).

Aneurysms can be classified as saccular or fusiform, depending on their shape. A saccular aneurysm is a round or oval bulge that projects from the side of a blood vessel, while a fusiform aneurysm is a dilated segment of a blood vessel that is uniform in width and involves all three layers of the arterial wall.

The size and location of an aneurysm can affect its risk of rupture. Generally, larger aneurysms are more likely to rupture than smaller ones. Aneurysms located in areas with high blood pressure or where the vessel branches are also at higher risk of rupture.

Ruptured aneurysms can cause life-threatening bleeding and require immediate medical attention. Symptoms of a ruptured aneurysm may include sudden severe headache, neck stiffness, nausea, vomiting, blurred vision, or loss of consciousness. Unruptured aneurysms may not cause any symptoms and are often discovered during routine imaging tests for other conditions.

Treatment options for aneurysms depend on their size, location, and risk of rupture. Small, unruptured aneurysms may be monitored with regular imaging tests to check for growth or changes. Larger or symptomatic aneurysms may require surgical intervention, such as clipping or coiling, to prevent rupture and reduce the risk of complications.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

The Middle Cerebral Artery (MCA) is one of the main blood vessels that supplies oxygenated blood to the brain. It arises from the internal carotid artery and divides into several branches, which supply the lateral surface of the cerebral hemisphere, including the frontal, parietal, and temporal lobes.

The MCA is responsible for providing blood flow to critical areas of the brain, such as the primary motor and sensory cortices, Broca's area (associated with speech production), Wernicke's area (associated with language comprehension), and the visual association cortex.

Damage to the MCA or its branches can result in a variety of neurological deficits, depending on the specific location and extent of the injury. These may include weakness or paralysis on one side of the body, sensory loss, language impairment, and visual field cuts.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Blood vessel prosthesis implantation is a surgical procedure in which an artificial blood vessel, also known as a vascular graft or prosthetic graft, is inserted into the body to replace a damaged or diseased native blood vessel. The prosthetic graft can be made from various materials such as Dacron (polyester), PTFE (polytetrafluoroethylene), or bovine/human tissue.

The implantation of a blood vessel prosthesis is typically performed to treat conditions that cause narrowing or blockage of the blood vessels, such as atherosclerosis, aneurysms, or traumatic injuries. The procedure may be used to bypass blocked arteries in the legs (peripheral artery disease), heart (coronary artery bypass surgery), or neck (carotid endarterectomy). It can also be used to replace damaged veins for hemodialysis access in patients with kidney failure.

The success of blood vessel prosthesis implantation depends on various factors, including the patient's overall health, the location and extent of the vascular disease, and the type of graft material used. Possible complications include infection, bleeding, graft thrombosis (clotting), and graft failure, which may require further surgical intervention or endovascular treatments.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

The ophthalmic artery is the first branch of the internal carotid artery, which supplies blood to the eye and its adnexa. It divides into several branches that provide oxygenated blood to various structures within the eye, including the retina, optic nerve, choroid, iris, ciliary body, and cornea. Any blockage or damage to the ophthalmic artery can lead to serious vision problems or even blindness.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

A thoracic aortic aneurysm is a localized dilatation or bulging of the thoracic aorta, which is the part of the aorta that runs through the chest cavity. The aorta is the largest artery in the body, and it carries oxygenated blood from the heart to the rest of the body.

Thoracic aortic aneurysms can occur anywhere along the thoracic aorta, but they are most commonly found in the aortic arch or the descending thoracic aorta. These aneurysms can vary in size, and they are considered significant when they are 50% larger than the expected normal diameter of the aorta.

The exact cause of thoracic aortic aneurysms is not fully understood, but several factors can contribute to their development, including:

* Atherosclerosis (hardening and narrowing of the arteries)
* High blood pressure
* Genetic disorders such as Marfan syndrome or Ehlers-Danlos syndrome
* Infections or inflammation of the aorta
* Trauma to the chest

Thoracic aortic aneurysms can be asymptomatic and found incidentally on imaging studies, or they may present with symptoms such as chest pain, cough, difficulty swallowing, or hoarseness. If left untreated, thoracic aortic aneurysms can lead to serious complications, including aortic dissection (tearing of the inner layer of the aorta) or rupture, which can be life-threatening.

Treatment options for thoracic aortic aneurysms include medical management with blood pressure control and cholesterol-lowering medications, as well as surgical repair or endovascular stenting, depending on the size, location, and growth rate of the aneurysm. Regular follow-up imaging is necessary to monitor the size and progression of the aneurysm over time.

An intracranial embolism is a medical condition that occurs when a blood clot or other foreign material (embolus) forms elsewhere in the body and travels to the blood vessels within the brain. This embolus then blocks the flow of blood in the cerebral arteries, leading to potential damage or death of brain tissue. Common sources of intracranial emboli include heart conditions such as atrial fibrillation, valvular heart disease, or following a heart attack; or from large-vessel atherosclerosis in the carotid arteries. Symptoms can vary depending on the location and size of the obstruction, but may include sudden weakness or numbness, confusion, difficulty speaking, vision loss, severe headache, or even loss of consciousness. Immediate medical attention is required to diagnose and treat intracranial embolism, often involving anticoagulation therapy, endovascular procedures, or surgery.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Ultrasonography, Doppler, color is a type of diagnostic ultrasound technique that uses the Doppler effect to produce visual images of blood flow in vessels and the heart. The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the source of the wave. In this context, it refers to the change in frequency of the ultrasound waves as they reflect off moving red blood cells.

In color Doppler ultrasonography, different colors are used to represent the direction and speed of blood flow. Red typically represents blood flowing toward the transducer (the device that sends and receives sound waves), while blue represents blood flowing away from the transducer. The intensity or brightness of the color is proportional to the velocity of blood flow.

Color Doppler ultrasonography is often used in conjunction with grayscale ultrasound imaging, which provides information about the structure and composition of tissues. Together, these techniques can help diagnose a wide range of conditions, including heart disease, blood clots, and abnormalities in blood flow.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Intracranial arteriosclerosis is a medical condition characterized by the thickening and hardening of the walls of the intracranial arteries, which are the blood vessels that supply blood to the brain. This process is caused by the buildup of plaque, made up of fat, cholesterol, and other substances, within the walls of the arteries.

Intracranial arteriosclerosis can lead to a narrowing or blockage of the affected arteries, reducing blood flow to the brain. This can result in various neurological symptoms, such as headaches, dizziness, seizures, and transient ischemic attacks (TIAs) or strokes.

The condition is more common in older adults, particularly those with a history of hypertension, diabetes, smoking, and high cholesterol levels. Intracranial arteriosclerosis can be diagnosed through imaging tests such as magnetic resonance angiography (MRA) or computed tomographic angiography (CTA). Treatment typically involves managing risk factors and may include medications to control blood pressure, cholesterol levels, and prevent blood clots. In severe cases, surgical procedures such as angioplasty and stenting may be necessary to open up the affected arteries.

Transcranial Doppler ultrasonography is a non-invasive diagnostic technique that uses high-frequency sound waves to visualize and measure the velocity of blood flow in the cerebral arteries located in the skull. This imaging modality employs the Doppler effect, which describes the change in frequency of sound waves as they reflect off moving red blood cells. By measuring the frequency shift of the reflected ultrasound waves, the velocity and direction of blood flow can be determined.

Transcranial Doppler ultrasonography is primarily used to assess cerebrovascular circulation and detect abnormalities such as stenosis (narrowing), occlusion (blockage), or embolism (obstruction) in the intracranial arteries. It can also help monitor patients with conditions like sickle cell disease, vasospasm following subarachnoid hemorrhage, and evaluate the effectiveness of treatments such as thrombolysis or angioplasty. The procedure is typically performed by placing a transducer on the patient's skull after applying a coupling gel, and it does not involve radiation exposure or contrast agents.

Atherosclerosis is a medical condition characterized by the buildup of plaques, made up of fat, cholesterol, calcium, and other substances found in the blood, on the inner walls of the arteries. This process gradually narrows and hardens the arteries, reducing the flow of oxygen-rich blood to various parts of the body. Atherosclerosis can affect any artery in the body, including those that supply blood to the heart (coronary arteries), brain, limbs, and other organs. The progressive narrowing and hardening of the arteries can lead to serious complications such as coronary artery disease, carotid artery disease, peripheral artery disease, and aneurysms, which can result in heart attacks, strokes, or even death if left untreated.

The exact cause of atherosclerosis is not fully understood, but it is believed to be associated with several risk factors, including high blood pressure, high cholesterol levels, smoking, diabetes, obesity, physical inactivity, and a family history of the condition. Atherosclerosis can often progress without any symptoms for many years, but as the disease advances, it can lead to various signs and symptoms depending on which arteries are affected. Treatment typically involves lifestyle changes, medications, and, in some cases, surgical procedures to restore blood flow.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

The Circle of Willis is a circulatory arrangement in the brain where the major arteries that supply blood to the brain converge to form an almost circular structure. It is named after Thomas Willis, an English physician who first described it in 1664.

This circle is formed by the joining of the two internal carotid arteries, which divide into the anterior cerebral and middle cerebral arteries, with the basilar artery, which arises from the vertebral arteries. These vessels anastomose, or connect, to form a polygon-like structure at the base of the brain.

The Circle of Willis plays a crucial role in maintaining adequate blood flow to the brain, as it allows for collateral circulation. If one of the arteries that make up the circle becomes blocked or narrowed, blood can still reach the affected area through the other vessels in the circle. This helps to minimize the risk of stroke and other neurological disorders.

The thoracic aorta is the segment of the largest artery in the human body (the aorta) that runs through the chest region (thorax). The thoracic aorta begins at the aortic arch, where it branches off from the ascending aorta, and extends down to the diaphragm, where it becomes the abdominal aorta.

The thoracic aorta is divided into three parts: the ascending aorta, the aortic arch, and the descending aorta. The ascending aorta rises from the left ventricle of the heart and is about 2 inches (5 centimeters) long. The aortic arch curves backward and to the left, giving rise to the brachiocephalic trunk, the left common carotid artery, and the left subclavian artery. The descending thoracic aorta runs downward through the chest, passing through the diaphragm to become the abdominal aorta.

The thoracic aorta supplies oxygenated blood to the upper body, including the head, neck, arms, and chest. It plays a critical role in maintaining blood flow and pressure throughout the body.

Cerebral revascularization is a surgical procedure aimed at restoring blood flow to the brain. This is often performed in cases where there is narrowing or blockage of the cerebral arteries, a condition known as cerebrovascular disease. The most common type of cerebral revascularization is called carotid endarterectomy, which involves removing plaque buildup from the carotid artery in the neck to improve blood flow to the brain. Another type is extracranial-intracranial bypass, where a new connection is created between an external carotid artery and an intracranial artery to bypass a blockage.

Temporal arteries are the paired set of arteries that run along the temples on either side of the head. They are branches of the external carotid artery and play a crucial role in supplying oxygenated blood to the scalp and surrounding muscles. One of the most common conditions associated with temporal arteries is Temporal Arteritis (also known as Giant Cell Arteritis), which is an inflammation of these arteries that can lead to serious complications like vision loss if not promptly diagnosed and treated.

1. Intracranial Embolism: This is a medical condition that occurs when a blood clot or other particle (embolus) formed elsewhere in the body, travels through the bloodstream and lodges itself in the intracranial blood vessels, blocking the flow of blood to a part of the brain. This can lead to various neurological symptoms such as weakness, numbness, speech difficulties, or even loss of consciousness, depending on the severity and location of the blockage.

2. Intracranial Thrombosis: This is a medical condition that occurs when a blood clot (thrombus) forms within the intracranial blood vessels. The clot can partially or completely obstruct the flow of blood, leading to various symptoms such as headache, confusion, seizures, or neurological deficits, depending on the severity and location of the thrombosis. Intracranial thrombosis can occur due to various factors including atherosclerosis, hypertension, diabetes, and other medical conditions that increase the risk of blood clot formation.

Amaurosis fugax is a medical term that describes a temporary loss of vision in one eye, which is often described as a "shade or curtain falling over the field of vision." It's usually caused by a temporary interruption of blood flow to the retina or optic nerve. This condition is often associated with conditions such as giant cell arteritis, carotid artery stenosis, and cardiovascular disease.

It's important to note that Amaurosis fugax can be a warning sign for a more serious medical event, such as a stroke, so it's essential to seek medical attention promptly if you experience any symptoms of this condition.

Therapeutic embolization is a medical procedure that involves intentionally blocking or obstructing blood vessels to stop excessive bleeding or block the flow of blood to a tumor or abnormal tissue. This is typically accomplished by injecting small particles, such as microspheres or coils, into the targeted blood vessel through a catheter, which is inserted into a larger blood vessel and guided to the desired location using imaging techniques like X-ray or CT scanning. The goal of therapeutic embolization is to reduce the size of a tumor, control bleeding, or block off abnormal blood vessels that are causing problems.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Ligation, in the context of medical terminology, refers to the process of tying off a part of the body, usually blood vessels or tissue, with a surgical suture or another device. The goal is to stop the flow of fluids such as blood or other substances within the body. It is commonly used during surgeries to control bleeding or to block the passage of fluids, gases, or solids in various parts of the body.

The jugular veins are a pair of large, superficial veins that carry blood from the head and neck to the heart. They are located in the neck and are easily visible when looking at the side of a person's neck. The external jugular vein runs along the surface of the muscles in the neck, while the internal jugular vein runs within the carotid sheath along with the carotid artery and the vagus nerve.

The jugular veins are important in clinical examinations because they can provide information about a person's cardiovascular function and intracranial pressure. For example, distention of the jugular veins may indicate heart failure or increased intracranial pressure, while decreased venous pulsations may suggest a low blood pressure or shock.

It is important to note that medical conditions such as deep vein thrombosis (DVT) can also affect the jugular veins and can lead to serious complications if not treated promptly.

Ultrasonography, Doppler refers to a non-invasive diagnostic medical procedure that uses high-frequency sound waves to create real-time images of the movement of blood flow through vessels, tissues, or heart valves. The Doppler effect is used to measure the frequency shift of the ultrasound waves as they bounce off moving red blood cells, which allows for the calculation of the speed and direction of blood flow. This technique is commonly used to diagnose and monitor various conditions such as deep vein thrombosis, carotid artery stenosis, heart valve abnormalities, and fetal heart development during pregnancy. It does not use radiation or contrast agents and is considered safe with minimal risks.

A carotid body tumor is a rare, usually noncancerous (benign) growth that develops in the carotid body, a small structure located near the bifurcation (fork) of the common carotid artery in the neck. The carotid body is part of the chemoreceptor system that helps regulate breathing and blood pressure by responding to changes in oxygen, carbon dioxide, and pH levels in the blood.

Carotid body tumors are also known as carotid body paragangliomas or chemodectomas. They typically grow slowly and may not cause any symptoms for many years. However, as they enlarge, they can cause a visible or palpable mass in the neck, along with symptoms such as difficulty swallowing, hoarseness, or voice changes. In some cases, carotid body tumors can compress nearby nerves or blood vessels, leading to more serious complications like stroke or nerve damage.

Treatment for carotid body tumors typically involves surgical removal of the growth, which may be performed using traditional open surgery or minimally invasive techniques such as endovascular surgery or robotic-assisted surgery. Radiation therapy and chemotherapy are generally not effective in treating these tumors. Regular follow-up care is important to monitor for recurrence or development of new tumors.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

The superior mesenteric artery (SMA) is a major artery that supplies oxygenated blood to the intestines, specifically the lower part of the duodenum, jejunum, ileum, cecum, ascending colon, and the first and second parts of the transverse colon. It originates from the abdominal aorta, located just inferior to the pancreas, and passes behind the neck of the pancreas before dividing into several branches to supply the intestines. The SMA is an essential vessel in the digestive system, providing blood flow for nutrient absorption and overall gut function.

