A group of viruses in the genus PESTIVIRUS, causing diarrhea, fever, oral ulcerations, hemorrhagic syndrome, and various necrotic lesions among cattle and other domestic animals. The two species (genotypes), BVDV-1 and BVDV-2 , exhibit antigenic and pathological differences. The historical designation, BVDV, consisted of both (then unrecognized) genotypes.
Acute disease of cattle caused by the bovine viral diarrhea viruses (DIARRHEA VIRUSES, BOVINE VIRAL). Often mouth ulcerations are the only sign but fever, diarrhea, drop in milk yield, and loss of appetite are also seen. Severity of clinical disease varies and is strain dependent. Outbreaks are characterized by low morbidity and high mortality.
A species of PESTIVIRUS causing systemic infections (BOVINE VIRUS DIARRHEA-MUCOSAL DISEASE) in cattle and some other cloven-hoofed animals. There are several strains and two biotypes: cytopathic (rare) and non-cytopathic. Infections range from clinically inapparent to severe, but do not correlate with biotypes.
An increased liquidity or decreased consistency of FECES, such as running stool. Fecal consistency is related to the ratio of water-holding capacity of insoluble solids to total water, rather than the amount of water present. Diarrhea is not hyperdefecation or increased fecal weight.
A species of PESTIVIRUS causing systemic infections including BOVINE VIRUS DIARRHEA-MUCOSAL DISEASE and BOVINE HEMORRHAGIC SYNDROME in cattle and some other cloven-hoofed animals. There are several strains and two biotypes: cytopathic (rare) and non-cytopathic. The severity of disease appears to be strain dependent. Cytopathogenic effects do not correlate with virulence as non-cytopathic BVDV-2 is associated only with Hemorrhagic Disease, Bovine.
A genus of FLAVIVIRIDAE, also known as mucosal disease virus group, which is not arthropod-borne. Transmission is by direct and indirect contact, and by transplacental and congenital transmission. Species include BORDER DISEASE VIRUS, bovine viral diarrhea virus (DIARRHEA VIRUS, BOVINE VIRAL), and CLASSICAL SWINE FEVER VIRUS.
A species of CORONAVIRUS causing acute enteritis in swine. Infections have been seen mostly in Europe, where it is endemic, and in China.
Infections with viruses of the genus PESTIVIRUS, family FLAVIVIRIDAE.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
Viruses whose genetic material is RNA.
DIARRHEA occurring in infants from newborn to 24-months old.
Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses.
A species of VARICELLOVIRUS that causes INFECTIOUS BOVINE RHINOTRACHEITIS and other associated syndromes in CATTLE.
A general term for diseases produced by viruses.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Clinically severe acute disease of cattle caused by noncytopathic forms of Bovine viral diarrhea virus 2 (DIARRHEA VIRUS 2, BOVINE VIRAL). Outbreaks are characterized by high morbidity and high mortality.
Process of growing viruses in live animals, plants, or cultured cells.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Virus diseases caused by the CORONAVIRUS genus. Some specifics include transmissible enteritis of turkeys (ENTERITIS, TRANSMISSIBLE, OF TURKEYS); FELINE INFECTIOUS PERITONITIS; and transmissible gastroenteritis of swine (GASTROENTERITIS, TRANSMISSIBLE, OF SWINE).
Ribonucleic acid that makes up the genetic material of viruses.
Substances elaborated by viruses that have antigenic activity.
The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS.
The expelling of virus particles from the body. Important routes include the respiratory tract, genital tract, and intestinal tract. Virus shedding is an important means of vertical transmission (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
Premature expulsion of the FETUS in animals.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Diseases of domestic swine and of the wild boar of the genus Sus.
A multifactorial disease of CATTLE resulting from complex interactions between environmental factors, host factors, and pathogens. The environmental factors act as stressors adversely affecting the IMMUNE SYSTEM and other host defenses and enhancing transmission of infecting agents.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A herpesvirus infection of CATTLE characterized by INFLAMMATION and NECROSIS of the mucous membranes of the upper RESPIRATORY TRACT.
Ruminant mammals of South America. They are related to camels.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The type species of DELTARETROVIRUS that causes a form of bovine lymphosarcoma (ENZOOTIC BOVINE LEUKOSIS) or persistent lymphocytosis.
A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures.
Established cell cultures that have the potential to propagate indefinitely.
A species of PNEUMOVIRUS causing an important respiratory infection in cattle. Symptoms include fever, conjunctivitis, and respiratory distress.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
Viruses parasitic on plants higher than bacteria.
A mammalian fetus expelled by INDUCED ABORTION or SPONTANEOUS ABORTION.
Viruses whose nucleic acid is DNA.
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Proteins found in any species of virus.
A species of gram-negative bacteria causing MASTITIS; ARTHRITIS; and RESPIRATORY TRACT DISEASES in CATTLE.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria normally commensal in the flora of CATTLE and SHEEP. But under conditions of physical or PHYSIOLOGICAL STRESS, it can cause MASTITIS in sheep and SHIPPING FEVER or ENZOOTIC CALF PNEUMONIA in cattle. Its former name was Pasteurella haemolytica.
The relationships of groups of organisms as reflected by their genetic makeup.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
A condition of chronic gastroenteritis in adult pigs and fatal gastroenteritis in piglets caused by a CORONAVIRUS.
The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses.
A species of CORONAVIRUS causing a fatal disease to pigs under 3 weeks old.
The type species of MORBILLIVIRUS and the cause of the highly infectious human disease MEASLES, which affects mostly children.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918.
A genus of the family CORONAVIRIDAE which causes respiratory or gastrointestinal disease in a variety of vertebrates.
Deoxyribonucleic acid that makes up the genetic material of viruses.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
The type species of LYSSAVIRUS causing rabies in humans and other animals. Transmission is mostly by animal bites through saliva. The virus is neurotropic multiplying in neurons and myotubes of vertebrates.
A species of the PESTIVIRUS genus causing exceedingly contagious and fatal hemorrhagic disease of swine.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 1. The H5N1 subtype, frequently referred to as the bird flu virus, is endemic in wild birds and very contagious among both domestic (POULTRY) and wild birds. It does not usually infect humans, but some cases have been reported.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Inactivation of viruses by non-immune related techniques. They include extremes of pH, HEAT treatment, ultraviolet radiation, IONIZING RADIATION; DESICCATION; ANTISEPTICS; DISINFECTANTS; organic solvents, and DETERGENTS.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
The functional hereditary units of VIRUSES.
A species of RESPIROVIRUS frequently isolated from small children with pharyngitis, bronchitis, and pneumonia.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
A family of proteins that promote unwinding of RNA during splicing and translation.
Infections with bacteria of the family PASTEURELLACEAE.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A lymphoid neoplastic disease in cattle caused by the bovine leukemia virus. Enzootic bovine leukosis may take the form of lymphosarcoma, malignant lymphoma, or leukemia but the presence of malignant cells in the blood is not a consistent finding.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 2. The H3N2 subtype was responsible for the Hong Kong flu pandemic of 1968.
A species of PESTIVIRUS causing a congenital sheep disease characterized by an abnormally hairy birth-coat, tremors, and poor growth.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum.
The family Cervidae of 17 genera and 45 species occurring nearly throughout North America, South America, and Eurasia, on most associated continental islands, and in northern Africa. Wild populations of deer have been established through introduction by people in Cuba, New Guinea, Australia, New Zealand, and other places where the family does not naturally occur. They are slim, long-legged and best characterized by the presence of antlers. Their habitat is forests, swamps, brush country, deserts, and arctic tundra. They are usually good swimmers; some migrate seasonally. (Walker's Mammals of the World, 5th ed, p1362)
A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE). It can infect birds and mammals. In humans, it is seen most frequently in Africa, Asia, and Europe presenting as a silent infection or undifferentiated fever (WEST NILE FEVER). The virus appeared in North America for the first time in 1999. It is transmitted mainly by CULEX spp mosquitoes which feed primarily on birds, but it can also be carried by the Asian Tiger mosquito, AEDES albopictus, which feeds mainly on mammals.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed)
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A province of Canada, lying between the provinces of Alberta and Manitoba. Its capital is Regina. It is entirely a plains region with prairie in the south and wooded country with many lakes and swamps in the north. The name was taken from the Saskatchewan River from the Cree name Kisiskatchewani Sipi, meaning rapid-flowing river. (From Webster's New Geographical Dictionary, 1988, p1083 & Room, Brewer's Dictionary of Names, 1992, p486)
An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293)
The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A species of gram-negative bacteria (currently incertae sedis) causing multisystem disease in CATTLE.
A species of RESPIROVIRUS, subfamily PARAMYXOVIRINAE, most often seen in conjunction with a secondary infection of MANNHEIMIA HAEMOLYTICA resulting in pneumonic pasteurellosis (PASTEURELLOSIS, PNEUMONIC).
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
The ability of a pathogenic virus to lie dormant within a cell (latent infection). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors.
An acute, highly contagious disease affecting swine of all ages and caused by the CLASSICAL SWINE FEVER VIRUS. It has a sudden onset with high morbidity and mortality.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
Membrane glycoproteins from influenza viruses which are involved in hemagglutination, virus attachment, and envelope fusion. Fourteen distinct subtypes of HA glycoproteins and nine of NA glycoproteins have been identified from INFLUENZA A VIRUS; no subtypes have been identified for Influenza B or Influenza C viruses.
The thin, yellow, serous fluid secreted by the mammary glands during pregnancy and immediately postpartum before lactation begins. It consists of immunologically active substances, white blood cells, water, protein, fat, and carbohydrates.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
Refers to animals in the period of time just after birth.
Miscellaneous agents found useful in the symptomatic treatment of diarrhea. They have no effect on the agent(s) that cause diarrhea, but merely alleviate the condition.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
Viruses that produce tumors.
The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.
The presence of viruses in the blood.
A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus.
A genus of FLAVIVIRIDAE causing parenterally-transmitted HEPATITIS C which is associated with transfusions and drug abuse. Hepatitis C virus is the type species.
Antibodies produced by a single clone of cells.
Spherical RNA viruses, in the order NIDOVIRALES, infecting a wide range of animals including humans. Transmission is by fecal-oral and respiratory routes. Mechanical transmission is also common. There are two genera: CORONAVIRUS and TOROVIRUS.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
Congenital disorder of lambs caused by a virus closely related to or identical with certain strains of bovine viral diarrhea virus.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Viruses whose taxonomic relationships have not been established.
Sensitive assay using radiolabeled ANTIGENS to detect specific ANTIBODIES in SERUM. The antigens are allowed to react with the serum and then precipitated using a special reagent such as PROTEIN A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis.
A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The type species of RUBULAVIRUS that causes an acute infectious disease in humans, affecting mainly children. Transmission occurs by droplet infection.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Viruses which produce a mottled appearance of the leaves of plants.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Diseases of the domestic or wild goat of the genus Capra.
The condition of harboring an infective organism without manifesting symptoms of infection. The organism must be readily transmissible to another susceptible host.
A species in the genus HEPATOVIRUS containing one serotype and two strains: HUMAN HEPATITIS A VIRUS and Simian hepatitis A virus causing hepatitis in humans (HEPATITIS A) and primates, respectively.
A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.
Elements of limited time intervals, contributing to particular results or situations.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
Infections produced by oncogenic viruses. The infections caused by DNA viruses are less numerous but more diverse than those caused by the RNA oncogenic viruses.
QUATERNARY AMMONIUM COMPOUNDS containing three methyl groups, having the general formula of (CH3)3N+R.
A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized.
A species of POLYOMAVIRUS apparently infecting over 90% of children but not clearly associated with any clinical illness in childhood. The virus remains latent in the body throughout life and can be reactivated under certain circumstances.
EPIDEMIOLOGIC STUDIES based on the detection through serological testing of characteristic change in the serum level of specific ANTIBODIES. Latent subclinical infections and carrier states can thus be detected in addition to clinically overt cases.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
6-(Methylthio)-9-beta-D-ribofuranosylpurine. An analog of inosine with a methylthio group replacing the hydroxyl group in the 6-position.
A species of POLYOMAVIRUS, originally isolated from the brain of a patient with progressive multifocal leukoencephalopathy. The patient's initials J.C. gave the virus its name. Infection is not accompanied by any apparent illness but serious demyelinating disease can appear later, probably following reactivation of latent virus.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).
A form of fluorescent antibody technique utilizing a fluorochrome conjugated to an antibody, which is added directly to a tissue or cell suspension for the detection of a specific antigen. (Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
The type species of ORBIVIRUS causing a serious disease in sheep, especially lambs. It may also infect wild ruminants and other domestic animals.
The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl.
A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS).
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
Virus diseases caused by the ORTHOMYXOVIRIDAE.
Proteins prepared by recombinant DNA technology.
Proteins that form the CAPSID of VIRUSES.
INFLAMMATION of the UDDER in cows.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The type species of RESPIROVIRUS in the subfamily PARAMYXOVIRINAE. It is the murine version of HUMAN PARAINFLUENZA VIRUS 1, distinguished by host range.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk.
One of the type I interferons produced by fibroblasts in response to stimulation by live or inactivated virus or by double-stranded RNA. It is a cytokine with antiviral, antiproliferative, and immunomodulating activity.
Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Pneumovirus infections caused by the RESPIRATORY SYNCYTIAL VIRUSES. Humans and cattle are most affected but infections in goats and sheep have been reported.
Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS.
A species of DELTAPAPILLOMAVIRUS infecting cattle.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
The sum of the weight of all the atoms in a molecule.
A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The type species in the genus NOROVIRUS, first isolated in 1968 from the stools of school children in Norwalk, Ohio, who were suffering from GASTROENTERITIS. The virions are non-enveloped spherical particles containing a single protein. Multiple strains are named after the places where outbreaks have occurred.
The type species of the FLAVIVIRUS genus. Principal vector transmission to humans is by AEDES spp. mosquitoes.
Infections with bacteria of the species ESCHERICHIA COLI.
The science of breeding, feeding and care of domestic animals; includes housing and nutrition.
Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed)
The type species of TOBAMOVIRUS which causes mosaic disease of tobacco. Transmission occurs by mechanical inoculation.
Genotypic differences observed among individuals in a population.
A species of CORONAVIRUS infecting neonatal calves, presenting as acute diarrhea, and frequently leading to death.
The type species of LEPORIPOXVIRUS causing infectious myxomatosis, a severe generalized disease, in rabbits. Tumors are not always present.
A species of ORTHOPOXVIRUS that is the etiologic agent of COWPOX. It is closely related to but antigenically different from VACCINIA VIRUS.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
The type species of PNEUMOVIRUS and an important cause of lower respiratory disease in infants and young children. It frequently presents with bronchitis and bronchopneumonia and is further characterized by fever, cough, dyspnea, wheezing, and pallor.
A country spanning from central Asia to the Pacific Ocean.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
A species of ORTHOPOXVIRUS causing infections in humans. No infections have been reported since 1977 and the virus is now believed to be virtually extinct.
A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES.
A species of ARENAVIRUS, part of the Old World Arenaviruses (ARENAVIRUSES, OLD WORLD), and the etiologic agent of LASSA FEVER. LASSA VIRUS is a common infective agent in humans in West Africa. Its natural host is the multimammate mouse Mastomys natalensis.
A genus of protozoan parasites of the subclass COCCIDIA. Its species are parasitic in dogs, cattle, goats, and sheep, among others. N. caninum, a species that mainly infects dogs, is intracellular in neural and other cells of the body, multiplies by endodyogeny, has no parasitophorous vacuole, and has numerous rhoptries. It is known to cause lesions in many tissues, especially the brain and spinal cord as well as abortion in the expectant mother.
An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia.
Inflammation of the RECTUM and the distal portion of the COLON.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A species of ALPHAVIRUS causing an acute dengue-like fever.
The oldest recognized genus of the family PASTEURELLACEAE. It consists of several species. Its organisms occur most frequently as coccobacillus or rod-shaped and are gram-negative, nonmotile, facultative anaerobes. Species of this genus are found in both animals and humans.
Biological properties, processes, and activities of VIRUSES.
A collection of single-stranded RNA viruses scattered across the Bunyaviridae, Flaviviridae, and Togaviridae families whose common property is the ability to induce encephalitic conditions in infected hosts.
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions.
DNA virus infections refer to diseases caused by viruses that incorporate double-stranded or single-stranded DNA as their genetic material, replicating within host cell nucleus or cytoplasm, and including various families such as Herpesviridae, Adenoviridae, Papillomaviridae, and Parvoviridae.
Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES.
Infection with human herpesvirus 4 (HERPESVIRUS 4, HUMAN); which may facilitate the development of various lymphoproliferative disorders. These include BURKITT LYMPHOMA (African type), INFECTIOUS MONONUCLEOSIS, and oral hairy leukoplakia (LEUKOPLAKIA, HAIRY).
The type species of APHTHOVIRUS, causing FOOT-AND-MOUTH DISEASE in cloven-hoofed animals. Several different serotypes exist.
INFLAMMATION of any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM. Causes of gastroenteritis are many including genetic, infection, HYPERSENSITIVITY, drug effects, and CANCER.
The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.

