A plant genus of the family RANUNCULACEAE. Members contain ACONITINE and other diterpenoid alkaloids.
Poisoning by the ingestion of plants or its leaves, berries, roots or stalks. The manifestations in both humans and animals vary in severity from mild to life threatening. In animals, especially domestic animals, it is usually the result of ingesting moldy or fermented forage.
Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate.
Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed)

Experimental study of the morphine de-addiction properties of Delphinium denudatum Wall. (1/23)

BACKGROUND: Our aim was to explore the de-addiction properties of Delphinium denudatum Wall. in morphine dependent rats. METHODS: Charles Foster male albino rats were made morphine dependent by injecting morphine sulphate in increasing doses twice a day for 7 days. The spontaneous withdrawal signs observed 12 h after the last dose were quantified by the 'counted' and 'checked' signs. The drug (alcoholic extract of Delphinium denudatum) was administered p.o. in different regimen: a) single dose (700 mg/kg) 10 h before the first dose of morphine, b) single dose (700 mg/kg) 10 h after the last dose of morphine, c) multiple doses (350 mg/kg) along with morphine twice a day for 7 days. RESULT: Administration of Delphinium denudatum extract caused significant reduction in the frequency of counted signs as well as the presence of checked signs of morphine withdrawal. The maximum reduction was observed in regimen 'b' followed by regimen 'c' and 'a'. CONCLUSION: Delphinium denudatum Wall. significantly reduces the aggregate scores for all parameters in morphine withdrawal syndrome by central action and thus may prove to be an alternative remedy in morphine de-addiction.  (+info)

New C(19)-diterpenoid alkaloids from the roots of Delphinium potaninii var. jiufengshanense. (2/23)

From the roots of Delphinium potaninii var. jiufengshanense, two new lycoctonine-type C(19)-diterpenoid alkaloids called jiufengdine (1) and jiufengtine (4) have been isolated. The structures of the new alkaloids (1, 4) were established by 1D and 2D NMR spectra.  (+info)

Changes in flower coloration and sepal anthocyanins of Cyanic delphinium cultivars during flowering. (3/23)

The changes in flower color related to sepal pigmentation of cyanic Delphinium cultivars were investigated during anthesis. The sepal hues of the purple and blue flowered varieties observed on the initial day of unfurling had changed with a decrease in hue angle three days after anthesis. In both the purple and blue cultivars, violdelphin (3) was the major component on day one of anthesis, and the chromaticity improved with increasing sepal concentrations of violdelphin (3) and cyanodelphin (4) after three days of unfurling. The flower hue was dominated by the constitution of acylated anthocyanins, and the chromaticity was ordered by the sepal concentration. The biosynthesis of cyanodelphin (4) from violdelphin (3) was postulated since an increase in the sepal concentration of cyanodelphin (4) was accompanied by a decrease in violdelphin (3). Acylation of the anthocyanins was initiated by an increase in the respective possible precursors, tulipanin (2) and violdelphin (3), to subsequently synthesize violdelphin (3) and cyanodelphin (4) during flowering.  (+info)

Evaluation of vaccination against methyllycaconitine toxicity in mice. (4/23)

The purpose of this study was to determine whether larkspur toxins conjugated to protein carriers would promote active immunity in mice. Mice were injected with several larkspur toxin-protein conjugates or adjuvant alone to determine whether the resulting immunological response altered animal susceptibility to methyllycaconitine, the major toxic larkspur alkaloid. Although vaccinations increased the calculated lethal dose 50% (LD50) for intravenous methyllycaconitine toxicity, overlapping confidence intervals did not provide evidence of differences between the vaccinated and control groups. In the lycoctonine conjugate (LYC)-vaccinated group, mouse survival was related (P = 0.001) to serum titers for methyllycaconitine doses up to 4.5 mg/kg of body weight. When mice withlow antibody titers were removed from the vaccinated groups in which titer was related to survival, the recalculated LD50 estimates were 20% greater than the LD50 of the control group. However, the 95% confidence intervals of the recalculated LD50 groups overlapped with the control groups. Overall, these results suggest that vaccination altered methyllycaconitine toxicity in mice and that vaccination may be useful in decreasing the effects of larkspur toxins in animals. Additional studies are warranted to continue development of potential larkspur vaccines for livestock.  (+info)

The toxicity and kinetics of larkspur alkaloid, methyllycaconitine, in mice. (5/23)