Pathological constriction refers to an abnormal narrowing or tightening of a body passage or organ, which can interfere with the normal flow of blood, air, or other substances through the area. This constriction can occur due to various reasons such as inflammation, scarring, or abnormal growths, and can affect different parts of the body, including blood vessels, airways, intestines, and ureters. Pathological constriction can lead to a range of symptoms and complications depending on its location and severity, and may require medical intervention to correct.

The splenic artery is the largest branch of the celiac trunk, which arises from the abdominal aorta. It supplies blood to the spleen and several other organs in the upper left part of the abdomen. The splenic artery divides into several branches that ultimately form a network of capillaries within the spleen. These capillaries converge to form the main venous outflow, the splenic vein, which drains into the hepatic portal vein.

The splenic artery is a vital structure in the human body, and any damage or blockage can lead to serious complications, including splenic infarction (reduced blood flow to the spleen) or splenic rupture (a surgical emergency that can be life-threatening).

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

The celiac artery, also known as the anterior abdominal aortic trunk, is a major artery that originates from the abdominal aorta and supplies oxygenated blood to the foregut, which includes the stomach, liver, spleen, pancreas, and upper part of the duodenum. It branches into three main branches: the left gastric artery, the splenic artery, and the common hepatic artery. The celiac artery plays a crucial role in providing blood to these vital organs, and any disruption or damage to it can lead to serious health consequences.

A blood vessel prosthesis is a medical device that is used as a substitute for a damaged or diseased natural blood vessel. It is typically made of synthetic materials such as polyester, Dacron, or ePTFE (expanded polytetrafluoroethylene) and is designed to mimic the function of a native blood vessel by allowing the flow of blood through it.

Blood vessel prostheses are used in various surgical procedures, including coronary artery bypass grafting, peripheral arterial reconstruction, and the creation of arteriovenous fistulas for dialysis access. The choice of material and size of the prosthesis depends on several factors, such as the location and diameter of the vessel being replaced, the patient's age and overall health status, and the surgeon's preference.

It is important to note that while blood vessel prostheses can be effective in restoring blood flow, they may also carry risks such as infection, thrombosis (blood clot formation), and graft failure over time. Therefore, careful patient selection, surgical technique, and postoperative management are crucial for the success of these procedures.

The cavernous sinus is a venous structure located in the middle cranial fossa, which is a depression in the skull that houses several important nerves and blood vessels. The cavernous sinus is situated on either side of the sphenoid bone, near the base of the skull, and it contains several important structures:

* The internal carotid artery, which supplies oxygenated blood to the brain
* The abducens nerve (cranial nerve VI), which controls lateral movement of the eye
* The oculomotor nerve (cranial nerve III), which controls most of the muscles that move the eye
* The trochlear nerve (cranial nerve IV), which controls one of the muscles that moves the eye
* The ophthalmic and maxillary divisions of the trigeminal nerve (cranial nerve V), which transmit sensory information from the face and head

The cavernous sinus is an important structure because it serves as a conduit for several critical nerves and blood vessels. However, it is also vulnerable to various pathological conditions such as thrombosis (blood clots), infection, tumors, or aneurysms, which can lead to serious neurological deficits or even death.

Retinal artery occlusion (RAO) is a medical condition characterized by the blockage or obstruction of the retinal artery, which supplies oxygenated blood to the retina. This blockage typically occurs due to embolism (a small clot or debris that travels to the retinal artery), thrombosis (blood clot formation in the artery), or vasculitis (inflammation of the blood vessels).

There are two types of retinal artery occlusions:

1. Central Retinal Artery Occlusion (CRAO): This type occurs when the main retinal artery is obstructed, affecting the entire inner layer of the retina. It can lead to severe and sudden vision loss in the affected eye.
2. Branch Retinal Artery Occlusion (BRAO): This type affects a branch of the retinal artery, causing visual field loss in the corresponding area. Although it is less severe than CRAO, it can still result in noticeable vision impairment.

Immediate medical attention is crucial for both types of RAO to improve the chances of recovery and minimize potential damage to the eye and vision. Treatment options may include medications, laser therapy, or surgery, depending on the underlying cause and the severity of the condition.

The hepatic artery is a branch of the celiac trunk or abdominal aorta that supplies oxygenated blood to the liver. It typically divides into two main branches, the right and left hepatic arteries, which further divide into smaller vessels to supply different regions of the liver. The hepatic artery also gives off branches to supply other organs such as the gallbladder, pancreas, and duodenum.

It's worth noting that there is significant variability in the anatomy of the hepatic artery, with some individuals having additional branches or variations in the origin of the vessel. This variability can have implications for surgical procedures involving the liver and surrounding organs.

Fibromuscular dysplasia (FMD) is a rare condition that affects the arterial walls, primarily in the medium and large-sized arteries. According to the American Heart Association, FMD is characterized by uneven growth or damage to the cells in the artery wall, leading to the formation of fibrous tissue and areas with narrowing (stenosis) or ballooning (aneurysm) of the artery.

FMD most commonly affects the renal (kidney) and carotid (neck) arteries but can also occur in other arteries, such as those in the abdomen, arms, and legs. The exact cause of FMD is unknown, but genetic factors and hormonal influences are believed to play a role.

Symptoms of FMD depend on which arteries are affected and may include high blood pressure, headaches, neck pain, dizziness, visual disturbances, or kidney problems. Diagnosis typically involves imaging tests like ultrasound, CT angiography, or magnetic resonance angiography (MRA). Treatment options for FMD include medications to manage symptoms and control high blood pressure, as well as various interventions such as angioplasty or stenting to open narrowed arteries.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Aortography is a medical procedure that involves taking X-ray images of the aorta, which is the largest blood vessel in the body. The procedure is usually performed to diagnose or assess various conditions related to the aorta, such as aneurysms, dissections, or blockages.

To perform an aortography, a contrast dye is injected into the aorta through a catheter that is inserted into an artery, typically in the leg or arm. The contrast dye makes the aorta visible on X-ray images, allowing doctors to see its structure and any abnormalities that may be present.

The procedure is usually performed in a hospital or outpatient setting and may require sedation or anesthesia. While aortography can provide valuable diagnostic information, it also carries some risks, such as allergic reactions to the contrast dye, damage to blood vessels, or infection. Therefore, it is typically reserved for situations where other diagnostic tests have been inconclusive or where more invasive treatment may be required.

A false aneurysm, also known as a pseudoaneurysm, is a type of aneurysm that occurs when there is a leakage or rupture of blood from a blood vessel into the surrounding tissues, creating a pulsating hematoma or collection of blood. Unlike true aneurysms, which involve a localized dilation or bulging of the blood vessel wall, false aneurysms do not have a complete covering of all three layers of the arterial wall (intima, media, and adventitia). Instead, they are typically covered by only one or two layers, such as the intima and adventitia, or by surrounding tissues like connective tissue or fascia.

False aneurysms can result from various factors, including trauma, infection, iatrogenic causes (such as medical procedures), or degenerative changes in the blood vessel wall. They are more common in arteries than veins and can occur in any part of the body. If left untreated, false aneurysms can lead to serious complications such as rupture, thrombosis, distal embolization, or infection. Treatment options for false aneurysms include surgical repair, endovascular procedures, or observation with regular follow-up imaging.

Vascular surgical procedures are operations that are performed to treat conditions and diseases related to the vascular system, which includes the arteries, veins, and capillaries. These procedures can be invasive or minimally invasive and are often used to treat conditions such as peripheral artery disease, carotid artery stenosis, aortic aneurysms, and venous insufficiency.

Some examples of vascular surgical procedures include:

* Endarterectomy: a procedure to remove plaque buildup from the inside of an artery
* Bypass surgery: creating a new path for blood to flow around a blocked or narrowed artery
* Angioplasty and stenting: using a balloon to open a narrowed artery and placing a stent to keep it open
* Aneurysm repair: surgically repairing an aneurysm, a weakened area in the wall of an artery that has bulged out and filled with blood
* Embolectomy: removing a blood clot from a blood vessel
* Thrombectomy: removing a blood clot from a vein

These procedures are typically performed by vascular surgeons, who are trained in the diagnosis and treatment of vascular diseases.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Lymph node excision is a surgical procedure in which one or more lymph nodes are removed from the body for the purpose of examination. This procedure is often conducted to help diagnose or stage various types of cancer, as malignant cells may spread to the lymphatic system and eventually accumulate within nearby lymph nodes.

During a lymph node excision, an incision is made in the skin overlying the affected lymph node(s). The surgeon carefully dissects the tissue surrounding the lymph node(s) to isolate them from adjacent structures before removing them. In some cases, a sentinel lymph node biopsy may be performed instead, where only the sentinel lymph node (the first lymph node to which cancer cells are likely to spread) is removed and examined.

The excised lymph nodes are then sent to a laboratory for histopathological examination, which involves staining and microscopic evaluation of the tissue to determine whether it contains any malignant cells. The results of this examination can help guide further treatment decisions and provide valuable prognostic information.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

The Thoracic Arteries are branches of the aorta that supply oxygenated blood to the thoracic region of the body. The pair of arteries originate from the descending aorta and divide into several smaller branches, including intercostal arteries that supply blood to the muscles between the ribs, and posterior intercostal arteries that supply blood to the back and chest wall. Other branches of the thoracic arteries include the superior phrenic arteries, which supply blood to the diaphragm, and the bronchial arteries, which supply blood to the lungs. These arteries play a crucial role in maintaining the health and function of the chest and respiratory system.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Risk assessment in the medical context refers to the process of identifying, evaluating, and prioritizing risks to patients, healthcare workers, or the community related to healthcare delivery. It involves determining the likelihood and potential impact of adverse events or hazards, such as infectious diseases, medication errors, or medical devices failures, and implementing measures to mitigate or manage those risks. The goal of risk assessment is to promote safe and high-quality care by identifying areas for improvement and taking action to minimize harm.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Balloon occlusion is a medical procedure that involves the use of a small, deflated balloon at the end of a catheter, which can be inserted into a blood vessel or other tubular structure in the body. Once the balloon is in position, it is inflated with a fluid or gas to create a blockage or obstruction in the vessel. This can be used for various medical purposes, such as:

1. Controlling bleeding: By inflating the balloon in a blood vessel, doctors can temporarily stop the flow of blood to a specific area, allowing them to treat injuries or abnormalities that are causing excessive bleeding.
2. Vessel narrowing or blockage assessment: Balloon occlusion can be used to assess the severity of narrowing or blockages in blood vessels. By inflating the balloon and measuring the pressure differences upstream and downstream, doctors can determine the extent of the obstruction and plan appropriate treatment.
3. Embolization therapy: In some cases, balloon occlusion is used to deliver embolic agents (such as coils, particles, or glue) that block off blood flow to specific areas. This can be useful in treating conditions like tumors, arteriovenous malformations, or aneurysms.
4. Temporary vessel occlusion during surgery: During certain surgical procedures, it may be necessary to temporarily stop the flow of blood to a specific area. Balloon occlusion can be used to achieve this quickly and safely.
5. Assisting in the placement of stents or other devices: Balloon occlusion can help position and deploy stents or other medical devices by providing temporary support or blocking off blood flow during the procedure.

It is important to note that balloon occlusion procedures carry potential risks, such as vessel injury, infection, or embolism (the blockage of a blood vessel by a clot or foreign material). These risks should be carefully weighed against the benefits when considering this type of treatment.

In medical terms, the "neck" is defined as the portion of the body that extends from the skull/head to the thorax or chest region. It contains 7 cervical vertebrae, muscles, nerves, blood vessels, lymphatic vessels, and glands (such as the thyroid gland). The neck is responsible for supporting the head, allowing its movement in various directions, and housing vital structures that enable functions like respiration and circulation.

Coronary angiography is a medical procedure that uses X-ray imaging to visualize the coronary arteries, which supply blood to the heart muscle. During the procedure, a thin, flexible catheter is inserted into an artery in the arm or groin and threaded through the blood vessels to the heart. A contrast dye is then injected through the catheter, and X-ray images are taken as the dye flows through the coronary arteries. These images can help doctors diagnose and treat various heart conditions, such as blockages or narrowing of the arteries, that can lead to chest pain or heart attacks. It is also known as coronary arteriography or cardiac catheterization.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

The brachiocephalic trunk, also known as the brachiocephalic artery or innominate artery, is a large vessel that branches off the aorta and divides into the right common carotid artery and the right subclavian artery. It supplies blood to the head, neck, and arms on the right side of the body.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Endovascular procedures are minimally invasive medical treatments that involve accessing and repairing blood vessels or other interior parts of the body through small incisions or punctures. These procedures typically use specialized catheters, wires, and other tools that are inserted into the body through an artery or vein, usually in the leg or arm.

Endovascular procedures can be used to treat a wide range of conditions, including aneurysms, atherosclerosis, peripheral artery disease, carotid artery stenosis, and other vascular disorders. Some common endovascular procedures include angioplasty, stenting, embolization, and thrombectomy.

The benefits of endovascular procedures over traditional open surgery include smaller incisions, reduced trauma to surrounding tissues, faster recovery times, and lower risks of complications such as infection and bleeding. However, endovascular procedures may not be appropriate for all patients or conditions, and careful evaluation and consideration are necessary to determine the best treatment approach.

Vascular patency is a term used in medicine to describe the state of a blood vessel (such as an artery or vein) being open, unobstructed, and allowing for the normal flow of blood. It is an important concept in the treatment and management of various cardiovascular conditions, such as peripheral artery disease, coronary artery disease, and deep vein thrombosis.

Maintaining vascular patency can help prevent serious complications like tissue damage, organ dysfunction, or even death. This may involve medical interventions such as administering blood-thinning medications to prevent clots, performing procedures to remove blockages, or using devices like stents to keep vessels open. Regular monitoring of vascular patency is also crucial for evaluating the effectiveness of treatments and adjusting care plans accordingly.

Atherosclerotic plaque is a deposit of fatty (cholesterol and fat) substances, calcium, and other substances in the inner lining of an artery. This plaque buildup causes the artery to narrow and harden, reducing blood flow through the artery, which can lead to serious cardiovascular conditions such as coronary artery disease, angina, heart attack, or stroke. The process of atherosclerosis develops gradually over decades and can start in childhood.

Renal artery obstruction is a medical condition that refers to the blockage or restriction of blood flow in the renal artery, which is the main vessel that supplies oxygenated and nutrient-rich blood to the kidneys. This obstruction can be caused by various factors, such as blood clots, atherosclerosis (the buildup of fats, cholesterol, and other substances in and on the artery walls), emboli (tiny particles or air bubbles that travel through the bloodstream and lodge in smaller vessels), or compressive masses like tumors.

The obstruction can lead to reduced kidney function, hypertension, and even kidney failure in severe cases. Symptoms may include high blood pressure, proteinuria (the presence of protein in the urine), hematuria (blood in the urine), and a decrease in kidney function as measured by serum creatinine levels. Diagnosis typically involves imaging studies like Doppler ultrasound, CT angiography, or magnetic resonance angiography to visualize the renal artery and assess the extent of the obstruction. Treatment options may include medications to control blood pressure and reduce kidney damage, as well as invasive procedures like angioplasty and stenting or surgical intervention to remove the obstruction and restore normal blood flow to the kidneys.

In medical terms, constriction refers to the narrowing or tightening of a body part or passageway. This can occur due to various reasons such as spasms of muscles, inflammation, or abnormal growths. It can lead to symptoms like difficulty in breathing, swallowing, or blood flow, depending on where it occurs. For example, constriction of the airways in asthma, constriction of blood vessels in hypertension, or constriction of the esophagus in certain digestive disorders.