Sequence and structural elements at the 3' terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. (1/427)

Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus in the family Flaviviridae, has a positive-stranded RNA genome consisting of a single open reading frame and untranslated regions (UTRs) at the 5' and 3' ends. Computer modeling suggested the 3' UTR comprised single-stranded regions as well as stem-loop structures-features that were suspected of being essentially implicated in the viral RNA replication pathway. Employing a subgenomic BVDV RNA (DI9c) that was shown to function as an autonomous RNA replicon (S.-E. Behrens, C. W. Grassmann, H. J. Thiel, G. Meyers, and N. Tautz, J. Virol. 72:2364-2372, 1998) the goal of this study was to determine the RNA secondary structure of the 3' UTR by experimental means and to investigate the significance of defined RNA motifs for the RNA replication pathway. Enzymatic and chemical structure probing revealed mainly the conserved terminal part (termed 3'C) of the DI9c 3' UTR containing distinctive RNA motifs, i.e., a stable stem-loop, SL I, near the RNA 3' terminus and a considerably less stable stem-loop, SL II, that forms the 5' portion of 3'C. SL I and SL II are separated by a long single-stranded intervening sequence, denoted SS. The 3'-terminal four C residues of the viral RNA were confirmed to be single stranded as well. Other intramolecular interactions, e.g., with upstream DI9c RNA sequences, were not detected under the experimental conditions used. Mutagenesis of the DI9c RNA demonstrated that the SL I and SS motifs do indeed play essential roles during RNA replication. Abolition of RNA stems, which ought to maintain the overall folding of SL I, as well as substitution of certain single-stranded nucleotides located in the SS region or SL I loop region, gave rise to DI9c derivatives unable to replicate. Conversely, SL I stems comprising compensatory base exchanges turned out to support replication, but mostly to a lower degree than the original structure. Surprisingly, replacement of a number of residues, although they were previously defined as constituents of a highly conserved stretch of sequence of the SS motif, had little effect on the replication ability of DI9c. In summary, these results indicate that RNA structure as well as sequence elements harbored within the 3'C region of the BVDV 3' UTR create a common cis-acting element of the replication process. The data further point at possible interaction sites of host and/or viral proteins and thus provide valuable information for future experiments intended to identify and characterize these factors.  (+info)

Bovine herpes virus expressing envelope protein (E2) of bovine viral diarrhea virus as a vaccine candidate. (2/427)

The gene encoding the envelope protein (E2) of bovine viral diarrhea virus (BVDV) was expressed under the thymidine kinase (TK) promoter of Korean bovine herpesvirus 1 (BHV-1) isolate. Thymidine kinase negative (TK-) BHV-1 recombinants expressing E2 of BVDV were constructed and the expression of E2 was identified by immunofluorescence and Western blotting. Compared to wild type BHV-1, the recombinant BHV-1 had a delayed cytopathogenic effect in cells. The immunogenicity of the recombinant BHV-1 was examined in guinea pigs and cattle. Although an increase in body temperature was detected for a few days, the inoculated cattle returned to normal temperature with the development of neutralizing antibodies to BVDV.  (+info)