Larkspur poisoning sporadically kills from 5 to 15% of the cattle on North American mountain rangelands. Of the 40 different diterpenoid larkspur alkaloids, the one that is thought to be responsible for much of the toxicity has been identified as methyllycaconitine (MLA). Little is known of MLA toxicokinetics or excretion. The purpose of this study was to further characterize the clinical effects of MLA toxicity in mice and determine the toxicokinetics of MLA excretion. Eight groups of mice were dosed intravenously with 2.0 mg/kg of BW of MLA, killed, and necropsied at 0, 1, 2, 5,10,15, 30, and 60 min after injection. Treated animals were reluctant to move, trembled, and developed dyspnea, muscular twitches, and convulsions. Within several minutes, the clinical signs abated and behavior slowly returned to normal over approximately 20 min. At necropsy serum, brain, liver, kidney, and skeletal muscle were collected and frozen. Blood and tissues were extracted and analyzed for MLA with HPLC and electron spray mass spectrometry. Blood MLA elimination followed a normal biphasic redistribution and excretion pattern (r = 0.99) with a K of elimination of 0.0376 and half-life of 18.4 min. Other tissues had similar clearance rates. These data indicate the MLA is rapidly distributed and excreted. In mice, the clinical effects of poisoning seem to affect the central nervous system, causing dyspnea and "explosive" muscular twitches and convulsions. Because livestock commonly eat larkspur at subclinical doses, they are likely to have larkspur alkaloids in many tissues. These results suggest that animals exposed to larkspur should rapidly excrete MLA (within several hours) and that the residues in animal tissues are not likely to be a problem if animals are given several days to allow toxin clearance.  (+info)

New C19-diterpenoid alkaloids from Delphinium trifoliolatum. (6/23)

Three new norditerpenoid alkaloids, trifoliolasines A (1), B (3), and C (5), were isolated from the whole plant of Delphinium trifoliolatum FINET et GAGNEP, and their structures were established based on the spectral data.  (+info)

Three new C19-diterpenoid alkaloids from Delphinium giraldii. (7/23)

Further investigation of the roots of Delphinium giraldii DIELS led to the isolation of three new C(19)-diterpenoid alkaloids, giraldines G (1), H (2), and I (3). The structures of 1-3 were established based on spectroscopic evidence.  (+info)

Enantioselective approach to the hetisine alkaloids. Synthesis of the 3-methyl-1-aza-tricyclo[5.2.1.0(3,8)]decane core via intramolecular dipolar cycloaddition. (8/23)

[structure: see text]. An efficient, enantioselective approach to the hetisine class of the C(20)-diterpenoid alkaloids is described. The strategy involves an intramolecular oxidopyridinium dipolar cycloaddition as the key transformation, in which simultaneous formation of the C5-C6 and C10-C20 bonds in the 3-methyl-1-aza-tricyclo[5.2.1.0(3,8)]decane core of the hetisine alkaloids is effected.  (+info)

Delphinium is a genus of perennial flowering plants in the family Ranunculaceae, also known as larkspur. It includes over 300 species that are native to the Northern Hemisphere, with the greatest diversity found in the mountainous regions of western North America and southern Europe.

Delphiniums are herbaceous plants that can grow up to several feet tall, depending on the species. They have palmately compound leaves that are divided into several lobes. The flowers are borne in dense spikes or racemes and have five distinct sepals, four of which are often brightly colored and petal-like, while the fifth is small and leaflike. The flowers also have numerous stamens and a single pistil.

Delphiniums are popular ornamental plants due to their showy flowers, which come in a variety of colors including blue, purple, pink, white, and yellow. However, some species contain toxic alkaloids that can be harmful or fatal if ingested by humans or animals. It is important to handle delphiniums with care and keep them out of reach of children and pets.

Plant poisoning is a form of poisoning that occurs when someone ingests, inhales, or comes into contact with any part of a plant that contains toxic substances. These toxins can cause a range of symptoms, depending on the type and amount of plant consumed or exposed to, as well as the individual's age, health status, and sensitivity to the toxin.

Symptoms of plant poisoning may include nausea, vomiting, diarrhea, abdominal pain, difficulty breathing, skin rashes, seizures, or in severe cases, even death. Some common plants that can cause poisoning include poison ivy, poison oak, foxglove, oleander, and hemlock, among many others.

If you suspect plant poisoning, it is important to seek medical attention immediately and bring a sample of the plant or information about its identity if possible. This will help healthcare providers diagnose and treat the poisoning more effectively.

Diterpenes are a class of naturally occurring compounds that are composed of four isoprene units, which is a type of hydrocarbon. They are synthesized by a wide variety of plants and animals, and are found in many different types of organisms, including fungi, insects, and marine organisms.

Diterpenes have a variety of biological activities and are used in medicine for their therapeutic effects. Some diterpenes have anti-inflammatory, antimicrobial, and antiviral properties, and are used to treat a range of conditions, including respiratory infections, skin disorders, and cancer.

Diterpenes can be further classified into different subgroups based on their chemical structure and biological activity. Some examples of diterpenes include the phytocannabinoids found in cannabis plants, such as THC and CBD, and the paclitaxel, a diterpene found in the bark of the Pacific yew tree that is used to treat cancer.

It's important to note that while some diterpenes have therapeutic potential, others may be toxic or have adverse effects, so it is essential to use them under the guidance and supervision of a healthcare professional.

Alkaloids are a type of naturally occurring organic compounds that contain mostly basic nitrogen atoms. They are often found in plants, and are known for their complex ring structures and diverse pharmacological activities. Many alkaloids have been used in medicine for their analgesic, anti-inflammatory, and therapeutic properties. Examples of alkaloids include morphine, quinine, nicotine, and caffeine.

No FAQ available that match "delphinium"

No images available that match "delphinium"