The umbilical arteries are a pair of vessels that develop within the umbilical cord during fetal development. They carry oxygenated and nutrient-rich blood from the mother to the developing fetus through the placenta. These arteries arise from the internal iliac arteries in the fetus and pass through the umbilical cord to connect with the two umbilical veins within the placenta. After birth, the umbilical arteries become ligaments (the medial umbilical ligaments) that run along the inner abdominal wall.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Middle Cerebral Artery (MCA) infarction is a type of ischemic stroke that occurs when there is an obstruction in the blood supply to the middle cerebral artery, which is one of the major blood vessels that supplies oxygenated blood to the brain. The MCA supplies blood to a large portion of the brain, including the motor and sensory cortex, parts of the temporal and parietal lobes, and the basal ganglia.

An infarction is the death of tissue due to the lack of blood supply, which can lead to damage or loss of function in the affected areas of the brain. Symptoms of MCA infarction may include weakness or numbness on one side of the body, difficulty speaking or understanding speech, vision problems, and altered levels of consciousness.

MCA infarctions can be caused by various factors, including embolism (a blood clot that travels to the brain from another part of the body), thrombosis (a blood clot that forms in the MCA itself), or stenosis (narrowing of the artery due to atherosclerosis or other conditions). Treatment for MCA infarction may include medications to dissolve blood clots, surgery to remove the obstruction, or rehabilitation to help regain lost function.

In medical terms, compliance refers to the degree to which a patient follows the recommendations or instructions of their healthcare provider. This may include taking prescribed medications as directed, following a treatment plan, making lifestyle changes, or attending follow-up appointments. Good compliance is essential for achieving the best possible health outcomes and can help prevent complications or worsening of medical conditions. Factors that can affect patient compliance include forgetfulness, lack of understanding of the instructions, cost of medications or treatments, and side effects of medications. Healthcare providers can take steps to improve patient compliance by providing clear and concise instructions, discussing potential barriers to compliance, and involving patients in their care plan.

Intra-arterial injection is a type of medical procedure where a medication or contrast agent is delivered directly into an artery. This technique is used for various therapeutic and diagnostic purposes.

For instance, intra-arterial chemotherapy may be used to deliver cancer drugs directly to the site of a tumor, while intra-arterial thrombolysis involves the administration of clot-busting medications to treat arterial blockages caused by blood clots. Intra-arterial injections are also used in diagnostic imaging procedures such as angiography, where a contrast agent is injected into an artery to visualize the blood vessels and identify any abnormalities.

It's important to note that intra-arterial injections require precise placement of the needle or catheter into the artery, and are typically performed by trained medical professionals using specialized equipment.

Coronary artery disease, often simply referred to as coronary disease, is a condition in which the blood vessels that supply oxygen-rich blood to the heart become narrowed or blocked due to the buildup of fatty deposits called plaques. This can lead to chest pain (angina), shortness of breath, or in severe cases, a heart attack.

The medical definition of coronary artery disease is:

A condition characterized by the accumulation of atheromatous plaques in the walls of the coronary arteries, leading to decreased blood flow and oxygen supply to the myocardium (heart muscle). This can result in symptoms such as angina pectoris, shortness of breath, or arrhythmias, and may ultimately lead to myocardial infarction (heart attack) or heart failure.

Risk factors for coronary artery disease include age, smoking, high blood pressure, high cholesterol, diabetes, obesity, physical inactivity, and a family history of the condition. Lifestyle changes such as quitting smoking, exercising regularly, eating a healthy diet, and managing stress can help reduce the risk of developing coronary artery disease. Medical treatments may include medications to control blood pressure, cholesterol levels, or irregular heart rhythms, as well as procedures such as angioplasty or bypass surgery to improve blood flow to the heart.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Pulsatile flow is a type of fluid flow that occurs in a rhythmic, wave-like pattern, typically seen in the cardiovascular system. It refers to the periodic variation in the volume or velocity of a fluid (such as blood) that is caused by the regular beating of the heart. In pulsatile flow, there are periods of high flow followed by periods of low or no flow, which creates a distinct pattern on a graph or tracing. This type of flow is important for maintaining proper function and health in organs and tissues throughout the body.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

A ruptured aneurysm is a serious medical condition that occurs when the wall of an artery or a blood vessel weakens and bulges out, forming an aneurysm, which then bursts, causing bleeding into the surrounding tissue. This can lead to internal hemorrhage, organ damage, and even death, depending on the location and severity of the rupture.

Ruptured aneurysms are often caused by factors such as high blood pressure, smoking, aging, and genetic predisposition. They can occur in any part of the body but are most common in the aorta (the largest artery in the body) and the cerebral arteries (in the brain).

Symptoms of a ruptured aneurysm may include sudden and severe pain, weakness or paralysis, difficulty breathing, confusion, loss of consciousness, and shock. Immediate medical attention is required to prevent further complications and increase the chances of survival. Treatment options for a ruptured aneurysm may include surgery, endovascular repair, or medication to manage symptoms and prevent further bleeding.

Collateral circulation refers to the alternate blood supply routes that bypass an obstructed or narrowed vessel and reconnect with the main vascular system. These collateral vessels can develop over time as a result of the body's natural adaptation to chronic ischemia (reduced blood flow) caused by various conditions such as atherosclerosis, thromboembolism, or vasculitis.

The development of collateral circulation helps maintain adequate blood flow and oxygenation to affected tissues, minimizing the risk of tissue damage and necrosis. In some cases, well-developed collateral circulations can help compensate for significant blockages in major vessels, reducing symptoms and potentially preventing the need for invasive interventions like revascularization procedures. However, the extent and effectiveness of collateral circulation vary from person to person and depend on factors such as age, overall health status, and the presence of comorbidities.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Horner syndrome, also known as Horner's syndrome or oculosympathetic palsy, is a neurological disorder characterized by the interruption of sympathetic nerve pathways that innervate the head and neck, leading to a constellation of signs affecting the eye and face on one side of the body.

The classic triad of symptoms includes:

1. Ptosis (drooping) of the upper eyelid: This is due to the weakness or paralysis of the levator palpebrae superioris muscle, which is responsible for elevating the eyelid.
2. Miosis (pupillary constriction): The affected pupil becomes smaller in size compared to the other side, and it may not react as robustly to light.
3. Anhydrosis (decreased sweating): There is reduced or absent sweating on the ipsilateral (same side) of the face, particularly around the forehead and upper eyelid.

Horner syndrome can be caused by various underlying conditions, such as brainstem stroke, tumors, trauma, or certain medical disorders affecting the sympathetic nervous system. The diagnosis typically involves a thorough clinical examination, pharmacological testing, and sometimes imaging studies to identify the underlying cause. Treatment is directed towards managing the underlying condition responsible for Horner syndrome.

The axillary artery is a major blood vessel in the upper limb. It is the continuation of the subclavian artery and begins at the lateral border of the first rib, where it becomes the brachial artery. The axillary artery supplies oxygenated blood to the upper extremity, chest wall, and breast.

The axillary artery is divided into three parts based on the surrounding structures:

1. First part: From its origin at the lateral border of the first rib to the medial border of the pectoralis minor muscle. It lies deep to the clavicle and is covered by the scalene muscles, the anterior and middle scalene being the most important. The branches arising from this portion are the superior thoracic artery and the thyrocervical trunk.
2. Second part: Behind the pectoralis minor muscle. The branches arising from this portion are the lateral thoracic artery and the subscapular artery.
3. Third part: After leaving the lower border of the pectoralis minor muscle, it becomes the brachial artery. The branches arising from this portion are the anterior circumflex humeral artery and the posterior circumflex humeral artery.

The axillary artery is a common site for surgical interventions such as angioplasty and stenting to treat peripheral arterial disease, as well as for bypass grafting in cases of severe atherosclerosis or occlusion.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

Spontaneous rupture in medical terms refers to the sudden breaking or tearing of an organ, tissue, or structure within the body without any identifiable trauma or injury. This event can occur due to various reasons such as weakening of the tissue over time because of disease or degeneration, or excessive pressure on the tissue.

For instance, a spontaneous rupture of the appendix is called an "appendiceal rupture," which can lead to peritonitis, a serious inflammation of the abdominal cavity. Similarly, a spontaneous rupture of a blood vessel, like an aortic aneurysm, can result in life-threatening internal bleeding.

Spontaneous ruptures are often medical emergencies and require immediate medical attention for proper diagnosis and treatment.

In medicine, elasticity refers to the ability of a tissue or organ to return to its original shape after being stretched or deformed. This property is due to the presence of elastic fibers in the extracellular matrix of the tissue, which can stretch and recoil like rubber bands.

Elasticity is an important characteristic of many tissues, particularly those that are subjected to repeated stretching or compression, such as blood vessels, lungs, and skin. For example, the elasticity of the lungs allows them to expand and contract during breathing, while the elasticity of blood vessels helps maintain normal blood pressure by allowing them to expand and constrict in response to changes in blood flow.

In addition to its role in normal physiology, elasticity is also an important factor in the diagnosis and treatment of various medical conditions. For example, decreased elasticity in the lungs can be a sign of lung disease, while increased elasticity in the skin can be a sign of aging or certain genetic disorders. Medical professionals may use techniques such as pulmonary function tests or skin biopsies to assess elasticity and help diagnose these conditions.

The popliteal artery is the continuation of the femoral artery that passes through the popliteal fossa, which is the area behind the knee. It is the major blood vessel that supplies oxygenated blood to the lower leg and foot. The popliteal artery divides into the anterior tibial artery and the tibioperoneal trunk at the lower border of the popliteus muscle. Any damage or blockage to this artery can result in serious health complications, including reduced blood flow to the leg and foot, which may lead to pain, cramping, numbness, or even tissue death (gangrene) if left untreated.

An embolism is a medical condition that occurs when a substance, such as a blood clot or an air bubble, blocks a blood vessel. This can happen in any part of the body, but it is particularly dangerous when it affects the brain (causing a stroke) or the lungs (causing a pulmonary embolism). Embolisms can cause serious harm by preventing oxygen and nutrients from reaching the tissues and organs that need them. They are often the result of underlying medical conditions, such as heart disease or deep vein thrombosis, and may require immediate medical attention to prevent further complications.

The maxillary artery is a branch of the external carotid artery that supplies the deep structures of the face and head. It originates from the external carotid artery just below the neck of the mandible and passes laterally to enter the parotid gland. Within the gland, it gives off several branches, including the deep auricular, anterior tympanic, and middle meningeal arteries.

After leaving the parotid gland, the maxillary artery travels through the infratemporal fossa, where it gives off several more branches, including the inferior alveolar, buccinator, and masseteric arteries. These vessels supply blood to the teeth, gums, and muscles of mastication.

The maxillary artery also gives off the sphenopalatine artery, which supplies the nasal cavity, nasopharynx, and palate. Additionally, it provides branches that supply the meninges, dura mater, and brain. Overall, the maxillary artery plays a critical role in providing blood flow to many structures in the head and neck region.

Intraoperative complications refer to any unforeseen problems or events that occur during the course of a surgical procedure, once it has begun and before it is completed. These complications can range from minor issues, such as bleeding or an adverse reaction to anesthesia, to major complications that can significantly impact the patient's health and prognosis.

Examples of intraoperative complications include:

1. Bleeding (hemorrhage) - This can occur due to various reasons such as injury to blood vessels or organs during surgery.
2. Infection - Surgical site infections can develop if the surgical area becomes contaminated during the procedure.
3. Anesthesia-related complications - These include adverse reactions to anesthesia, difficulty maintaining the patient's airway, or cardiovascular instability.
4. Organ injury - Accidental damage to surrounding organs can occur during surgery, leading to potential long-term consequences.
5. Equipment failure - Malfunctioning surgical equipment can lead to complications and compromise the safety of the procedure.
6. Allergic reactions - Patients may have allergies to certain medications or materials used during surgery, causing an adverse reaction.
7. Prolonged operative time - Complications may arise if a surgical procedure takes longer than expected, leading to increased risk of infection and other issues.

Intraoperative complications require prompt identification and management by the surgical team to minimize their impact on the patient's health and recovery.

The Ulnar Artery is a major blood vessel that supplies the forearm, hand, and fingers with oxygenated blood. It originates from the brachial artery in the upper arm and travels down the medial (towards the body's midline) side of the forearm, passing through the Guyon's canal at the wrist before branching out to supply the hand and fingers.

The ulnar artery provides blood to the palmar aspect of the hand and the ulnar side of the little finger and half of the ring finger. It also contributes to the formation of the deep palmar arch, which supplies blood to the deep structures of the hand. The ulnar artery is an important structure in the circulatory system, providing critical blood flow to the upper limb.

Neck injuries refer to damages or traumas that occur in any part of the neck, including soft tissues (muscles, ligaments, tendons), nerves, bones (vertebrae), and joints (facet joints, intervertebral discs). These injuries can result from various incidents such as road accidents, falls, sports-related activities, or work-related tasks. Common neck injuries include whiplash, strain or sprain of the neck muscles, herniated discs, fractured vertebrae, and pinched nerves, which may cause symptoms like pain, stiffness, numbness, tingling, or weakness in the neck, shoulders, arms, or hands. Immediate medical attention is necessary for proper diagnosis and treatment to prevent further complications and ensure optimal recovery.

The bronchial arteries are a pair of arteries that originate from the descending thoracic aorta and supply oxygenated blood to the bronchi, bronchioles, and connected tissues within the lungs. They play a crucial role in providing nutrients and maintaining the health of the airways in the respiratory system. The bronchial arteries also help in the defense mechanism of the lungs by delivering immune cells and participating in the process of angiogenesis (the formation of new blood vessels) during lung injury or repair.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Vertebrobasilar insufficiency (VBI) is a medical condition characterized by inadequate blood flow to the vertebral and basilar arteries, which supply oxygenated blood to the brainstem and cerebellum. These arteries arise from the subclavian arteries and merge to form the basilar artery, which supplies critical structures in the posterior circulation of the brain.

VBI is often caused by atherosclerosis, or the buildup of plaque in the arterial walls, leading to narrowing (stenosis) or occlusion of these vessels. Other causes include embolism, arterial dissection, and vasculitis. The decreased blood flow can result in various neurological symptoms, such as dizziness, vertigo, imbalance, difficulty swallowing, slurred speech, visual disturbances, and even transient ischemic attacks (TIAs) or strokes.

Diagnosis of VBI typically involves a combination of clinical evaluation, imaging studies like MRA or CTA, and sometimes cerebral angiography to assess the extent and location of vascular narrowing or occlusion. Treatment options may include lifestyle modifications, medications to manage risk factors (such as hypertension, diabetes, or high cholesterol), antiplatelet therapy, or surgical interventions like endarterectomy or stenting in severe cases.

Cranial nerve injuries refer to damages or trauma to one or more of the twelve cranial nerves (CN I through CN XII). These nerves originate from the brainstem and are responsible for transmitting sensory information (such as vision, hearing, smell, taste, and balance) and controlling various motor functions (like eye movement, facial expressions, swallowing, and speaking).

Cranial nerve injuries can result from various causes, including head trauma, tumors, infections, or neurological conditions. The severity of the injury may range from mild dysfunction to complete loss of function, depending on the extent of damage to the nerve. Treatment options vary based on the type and location of the injury but often involve a combination of medical management, physical therapy, surgical intervention, or rehabilitation.