Experimental infection of calves with bovine viral diarrhea virus genotype II (NY-93). (3/427)

To ascertain the virulence of bovine viral diarrhea virus (BVDV) genotype II, isolate NY-93 was inoculated intranasally into 3 calves, 2 of which were treated with a synthetic glucocorticoid prior to and after virus inoculation. Anorexia, fever (up to 42 C), dyspnea, and hemorrhagic diarrhea developed 6 days after intranasal inoculation with BVDV NY-93. The condition of all calves deteriorated further until the end of the study on day 14 postinoculation. The most significant postmortem macroscopic changes in all calves were limited to the gastrointestinal tract and consisted of moderate to severe congestion of the mucosa with multifocal hemorrhages. Microscopic lesions found in the gastrointestinal tract were similar to those observed in mucosal disease, including degeneration and necrosis of crypt epithelium and necrosis of lymphoid tissue throughout the ileum, colon, and rectum. The basal stratum of the epithelium of tongue, esophagus, and rumen had scattered individual necrotic cells. Spleen and lymph nodes had lymphocytolysis and severe lymphoid depletion. Severe acute fibrinous bronchopneumonia was present in dexamethasone-treated calves. Abundant viral antigen was detected by immunohistochemistry in the squamous epithelium of tongue, esophagus, and forestomachs. BVDV antigen was prominent in cells of the media of small arteries and endothelial cells. The presence of infectious virus in tissues correlated with an absence of circulating neutralizing antibodies. These findings highlight the potential of BVDV genotype II to cause severe disease in normal and stressed cattle.  (+info)

Oxidative stress in cells infected with bovine viral diarrhoea virus: a crucial step in the induction of apoptosis. (4/427)

Bovine viral diarrhoea virus (BVDV) belongs to the genus Pestivirus of the family Flaviviridae. Both a noncytopathic (ncp) and an antigenically related cytopathic (cp) BVDV can be isolated from persistently infected animals suffering from mucosal disease. In every case studied so far, the genomic changes leading to the cp biotype correlate with the production of the NS3 nonstructural protein, which, in the ncp biotype, is present in its uncleaved form, NS23. This report shows that, in contrast to ncp BVDV, the cp biotype induces apoptosis in cultured embryonic bovine turbinate cells. Early in the process of apoptosis, cells show a rise in the intracellular level of reactive oxygen species, which is indicative of oxidative stress. This precedes two hallmarks of apoptosis, caspase activation as shown by cleavage of the caspase substrate poly(ADP-ribose) polymerase, and DNA fragmentation. Cells were protected from apoptosis only by certain antioxidants (butylated hydroxyanisole and ebselen), whereas others (N-acetylcysteine, pyrrolidine dithiocarbamate, lipoic acid, dihydrolipoic acid and tiron) turned out to be ineffective. Antioxidants that protected cells from apoptosis prevented oxidative stress but failed to block virus growth. These observations suggest that oxidative stress, which occurs early in the interaction between cp BVDV and its host cell, may be a crucial event in the sequence leading to apoptotic cell death. Hence, apoptosis is not required for the multiplication of the cp biotype of BVDV.  (+info)

Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. (5/427)

The glycoproteins E(rns) of classical swine fever virus (CSFV) and E(rns) and E2 of bovine viral diarrhoea virus (BVDV) are shown to be located at the surface of infected cells by the use of indirect immunofluorescence and by cytofluorometric analysis. The positive immunostaining of the cell surface was further analysed by immunogold electron microscopy and it could be shown that only extracellular virions were labelled. Gold granules were not seen at the cellular plasma membrane. In contrast to BVDV E2, the CSFV E2 of virions sticking to the plasma membrane was not accessible to the respective monoclonal antibodies. However, CSFV particles isolated from culture supernatant were able to bind both monoclonal anti-E(rns) and anti-E2 antibodies. For CSFV and BVDV, binding of anti-E(rns) antibodies to the virions was more pronounced than that of anti-E2. This finding was unexpected since E2 is considered to be the immunodominant glycoprotein.  (+info)

Bovine viral diarrhea virus quasispecies during persistent infection. (6/427)

Analysis of viral genome sequences from two calves persistently infected with bovine viral diarrhea virus revealed a quasispecies distribution. The sequences encoding the glycoprotein E2 were variable, translating to a number of changes in predicted amino acid sequences. The NS3 region was found to be highly conserved in both animals. The number of E2 clones showing variant amino acids increased with the age of the animal and comparison of the consensus sequences at the different time points confirmed differences in the predicted E2 sequences over time. The immune tolerance that allows the lifelong persistence of this viral infection is highly specific. It is likely that some of the variant viruses generated within these animals will differ antigenically from the persisting virus and be recognized by the immune system. Evidence of an immune response to persisting virus infection was gathered from a larger sample of cattle. Serum neutralizing antibodies were found in 4 of 21 persistently infected animals. Accumulations of viral RNA in the lymph nodes of all animals examined, particularly in the germinal center light zone, may represent antigenic variants held in the form of immune complexes on the processes of follicular dendritic cells.  (+info)

Internal initiation of translation of bovine viral diarrhea virus RNA. (7/427)

Initiation of translation on the bovine viral diarrhea virus (BVDV) internal ribosomal entry site (IRES) was reconstituted in vitro from purified translation components to the stage of 48S ribosomal initiation complex formation. Ribosomal binding and positioning on this mRNA to form a 48S complex did not require the initiation factors eIF4A, eIF4B, or eIF4F, and translation of this mRNA was resistant to inhibition by a trans-dominant eIF4A mutant that inhibited cap-mediated initiation of translation. The BVDV IRES contains elements that are bound independently by ribosomal 40S subunits and by eukaryotic initiation factor (eIF) 3, as well as determinants that mediate direct attachment of 43S ribosomal complexes to the initiation codon.  (+info)

Comparison of type I and type II bovine viral diarrhea virus infection in swine. (8/427)

Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs.  (+info)

Bovine viral diarrhea (BVD) is a viral disease that primarily affects cattle, but can also infect other ruminants such as sheep and goats. The disease is caused by the bovine viral diarrhea virus (BVDV), which belongs to the family Flaviviridae and genus Pestivirus.

There are two biotypes of BVDV, type 1 and type 2, which can be further divided into various subtypes based on their genetic makeup. The virus can cause a range of clinical signs in infected animals, depending on the age and immune status of the animal, as well as the strain of the virus.

Acute infection with BVDV can cause fever, lethargy, loss of appetite, nasal discharge, and diarrhea, which can be severe and life-threatening in young calves. In addition, BVDV can cause reproductive problems such as abortion, stillbirth, and the birth of persistently infected (PI) calves. PI animals are those that were infected with BVDV in utero and have the virus continuously present in their bloodstream and other tissues throughout their lives. These animals serve as a source of infection for other cattle and can spread the virus to naive herds.

BVDV is transmitted through direct contact with infected animals or their bodily fluids, such as saliva, nasal secretions, and feces. The virus can also be spread indirectly through contaminated feed, water, and equipment. Prevention and control measures for BVDV include biosecurity practices, vaccination, and testing to identify and remove PI animals from herds.

Bovine Virus Diarrhea-Mucosal Disease (BVD-MD) is a complex of diseases caused by the Bovine Virus Diarrhea virus (BVDV) and is a significant problem in the global cattle industry. The disease can manifest in various forms, from mild respiratory or reproductive issues to severe, life-threatening conditions such as mucosal disease.

Mucosal disease is the most acute form of BVD-MD and occurs when an animal that has been persistently infected (PI) with a specific strain of BVDV develops a secondary infection with a cytopathic biotype of the virus. PI animals are those that were infected in utero with BVDV before they developed immune competence, resulting in them shedding large amounts of the virus throughout their lives.

The secondary infection with the cytopathic biotype of BVDV causes extensive damage to the animal's lymphoid tissues and gastrointestinal tract, leading to severe clinical signs such as:

1. Profuse diarrhea
2. High fever (up to 41°C or 105.8°F)
3. Ulcerative lesions in the mouth, esophagus, and intestines
4. Severe dehydration
5. Depression and loss of appetite
6. Weight loss
7. Weakness
8. Increased respiratory rate
9. Swelling of the head, neck, and brisket
10. Death within 2-3 weeks after the onset of clinical signs

Morbidity and mortality rates in BVD-MD outbreaks can be high, causing significant economic losses for farmers due to decreased production, increased veterinary costs, and animal deaths. Prevention strategies include vaccination programs, biosecurity measures, and testing for PI animals to remove them from the herd.

Bovine Viral Diarrhea Virus 1 (BVDV-1) is a species of the Pestivirus genus within the Flaviviridae family. It is a small, enveloped, single-stranded RNA virus that primarily affects cattle, causing a wide range of clinical signs including diarrhea, fever, lethargy, respiratory and reproductive problems. The virus can be transmitted through direct contact with infected animals or their bodily fluids, as well as indirectly through contaminated objects or environments. BVDV-1 infection can result in acute or persistent infections, with the latter being particularly detrimental to the health and productivity of affected herds.

It's worth noting that while diarrhea is a common symptom of BVDV-1 infection, it is not exclusively associated with this virus, and other causes should also be considered when diagnosing and managing cases of diarrhea in cattle.

Diarrhea is a condition in which an individual experiences loose, watery stools frequently, often exceeding three times a day. It can be acute, lasting for several days, or chronic, persisting for weeks or even months. Diarrhea can result from various factors, including viral, bacterial, or parasitic infections, food intolerances, medications, and underlying medical conditions such as inflammatory bowel disease or irritable bowel syndrome. Dehydration is a potential complication of diarrhea, particularly in severe cases or in vulnerable populations like young children and the elderly.

Bovine viral diarrhea virus 2 (BVDV-2) is a species within the genus Pestivirus, which belongs to the family Flaviviridae. This single-stranded RNA virus primarily affects cattle and causes bovine viral diarrhea (BVD), a significant disease complex in the global cattle industry. The BVDV-2 infection can lead to various clinical manifestations, including respiratory, enteric, reproductive, and immunosuppressive symptoms.

The virus is transmitted horizontally through direct contact with infected animals or their secretions, as well as vertically from an infected dam to her offspring during pregnancy. The severity of the disease depends on factors such as the age and immune status of the host, viral strain, and route of infection.

Clinical signs in adult cattle may include diarrhea (although less common with BVDV-2 compared to BVDV-1), respiratory distress, fever, lethargy, decreased appetite, and milk production loss. Infection during pregnancy can lead to abortion, stillbirth, or congenital defects in the offspring, depending on the stage of gestation at which the infection occurs.

BVDV-2 is also associated with immunosuppression, making infected animals more susceptible to secondary bacterial and viral infections. Prevention strategies include biosecurity measures, vaccination programs, and regular monitoring for early detection and removal of persistently infected (PI) animals from the herd.

It's important to note that BVDV-2 is not a human pathogen and does not cause diarrhea or any other symptoms in humans.

Pestivirus is a genus of viruses in the family Flaviviridae, which are enveloped, single-stranded, positive-sense RNA viruses. There are several species within this genus that can cause disease in animals, including bovine viral diarrhea virus (BVDV) in cattle, border disease virus (BDV) in sheep, and classical swine fever virus (CSFV) in pigs. These viruses can cause a range of clinical signs, including respiratory and enteric diseases, reproductive failures, and immunosuppression. They are primarily spread through direct contact with infected animals or their bodily fluids, and can also be transmitted through contaminated fomites and semen. Prevention and control measures include vaccination, biosecurity practices, and testing and culling of infected animals.

Porcine Epidemic Diarrhea Virus (PEDV) is an enveloped, single-stranded, positive-sense RNA virus belonging to the family Coronaviridae and the genus Alphacoronavirus. It primarily affects piglets, causing severe watery diarrhea, vomiting, dehydration, and high mortality rates, especially in neonatal and suckling pigs. The infection spreads rapidly in swine herds, leading to significant economic losses in the pork industry. PEDV is transmitted through fecal-oral route and can be spread via contaminated feed, water, and transportation vehicles, as well as through infected adult pigs.

Pestivirus infections refer to a group of diseases caused by viruses of the genus Pestivirus, which belongs to the family Flaviviridae. There are several different types of Pestiviruses, including bovine viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2), classical swine fever virus (CSFV), and border disease virus (BDV).

These viruses can cause a range of clinical signs in animals, depending on the species infected, the age and immune status of the animal, and the strain of the virus. In general, Pestivirus infections can cause fever, lethargy, loss of appetite, and various symptoms related to the respiratory, digestive, or reproductive systems.

For example, BVDV-1 and BVDV-2 are important pathogens in cattle and can cause a variety of clinical signs, including respiratory disease, diarrhea, reproductive failure, and immunosuppression. CSFV is a highly contagious virus that affects pigs and can cause fever, loss of appetite, hemorrhages, and neurological symptoms. BDV infects sheep and goats and can cause abortion, stillbirth, and congenital defects in offspring.

Prevention and control measures for Pestivirus infections include vaccination, biosecurity practices, and testing and culling of infected animals.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

RNA viruses are a type of virus that contain ribonucleic acid (RNA) as their genetic material, as opposed to deoxyribonucleic acid (DNA). RNA viruses replicate by using an enzyme called RNA-dependent RNA polymerase to transcribe and replicate their RNA genome.

There are several different groups of RNA viruses, including:

1. Negative-sense single-stranded RNA viruses: These viruses have a genome that is complementary to the mRNA and must undergo transcription to produce mRNA before translation can occur. Examples include influenza virus, measles virus, and rabies virus.
2. Positive-sense single-stranded RNA viruses: These viruses have a genome that can serve as mRNA and can be directly translated into protein after entry into the host cell. Examples include poliovirus, rhinoviruses, and coronaviruses.
3. Double-stranded RNA viruses: These viruses have a genome consisting of double-stranded RNA and use a complex replication strategy involving both transcription and reverse transcription. Examples include rotaviruses and reoviruses.

RNA viruses are known to cause a wide range of human diseases, ranging from the common cold to more severe illnesses such as hepatitis C, polio, and COVID-19. Due to their high mutation rates and ability to adapt quickly to new environments, RNA viruses can be difficult to control and treat with antiviral drugs or vaccines.

Infantile diarrhea is a medical condition characterized by loose, watery stools in infants and young children. It can be caused by various factors such as viral or bacterial infections, food intolerances, allergies, or malabsorption disorders. In some cases, it may also be associated with certain medications or underlying medical conditions.

Infantile diarrhea can lead to dehydration and other complications if not treated promptly and properly. It is important to monitor the infant's hydration status by checking for signs of dehydration such as dry mouth, sunken eyes, and decreased urine output. If diarrhea persists or is accompanied by vomiting, fever, or other concerning symptoms, it is recommended to seek medical attention promptly.

Treatment for infantile diarrhea typically involves rehydration with oral electrolyte solutions, as well as addressing the underlying cause of the diarrhea if possible. In severe cases, hospitalization and intravenous fluids may be necessary.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

Bovine Herpesvirus 1 (BoHV-1) is a species-specific virus that belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, and genus Varicellovirus. This virus is the causative agent of Infectious Bovine Rhinotracheitis (IBR), which is a significant respiratory disease in cattle. The infection can also lead to reproductive issues, including abortions, stillbirths, and inflammation of the genital tract (infectious pustular vulvovaginitis) in cows and infertility in bulls.

The virus is primarily transmitted through direct contact with infected animals, their respiratory secretions, or contaminated objects. Once an animal is infected, BoHV-1 establishes a lifelong latency in the nervous system, from where it can periodically reactivate and shed the virus, even without showing any clinical signs. This makes eradication of the virus challenging in cattle populations.

Vaccines are available to control IBR, but they may not prevent infection or shedding entirely. Therefore, ongoing management practices, such as biosecurity measures and surveillance programs, are essential to minimize the impact of this disease on cattle health and productivity.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Bovine Hemorrhagic Syndrome (BHS) is a term used to describe a group of diseases in cattle that are characterized by the sudden onset of hemorrhages (bleeding) in various parts of the body. The most common form of BHS is known as bovine viral diarrhea virus (BVDV) associated hemorrhagic syndrome, which is caused by a specific strain of the BVDV.

In this syndrome, the virus infects and damages the endothelial cells that line the blood vessels, leading to increased permeability and bleeding. The symptoms of BHS can vary widely, but often include fever, lethargy, loss of appetite, swelling, and bruising of the skin, as well as internal bleeding in the lungs, intestines, and other organs. In severe cases, BHS can lead to rapid death due to extensive blood loss.

It's important to note that BVDV is not the only cause of hemorrhagic syndrome in cattle, and other infectious agents such as bacteria or other viruses can also cause similar symptoms. Accurate diagnosis requires laboratory testing to identify the specific causative agent.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Coronaviruses are a large family of viruses that can cause illnesses ranging from the common cold to more severe diseases such as pneumonia. The name "coronavirus" comes from the Latin word "corona," which means crown or halo, reflecting the distinctive appearance of the virus particles under electron microscopy, which have a crown-like structure due to the presence of spike proteins on their surface.

Coronaviruses are zoonotic, meaning they can be transmitted between animals and humans. Some coronaviruses are endemic in certain animal populations and occasionally jump to humans, causing outbreaks of new diseases. This is what happened with Severe Acute Respiratory Syndrome (SARS) in 2002-2003, Middle East Respiratory Syndrome (MERS) in 2012, and the most recent Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2.

Coronavirus infections typically cause respiratory symptoms such as cough, shortness of breath, and fever. In severe cases, they can lead to pneumonia, acute respiratory distress syndrome (ARDS), and even death, especially in older adults or people with underlying medical conditions. Other symptoms may include fatigue, muscle aches, headache, sore throat, and gastrointestinal issues such as nausea, vomiting, and diarrhea.

Preventive measures for coronavirus infections include frequent hand washing, wearing face masks, practicing social distancing, avoiding close contact with sick individuals, and covering the mouth and nose when coughing or sneezing. There are currently vaccines available to prevent COVID-19, which have been shown to be highly effective in preventing severe illness, hospitalization, and death from the disease.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Vaccinia virus is a large, complex DNA virus that belongs to the Poxviridae family. It is the virus used in the production of the smallpox vaccine. The vaccinia virus is not identical to the variola virus, which causes smallpox, but it is closely related and provides cross-protection against smallpox infection.

The vaccinia virus has a unique replication cycle that occurs entirely in the cytoplasm of infected cells, rather than in the nucleus like many other DNA viruses. This allows the virus to evade host cell defenses and efficiently produce new virions. The virus causes the formation of pocks or lesions on the skin, which contain large numbers of virus particles that can be transmitted to others through close contact.

Vaccinia virus has also been used as a vector for the delivery of genes encoding therapeutic proteins, vaccines against other infectious diseases, and cancer therapies. However, the use of vaccinia virus as a vector is limited by its potential to cause adverse reactions in some individuals, particularly those with weakened immune systems or certain skin conditions.

Virus shedding refers to the release of virus particles by an infected individual, who can then transmit the virus to others through various means such as respiratory droplets, fecal matter, or bodily fluids. This occurs when the virus replicates inside the host's cells and is released into the surrounding environment, where it can infect other individuals. The duration of virus shedding varies depending on the specific virus and the individual's immune response. It's important to note that some individuals may shed viruses even before they show symptoms, making infection control measures such as hand hygiene, mask-wearing, and social distancing crucial in preventing the spread of infectious diseases.