Aortic diseases refer to conditions that affect the aorta, which is the largest and main artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. Aortic diseases can weaken or damage the aorta, leading to various complications. Here are some common aortic diseases with their medical definitions:

1. Aortic aneurysm: A localized dilation or bulging of the aortic wall, which can occur in any part of the aorta but is most commonly found in the abdominal aorta (abdominal aortic aneurysm) or the thoracic aorta (thoracic aortic aneurysm). Aneurysms can increase the risk of rupture, leading to life-threatening bleeding.
2. Aortic dissection: A separation of the layers of the aortic wall due to a tear in the inner lining, allowing blood to flow between the layers and potentially cause the aorta to rupture. This is a medical emergency that requires immediate treatment.
3. Aortic stenosis: A narrowing of the aortic valve opening, which restricts blood flow from the heart to the aorta. This can lead to shortness of breath, chest pain, and other symptoms. Severe aortic stenosis may require surgical or transcatheter intervention to replace or repair the aortic valve.
4. Aortic regurgitation: Also known as aortic insufficiency, this condition occurs when the aortic valve does not close properly, allowing blood to leak back into the heart. This can lead to symptoms such as fatigue, shortness of breath, and palpitations. Treatment may include medication or surgical repair or replacement of the aortic valve.
5. Aortitis: Inflammation of the aorta, which can be caused by various conditions such as infections, autoimmune diseases, or vasculitides. Aortitis can lead to aneurysms, dissections, or stenosis and may require medical treatment with immunosuppressive drugs or surgical intervention.
6. Marfan syndrome: A genetic disorder that affects the connective tissue, including the aorta. People with Marfan syndrome are at risk of developing aortic aneurysms and dissections, and may require close monitoring and prophylactic surgery to prevent complications.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a clot forms in an artery, it can cut off the supply of oxygen and nutrients to the tissues served by that artery, leading to damage or tissue death. If a thrombus forms in the heart, it can cause a heart attack. If a thrombus breaks off and travels through the bloodstream, it can lodge in a smaller vessel, causing blockage and potentially leading to damage in the organ that the vessel supplies. This is known as an embolism.

Thrombosis can occur due to various factors such as injury to the blood vessel wall, abnormalities in blood flow, or changes in the composition of the blood. Certain medical conditions, medications, and lifestyle factors can increase the risk of thrombosis. Treatment typically involves anticoagulant or thrombolytic therapy to dissolve or prevent further growth of the clot, as well as addressing any underlying causes.

Neointima is a term used in pathology and refers to the layer of tissue that forms inside a blood vessel as part of the healing process after an injury, such as angioplasty or stenting. This new tissue is composed mainly of smooth muscle cells and extracellular matrix and can grow inward, potentially causing restenosis (re-narrowing) of the vessel lumen.

In simpler terms, Neointima is a type of scar tissue that forms inside blood vessels as part of the healing process after an injury, but its growth can sometimes cause problems by narrowing the vessel and restricting blood flow.

A cadaver is a deceased body that is used for medical research or education. In the field of medicine, cadavers are often used in anatomy lessons, surgical training, and other forms of medical research. The use of cadavers allows medical professionals to gain a deeper understanding of the human body and its various systems without causing harm to living subjects. Cadavers may be donated to medical schools or obtained through other means, such as through consent of the deceased or their next of kin. It is important to handle and treat cadavers with respect and dignity, as they were once living individuals who deserve to be treated with care even in death.

Gerbillinae is a subfamily of rodents that includes gerbils, jirds, and sand rats. These small mammals are primarily found in arid regions of Africa and Asia. They are characterized by their long hind legs, which they use for hopping, and their long, thin tails. Some species have adapted to desert environments by developing specialized kidneys that allow them to survive on minimal water intake.

Embolic protection devices are medical instruments used during certain surgical procedures, such as angioplasty and stenting, to prevent the displacement or dislodgement of plaque or other debris from the treatment site, which can travel downstream and cause blockages or embolisms in smaller vessels.

These devices typically consist of a filter or a balloon that is positioned distal to the treatment site to capture any debris that may break off during the procedure. Once the procedure is complete, the device is removed, along with the captured debris, reducing the risk of downstream complications such as stroke or tissue damage.

Embolic protection devices are commonly used in procedures involving the carotid arteries, peripheral arteries, and the heart, particularly during transcatheter aortic valve replacement (TAVR) procedures.

The term "asymptomatic disease" refers to a medical condition or infection that does not cause any obvious symptoms in an affected individual. Some people with asymptomatic diseases may never develop any signs or symptoms throughout their lives, while others may eventually go on to develop symptoms at a later stage. In some cases, asymptomatic diseases may still be detected through medical testing or screening, even if the person feels completely well. A classic example of an asymptomatic disease is a person who has a positive blood test for a latent viral infection, such as HIV or HSV (herpes simplex virus), but does not have any symptoms related to the infection at that time.

A feasibility study is a preliminary investigation or analysis conducted to determine the viability of a proposed project, program, or product. In the medical field, feasibility studies are often conducted before implementing new treatments, procedures, equipment, or facilities. These studies help to assess the practicality and effectiveness of the proposed intervention, as well as its potential benefits and risks.

Feasibility studies in healthcare typically involve several steps:

1. Problem identification: Clearly define the problem that the proposed project, program, or product aims to address.
2. Objectives setting: Establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives for the study.
3. Literature review: Conduct a thorough review of existing research and best practices related to the proposed intervention.
4. Methodology development: Design a methodology for data collection and analysis that will help answer the research questions and achieve the study's objectives.
5. Resource assessment: Evaluate the availability and adequacy of resources, including personnel, time, and finances, required to carry out the proposed intervention.
6. Risk assessment: Identify potential risks and challenges associated with the implementation of the proposed intervention and develop strategies to mitigate them.
7. Cost-benefit analysis: Estimate the costs and benefits of the proposed intervention, including direct and indirect costs, as well as short-term and long-term benefits.
8. Stakeholder engagement: Engage relevant stakeholders, such as patients, healthcare providers, administrators, and policymakers, to gather their input and support for the proposed intervention.
9. Decision-making: Based on the findings of the feasibility study, make an informed decision about whether or not to proceed with the proposed project, program, or product.

Feasibility studies are essential in healthcare as they help ensure that resources are allocated efficiently and effectively, and that interventions are evidence-based, safe, and beneficial for patients.

I'm sorry for any confusion, but "Polyethylene Terephthalates" is not a medical term. It is a type of polymer used in the manufacturing of various products, such as plastic bottles and textile fibers. Medically, you might encounter the abbreviation "PET" or "PET scan," which stands for "Positron Emission Tomography." A PET scan is a type of medical imaging that provides detailed pictures of the body's interior. If you have any medical terms you would like defined, I'd be happy to help!

Cerebral arterial diseases refer to conditions that affect the blood vessels supplying the brain. These diseases can result in reduced blood flow, blockages, or bleeding in the brain. The most common cerebral arterial diseases include:

1. Atherosclerosis: A buildup of plaque made up of fat, cholesterol, and other substances in the inner lining of an artery, which can lead to narrowing or blockage of the artery.
2. Embolism: A blood clot or other particle that forms elsewhere in the body and travels to the brain, where it blocks a cerebral artery.
3. Thrombosis: The formation of a blood clot within a cerebral artery.
4. Aneurysm: A weakened area in the wall of an artery that bulges out and can rupture, causing bleeding in the brain.
5. Arteriovenous malformation (AVM): An abnormal tangle of blood vessels in the brain that can cause bleeding or reduced blood flow to surrounding tissue.
6. Vasculitis: Inflammation of the blood vessels in the brain, which can lead to narrowing, blockage, or weakening of the vessel walls.

These conditions can lead to serious complications such as stroke, transient ischemic attack (TIA), or vascular dementia. Treatment options include medications, surgery, and lifestyle changes to manage risk factors.

The abdominal aorta is the portion of the aorta, which is the largest artery in the body, that runs through the abdomen. It originates from the thoracic aorta at the level of the diaphragm and descends through the abdomen, where it branches off into several smaller arteries that supply blood to the pelvis, legs, and various abdominal organs. The abdominal aorta is typically divided into four segments: the suprarenal, infrarenal, visceral, and parietal portions. Disorders of the abdominal aorta can include aneurysms, atherosclerosis, and dissections, which can have serious consequences if left untreated.

Chemoreceptor cells are specialized sensory neurons that detect and respond to chemical changes in the internal or external environment. They play a crucial role in maintaining homeostasis within the body by converting chemical signals into electrical impulses, which are then transmitted to the central nervous system for further processing and response.

There are two main types of chemoreceptor cells:

1. Oxygen Chemoreceptors: These cells are located in the carotid bodies near the bifurcation of the common carotid artery and in the aortic bodies close to the aortic arch. They monitor the levels of oxygen, carbon dioxide, and pH in the blood and respond to decreases in oxygen concentration or increases in carbon dioxide and hydrogen ions (indicating acidity) by increasing their firing rate. This signals the brain to increase respiratory rate and depth, thereby restoring normal oxygen levels.

2. Taste Cells: These chemoreceptor cells are found within the taste buds of the tongue and other areas of the oral cavity. They detect specific tastes (salty, sour, sweet, bitter, and umami) by interacting with molecules from food. When a tastant binds to receptors on the surface of a taste cell, it triggers a series of intracellular signaling events that ultimately lead to the generation of an action potential. This information is then relayed to the brain, where it is interpreted as taste sensation.

In summary, chemoreceptor cells are essential for maintaining physiological balance by detecting and responding to chemical stimuli in the body. They play a critical role in regulating vital functions such as respiration and digestion.

Surgical anastomosis is a medical procedure that involves the connection of two tubular structures, such as blood vessels or intestines, to create a continuous passage. This technique is commonly used in various types of surgeries, including vascular, gastrointestinal, and orthopedic procedures.

During a surgical anastomosis, the ends of the two tubular structures are carefully prepared by removing any damaged or diseased tissue. The ends are then aligned and joined together using sutures, staples, or other devices. The connection must be secure and leak-free to ensure proper function and healing.

The success of a surgical anastomosis depends on several factors, including the patient's overall health, the location and condition of the structures being joined, and the skill and experience of the surgeon. Complications such as infection, bleeding, or leakage can occur, which may require additional medical intervention or surgery.

Proper postoperative care is also essential to ensure the success of a surgical anastomosis. This may include monitoring for signs of complications, administering medications to prevent infection and promote healing, and providing adequate nutrition and hydration.

The uterine artery is a paired branch of the internal iliac (hip) artery that supplies blood to the uterus and vagina. It anastomoses (joins) with the ovarian artery to form a rich vascular network that nourishes the female reproductive organs. The right and left uterine arteries run along the sides of the uterus, where they divide into several branches to supply oxygenated blood and nutrients to the myometrium (uterine muscle), endometrium (lining), and cervix. These arteries undergo significant changes in size and structure during pregnancy to accommodate the growing fetus and placenta, making them crucial for maintaining a healthy pregnancy.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

The Doppler effect, also known as the Doppler shift, is a change in frequency or wavelength of a wave in relation to an observer who is moving relative to the source of the wave. It was first described by Austrian physicist Christian Doppler in 1842.

In the context of medical ultrasound, the Doppler effect is used to measure the velocity of blood flow in the body. When the ultrasound waves encounter moving red blood cells, the frequency of the reflected waves changes due to the Doppler effect. This change in frequency can be used to calculate the speed and direction of blood flow.

Doppler ultrasound is commonly used in medical imaging to assess conditions such as heart valve function, blood clots, and narrowed or blocked blood vessels. It can also be used to monitor fetal heart rate and blood flow during pregnancy.

Internal Medicine is a medical specialty that deals with the prevention, diagnosis, and treatment of internal diseases affecting adults. It encompasses a wide range of medical conditions, including those related to the cardiovascular, respiratory, gastrointestinal, hematological, endocrine, infectious, and immune systems. Internists, or general internists, are trained to provide comprehensive care for adult patients, managing both simple and complex diseases, and often serving as primary care physicians. They may also subspecialize in various fields such as cardiology, gastroenterology, nephrology, or infectious disease, among others.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Auscultation is a medical procedure in which a healthcare professional uses a stethoscope to listen to the internal sounds of the body, such as heart, lung, or abdominal sounds. These sounds can provide important clues about a person's health and help diagnose various medical conditions, such as heart valve problems, lung infections, or digestive issues.

During auscultation, the healthcare professional places the stethoscope on different parts of the body and listens for any abnormal sounds, such as murmurs, rubs, or wheezes. They may also ask the person to perform certain movements, such as breathing deeply or coughing, to help identify any changes in the sounds.

Auscultation is a simple, non-invasive procedure that can provide valuable information about a person's health. It is an essential part of a physical examination and is routinely performed by healthcare professionals during regular checkups and hospital visits.

Cranial nerve diseases refer to conditions that affect the cranial nerves, which are a set of 12 pairs of nerves that originate from the brainstem and control various functions in the head and neck. These functions include vision, hearing, taste, smell, movement of the eyes and face, and sensation in the face.

Diseases of the cranial nerves can result from a variety of causes, including injury, infection, inflammation, tumors, or degenerative conditions. The specific symptoms that a person experiences will depend on which cranial nerve is affected and how severely it is damaged.

For example, damage to the optic nerve (cranial nerve II) can cause vision loss or visual disturbances, while damage to the facial nerve (cranial nerve VII) can result in weakness or paralysis of the face. Other common symptoms of cranial nerve diseases include pain, numbness, tingling, and hearing loss.

Treatment for cranial nerve diseases varies depending on the underlying cause and severity of the condition. In some cases, medication or surgery may be necessary to treat the underlying cause and relieve symptoms. Physical therapy or rehabilitation may also be recommended to help individuals regain function and improve their quality of life.

A subarachnoid hemorrhage is a type of stroke that results from bleeding into the space surrounding the brain, specifically within the subarachnoid space which contains cerebrospinal fluid (CSF). This space is located between the arachnoid membrane and the pia mater, two of the three layers that make up the meninges, the protective covering of the brain and spinal cord.

The bleeding typically originates from a ruptured aneurysm, a weakened area in the wall of a cerebral artery, or less commonly from arteriovenous malformations (AVMs) or head trauma. The sudden influx of blood into the CSF-filled space can cause increased intracranial pressure, irritation to the brain, and vasospasms, leading to further ischemia and potential additional neurological damage.

Symptoms of a subarachnoid hemorrhage may include sudden onset of severe headache (often described as "the worst headache of my life"), neck stiffness, altered mental status, nausea, vomiting, photophobia, and focal neurological deficits. Rapid diagnosis and treatment are crucial to prevent further complications and improve the chances of recovery.

Meningeal arteries refer to the branches of the major cerebral arteries that supply blood to the meninges, which are the protective membranes covering the brain and spinal cord. These arteries include:

1. The middle meningeal artery, a branch of the maxillary artery, which supplies the dura mater in the cranial cavity.
2. The anterior and posterior meningeal arteries, branches of the internal carotid and vertebral arteries, respectively, that supply blood to the dura mater in the anterior and posterior cranial fossae.
3. The vasorum nervorum, small arteries that arise from the spinal branch of the ascending cervical artery and supply the spinal meninges.

These arteries play a crucial role in maintaining the health and integrity of the meninges and the central nervous system they protect.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

Contrast media are substances that are administered to a patient in order to improve the visibility of internal body structures or processes in medical imaging techniques such as X-rays, CT scans, MRI scans, and ultrasounds. These media can be introduced into the body through various routes, including oral, rectal, or intravenous administration.

Contrast media work by altering the appearance of bodily structures in imaging studies. For example, when a patient undergoes an X-ray examination, contrast media can be used to highlight specific organs, tissues, or blood vessels, making them more visible on the resulting images. In CT and MRI scans, contrast media can help to enhance the differences between normal and abnormal tissues, allowing for more accurate diagnosis and treatment planning.

There are several types of contrast media available, each with its own specific properties and uses. Some common examples include barium sulfate, which is used as a contrast medium in X-ray studies of the gastrointestinal tract, and iodinated contrast media, which are commonly used in CT scans to highlight blood vessels and other structures.

While contrast media are generally considered safe, they can sometimes cause adverse reactions, ranging from mild symptoms such as nausea or hives to more serious complications such as anaphylaxis or kidney damage. As a result, it is important for healthcare providers to carefully evaluate each patient's medical history and individual risk factors before administering contrast media.