I. Definition:

An abortion in a veterinary context refers to the intentional or unintentional termination of pregnancy in a non-human animal before the fetus is capable of surviving outside of the uterus. This can occur spontaneously (known as a miscarriage) or be induced through medical intervention (induced abortion).

II. Common Causes:

Spontaneous abortions may result from genetic defects, hormonal imbalances, infections, exposure to toxins, trauma, or other maternal health issues. Induced abortions are typically performed for population control, humane reasons (such as preventing the birth of a severely deformed or non-viable fetus), or when the pregnancy poses a risk to the mother's health.

III. Methods:

Veterinarians may use various methods to induce abortion depending on the species, stage of gestation, and reason for the procedure. These can include administering drugs that stimulate uterine contractions (such as prostaglandins), physically removing the fetus through surgery (dilation and curettage or hysterectomy), or using techniques specific to certain animal species (e.g., intrauterine infusion of hypertonic saline in equids).

IV. Ethical Considerations:

The ethics surrounding veterinary abortions are complex and multifaceted, often involving considerations related to animal welfare, conservation, population management, and human-animal relationships. Veterinarians must weigh these factors carefully when deciding whether to perform an abortion and which method to use. In some cases, legal regulations may also influence the decision-making process.

V. Conclusion:

Abortion in veterinary medicine is a medical intervention that can be used to address various clinical scenarios, ranging from unintentional pregnancy loss to deliberate termination of pregnancy for humane or population control reasons. Ethical considerations play a significant role in the decision-making process surrounding veterinary abortions, and veterinarians must carefully evaluate each situation on a case-by-case basis.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

Bovine Respiratory Disease Complex (BRDC), also known as "Shipping Fever" or "Pneumonic Complex," is a significant respiratory disease in cattle, particularly affecting feedlot calves and animals undergoing transportation or commingling. It is a multifactorial disease, meaning that it results from the interaction of several factors, including:

1. Infectious agents: Viruses (such as bovine herpesvirus-1, bovine respiratory syncytial virus, parainfluenza virus-3, and bovine viral diarrhea virus) and bacteria (like Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis).
2. Environmental factors: Poor ventilation, dust, ammonia, and other air quality issues in confined spaces can contribute to the development of BRDC.
3. Stressors: Weaning, transportation, commingling, castration, and other management practices can cause stress and weaken the animal's immune system, making them more susceptible to BRDC.
4. Host factors: Age, genetics, nutritional status, and existing health conditions may also play a role in an animal's vulnerability to BRDC.

The clinical signs of BRDC can vary but often include coughing, nasal discharge, difficulty breathing, fever, lethargy, and reduced appetite. In severe cases, it can lead to pneumonia and even death. Prevention strategies typically involve vaccination programs, management practices that minimize stress, maintaining good air quality, and prompt treatment of sick animals.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Infectious Bovine Rhinotracheitis (IBR) is a viral disease in cattle, also known as Red Nose or Cattle Distemper. It is caused by the bovine herpesvirus type 1 (BoHV-1). The virus primarily affects the upper respiratory tract, leading to symptoms such as nasal discharge, sneezing, coughing, and fever. In severe cases, it can also cause ulcers in the mouth and cornea, abortions in pregnant cows, and inflammation of the genital organs (infectious pustular vulvovaginitis or balanoposthitis).

IBR is highly contagious and can be spread through direct contact with infected animals, contaminated feed and water, and aerosols from respiratory secretions. The virus can establish latency in the nervous system of recovered animals, which can lead to recurrent outbreaks in a herd. IBR is a significant disease in the cattle industry due to its economic impact, including decreased milk production, weight loss, reduced fertility, and increased mortality rates. Vaccination is available to control the spread of the disease and reduce its clinical signs.

New World camelids are a family of mammals (Camelidae) that are native to South America. The family includes four species: the llama (Lama glama), the alpaca (Vicugna pacos), the guanaco (Lama guanicoe), and the vicuña (Vicugna vicugna). These animals are characterized by their long necks, long legs, and a pad on their chest instead of a true knee joint. They are known for their ability to survive in harsh environments with limited water and food resources.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Bovine Leukemia Virus (BLV) is a retrovirus that infects cattle and causes enzootic bovine leukosis, a neoplastic disease characterized by the proliferation of malignant B-lymphocytes. The virus primarily targets the animal's immune system, leading to a decrease in the number of white blood cells (leukopenia) and an increased susceptibility to other infections.

The virus is transmitted horizontally through close contact with infected animals or vertically from mother to offspring via infected milk or colostrum. The majority of BLV-infected cattle remain asymptomatic carriers, but a small percentage develop clinical signs such as lymphoma, weight loss, and decreased milk production.

BLV is closely related to human T-cell leukemia virus (HTLV), and both viruses belong to the Retroviridae family, genus Deltaretrovirus. However, it's important to note that BLV does not cause leukemia or any other neoplastic diseases in humans.

Simian Virus 40 (SV40) is a polyomavirus that is found in both monkeys and humans. It is a DNA virus that has been extensively studied in laboratory settings due to its ability to transform cells and cause tumors in animals. In fact, SV40 was discovered as a contaminant of poliovirus vaccines that were prepared using rhesus monkey kidney cells in the 1950s and 1960s.

SV40 is not typically associated with human disease, but there has been some concern that exposure to the virus through contaminated vaccines or other means could increase the risk of certain types of cancer, such as mesothelioma and brain tumors. However, most studies have failed to find a consistent link between SV40 infection and cancer in humans.

The medical community generally agrees that SV40 is not a significant public health threat, but researchers continue to study the virus to better understand its biology and potential impact on human health.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Respiratory Syncytial Virus (RSV), bovine refers to a species-specific strain of the Respiratory Syncytial Virus that primarily infects cattle. It is a member of the Pneumoviridae family and Orthopneumovirus genus. This virus is closely related to human RSV, and it can cause respiratory infections in young calves, leading to symptoms such as nasal discharge, coughing, difficulty breathing, and pneumonia.

Bovine RSV shares many similarities with its human counterpart, including the ability to form syncytia (multinucleated giant cells) in infected tissues. However, bovine RSV is not known to infect humans or cause disease in humans. It is primarily studied as a model organism for understanding the biology and pathogenesis of RSV infections in general.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

A plant virus is not defined in medical terms, as viruses are typically considered within the context of living organisms and plants are not classified as such. However, I can provide a general virology definition for you:

Plant viruses are small infectious agents that consist of nucleic acid (DNA or RNA) enclosed in a protein coat. They infect various plant species, causing a wide range of symptoms and diseases, which can result in significant economic losses in agriculture and horticulture. Plant viruses lack the ability to replicate outside a host cell, and they rely on the host's metabolic machinery for their reproduction. They can be transmitted through various means, such as insect vectors, seeds, or mechanical contact.

An aborted fetus refers to a developing human organism that is expelled or removed from the uterus before it is viable, typically as a result of an induced abortion. An abortion is a medical procedure that intentionally ends a pregnancy and can be performed through various methods, depending on the stage of the pregnancy.

It's important to note that the term "abortion" is often used in different contexts and may carry different connotations depending on one's perspective. In medical terminology, an abortion refers specifically to the intentional ending of a pregnancy before viability. However, in other contexts, the term may be used more broadly to refer to any spontaneous or induced loss of a pregnancy, including miscarriages and stillbirths.

The definition of "viable" can vary, but it generally refers to the point at which a fetus can survive outside the uterus with medical assistance, typically around 24 weeks of gestation. Fetal viability is a complex issue that depends on many factors, including the availability and accessibility of medical technology and resources.

In summary, an aborted fetus is a developing human organism that is intentionally expelled or removed from the uterus before it is viable, typically as a result of a medical procedure called an abortion.

DNA viruses are a type of virus that contain DNA (deoxyribonucleic acid) as their genetic material. These viruses replicate by using the host cell's machinery to synthesize new viral components, which are then assembled into new viruses and released from the host cell.

DNA viruses can be further classified based on the structure of their genomes and the way they replicate. For example, double-stranded DNA (dsDNA) viruses have a genome made up of two strands of DNA, while single-stranded DNA (ssDNA) viruses have a genome made up of a single strand of DNA.

Examples of DNA viruses include herpes simplex virus, varicella-zoster virus, human papillomavirus, and adenoviruses. Some DNA viruses are associated with specific diseases, such as cancer (e.g., human papillomavirus) or neurological disorders (e.g., herpes simplex virus).

It's important to note that while DNA viruses contain DNA as their genetic material, RNA viruses contain RNA (ribonucleic acid) as their genetic material. Both DNA and RNA viruses can cause a wide range of diseases in humans, animals, and plants.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

"Mycoplasma bovis" is a species of bacteria that lack a cell wall and are characterized by their small size. They can cause various diseases in cattle, including pneumonia, mastitis (inflammation of the mammary gland), arthritis, and otitis (inflammation of the ear). The bacteria can be transmitted through direct contact between animals, contaminated milk, and aerosols. Infection with Mycoplasma bovis can result in decreased productivity and increased mortality in affected herds, making it a significant concern for the cattle industry. Diagnosis is often made through culture or PCR-based tests, and treatment typically involves the use of antibiotics, although resistance to certain antibiotics has been reported. Prevention strategies include biosecurity measures such as testing and culling infected animals, as well as good hygiene practices to limit the spread of the bacteria.

"Mannheimia haemolytica" is a gram-negative, rod-shaped bacterium that is commonly found as part of the normal flora in the upper respiratory tract of cattle and other ruminants. However, under certain conditions such as stress, viral infection, or sudden changes in temperature or humidity, the bacteria can multiply rapidly and cause a severe respiratory disease known as shipping fever or pneumonic pasteurellosis.

The bacterium is named "haemolytica" because it produces a toxin that causes hemolysis, or the breakdown of red blood cells, resulting in the characteristic clear zones around colonies grown on blood agar plates. The bacteria can also cause other symptoms such as fever, coughing, difficulty breathing, and depression.