A hematoma is defined as a localized accumulation of blood in a tissue, organ, or body space caused by a break in the wall of a blood vessel. This can result from various causes such as trauma, surgery, or certain medical conditions that affect coagulation. The severity and size of a hematoma may vary depending on the location and extent of the bleeding. Symptoms can include swelling, pain, bruising, and decreased mobility in the affected area. Treatment options depend on the size and location of the hematoma but may include observation, compression, ice, elevation, or in some cases, surgical intervention.

The saphenous vein is a term used in anatomical description to refer to the great or small saphenous veins, which are superficial veins located in the lower extremities of the human body.

The great saphenous vein (GSV) is the longest vein in the body and originates from the medial aspect of the foot, ascending along the medial side of the leg and thigh, and drains into the femoral vein at the saphenofemoral junction, located in the upper third of the thigh.

The small saphenous vein (SSV) is a shorter vein that originates from the lateral aspect of the foot, ascends along the posterior calf, and drains into the popliteal vein at the saphenopopliteal junction, located in the popliteal fossa.

These veins are often used as conduits for coronary artery bypass grafting (CABG) surgery due to their consistent anatomy and length.

Polytetrafluoroethylene (PTFE) is not inherently a medical term, but it is a chemical compound with significant uses in the medical field. Medically, PTFE is often referred to by its brand name, Teflon. It is a synthetic fluoropolymer used in various medical applications due to its unique properties such as high resistance to heat, electrical and chemical interaction, and exceptional non-reactivity with body tissues.

PTFE can be found in medical devices like catheters, where it reduces friction, making insertion easier and minimizing trauma. It is also used in orthopedic and dental implants, drug delivery systems, and sutures due to its biocompatibility and non-adhesive nature.

Pressoreceptors are specialized sensory nerve endings found in the walls of blood vessels, particularly in the carotid sinus and aortic arch. They respond to changes in blood pressure by converting the mechanical stimulus into electrical signals that are transmitted to the brain. This information helps regulate cardiovascular function and maintain blood pressure homeostasis.

Cardiovascular models are simplified representations or simulations of the human cardiovascular system used in medical research, education, and training. These models can be physical, computational, or mathematical and are designed to replicate various aspects of the heart, blood vessels, and blood flow. They can help researchers study the structure and function of the cardiovascular system, test new treatments and interventions, and train healthcare professionals in diagnostic and therapeutic techniques.

Physical cardiovascular models may include artificial hearts, blood vessels, or circulation systems made from materials such as plastic, rubber, or silicone. These models can be used to study the mechanics of heart valves, the effects of different surgical procedures, or the impact of various medical devices on blood flow.

Computational and mathematical cardiovascular models use algorithms and equations to simulate the behavior of the cardiovascular system. These models may range from simple representations of a single heart chamber to complex simulations of the entire circulatory system. They can be used to study the electrical activity of the heart, the biomechanics of blood flow, or the distribution of drugs in the body.

Overall, cardiovascular models play an essential role in advancing our understanding of the human body and improving patient care.

Observer variation, also known as inter-observer variability or measurement agreement, refers to the difference in observations or measurements made by different observers or raters when evaluating the same subject or phenomenon. It is a common issue in various fields such as medicine, research, and quality control, where subjective assessments are involved.

In medical terms, observer variation can occur in various contexts, including:

1. Diagnostic tests: Different radiologists may interpret the same X-ray or MRI scan differently, leading to variations in diagnosis.
2. Clinical trials: Different researchers may have different interpretations of clinical outcomes or adverse events, affecting the consistency and reliability of trial results.
3. Medical records: Different healthcare providers may document medical histories, physical examinations, or treatment plans differently, leading to inconsistencies in patient care.
4. Pathology: Different pathologists may have varying interpretations of tissue samples or laboratory tests, affecting diagnostic accuracy.

Observer variation can be minimized through various methods, such as standardized assessment tools, training and calibration of observers, and statistical analysis of inter-rater reliability.

Interventional radiography is a subspecialty of radiology that uses imaging guidance (such as X-ray fluoroscopy, ultrasound, CT, or MRI) to perform minimally invasive diagnostic and therapeutic procedures. These procedures typically involve the insertion of needles, catheters, or other small instruments through the skin or a natural body opening, allowing for targeted treatment with reduced risk, trauma, and recovery time compared to traditional open surgeries.

Examples of interventional radiography procedures include:

1. Angiography: Imaging of blood vessels to diagnose and treat conditions like blockages, narrowing, or aneurysms.
2. Biopsy: The removal of tissue samples for diagnostic purposes.
3. Drainage: The removal of fluid accumulations (e.g., abscesses, cysts) or the placement of catheters to drain fluids continuously.
4. Embolization: The blocking of blood vessels to control bleeding, tumor growth, or reduce the size of an aneurysm.
5. Stenting and angioplasty: The widening of narrowed or blocked vessels using stents (small mesh tubes) or balloon catheters.
6. Radiofrequency ablation: The use of heat to destroy tumors or abnormal tissues.
7. Cryoablation: The use of extreme cold to destroy tumors or abnormal tissues.

Interventional radiologists are medical doctors who have completed specialized training in both diagnostic imaging and interventional procedures, allowing them to provide comprehensive care for patients requiring image-guided treatments.

Internal mammary-coronary artery anastomosis is a surgical procedure in which the internal mammary artery (IMA) is connected to the coronary artery of the heart. This type of surgery, also known as internal thoracic artery-coronary artery bypass grafting (ITA CABG), is performed to improve blood flow to the heart muscle and reduce symptoms of coronary artery disease such as angina and shortness of breath.

The IMA is a small artery that branches off the subclavian artery and runs along the inside of the chest wall. It has several advantages over other conduits used for bypass grafting, including its size, length, and excellent long-term patency rates. The procedure involves harvesting the IMA through a small incision in the chest wall and then sewing it to the coronary artery using fine sutures.

The internal mammary-coronary artery anastomosis can be performed as a single bypass graft or in combination with other conduits such as the saphenous vein. The choice of conduit and number of grafts depends on various factors, including the location and severity of coronary artery disease, patient's age and overall health status.

Overall, internal mammary-coronary artery anastomosis is a safe and effective surgical procedure that has been shown to improve symptoms, quality of life, and survival in patients with coronary artery disease.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Patient selection, in the context of medical treatment or clinical research, refers to the process of identifying and choosing appropriate individuals who are most likely to benefit from a particular medical intervention or who meet specific criteria to participate in a study. This decision is based on various factors such as the patient's diagnosis, stage of disease, overall health status, potential risks, and expected benefits. The goal of patient selection is to ensure that the selected individuals will receive the most effective and safe care possible while also contributing to meaningful research outcomes.

Moyamoya Disease is a rare, progressive cerebrovascular disorder characterized by the narrowing or occlusion (blockage) of the internal carotid artery and its main branches. The name "moyamoya" means "puff of smoke" in Japanese and describes the look of the tangle of tiny vessels formed to compensate for the blockage. Over time, these fragile vessels can become less effective or rupture, leading to transient ischemic attacks (mini-strokes), strokes, bleeding in the brain, or cognitive decline. The exact cause of moyamoya disease is unknown, but it may be associated with genetic factors and certain medical conditions such as Down syndrome, neurofibromatosis type 1, and sickle cell anemia. Treatment options include surgical procedures to improve blood flow to the brain.

A reoperation is a surgical procedure that is performed again on a patient who has already undergone a previous operation for the same or related condition. Reoperations may be required due to various reasons, such as inadequate initial treatment, disease recurrence, infection, or complications from the first surgery. The nature and complexity of a reoperation can vary widely depending on the specific circumstances, but it often carries higher risks and potential complications compared to the original operation.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Veins are blood vessels that carry deoxygenated blood from the tissues back to the heart. They have a lower pressure than arteries and contain valves to prevent the backflow of blood. Veins have a thin, flexible wall with a larger lumen compared to arteries, allowing them to accommodate more blood volume. The color of veins is often blue or green due to the absorption characteristics of light and the reduced oxygen content in the blood they carry.

Marfan syndrome is a genetic disorder that affects the body's connective tissue. Connective tissue helps to strengthen and support various structures in the body, including the skin, ligaments, blood vessels, and heart. In Marfan syndrome, the body produces an abnormal amount of a protein called fibrillin-1, which is a key component of connective tissue. This leads to problems with the formation and function of connective tissue throughout the body.

The most serious complications of Marfan syndrome typically involve the heart and blood vessels. The aorta, which is the large artery that carries blood away from the heart, can become weakened and stretched, leading to an increased risk of aortic dissection or rupture. Other common features of Marfan syndrome include long, thin fingers and toes; tall stature; a curved spine; and eye problems such as nearsightedness and lens dislocation.

Marfan syndrome is usually inherited in an autosomal dominant pattern, which means that a child has a 50% chance of inheriting the gene mutation from a parent who has the condition. However, about 25% of cases are the result of a new mutation and occur in people with no family history of the disorder. There is no cure for Marfan syndrome, but treatment can help to manage the symptoms and reduce the risk of complications.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Hemorheology is the study of the flow properties of blood and its components, including red blood cells, white blood cells, platelets, and plasma. Specifically, it examines how these components interact with each other and with the walls of blood vessels to affect the flow characteristics of blood under different conditions. Hemorheological factors can influence blood viscosity, which is a major determinant of peripheral vascular resistance and cardiac workload. Abnormalities in hemorheology have been implicated in various diseases such as atherosclerosis, hypertension, diabetes, and sickle cell disease.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have ... Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the ... Lucas C, Moulin T, Deplanque D, Tatu L, Chavot D (1998). "Stroke patterns of internal carotid artery dissection in 40 patients ... Carotid artery dissection is a separation of the layers of the artery wall supplying oxygen-bearing blood to the head and brain ...
Facial nerve dissection. Tympanic cavity. Facial canal. Internal carotid artery. Coronal section of right temporal bone. ... It commences at the introitus of facial canal at the distal end of the internal auditory meatus. The horizontal part is further ... It extends between the internal acoustic meatus and stylomastoid foramen. It transmits the facial nerve (CN VII) (after which ... An investigation based on cadaver dissections and computed tomography". Surgical and Radiologic Anatomy. 18 (2): 115-23. doi: ...
Internal carotid artery. Auditory ossicles. Tympanic cavity. Deep dissection. This article incorporates text in the public ... from which it is separated by a thin plate of bone perforated by the tympanic branch of the internal carotid artery, and by the ... deep petrosal nerve which connects the sympathetic plexus on the internal carotid artery with the tympanic plexus on the ... The anterior wall (or carotid wall) is wider above than below; it corresponds with the carotid canal, ...
Internal carotid artery. Auditory ossicles. Tympanic cavity. Deep dissection. Aditory ossicles. Incus and malleus. Deep ... dissection. Hearing - Sensory perception of sound by living organisms Ear - Organ of hearing and balance Ossicles - Three bones ...
"Internal Carotid Artery Dissection in Brazilian Jiu-Jitsu". Journal of Cerebrovascular and Endovascular Neurosurgery. 19 (2): ... In BJJ, the chokes that are used put pressure on the carotid arteries, and may also apply pressure to the nerve baroreceptors ... as the Rear Naked Choke and subsequent cranking of the neck whilst being choked can potentially lead to arterial dissection, ...
"Internal carotid artery redundancy is significantly associated with dissection". Stroke. 25 (6): 1201-1206. doi:10.1161/01.STR. ... Vertebral artery dissection is less common than carotid artery dissection (dissection of the large arteries in the front of the ... Vertebral artery dissection is one of the two types of cervical artery dissection. The other type, carotid artery dissection, ... international research collaboration into cervical artery dissection Aortic dissection Carotid artery dissection (Articles with ...
Lucas C, Moulin T, Deplanque D, Tatu L, Chavot D (December 1998). "Stroke patterns of internal carotid artery dissection in 40 ... Cervical artery dissection is dissection of one of the layers that compose the carotid and vertebral artery in the neck (cervix ... As such, cervical artery dissection can be further categorized based on the involvement of artery: carotid vs. vertebral, and ... Carotid artery dissection, a separation of the layers of the artery wall supplying oxygen-bearing blood to the head and brain. ...
The ophthalmic artery derived from internal carotid artery and its branches. (optic nerve is yellow) Superficial dissection of ... Dissection of brain-stem. Lateral view. Scheme showing central connections of the optic nerves and optic tracts. Nerves of the ... Optic nerve.Deep dissection.Inferior view. Optic nerve Optic nerve Human brain dura mater (reflections) Optic nerve Optic nerve ... Deep dissection. Wikimedia Commons has media related to Nervus opticus. Cranial nerve Vilensky, Joel; Robertson, Wendy; Suarez- ...
The internal carotid and vertebral arteries. Right side. Muscles of the palate seen from behind. Dissection of the pharyngeal ... Deep dissection of larynx, pharynx and tongue seen from behind This article incorporates text in the public domain from page ... Arterial supply is provided primarily by the pharyngeal branch of the ascending pharyngeal artery, and the tonsilar branch of ... the facial artery. The interval between the upper border of the muscle and the base of the skull is closed by the pharyngeal ...
The incidence of internal carotid artery dissection following cervical spine manipulation is unknown. The literature ... There is very low evidence supporting a small association between internal carotid artery dissection and chiropractic neck ... "The Association Between Cervical Spine Manipulation and Carotid Artery Dissection: A Systematic Review of the Literature". ... There is controversy regarding the degree of risk of vertebral artery dissection, which can lead to stroke and death, from ...
It passes anterior to the common carotid artery to reach and drain into the internal jugular vein. It empties into the internal ... This vein is subjected for dissection as a part of surgical procedures on the thyroid. Diagram showing common arrangement of ...
... and treatment of strangulation-induced bilateral dissection of the cervical internal carotid artery". Journal of Neurosurgery. ... Victims may have internal injuries, such as laryngo-tracheal injuries, digestive tract injuries, vascular injuries, nervous ... Clinical symptoms of these internal injuries may include neck and sore-throat pain, voice changes (hoarse or raspy voice or the ...
Inferior thyroid artery Diagram showing the origins of the main branches of the carotid arteries. The internal carotid and ... Superior thyroid artery Muscles, arteries and nerves of neck.Newborn dissection. Muscles, nerves and arteries of neck.Deep ... This artery branches from the superior thyroid artery near its bifurcation from the external carotid artery. Together with the ... The superior thyroid artery arises from the external carotid artery just below the level of the greater cornu of the hyoid bone ...
Tveita, Ingrid Aune; Madsen, Martin Ragnar Skjerve; Nielsen, Erik Waage (2017). "Dissection of the internal carotid artery and ... Other rare complications of mandibular trauma include internal carotid artery injury, and obliteration of the ear canal due to ... with particular attention to the internal carotid and jugular) from high velocity injuries or severely displaced mandible ... The option is sometimes used when a patient is edentulous (has no teeth) and rigid internal fixation cannot be used.[citation ...
Acute injury to the internal carotid artery (carotid dissection, occlusion, pseudoaneurysm formation) may be asymptomatic or ... They are almost exclusively observed when the carotid canal is fractured, although only a minority of carotid canal fractures ... Involvement of the petrous segment of the carotid canal is associated with a relatively high incidence of carotid injury. ... Resnick, Daniel K.; Subach, Brian R.; Marion, Donald W. (1997). "The Significance of Carotid Canal Involvement in Basilar ...
... may refer to: Aortic dissection Carotid artery dissection Coronary artery dissection Vertebral artery ... dissection This disambiguation page lists articles associated with the title Artery dissection. If an internal link led you ...
Postganglionic lesions at the level of the internal carotid artery (e.g. a tumor in the cavernous sinus or a carotid artery ... of Horner's syndrome may occur during a migraine attack and be relieved afterwards Carotid artery dissection/carotid artery ... dissection) that releases norepinephrine. Partial Horner's syndrome: In case of a third-neuron disorder, anhidrosis is limited ...
... it is important to be oriented to the location of this ligament in cases of possible dissection of the internal carotid artery ... The cavernous section of the internal carotid artery begins at the superior aspect of the petrolingual ligament. For surgeons ... Anatomically, the petrolingual ligament demarcates two of the segments of the internal carotid artery: The petrolingual ... the posteroinferior aspect of the lateral wall of the cavernous sinus and marks the point at which the internal carotid artery ...
... carotid artery injuries MeSH C10.900.250.300.300 - carotid artery, internal, dissection MeSH C10.900.250.300.400 - carotid- ... carotid artery injuries MeSH C10.228.140.300.200.345.300 - carotid artery, internal, dissection MeSH C10.228.140.300.200.345. ... carotid artery injuries MeSH C10.228.140.300.350.500.300 - carotid artery, internal, dissection MeSH C10.228.140.300.350.500. ... carotid artery, internal, dissection MeSH C10.228.140.300.200.360 - carotid stenosis MeSH C10.228.140.300.200.490 - carotid- ...
... carotid artery injuries MeSH C21.866.915.200.200.500 - carotid artery, internal, dissection MeSH C21.866.915.200.200.550 - ... carotid-cavernous sinus fistula MeSH C21.866.915.200.600 - vertebral artery dissection MeSH C21.866.915.300 - craniocerebral ...
... carotid artery injuries MeSH C14.907.253.123.345.300 - carotid artery, internal, dissection MeSH C14.907.253.123.345.400 - ... carotid artery, internal, dissection MeSH C14.907.253.123.360 - carotid stenosis MeSH C14.907.253.123.490 - carotid-cavernous ... carotid artery injuries MeSH C14.907.253.535.500.300 - carotid artery, internal, dissection MeSH C14.907.253.535.500.350 - ... carotid artery, internal, dissection MeSH C14.907.055.050.575 - vertebral artery dissection MeSH C14.907.055.090 - aneurysm, ...
... before descending upon the anterior aspect of the internal carotid artery and the common carotid artery.: 344 on the carotid ... Cervical plexus Muscles, arteries and nerves of neck.Newborn dissection. Sinnatamby, Chummy S. (2011). Last's Anatomy (12th ed ... 344 It passes anterior-ward between the internal carotid artery and the common carotid artery.: 500 It curves around the ... It may occasionally pass anterior in between the internal jugular vein and the internal carotid artery.: 344 Branches to the ...
... tightening of the artery), aortic, carotid or vertebral artery dissection, various inflammatory diseases of the blood vessel ... Large vessel disease involves the common and internal carotid arteries, the vertebral artery, and the Circle of Willis. ... middle cerebral artery, stem, and arteries arising from the distal vertebral and basilar artery. Diseases that may form thrombi ... Prevention includes decreasing risk factors, surgery to open up the arteries to the brain in those with problematic carotid ...
Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. Origin of maxillary artery ... "external maxillary artery" is less commonly used, and the terms "internal maxillary artery" and "maxillary artery" are ... Greater palatine artery and lesser palatine artery) Infraorbital artery Posterior superior alveolar artery Artery of pterygoid ... Branches include: Deep auricular artery Anterior tympanic artery Middle meningeal artery Inferior alveolar artery which gives ...
The carotid and vertebral arteries are most commonly affected. Middle and distal regions of the internal carotid arteries are ... Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344;898-906. (Articles with short description ... FMD can be found in almost every artery in the human body, but most often affects the carotid, vertebral, renal arteries and ... Complications such as aneurysms, dissections, or occlusion of the renal artery have been associated with renal artery FMD. ...
... of the common carotid. This artery splits into an internal and external branch, of which the latter extends dorsally and ... Dissections at Boston University by Frank Brodie describe the various bifurcations (or splittings) ...
... and forms a plexus on the internal carotid artery; the inferior part travels in front of the coccyx, where it converges with ... Dissection of side wall of pelvis showing sacral and pudendal plexuses. Sacral plexus of the right side. Diagram of efferent ... In the cervical region, the sympathetic trunk is situated upon the prevertebral fascia posterior to the carotid sheath.: 600 ... The superior end of it is continued upward through the carotid canal into the skull, ...
Arterial dissections are tears of the internal lining of arteries, often associated with trauma. Dissections within the carotid ... The common carotid artery divides into the internal and the external carotid arteries. The internal carotid artery becomes the ... arteries or vertebral arteries may compromise blood flow to the brain due to thrombosis, and dissections increase the risk of ... From the basilar artery are two posterior cerebral arteries. Branches of the basilar and PCA supply the occipital lobe, brain ...
In some cases draining from a different site from injection (i.e. injecting arterial fluid into the right common carotid artery ... Skin, hair and internal organs were preserved. Examinations at the Hospital das Clínicas found an incision in the empress' ... A rather different process is used for cadavers embalmed for dissection by medical professionals, students, and researchers. ... During the process, six liters of hydrochloride of zinc and aluminum was injected into his common carotid artery. Three coffins ...
Medially to the trigeminal ganglion are the internal carotid artery, and the posterior part of the cavernous sinus. The motor ... Deep dissection. Superior view. Huff, Trevor; Weisbrod, Luke J.; Daly, Daniel T. (2022), "Neuroanatomy, Cranial Nerve 5 ( ... filaments from the carotid plexus of the sympathetic. It issues minute branches to the tentorium cerebelli, and the dura mater ...
Extracranial internal carotid artery dissection with unusual gadolinium enhancement. Shyam Prabhakaran, Alexander Khandji, ... Extracranial internal carotid artery dissection with unusual gadolinium enhancement. Shyam Prabhakaran, Alexander Khandji, ... Long-term follow-up of aneurysms developed during extracranial internal carotid artery dissection. B. Guillon, L. Brunereau, V ... Headache and neck pain in spontaneous internal carotid and vertebral artery dissections. Peter L. Silbert, Bahram Mokri, Wouter ...
The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have ... Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the ... Lucas C, Moulin T, Deplanque D, Tatu L, Chavot D (1998). "Stroke patterns of internal carotid artery dissection in 40 patients ... Carotid artery dissection is a separation of the layers of the artery wall supplying oxygen-bearing blood to the head and brain ...
Dissection is usually accompanied by hemorrhage into the arterial wall, which creates, as demonstrated in the first image below ... The term dissection refers primarily to an elevation or separation of the intimal lining of an artery from the subjacent media ... Out of 19 patients with a carotid web, 16 had a dissection in the C1 segment of the internal carotid artery. [32] Carotid webs ... The annual incidence of internal carotid artery dissection is 1.72 per 100,000, and vertebral artery dissection 0.97 per ...
... most importantly an internal carotid artery dissection (Fig 10-4). Pain from dissection is usually located around the temple ... Figure 10-4 Internal carotid artery dissection. A, Axial magnetic resonance imaging (MRI) scan shows blood (arrow) in the wall ... confirming internal carotid artery dissection. A = anterior, L = left, P = posterior, R = right.. ... MRI typically shows an intramural hemorrhage of the internal carotid artery, but in some cases, MRA, CTA, or, in rare instances ...
Acute internal carotid artery dissection (Radiopaedia 53541-59630 Coronal C+ arterial phase). From NC Commons ... Retrieved from "https://nccommons.org/w/index.php?title=Acute_internal_carotid_artery_dissection_(Radiopaedia_53541-59630_ ...
Internal carotid and vertebral artery dissection: an approach to patient management ... Internal carotid and vertebral artery dissection: an approach to patient management Internal carotid and vertebral artery ... The diagnosis of spontaneous internal carotid artery dissection and vertebral artery dissection]. Radiologiya - praktika. 2016; ... We aimed to evaluate the treatment results in patients with internal carotid artery (ICA) and vertebral artery (VA) dissection. ...
Xianjun H, Zhiming Z. A systematic review of endovascular management of internal carotid artery dissections. Interv Neurol;1: ... Stroke, carotid, carotid artery dissection, CT perfusion, stenting, endovascular Abstract. Carotid artery dissection (CAD) is a ... Endovascular stent-assisted angioplasty in the management of traumatic internal carotid artery dissections. Stroke 2005;36:e45- ... Extracranial carotid and vertebral artery dissection: a review. Can J Neurol Sci 2008;35:146-152. ...
... or chronic healed dissection. ... Segmental Dolichoectasia of the Distal Internal Carotid Artery" ... Localized marked elongation of the distal internal carotid artery with or without PHACE syndrome: segmental dolichoectasia of ... Regarding: "Localized Marked Elongation of the Distal Internal Carotid Artery with or without PHACE Syndrome: Segmental ... Regarding: "Localized Marked Elongation of the Distal Internal Carotid Artery with or without PHACE Syndrome: Segmental ...
Traumatic dissection of the internal carotid artery: simultaneous infarct of optic nerve and brain. Correa E, Martinez B. ...
Endovascular Management of Tandem Occlusion Stroke Related to Internal Carotid Artery Dissection Using a Distal to Proximal ... Endovascular Management of Tandem Occlusion Stroke Related to Internal Carotid Artery Dissection Using a Distal to Proximal ... Clinical and vascular outcome in internal carotid artery versus middle cerebral artery occlusions after intravenous tissue ... Endovascular recanalization of internal carotid artery occlusion in acute ischemic stroke. AJNR Am J Neuroradiol 2005;26:2591- ...
Dissection of the cervical and intracranial vessels is an uncommon but increasingly recognized condition. ... Dissection occurs when blood extrudes into the connective tissue framework of a vessel wall, causing separation of the natural ... Axial T1-weighted MRI demonstrating a crescent sign (arrow) in a patient with a left internal carotid artery dissection. ... Thrombolysis in cervical artery dissection--data from the Cervical Artery Dissection and Ischaemic Stroke Patients (CADISP) ...
Vagus nerve relating to Common carotid artery & Internal jugular vein.. Module 2 Concepts ... Our dissections are done live, on donors who have not been fixed with chemicals. Therefore the colors and movement of the ... Home / Anatomy Trains Store / Courses / Every Breath You Take: Cranial and Nervous System Edition Dissection Livestream ... Please join us for this unique Dissection Livestream event, Every Breath You Take: Cranial and Nervous System Edition with ...
When combined with an anterior clinoidectomy, it allowed for significant and safe internal carotid artery mobilization. This ... Methods Microsurgical dissection was performed in four freshly injected cadaver heads at the Cranial Base Neuroanatomy ... Temporary clipping of the intracavernous internal carotid artery: a novel technique for proximal control. Oper Neurosurg ( ... 17 Kawase T, Toya S, Shiobara R, Mine T. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg 1985; 63 ...