"Mannheimia haemolytica" is a significant pathogen in the cattle industry, causing substantial economic losses due to mortality, reduced growth rates, and decreased milk production. Prevention and control measures include good management practices, vaccination, and prompt treatment of infected animals with antibiotics.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

Transmissible gastroenteritis (TGE) of swine is a viral infection that primarily affects the gastrointestinal tract of pigs. It is caused by the Transmissible Gastroenteritis Coronavirus (TGEV), which is an enveloped, single-stranded RNA virus belonging to the family Coronaviridae.

The disease is highly contagious and can spread rapidly in swine populations through direct contact with infected animals or their feces, as well as via aerosolized particles. Ingestion of contaminated feed or water can also lead to infection.

Clinical signs of TGE in pigs include vomiting, diarrhea, dehydration, and weight loss. The disease is most severe in young piglets, with mortality rates reaching up to 100% in animals younger than two weeks old. In older pigs, the infection may be milder or even asymptomatic, although they can still serve as carriers of the virus and contribute to its spread.

Transmissible gastroenteritis is a significant concern for the swine industry due to its high mortality rate in young animals and the potential economic losses associated with reduced growth rates and decreased feed conversion efficiency in infected herds. Prevention strategies include strict biosecurity measures, vaccination of sows, and proper disposal of infected pig manure.

Sindbis virus is an alphavirus that belongs to the Togaviridae family. It's named after the location where it was first isolated, in Sindbis, Egypt, in 1952. This virus is primarily transmitted by mosquitoes and can infect a wide range of animals, including birds and humans. In humans, Sindbis virus infection often causes a mild flu-like illness characterized by fever, rash, and joint pain. However, some people may develop more severe symptoms, such as neurological disorders, although this is relatively rare. There is no specific treatment for Sindbis virus infection, and management typically involves supportive care to alleviate symptoms.

Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that primarily affects the pig's intestinal tract, causing severe diarrhea, vomiting, and dehydration. The infection is highly contagious and can lead to significant mortality in young piglets. TGEV is transmitted through the fecal-oral route and can also be spread by contaminated fomites or aerosols. It primarily infects enterocytes in the small intestine, leading to villous atrophy and malabsorption of nutrients. There are no specific antiviral treatments for TGEV infection, and control measures typically focus on biosecurity, vaccination, and preventing the spread of the virus between herds.

Measles virus is a single-stranded, negative-sense RNA virus belonging to the genus Morbillivirus in the family Paramyxoviridae. It is the causative agent of measles, a highly contagious infectious disease characterized by fever, cough, runny nose, and a red, blotchy rash. The virus primarily infects the respiratory tract and then spreads throughout the body via the bloodstream.

The genome of the measles virus is approximately 16 kilobases in length and encodes for eight proteins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H), large protein (L), and two non-structural proteins, V and C. The H protein is responsible for binding to the host cell receptor CD150 (SLAM) and mediating viral entry, while the F protein facilitates fusion of the viral and host cell membranes.

Measles virus is transmitted through respiratory droplets and direct contact with infected individuals. The virus can remain airborne for up to two hours in a closed space, making it highly contagious. Measles is preventable through vaccination, which has led to significant reductions in the incidence of the disease worldwide.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

'Influenza A Virus, H1N1 Subtype' is a specific subtype of the influenza A virus that causes flu in humans and animals. It contains certain proteins called hemagglutinin (H) and neuraminidase (N) on its surface, with this subtype specifically having H1 and N1 antigens. The H1N1 strain is well-known for causing the 2009 swine flu pandemic, which was a global outbreak of flu that resulted in significant morbidity and mortality. This subtype can also cause seasonal flu, although the severity and symptoms may vary. It is important to note that influenza viruses are constantly changing, and new strains or subtypes can emerge over time, requiring regular updates to vaccines to protect against them.

A coronavirus is a type of virus that causes respiratory illnesses, such as the common cold, and more severe diseases including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). These viruses are typically spread through close contact with an infected person when they cough or sneeze. They can also spread by touching a surface or object that has the virus on it and then touching your own mouth, nose, or eyes.

Coronaviruses are named for the crown-like spikes on their surface. They are zoonotic, meaning they can be transmitted between animals and people. Common signs of infection include fever, cough, and shortness of breath. In more severe cases, infection can cause pneumonia, severe acute respiratory syndrome, kidney failure, and even death.

One of the most recently discovered coronaviruses is SARS-CoV-2, which causes the disease COVID-19. This virus was first identified in Wuhan, China in late 2019 and has since spread to become a global pandemic.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Rabies is a viral disease that affects the nervous system of mammals, including humans. It's caused by the rabies virus (RV), which belongs to the family Rhabdoviridae and genus Lyssavirus. The virus has a bullet-shaped appearance under an electron microscope and is encased in a lipid envelope.

The rabies virus primarily spreads through the saliva of infected animals, usually via bites. Once inside the body, it travels along nerve fibers to the brain, where it multiplies rapidly and causes inflammation (encephalitis). The infection can lead to symptoms such as anxiety, confusion, hallucinations, seizures, paralysis, coma, and ultimately death if left untreated.

Rabies is almost always fatal once symptoms appear, but prompt post-exposure prophylaxis (PEP), which includes vaccination and sometimes rabies immunoglobulin, can prevent the disease from developing when administered after an exposure to a potentially rabid animal. Pre-exposure vaccination is also recommended for individuals at high risk of exposure, such as veterinarians and travelers visiting rabies-endemic areas.

Classical Swine Fever Virus (CSFV) is a positive-stranded RNA virus that belongs to the genus Pestivirus within the family Flaviviridae. It is the causative agent of Classical Swine Fever (CSF), also known as hog cholera, which is a highly contagious and severe disease in pigs. The virus is primarily transmitted through direct contact with infected animals or their body fluids, but it can also be spread through contaminated feed, water, and fomites.

CSFV infects pigs of all ages, causing a range of clinical signs that may include fever, loss of appetite, lethargy, weakness, diarrhea, vomiting, and respiratory distress. In severe cases, the virus can cause hemorrhages in various organs, leading to high mortality rates. CSF is a significant disease of economic importance in the swine industry, as it can result in substantial production losses and trade restrictions.

Prevention and control measures for CSF include vaccination, biosecurity practices, and stamping-out policies. Vaccines against CSF are available but may not provide complete protection or prevent the virus from shedding, making it essential to maintain strict biosecurity measures in pig farms. In some countries, stamping-out policies involve the rapid detection and elimination of infected herds to prevent the spread of the disease.

"Influenza A Virus, H5N1 Subtype" is a specific subtype of the Influenza A virus that is often found in avian species (birds) and can occasionally infect humans. The "H5N1" refers to the specific proteins (hemagglutinin and neuraminidase) found on the surface of the virus. This subtype has caused serious infections in humans, with high mortality rates, especially in cases where people have had close contact with infected birds. It does not commonly spread from person to person, but there is concern that it could mutate and adapt to efficiently transmit between humans, which would potentially cause a pandemic.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Virus inactivation is the process of reducing or eliminating the infectivity of a virus, making it no longer capable of replicating and causing infection. This can be achieved through various physical or chemical methods such as heat, radiation, chemicals (like disinfectants), or enzymes that damage the viral genome or disrupt the viral particle's structure.

It is important to note that virus inactivation does not necessarily mean complete destruction of the viral particles; it only implies that they are no longer infectious. The effectiveness of virus inactivation depends on factors such as the type and concentration of the virus, the inactivation method used, and the duration of exposure to the inactivating agent.

Virus inactivation is crucial in various settings, including healthcare, laboratory research, water treatment, food processing, and waste disposal, to prevent the spread of viral infections and ensure safety.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Parainfluenza Virus 3, Human (HPIV-3) is an enveloped, single-stranded RNA virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory tract infections in infants, young children, and immunocompromised individuals.

HPIV-3 primarily infects the upper and lower respiratory tract, causing a wide range of clinical manifestations, from mild to severe respiratory illnesses. The incubation period for HPIV-3 infection is typically 3-7 days. In infants and young children, HPIV-3 can cause croup (laryngotracheobronchitis), bronchiolitis, and pneumonia, while in adults, it usually results in mild upper respiratory tract infections, such as the common cold.

The virus is transmitted through direct contact with infected respiratory secretions or contaminated surfaces, and infection can occur throughout the year but tends to peak during fall and winter months. Currently, there are no approved vaccines for HPIV-3; treatment is primarily supportive and focuses on managing symptoms and complications.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

RNA helicases are a class of enzymes that are capable of unwinding RNA secondary structures using the energy derived from ATP hydrolysis. They play crucial roles in various cellular processes involving RNA, such as transcription, splicing, translation, ribosome biogenesis, and RNA degradation. RNA helicases can be divided into several superfamilies based on their sequence and structural similarities, with the two largest being superfamily 1 (SF1) and superfamily 2 (SF2). These enzymes typically contain conserved motifs that are involved in ATP binding and hydrolysis, as well as RNA binding. By unwinding RNA structures, RNA helicases facilitate the access of other proteins to their target RNAs, thereby enabling the coordinated regulation of RNA metabolism.

Pasteurellaceae infections refer to illnesses caused by bacteria belonging to the family Pasteurellaceae. This family includes several genera of gram-negative, rod-shaped bacteria, with the most common pathogenic genus being Pasteurella. These bacteria are commonly found as normal flora in the upper respiratory tracts of animals, including pets like cats and dogs, and can be transmitted to humans through bites, scratches, or contact with contaminated fluids.

Pasteurellaceae infections can cause a range of clinical manifestations, depending on the specific species involved and the site of infection. Common Pasteurella species that cause human infections include P. multocida and P. pneumotropica. Infections caused by these bacteria often present as localized skin or soft tissue infections, such as cellulitis, abscesses, or wound infections, following animal contact.

In addition to skin and soft tissue infections, Pasteurellaceae can also cause respiratory tract infections (pneumonia, bronchitis), septicemia, and, rarely, meningitis or endocarditis. Immunocompromised individuals, those with chronic lung disease, or those who have alcohol use disorder are at increased risk for severe Pasteurellaceae infections.