When combined with an anterior clinoidectomy, it allowed for significant and safe internal carotid artery mobilization. This ... Methods Microsurgical dissection was performed in four freshly injected cadaver heads at the Cranial Base Neuroanatomy ... Temporary clipping of the intracavernous internal carotid artery: a novel technique for proximal control. Oper Neurosurg ( ... 17 Kawase T, Toya S, Shiobara R, Mine T. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg 1985; 63 ...
Can a tortuous carotid artery cause cerebral ischemia?. Background Extracranial internal carotid artery (eICA) tortuosity may ... What causes a tear in the carotid artery?. General Information Carotid dissection is a breakdown of the layers of the carotid ... What causes a tortuous carotid artery?. Carotid Artery Tortuosity Tortuous carotid arteries are often reported in hypertensive ... What are causes of carotid artery dissection?. Hyperextension of the neck from turning of the head is a common cause of carotid ...
The hypoglossal nerve in the neck travels under the IJV, passes over the internal and external carotid arteries, and continues ... Carotid sheath, vagus nerve, internal jugular vein. Identify the carotid sheath, the vagus nerve, and the internal jugular vein ... Exposure and identification of the carotid-internal jugular axis has been accomplished. Finally, the dissection proceeds in the ... Therefore, the posterior belly of the digastric muscle lies superficial to the external and internal carotid arteries, ...
Giant cell arteritis mimicking spontaneous bilateral vertebral dissections and internal carotid artery fibromuscular dysplasia ...
Image of the quarter: Dissection of the internal carotid artery causing transient ischaemic attack and Horners syndrome ...
Spontaneous Internal Carotid Artery Dissection Leading to Horners Syndrome: An Uncommon Manifestation and Short Literature ... Inadvertent Carotid Artery Balloon Guide Rupture During Endovascular Thrombectomy with Fortuitous MCA Recanalization. p. 1032. ... Results: No difficulties were faced by the patients and controls in the first phase, and internal consistency of the scale was ... Subdomains of H-PDSS-2 had moderate/high internal validity, and they showed significant correlation with Unified PD Rating ...
We report two cases of spectacular clinical recovery after acute carotid occlusion. ... b) Cervical MRA showing proximal left internal carotid artery occlusion and distal right internal carotid artery tight stenosis ... The reopening of the carotid artery, which was unusually rapid for the spontaneous evolution of a dissection [13], may have ... "Clinical and vascular outcome in internal carotid artery versus middle cerebral artery occlusions after intravenous tissue ...
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and ... site onto the external and internal branches and advanced along the internal carotid artery to the middle cerebral artery. Then ... the common carotid and external carotid arteries were assessed and ligated. After electrocoagulation and dissection of a ... MCAO-KM involves insertion of a monofilament via the common carotid artery, while MCAO-LM via the external carotid artery. A ...
Spontaneous carotid dissection! Holmes: Thats it! Between 40 and 60 percent of patients with internal carotid artery ... The final pathway ascends within the adventitia of the internal carotid artery and eventually affects the fifth and sixth ... Yvonne: Well, you said some of the fibers run along the carotid artery… Holmes: Exactly, and what types of catastrophic carotid ... The Internal Medicine program at Brigham & Womens Hospital is a national leader in clinical training and research. As a ...
... internal carotid artery; ICAD, intracranial carotid artery dissection; ICP, intracranial pressure; MCA, middle cerebral artery ... Follow-up DSA 1 week later showed bilateral multifocal internal carotid artery (ICA) and vertebral artery dissections, ... Digital subtraction angiography (DSA) showed a left petrocavernous internal carotid artery dissection (ICAD). MRI of the brain ... from injury showing retained resolution of the intracranial carotid artery dissection-PA-carotid cavernous fistula complex. DSA ...
... the lesion was observed to lie between the internal and external carotid arteries. She underwent surgery, and resection of the ... tumor with neck dissection was performed, which was reported as malignant carotid body paraganglioma on histopathology. ... It was in close proximity to right common carotid artery beginning at the level of carotid bifurcation. It measured ... Gaylis H, Davidge-Pitts K, Pantanowitz D, . Carotid body tumours. A review of 52 cases. S Afr Med J. 1987;72:493-6. [Google ...
... the vagus nerve may be exposed to manipulation together with the common carotid artery and internal jugular vein. ... Seventeen patients in which 30 neck dissection (4 unilateral and 13 bilateral) were performed, were enrolled in the study. ... The left vertebral artery angiogram revealed a tortuous left vertebral artery. This, along with dolichoectasia (stretching) of ... The carotid sheath is a wrapping of connective tissue or fascia that surrounds the vascular vessels of the neck. It also ...
Background: Intracranial internal carotid artery (ICA) dissection manifesting as ischemic stroke is rare. Although endovascular ... Spontaneous intracranial internal carotid artery dissection: report of 10 patients. Arch Neurol. 2002. 59: 977-81 ... Long-term outcomes of internal carotid artery dissection. J Vasc Surg. 2011. 54: 370-4 ... Keywords: Dissected perforator, Endovascular therapy, Hemorrhagic complication, Intracranial internal carotid artery dissection ...
... typical of dissection. Diagnosis: Internal Carotid Artery Dissection. Carotid and vertebral artery dissection should be ... unlike aortic artery dissection where contrast commonly tracks into the false lumen). Patients with carotid artery dissection ... tapering to occlusion of the cervical right internal carotid artery just distal to the common carotid artery bifurcation, ... The most common location for dissection of the internal carotid artery is the proximal extracranial segment. While brain ...
METHODS Anatomical dissections were performed in 5 cadaveric heads with a neuroendoscope and neuronavigation system. ETOA with ... internal carotid artery; LOR = lateral orbital rim; MCA = middle cerebral artery; MOB = meningo-orbital band; SLOR = superior- ... It was also convenient for very delicate procedures, such as arachnoid dissection and vascular dissection with ETOA with SLOR ... internal carotid artery (ICA), and middle cerebral artery (MCA). After the brain was carefully retracted with a brain retractor ...
... of the layers of the external carotid artery wall. ... of external carotid artery embolus and internal carotid artery ... Endovascular Flow Diversion in Cervical Internal Carotid Artery Dissections.. Diana F, Frauenfelder G, Saponiero R, Iaconetta G ... Congenital external carotid-internal carotid artery anastomosis: a report of three cases and literature review. ... Traumatic carotid artery dissection.. Opeskin K. Am J Forensic Med Pathol 1997 Sep;18(3):251-7. doi: 10.1097/00000433-199709000 ...
This manuscript reviews the management of patients with spontaneous dissection of the cervical internal carotid artery (sICAD ... Management of spontaneous dissection of the cervical carotid artery.. Ralf W Baumgartner. Acta Neurochirurgica. Supplement 2010 ...
  • The annual incidence of internal carotid artery dissection is 1.72 per 100,000, and vertebral artery dissection 0.97 per 100,000. (medscape.com)
  • We aimed to evaluate the treatment results in patients with internal carotid artery (ICA) and vertebral artery (VA) dissection. (annaly-nevrologii.com)
  • Extracranial carotid and vertebral artery dissection: a review. (ejcrim.com)
  • Clinically silent circulating microemboli in 20 patients with carotid or vertebral artery dissection. (ejcrim.com)
  • Differential features of carotid and vertebral artery dissections: The CADISP Study. (medscape.com)
  • Endovascular treatment of vertebral artery dissections and pseudoaneurysms. (medscape.com)
  • Differences in demographic characteristics and risk factors in patients with spontaneous vertebral artery dissections with and without ischemic events. (medscape.com)
  • Follow-up DSA 1 week later showed bilateral multifocal internal carotid artery (ICA) and vertebral artery dissections, bilateral direct CCFs and cavernous ICA PAs. (bmj.com)
  • A portion of the vertebral artery is shown before it enters the transverse foramen of the atlas. (neurosurgicalatlas.com)
  • More severe symptoms such as transient ischemic attack (TIA) , stroke , ruptured aneurysm , or a carotid or vertebral artery dissection can develop in patients with cerebrovascular FMD. (medscape.com)
  • the upper cervical spine and can involve the internal carotid artery or vertebral artery. (noigroup.com)
  • Arterial dissection is characterized by an intimal tear that results in an intramural hematoma and subsequent splitting of vessel wall layers, causing stenosis or occlusion and potentially aneurysmal dilatation of the vessel. (medscape.com)
  • If a thrombus is found in both the true and the false lumens, the dissection is defined as an occlusion dissection. (medscape.com)
  • Management of acute symptomatic internal carotid artery (ICA) occlusion remains controversial. (ajnr.org)
  • Compared with studies regarding the effect of middle cerebral artery (MCA) occlusion, 1 there have only been a few studies regarding the efficacy of revascularization in patients with symptomatic acute internal carotid artery (ICA) occlusion. (ajnr.org)
  • The prognosis for patients with acute progressive stroke caused by carotid occlusion is known to be poor, with only 2%-12% good recovery. (ajnr.org)
  • 16 In addition, the management of patients with acute symptomatic carotid artery occlusion remains controversial, though the angiographic finding of ICA occlusion reveals a spectrum of ICA occlusions, as well as a tandem lesion in the intracranial artery in addition to the level (below or above the ophthalmic artery) and type (atherosclerotic or embolic) of lesion. (ajnr.org)
  • Cerebral angiogram of a left internal carotid dissection showing gradual vessel tapering to occlusion. (medscape.com)
  • We report two cases of spectacular clinical recovery after acute carotid occlusion. (hindawi.com)
  • We report two cases where an anti-gravity suit (also named MAST: Medical Antishock Trousers [ 1 , 2 ]) was applied with a low gradient of pressure during the acute phase of symptomatic carotid occlusion to amplify the blood volume shift towards the craniothoracic territory [ 3 , 4 ], improving cerebral haemodynamic conditions and neurological symptoms. (hindawi.com)
  • The MR Angiography (MRA) showed a proximal left internal carotid artery (ICA) occlusion, a tight stenosis on the distal right ICA, no signal in the right siphon and right MCA, while there was a weak signal in the left MCA (Figure 4 ). (hindawi.com)
  • Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (mdpi.com)
  • Fibromuscular dysplasia (FMD) is a noninflammatory, nonatherosclerotic arterial disease of the medium-sized arteries throughout the body, which could lead to arterial stenosis, occlusion, aneurysm, and dissection. (medscape.com)
  • Interstitial hemorrhage into the media of the vessel wall can lead to occlusion of the internal carotid artery and aneurysm formation. (bvsalud.org)
  • In patients with an acute stroke and an intracranial large vessel occlusion, we need to know if there is carotid pathology and if so what kind of pathology we are dealing with. (radiologyassistant.nl)
  • An isolated internal carotid artery is an unfavourable configuration of the circle of Willis which can lead to severe ischemia in case of a ICA occlusion. (radiologyassistant.nl)
  • In a high-grade atherosclerotic stenosis the flow through the internal carotid is severely decreased and results in a collapse and consequently a small caliber of the vessel distal to the occlusion. (radiologyassistant.nl)
  • This simulates an occlusion of the lower cervical part of the internal carotid, but is actually the result of a stop at the carotid T-top. (radiologyassistant.nl)
  • We report a case of an 81-year-old Central European man who presented with a dissection-related occlusion of the left carotid artery. (biomedcentral.com)
  • Alberta Stroke Program Early CT score 10) and an occlusion of the left cervical carotid artery, but no intracranial large vessel occlusion on CT-angiography (images not shown). (biomedcentral.com)
  • Due to the sudden onset of symptoms and the severity of the symptoms, the occlusion of the left internal carotid artery was classified as acute, and the patient was transferred to our comprehensive stroke center for endovascular treatment. (biomedcentral.com)
  • Ipsilateral internal or common carotid artery occlusion. (mayo.edu)
  • The stenosis that occurs in the early stages of arterial dissection is a dynamic process and some occlusions can return to stenosis very quickly. (wikipedia.org)
  • A, Tear and elevation of the intima from the wall of the artery, resulting in luminal stenosis. (medscape.com)
  • First-line management is comprised of antiplatelet or anticoagulation therapy, but many traumatic dissections progress despite this and carry the risk of long-term complications from embolism or stenosis [3] . (ejcrim.com)
  • Merckel LG, Van der Heijden J, Jongen LM, van Es HW, Prokop M, Waaijer A. Effect of stenting on cerebral CT perfusion in symptomatic and asymptomatic patients with carotid artery stenosis. (ejcrim.com)
  • Is transcranial Doppler ultrasound undervalued for detection of intracranial internal carotid artery stenosis? (uchicago.edu)
  • Congenital primary stenosis of the internal auditory canal (IAC) may exist in isolation or along with a number of other osseous anomalies of the temporal bone. (nyu.edu)
  • Carotid revascularization for primary prevention of stroke (CREST-2) is two independent multicenter, randomized controlled trials of carotid revascularization and intensive medical management versus medical management alone in patients with asymptomatic high-grade carotid stenosis. (mayo.edu)
  • Non-atherosclerotic carotid stenosis (dissection, fibromuscular dysplasia, or stenosis following radiation therapy). (mayo.edu)
  • but more likely to have carotid stenosis, a history of prior coronary artery bypass grafting, and a higher estimated glomerular filtration rate. (medscape.com)
  • A 28-year-old woman was seen 2 hours after the sudden onset of total right brachial monoplegia, right facial palsy, and mutism (NIH Stroke Scale: 17) due to a left middle cerebral artery (MCA) infarct. (hindawi.com)
  • MRI of the brain demonstrated multiple embolic infarcts in the left middle cerebral artery (MCA) territory, despite therapeutic anticoagulation with heparin. (bmj.com)
  • C) Postdeployment of a 3.5×23.0 mm LVIS Jr. stent (dotted line) placed from the left M1 middle cerebral artery up to the dural junction of the left ICA (green arrow). (bmj.com)
  • We report a case of traumatic bilateral carotid dissection leading to progressive neurological symptoms and hypoperfusion on computed tomography perfusion (CTP), despite escalation in anticoagulation, which led to emergency carotid stenting. (ejcrim.com)
  • Induruwa I, Bentham C, Khadjooi K, Sharma N. Computed Tomography Perfusion Can Guide Endovascular Therapy in Bilateral Carotid Artery Dissection. (ejcrim.com)
  • T1-FAT-SAT-weighted images showed bilateral ICA dissection (Figure 5 ). (hindawi.com)
  • Doppler study showed a high resistance to flow in both common carotid arteries and low bilateral MCA flow with low systolic and diastolic velocities. (hindawi.com)
  • Bilateral abnormal origin of the anterior branches of the external carotid artery. (nih.gov)
  • Bilateral internal carotid artery dissection (ICAD) has been rarely reported 1, 4 . (kauveryhospital.com)
  • Bilateral severe carotid artery steno-occlusive disease: when is simultaneous treatment of both carotid arteries justified? (uchicago.edu)
  • A separation (dissection) of the layers of the external carotid artery wall. (nih.gov)
  • External Carotid Artery-Related Adverse Events at Extra-Intra Cranial High Flow Bypass Surgery Using a Radial Artery Graft. (nih.gov)
  • Pseudoaneurysm of the external carotid artery--review of literature. (nih.gov)
  • Dissection is continued upward to isolate the external carotid artery (ECA). (medscape.com)
  • Recognizing a dissection early is essential, because prompt anticoagulant and/or antiplatelet therapy and endovascular repair greatly minimize the patient's risk of infarction, neurologic disability, and death. (medscape.com)
  • Endovascular stent-assisted angioplasty in the management of traumatic internal carotid artery dissections. (ejcrim.com)
  • Xianjun H, Zhiming Z. A systematic review of endovascular management of internal carotid artery dissections. (ejcrim.com)
  • Considering the potential risk of subsequent hemorrhagic complications by recanalization of the dissected perforator, prudent postoperative management, including strict blood pressure control, is advisable following endovascular revascularization therapy against intracranial artery dissection involving perforators. (surgicalneurologyint.com)
  • Endovascular revascularization therapy has been reported to effectively counteract intracranial ICA dissection manifesting as ischemic stroke. (surgicalneurologyint.com)
  • Here, we report a case of intracranial ICA dissection with ischemic onset, with a complication of remote parenchymal hemorrhage due to a recanalized dissected perforator following endovascular therapy. (surgicalneurologyint.com)
  • Confirmation of the findings through the use of carotid angiography is recommended before endovascular or surgical interventions are considered. (medscape.com)
  • Carotid artery dissection is a separation of the layers of the artery wall supplying oxygen-bearing blood to the head and brain and is the most common cause of stroke in young adults. (wikipedia.org)
  • Once considered uncommon, spontaneous carotid artery dissection is an increasingly recognized cause of stroke that preferentially affects the middle-aged. (wikipedia.org)
  • Observational studies and case reports published since the early 1980s show that patients with spontaneous internal carotid artery dissection may also have a history of stroke in their family and/or hereditary connective tissue disorders, such as Marfan syndrome, Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, pseudoxanthoma elasticum, fibromuscular dysplasia, and osteogenesis imperfecta type I. IgG4-related disease involving the carotid artery has also been observed as a cause. (wikipedia.org)
  • However, when blood clots form and break off from the site of the tear, they form emboli, which can travel through the arteries to the brain and block the blood supply to the brain, resulting in an ischaemic stroke, otherwise known as a cerebral infarction. (wikipedia.org)
  • Blood clots, or emboli, originating from the dissection are thought to be the cause of infarction in the majority of cases of stroke in the presence of carotid artery dissection. (wikipedia.org)
  • Cervical artery dissection is a major cause of ischemic stroke in young adults, but the diagnosis can be difficult to make because patients may present with benign symptoms such as headache, neck pain, or dizziness. (medscape.com)
  • The dissection presented as ischemic stroke in 175 patients and with local symptoms in the others. (annaly-nevrologii.com)
  • Kalashnikova L.A., Dobrynina L.A. Dissektsiya arteriy golovnogo mozga: ishemicheskiy insul't i drugie klinicheskie proyavleniya [Cervical artery dissection: ischemic stroke and other clinical manifestations]. (annaly-nevrologii.com)
  • Carotid artery dissection (CAD) is a major cause of stroke in those under age 45, accounting for around 20% of ischaemic events [1,2] . (ejcrim.com)
  • Predictors of delayed stroke in patients with cervical artery dissection. (ejcrim.com)