Treatment typically involves antibiotics active against gram-negative bacteria, such as amoxicillin/clavulanate, doxycycline, or fluoroquinolones. Prompt treatment is essential to prevent potential complications and the spread of infection.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Enzootic bovine leukosis (EBL) is a slow-developing, persistent virus infection that primarily affects cattle. It is caused by the bovine leukemia virus (BLV), which is part of the retrovirus family. The term "enzootic" refers to an animal disease that is constantly present in a particular geographic area or population.

EBL is typically characterized by the development of malignant lymphosarcoma, a type of cancer affecting the lymphoid system, in mature animals. Infected animals may not show any clinical signs for several years, and some never develop the disease. However, when clinical symptoms do appear, they can include weight loss, decreased milk production, enlarged lymph nodes, difficulty swallowing, and paralysis.

The virus is primarily spread through contact with infected blood or other bodily fluids, such as during castration, dehorning, or veterinary procedures. It can also be transmitted from an infected mother to her calf through colostrum and milk. EBL has been reported in many countries worldwide, but control and eradication programs have significantly reduced its prevalence in some regions, including the United States and Western Europe.

It is important to note that enzootic bovine leukosis should not be confused with bovine spongiform encephalopathy (BSE), also known as "mad cow disease," which is a completely different and unrelated condition affecting cattle.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

"Influenza A Virus, H3N2 Subtype" is a specific subtype of the influenza A virus that causes respiratory illness and is known to circulate in humans and animals, including birds and pigs. The "H3N2" refers to the two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H protein is of the H3 variety and the N protein is of the N2 variety. This subtype has been responsible for several influenza epidemics and pandemics in humans, including the 1968 Hong Kong flu pandemic. It is one of the influenza viruses that are monitored closely by public health authorities due to its potential to cause significant illness and death, particularly in high-risk populations such as older adults, young children, and people with certain underlying medical conditions.

Border Disease Virus (BDV) is a member of the genus Pestivirus within the family Flaviviridae. It is a viral pathogen that primarily affects sheep and goats, causing a disease known as Border Disease in these animals. The virus is named after the geographical location where it was first identified, the border region between England and Scotland.

BDV is a small, enveloped, single-stranded RNA virus that can cause a range of clinical signs in infected sheep and goats, including abortion, stillbirths, congenital defects, and poor growth rates in newborn lambs or kids. The virus is transmitted horizontally through direct contact with infected animals, their bodily fluids, or contaminated objects. Vertical transmission from ewes to their offspring can also occur, resulting in the birth of persistently infected (PI) lambs that serve as a significant source of infection within flocks.

Infection with BDV can lead to economic losses for farmers due to reduced productivity and increased mortality rates. There is no specific treatment for Border Disease, but vaccination programs can help control the spread of the virus in sheep and goat populations.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Hepatitis B virus (HBV) is a DNA virus that belongs to the Hepadnaviridae family and causes the infectious disease known as hepatitis B. This virus primarily targets the liver, where it can lead to inflammation and damage of the liver tissue. The infection can range from acute to chronic, with chronic hepatitis B increasing the risk of developing serious liver complications such as cirrhosis and liver cancer.

The Hepatitis B virus has a complex life cycle, involving both nuclear and cytoplasmic phases. It enters hepatocytes (liver cells) via binding to specific receptors and is taken up by endocytosis. The viral DNA is released into the nucleus, where it is converted into a covalently closed circular DNA (cccDNA) form, which serves as the template for viral transcription.

HBV transcribes several RNAs, including pregenomic RNA (pgRNA), which is used as a template for reverse transcription during virion assembly. The pgRNA is encapsidated into core particles along with the viral polymerase and undergoes reverse transcription to generate new viral DNA. This process occurs within the cytoplasm of the hepatocyte, resulting in the formation of immature virions containing partially double-stranded DNA.

These immature virions are then enveloped by host cell membranes containing HBV envelope proteins (known as surface antigens) to form mature virions that can be secreted from the hepatocyte and infect other cells. The virus can also integrate into the host genome, which may contribute to the development of hepatocellular carcinoma in chronic cases.

Hepatitis B is primarily transmitted through exposure to infected blood or bodily fluids containing the virus, such as through sexual contact, sharing needles, or from mother to child during childbirth. Prevention strategies include vaccination, safe sex practices, and avoiding needle-sharing behaviors. Treatment for hepatitis B typically involves antiviral medications that can help suppress viral replication and reduce the risk of liver damage.

I apologize for any confusion, but "deer" is not a medical term. It is a common name used to refer to various species of hooved mammals belonging to the family Cervidae. If you have any questions about medical terminology or health-related topics, I would be happy to help answer them.

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Bovine Serum Albumin (BSA) is not a medical term per se, but a biochemical term. It is widely used in medical and biological research. Here's the definition:

Bovine Serum Albumin is a serum albumin protein derived from cows. It is often used as a stabilizer, an emulsifier, or a protein source in various laboratory and industrial applications, including biochemical experiments, cell culture media, and diagnostic kits. BSA has a high solubility in water and can bind to many different types of molecules, making it useful for preventing unwanted interactions between components in a solution. It also has a consistent composition and is relatively inexpensive compared to human serum albumin, which are factors that contribute to its widespread use.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

I'm sorry for any confusion, but "Saskatchewan" is not a medical term. It is a province in Canada, located in the central part of the country. If you have any questions about medical terms or health-related topics, I would be happy to try and help answer those for you.

RNA-dependent RNA polymerase, also known as RNA replicase, is an enzyme that catalyzes the production of RNA from an RNA template. It plays a crucial role in the replication of certain viruses, such as positive-strand RNA viruses and retroviruses, which use RNA as their genetic material. The enzyme uses the existing RNA strand as a template to create a new complementary RNA strand, effectively replicating the viral genome. This process is essential for the propagation of these viruses within host cells and is a target for antiviral therapies.

Viral activation, also known as viral reactivation or virus reactivation, refers to the process in which a latent or dormant virus becomes active and starts to replicate within a host cell. This can occur when the immune system is weakened or compromised, allowing the virus to evade the body's natural defenses and cause disease.

In some cases, viral activation can be triggered by certain environmental factors, such as stress, exposure to UV light, or infection with another virus. Once activated, the virus can cause symptoms similar to those seen during the initial infection, or it may lead to new symptoms depending on the specific virus and the host's immune response.

Examples of viruses that can remain dormant in the body and be reactivated include herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). It is important to note that not all viruses can be reactivated, and some may remain dormant in the body indefinitely without causing any harm.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Haemophilus somnus (also known as Histophilus somni) is not typically defined in a medical dictionary, but it is a gram-negative bacterium that can cause various diseases in animals, particularly in cattle. It is part of the Haemophilus genus and Pasteurellaceae family.

H. somnus can lead to respiratory illnesses, reproductive disorders (such as infertility, abortions, and stillbirths), and systemic infections like sepsis or joint inflammation (arthritis). The bacterium is often found in the upper respiratory tract of healthy cattle, but it can become pathogenic under stressful conditions or when the animal's immune system is weakened.

While Haemophilus somnus primarily affects animals and not humans, there have been rare cases where people working closely with infected animals (such as veterinarians, farmers, or slaughterhouse workers) may develop infections due to exposure. However, this is uncommon, and H. somnus does not typically pose a significant risk to human health.

Parainfluenza Virus 3, Bovine (PIV-3, Bovine) is a species-specific virus that belongs to the family Paramyxoviridae and genus Respirovirus. It primarily infects cattle and is one of the major causes of respiratory illness in young calves, known as bovine respiratory disease complex (BRDC). The virus is transmitted through direct contact with infected animals or contaminated fomites and mainly affects the upper and lower respiratory tract.

The Bovine Parainfluenza Virus 3 has a single-stranded, negative-sense RNA genome that encodes for several structural and non-structural proteins. The viral envelope contains two glycoprotein spikes: the hemagglutinin-neuraminidase (HN) protein and the fusion (F) protein. These proteins play crucial roles in the attachment, fusion, and entry of the virus into the host cell.

Clinical signs of Bovine Parainfluenza Virus 3 infection include coughing, nasal discharge, fever, difficulty breathing, and reduced appetite. In severe cases, it can lead to pneumonia, which may result in significant economic losses for the cattle industry. Although vaccines are available to control the spread of this virus, they might not always prevent infection or transmission but can help reduce the severity of clinical signs and minimize the impact on animal health and productivity.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

Virus latency, also known as viral latency, refers to a state of infection in which a virus remains dormant or inactive within a host cell for a period of time. During this phase, the virus does not replicate or cause any noticeable symptoms. However, under certain conditions such as stress, illness, or a weakened immune system, the virus can become reactivated and begin to produce new viruses, potentially leading to disease.

One well-known example of a virus that exhibits latency is the varicella-zoster virus (VZV), which causes chickenpox in children. After a person recovers from chickenpox, the virus remains dormant in the nervous system for years or even decades. In some cases, the virus can reactivate later in life, causing shingles, a painful rash that typically occurs on one side of the body.

Virus latency is an important concept in virology and infectious disease research, as it has implications for understanding the persistence of viral infections, developing treatments and vaccines, and predicting the risk of disease recurrence.

Classical Swine Fever (CSF), also known as Hog Cholera, is a highly contagious and often fatal viral disease in pigs that is caused by a Pestivirus. The virus can be spread through direct contact with infected pigs or their bodily fluids, as well as through contaminated feed, water, and objects.

Clinical signs of CSF include fever, loss of appetite, lethargy, reddening of the skin, vomiting, diarrhea, abortion in pregnant sows, and neurological symptoms such as tremors and weakness. The disease can cause significant economic losses in the swine industry due to high mortality rates, reduced growth rates, and trade restrictions.