  • Thrombolysis in cervical artery dissection--data from the Cervical Artery Dissection and Ischaemic Stroke Patients (CADISP) database. (medscape.com)
  • Intracranial internal carotid artery (ICA) dissection manifesting as ischemic stroke is rare. (surgicalneurologyint.com)
  • Internal carotid artery dissection (CAD) presents a rare, but serious condition that needs to be fully evaluated and carefully treated, as it may lead to an acute ischemic stroke in all, but mostly in younger patients. (springermedizin.at)
  • In this case report we present a case of a young patient with carotid artery type of ESy, resulting in a severe acute ischemic stroke. (springermedizin.at)
  • The author of the post on SBM questions the Stroke paper's treatment of a key study, Cassidy et al (2008) published in Spine, that is often used to support the notion that the correlation between cervical manipulation and cervical arterial dissection is NOT causal - suggesting that cervical manipulation is safe. (noigroup.com)
  • A carotid web is an entity that is increasingly recognized as an important cause for ischemic stroke in especially young females. (radiologyassistant.nl)
  • The carotid web is increasingly being associated with ischemic stroke in young individuals, especially females. (radiologyassistant.nl)
  • Carotid artery dissection (CAD) is a frequent cause of stroke, accounting for upto 25% of all ischemic strokes in young and middle-aged patients 1, 2 . (kauveryhospital.com)
  • It is with heavy hearts that we confirm the passing today of Katie May - mother, daughter, sister, friend, businesswoman, model and social media star - after suffering a catastrophic stroke caused by a blocked carotid artery on Monday," the statement reads. (scienceblogs.com)
  • Determinants of neurologic deterioration and stroke-free survival after spontaneous cervicocranial dissections: a multicenter study. (uchicago.edu)
  • Most cases of HS are idiopathic , but conditions such as brainstem stroke , carotid dissection , and neoplasm are occasionally identified as the cause of HS. (amboss.com)
  • Vagus nerve relating to Common carotid artery & Internal jugular vein. (anatomytrains.com)
  • Dissection is continued anterior to the CCA to keep from injuring the vagus nerve. (medscape.com)
  • The vagus nerve usually lies in a posterior lateral position within the carotid sheath but occasionally may spiral anteriorly, particularly in the lower end of the incision. (medscape.com)
  • We report a case of a 38-year-old woman who presented with acute ischemic infarcts in the territory of the left anterior choroidal artery (AChA) due to intracranial ICA dissection. (surgicalneurologyint.com)
  • This report is of a 37-year-old woman presenting at 39 weeks of pregnancy with acute thoracic aortic dissection due to previously undiagnosed FBN1-related Marfan syndrome. (bvsalud.org)
  • This case report aims to illustrate the challenges in the diagnosis and in the peri-operative management of acute aortic dissection during pregnancy. (bvsalud.org)
  • This manuscript reviews the management of patients with spontaneous dissection of the cervical internal carotid artery (sICAD). (qxmd.com)
  • Dissection may occur after physical trauma to the neck, such as a blunt injury (e.g. traffic collision), strangulation, but can also happen spontaneously. (wikipedia.org)
  • Carotid artery dissection is thought to be more commonly caused by severe violent trauma to the head and/or neck. (wikipedia.org)
  • The probable mechanism of injury for most internal carotid injuries is rapid deceleration, with resultant hyperextension and rotation of the neck, which stretches the internal carotid artery over the upper cervical vertebrae, producing an intimal tear. (wikipedia.org)
  • Artery dissection has also been reported in association with some forms of neck manipulation. (wikipedia.org)
  • Radical neck dissection is an operation that was created in 1906 to solve the problem of metastatic neck disease. (medscape.com)
  • Classic radical neck dissection is still the criterion standard for surgical control of a neck metastasis. (medscape.com)
  • The necessity to maximize control and to minimize morbidity prompted modifications to the classic neck dissection. (medscape.com)
  • Therefore, these findings led to another neck dissection modification, which is the selective preservation of 1 or several LN groups. (medscape.com)
  • In 1906, Crile was the first person to describe radical neck dissection, which encompasses the surgical removal of neck metastases contained between superficial and deep fascial layers of the neck. (medscape.com)
  • In the 1950s, Martin routinely used radical neck dissection for the management of neck metastasis. (medscape.com)
  • In 1991, the American Academy of Otolaryngology-Head and Neck Surgery (AAOHNS) published an official report that standardized the terminology for different types of neck dissection. (medscape.com)
  • She underwent surgery, and resection of the tumor with neck dissection was performed, which was reported as malignant carotid body paraganglioma on histopathology. (cytojournal.com)
  • Carotid Artery Involvement in Advanced Recurrent Head and Neck Cancer: A Case Report and Literature Review. (nih.gov)
  • The internal carotid artery provides no branches in the neck. (neurosurgicalatlas.com)
  • [ 2 ] Disease manifestations depend on the arterial bed involved: most often, the extracranial carotid or vertebral arteries are associated with headache (generally migraine-type), pulsatile tinnitus , neck pain, or dizziness, whereas the renal arteries are often associated with hypertension. (medscape.com)
  • Pure arterial malformations affected the anterior cerebral arteries in 25% of cases, the posterior communicating artery (PcomA) segment in 33.3% of cases, the MCA in 16.6% of cases, and posterior circulation arteries in 25% of cases. (ajnr.org)
  • Like Jia et al, we found that lesions affecting the PcomA segment of the ICA went on to affect the PcomA and posterior cerebral artery (PCA). (ajnr.org)
  • Lesions involving the distal anterior cerebral arteries (ACAs) are characterized as ectatic and moderately tortuous and have a looser coil configuration. (ajnr.org)
  • However, some tortuous vessels are associated with significant carotid atherosclerotic disease requiring a specific surgical a … The tortuous internal carotid artery as the basis of cerebral vascular insufficiency is a controversial entity, as such lesions frequently occur without neurologic symptoms. (onteenstoday.com)
  • 4 ] Intracranial ICA dissection typically presents as severe headache, immediately followed by neurological symptoms of cerebral ischemia or subarachnoid hemorrhage. (surgicalneurologyint.com)
  • The arteries supplying the head (carotid arteries), the arteries supplying the brain (cerebral arteries), and the arteries supplying the heart muscle (coronary arteries) may also develop aneurysms. (msdmanuals.com)
  • The disease typically affects the renal and extracranial carotid arteries, but it has also been noted in most medium-sized arteries throughout the body, most commonly the mesenteric, external iliac, and brachial arteries. (medscape.com)
  • This angiogram shows a small pseudoaneurysm and a small intimal dissection with an elevated intimal flap that is just proximal to the subadventitial dissection. (medscape.com)
  • In the case of a ICA dissection the bulbus is not involved and the contrast in the proximal ICA has a flame-shaped configuration. (radiologyassistant.nl)
  • This is a thin shelf-like luminal protrusion of the intimal fibrous tissue that extends from the posterior aspect of the proximal internal carotid artery bulb into the lumen. (radiologyassistant.nl)
  • This incision can be extended proximally to the sternal notch for more proximal lesions of the common carotid artery (CCA) and distally to the mastoid process for higher exposure. (medscape.com)
  • The CCA is mobilized proximal to the carotid lesion. (medscape.com)
  • Once proximal control is obtained, dissection is continued distally around the ECA and its first branch, the superior thyroid artery. (medscape.com)
  • CECT revealed, in addition, a lobulated, ill-marginated enhancing space-occupying mass in the right carotid bifurcation. (cytojournal.com)
  • It was in close proximity to right common carotid artery beginning at the level of carotid bifurcation. (cytojournal.com)
  • Superior to the bifurcation of the common carotid can be seen the carotid sinus nerve, a sensory branch of the glossopharyngeal nerve. (neurosurgicalatlas.com)
  • A cervical incision is made parallel and anterior to the sternocleidomastoid and centered over the carotid bifurcation. (medscape.com)
  • If sinus bradycardia develops, 1-2 mL of 1% lidocaine is injected into the tissues of the carotid bifurcation to correct reflex sympathetic bradycardia. (medscape.com)
  • BACKGROUND Inherited deficiencies in the FBN1 gene, which encodes fibrillin-1, result in Marfan syndrome, an autosomal dominant connective tissue disorder that is associated with aortic root dilatation and predisposes to aortic dissection. (bvsalud.org)
  • I'm assuming then what you're describing is annular rupture, pericardial effusion, and aortic dissection. (medscape.com)
  • See also Overview of Aortic Aneurysms and Aortic Dissection. (msdmanuals.com)
  • When combined with an anterior clinoidectomy, it allowed for significant and safe internal carotid artery mobilization. (thieme-connect.de)
  • The main goal of this procedure was to remove, en bloc, all ipsilateral lymphatic structures from the mandible superiorly to the clavicle inferiorly and from the strap muscles to the anterior border of the trapezius. (medscape.com)
  • 4 ] Dissection in the anterior circulation is less common than in the posterior circulation in adults, and mainly occur in the supraclinoid internal carotid artery (ICA). (surgicalneurologyint.com)
  • The external carotid quickly gives rise to the superior thyroid from its anterior border, which descends on the inferior pharyngeal constrictor muscle enroute to the thyroid gland. (neurosurgicalatlas.com)
  • The internal jugular vein is visualized, and the carotid sheath is opened along the anterior border of the vein. (medscape.com)
  • The glossopharyngeal nerve crosses the ICA near the base of the skull and is best protected by maintaining dissection close to the anterior surface of the ICA. (medscape.com)
  • Previously reported lesions of the superior cerebellar artery and posterior inferior cerebellar artery also bear a remarkably similar resemblance to our cases in that the vessels have the appearance of a tightly wound coil without substantial ectasia or any associated aneurysm. (ajnr.org)
  • Treatment of cervical artery dissection: a systematic review and meta-analysis. (ejcrim.com)
  • Antiplatelets versus anticoagulation in cervical artery dissection. (ejcrim.com)
  • Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. (medscape.com)
  • Kim YK, Schulman S. Cervical artery dissection: pathology, epidemiology and management. (medscape.com)
  • The genetics of cervical artery dissection: a systematic review. (medscape.com)
  • The exact mechanisms and etiology of spontaneous carotid artery dissection (sCAD) are unknown, but evidence supports both environmental exposures and ultrastructural abnormalities of collagen as contributing factors. (neurology.org)
  • These cases form the basis for reading about etiology, pathology, complications and treatment of problems in internal medicine. (xusom.com)
  • Fibromuscular dysplasia (FMD) is an arterial disease of unknown etiology typically affecting the medium and large arteries of young to middle-aged women. (medscape.com)
  • Diagram representing the 3 major characteristic angiographic patterns seen in fibromuscular dysplasia of the internal carotid artery. (medscape.com)
  • Antiplatelets vs anticoagulation for dissection: CADISS nonrandomized arm and meta-analysis. (ejcrim.com)
  • Georgiadis D, Arnold M, von Buedingen HC, Valko P, Sarikaya H, Rousson V. Aspirin vs anticoagulation in carotid artery dissection: a study of 298 patients. (medscape.com)
  • In general, such dissections can be categorized as traumatic or spontaneous. (medscape.com)
  • Traumatic dissection is the result of either external mechanical injury, such as a penetrating or blunt trauma, or trivial trauma that is related to a movement or abrupt change in head position. (medscape.com)
  • In the absence of known connective tissue disorders, most dissections are traumatic [2] . (ejcrim.com)
  • Management of spontaneous dissection of the cervical carotid artery. (qxmd.com)
  • A recent review of spontaneous dissection of the internal carotid artery producing cranial nerve palsies at our institution identified nine patients. (elsevierpure.com)
  • Hinni, ML & Zimmerman, RS 1998, ' Spontaneous dissection of the carotid artery presenting with lower cranial nerve palsies ', Skull Base Surgery , vol. 8, no. (elsevierpure.com)
  • Collateral filling of the intradural (antegrade filling) or cavernous (retrograde filling) segment of the ICA through the ophthalmic artery was considered to have collaterals via the ophthalmic artery ( Fig 2 ). (ajnr.org)
  • The arterial lesions in the series of Jia et al 1 have been previously described as "pure arterial malformations," defined as dilated, overlapping, and tortuous arteries forming a mass of arterial loops with a coil-like appearance in the absence of any arteriovenous connection. (ajnr.org)
  • Mobilization of the hypoglossal nerve may require division of the tethering artery and vein to the sternocleidomastoid, the descending hypoglossal branch of the ansa cervicalis, or the occipital artery in order to expose the distal ICA. (medscape.com)
  • Intracranial artery dissection is a rare entity, occurring in 3.6-4.4 per 100,000 people per year. (surgicalneurologyint.com)
  • Digital subtraction angiography (DSA) showed a left petrocavernous internal carotid artery dissection (ICAD). (bmj.com)
  • However, although an association with connective tissue disorders does exist, most people with spontaneous arterial dissections do not have associated connective tissue disorders. (wikipedia.org)
  • One such modification is the preservation of 1 or more nonlymphatic structures (eg, spinal accessory nerve, internal jugular vein [IJV], sternocleidomastoid [SCM] muscle). (medscape.com)
  • However, carotid and vertebral dissections are still underrecognized despite their distinct clinical and radiologic manifestations. (medscape.com)
  • Clinical and radiographic natural history of cervical artery dissections. (medscape.com)
  • Clinical observations have linked tortuous arteries and veins with aging, atherosclerosis, hypertension, genetic defects and diabetes mellitus. (onteenstoday.com)
  • Open-Label Phase I Clinical Study to Assess the Safety and Efficacy of Cilostazol in Patients Undergoing Internal Carotid Artery Stent Placement. (uchicago.edu)
  • The left lobe of the thyroid gland has been removed, most of the carotid sheath has been cut away and the internal jugular vein has been retracted laterally. (stanford.edu)
  • The internal jugular vein is retracted laterally, and the common facial vein is ligated. (medscape.com)
  • Dissection is a blister-like de-lamination between the outer and inner walls of a blood vessel, generally originating with a partial leak in the inner lining. (wikipedia.org)
  • The splitting of the vessel wall in one or both (left and right) internal carotid arteries (CAROTID ARTERY, INTERNAL). (bvsalud.org)
  • The internal carotid artery (ICA) is mobilized up to a point where the vessel is completely normal. (medscape.com)
  • This nerve divides into external and internal branches that pass posterior to the superior thyroid artery and may be harmed while the surgeon is attempting to control either this vessel or the ICA. (medscape.com)
  • Aneurysms of Arteries in the Arms, Legs, and Heart An aneurysm is a bulge (dilation) in the wall of an artery. (msdmanuals.com)
  • If untreated, an aneurysm may rupture, resulting in pain and internal bleeding serious enough to cause shock and sometimes death. (msdmanuals.com)
  • The purpose of this study was to clarify the criteria for initial treatment of chronic subdural hematoma (CSDH) by com-paring the backgrounds and post-treatment courses of patients who underwent drainage or middle meningeal artery (MMA) emboliza-tion for CSDH. (go.jp)
  • Spontaneous dissections of the internal carotid arteries are uncommon. (elsevierpure.com)
  • In one study of patients with carotid artery dissection, 60% had infarcts documented on neuroimaging. (wikipedia.org)
  • Peripheral artery disease (PAD) is an atherosclerotic disease that has emerged as a major health problem. (kauveryhospital.com)
  • Cutting balloon angioplasty for carotid in-stent restenosis: case reports and review of the literature. (uchicago.edu)
  • Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the elongated styloid process causes symptoms). (wikipedia.org)
  • There were no strokes in 110 patients with local symptoms due to ICA/VA dissection during the observation period. (annaly-nevrologii.com)
  • The common carotid artery divides in the adult at about the C4 vertebral level or at the upper border of the thyroid cartilage of the larynx. (neurosurgicalatlas.com)
  • At this point, the aorta divides into the two iliac arteries, which supply blood to the legs. (msdmanuals.com)
  • One trial will randomize patients in a 1:1 ratio to endarterectomy versus no endarterectomy and another will randomize patients in a 1:1 ratio to carotid stenting with embolic protection versus no stenting. (mayo.edu)
  • Dissection is usually accompanied by hemorrhage into the arterial wall, which creates, as demonstrated in the first image below, a blind pouch or (uncommonly) a parallel subintimal second channel. (medscape.com)
  • B, Subadventitial dissection represents hemorrhage between the media and the adventitia. (medscape.com)
  • The second image demonstrates the angiographic characteristics of a chronic subadventitial dissection of the right internal carotid artery. (medscape.com)
  • In one of the largest angiographic studies conducted by Weibel and Fields [1], internal carotid artery tortuosity and angulation, respectively, were observed in 35 and 5% of 1,438 consecutive patients. (onteenstoday.com)
  • Elevation of an intimal flap is not a common finding associated with this type of dissection. (medscape.com)
  • How common is tortuous carotid artery? (onteenstoday.com)
  • The following parameters were recorded at baseline, after intravenous infusion of 500 mL of fluid load (colloid), 15 minutes and 150 minutes during LBPP application and 10 minutes after gravity suit deflation: right arm mobility, blood pressure, heart rate, systolic and diastolic velocities recorded on both MCAs and resistance index (RI) recorded on both common carotids arteries (CCAs). (hindawi.com)
  • The most common carotid obstruction is caused by atherosclerosis. (radiologyassistant.nl)
  • Furthermore, carotid artery pathology determines secondary profylaxis with either carotid endarterectomy, stenting or anti-platelet therapy. (radiologyassistant.nl)
  • The steps in a conventional carotid endarterectomy (CEA) are illustrated in the video below. (medscape.com)
  • Carotid endarterectomy: operative techniques. (medscape.com)
  • Carotid Artery Tortuosity Tortuous carotid arteries are often reported in hypertensive patients [4, 6, 63]. (onteenstoday.com)
  • What is carotid tortuosity? (onteenstoday.com)
  • Carotid artery tortuosity is defined as vascular elongation leading to redundancy or an altered course. (onteenstoday.com)
  • [ 1 ] Tortuosity or redundancy of the arteries, particularly the internal carotid arteries, has been reported in association with FMD. (medscape.com)
  • [ 2 ] Features of FMD that can be identified with Doppler ultrasound include beading, turbulent blood flow and abnormally high speed (velocity) blood flow, and tortuosity or S-shaped arteries. (medscape.com)