Prevention and control measures include vaccination, biosecurity measures, quarantine, and stamping out infected herds. CSF is not considered a public health threat as it does not infect humans. However, it can have significant impacts on the swine industry and food security in affected regions.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Colostrum is the first type of milk produced by the mammary glands of mammals (including humans) after giving birth. It is a yellowish, sticky fluid that contains a higher concentration of nutrients, antibodies, and immune-boosting components compared to mature milk. Colostrum provides essential protection and nourishment for newborns during their most vulnerable period, helping them establish a healthy immune system and promoting optimal growth and development. It is rich in proteins, vitamins, minerals, and growth factors that support the baby's gut health, brain development, and overall well-being. In humans, colostrum is usually produced in small quantities during the first few days after delivery, and its consumption by newborns is crucial for setting a strong foundation for their health.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Antidiarrheals are a class of medications that are used to treat diarrhea. They work by either slowing down the movement of the gut or increasing the absorption of water and electrolytes in the intestines, which helps to thicken the stool and reduce the frequency of bowel movements.

Some common examples of antidiarrheal medications include loperamide (Imodium), diphenoxylate/atropine (Lomotil), and bismuth subsalicylate (Pepto-Bismol). These medications can be effective in managing acute diarrhea, but it's important to use them only as directed and for a limited period of time. Prolonged use or overuse of antidiarrheals can lead to serious side effects, such as constipation, dehydration, and dependence.

It's also worth noting that while antidiarrheals can help manage the symptoms of diarrhea, they do not address the underlying cause of the condition. If you have chronic or severe diarrhea, it's important to speak with a healthcare provider to determine the root cause and develop an appropriate treatment plan.

1-Deoxynojirimycin (DNJ) is an antagonist of the enzyme alpha-glucosidase, which is involved in the digestion of carbohydrates. DNJ is a naturally occurring compound found in some plants, including mulberry leaves and the roots of the African plant Moringa oleifera. It works by binding to the active site of alpha-glucosidase and inhibiting its activity, which can help to slow down the digestion and absorption of carbohydrates in the small intestine. This can help to reduce postprandial glucose levels (the spike in blood sugar that occurs after a meal) and may have potential benefits for the management of diabetes and other metabolic disorders. DNJ is also being studied for its potential anti-cancer effects.

Oncogenic viruses are a type of viruses that have the ability to cause cancer in host cells. They do this by integrating their genetic material into the DNA of the infected host cell, which can lead to the disruption of normal cellular functions and the activation of oncogenes (genes that have the potential to cause cancer). This can result in uncontrolled cell growth and division, ultimately leading to the formation of tumors. Examples of oncogenic viruses include human papillomavirus (HPV), hepatitis B virus (HBV), and human T-cell leukemia virus type 1 (HTLV-1). It is important to note that only a small proportion of viral infections lead to cancer, and the majority of cancers are not caused by viruses.

Untranslated regions (UTRs) are sections of an mRNA molecule that do not contain information for protein synthesis. There are two types of UTRs: 5' UTR, which is located at the 5' end of the mRNA molecule, and 3' UTR, which is located at the 3' end.

The 5' UTR typically contains regulatory elements that control the translation of the mRNA into protein. These elements can affect the efficiency and timing of translation, as well as the stability of the mRNA molecule. The 5' UTR may also contain upstream open reading frames (uORFs), which are short sequences that can be translated into small peptides and potentially regulate the translation of the main coding sequence.

The length and sequence composition of the 5' UTR can have significant impacts on gene expression, and variations in these regions have been associated with various diseases, including cancer and neurological disorders. Therefore, understanding the structure and function of 5' UTRs is an important area of research in molecular biology and genetics.

Viremia is a medical term that refers to the presence of viruses in the bloodstream. It occurs when a virus successfully infects a host and replicates within the body's cells, releasing new viral particles into the blood. This condition can lead to various clinical manifestations depending on the specific virus involved and the immune response of the infected individual. Some viral infections result in asymptomatic viremia, while others can cause severe illness or even life-threatening conditions. The detection of viremia is crucial for diagnosing certain viral infections and monitoring disease progression or treatment effectiveness.

Reoviridae is a family of double-stranded RNA viruses that are non-enveloped and have a segmented genome. The name "Reoviridae" is derived from Respiratory Enteric Orphan virus, as these viruses were initially discovered in respiratory and enteric (gastrointestinal) samples but did not appear to cause any specific diseases.

The family Reoviridae includes several important human pathogens such as rotaviruses, which are a major cause of severe diarrhea in young children worldwide, and orthoreoviruses, which can cause respiratory and systemic infections in humans. Additionally, many Reoviridae viruses infect animals, including birds, mammals, fish, and insects, and can cause a variety of diseases.

Reoviridae virions are typically composed of multiple protein layers that encase the genomic RNA segments. The family is divided into two subfamilies, Sedoreovirinae and Spinareovirinae, based on structural features and genome organization. Reoviruses have a complex replication cycle that involves multiple steps, including attachment to host cells, uncoating of the viral particle, transcription of the genomic RNA, translation of viral proteins, packaging of new virions, and release from infected cells.

Hepacivirus is a genus of viruses in the family Flaviviridae. The most well-known member of this genus is Hepatitis C virus (HCV), which is a major cause of liver disease worldwide. HCV infection can lead to chronic hepatitis, cirrhosis, and liver cancer.

Hepaciviruses are enveloped viruses with a single-stranded, positive-sense RNA genome. They have a small icosahedral capsid and infect a variety of hosts, including humans, non-human primates, horses, and birds. The virus enters the host cell by binding to specific receptors on the cell surface and is then internalized through endocytosis.

HCV has a high degree of genetic diversity and is classified into seven major genotypes and numerous subtypes based on differences in its RNA sequence. This genetic variability can affect the virus's ability to evade the host immune response, making treatment more challenging.

In addition to HCV, other hepaciviruses have been identified in various animal species, including equine hepacivirus (EHCV), rodent hepacivirus (RHV), and bat hepacivirus (BtHepCV). These viruses are being studied to better understand the biology of hepaciviruses and their potential impact on human health.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Coronaviridae is a family of enveloped, positive-sense, single-stranded RNA viruses. They are named for the crown-like (corona) appearance of their surface proteins. Coronaviruses infect a wide range of animals, including mammals and birds, and can cause respiratory, gastrointestinal, and neurological diseases. Some coronaviruses, such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), can cause severe and potentially fatal illness in humans. The most recent example is SARS-CoV-2, which causes COVID-19.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

Border Disease is a viral infection that affects sheep and goats, primarily causing reproductive issues. The causative agent is the Border Disease Virus (BDV), which belongs to the family *Pestiviridae*. The disease is named after the Border region of England and Scotland where it was first identified.

The infection in pregnant ewes can lead to a range of outcomes, including abortion, stillbirth, or the birth of live lambs with congenital defects. These lambs, often called "hairy shakers," may exhibit symptoms such as tremors, hairy coat, small size, and abnormalities in their ears and hooves. They may also have a weakened immune system, making them more susceptible to other infections.

The BDV is primarily transmitted through contact with infected placenta, fetal fluids, or secretions from infected animals. It can also be spread through contaminated needles or equipment. While there is no specific treatment for Border Disease, good biosecurity practices and vaccination of ewes can help prevent its spread.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

I'm sorry for any confusion, but "Viruses, Unclassified" is not a recognized medical or scientific category. Generally, viruses are classified based on various characteristics such as genome structure, mode of replication, host range, and symptoms they cause. The International Committee on Taxonomy of Viruses (ICTV) is the organization responsible for the formal classification of viruses.

If you have any specific questions about certain unclassified viral entities or phenomena, I'd be happy to help if I can! Please provide more context so I can give a more accurate and helpful response.

A Radioimmunoprecipitation Assay (RIA) is a highly sensitive laboratory technique used to measure the presence and concentration of specific antigens or antibodies in a sample. This technique combines the use of radioisotopes, immunochemistry, and precipitation reactions.

In an RIA, a known quantity of a radioactively labeled antigen (or hapten) is incubated with a sample containing an unknown amount of antibody (or vice versa). If the specific antigen-antibody pair is present in the sample, they will bind together to form an immune complex. This complex can then be selectively precipitated from the solution using a second antibody that recognizes and binds to the first antibody, thus forming an insoluble immune precipitate.

The amount of radioactivity present in the precipitate is directly proportional to the concentration of antigen or antibody in the sample. By comparing this value to a standard curve generated with known concentrations of antigen or antibody, the unknown concentration can be accurately determined. RIAs have been widely used in research and clinical settings for the quantification of various hormones, drugs, vitamins, and other biomolecules. However, due to safety concerns and regulatory restrictions associated with radioisotopes, non-radioactive alternatives like Enzyme-Linked Immunosorbent Assays (ELISAs) have become more popular in recent years.

Parainfluenza Virus 1, Human (HPIV-1) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory infections in children, immunocompromised individuals, and the elderly.

HPIV-1 primarily infects the upper respiratory tract, causing symptoms such as cough, runny nose, sore throat, and fever. However, it can also cause lower respiratory tract infections, including bronchitis, bronchiolitis, and pneumonia, particularly in young children and infants.

HPIV-1 is transmitted through respiratory droplets or direct contact with infected individuals. The incubation period for HPIV-1 infection ranges from 2 to 7 days, after which symptoms can last for up to 10 days. There is no specific antiviral treatment available for HPIV-1 infections, and management typically involves supportive care such as hydration, fever reduction, and respiratory support if necessary.

Prevention measures include good hand hygiene, avoiding close contact with infected individuals, and practicing cough etiquette. Vaccines are not currently available for HPIV-1 infections, but research is ongoing to develop effective vaccines against these viruses.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

The Mumps virus is a single-stranded, negative-sense RNA virus that belongs to the Paramyxoviridae family and Rubulavirus genus. It is the causative agent of mumps, an acute infectious disease characterized by painful swelling of the salivary glands, particularly the parotid glands.

The Mumps virus has a spherical or pleomorphic shape with a diameter of approximately 150-250 nanometers. It is surrounded by a lipid bilayer membrane derived from the host cell, which contains viral glycoproteins that facilitate attachment and entry into host cells.

The M protein, located beneath the envelope, plays a crucial role in virus assembly and budding. The genome of the Mumps virus consists of eight genes encoding nine proteins, including two major structural proteins (nucleocapsid protein and matrix protein) and several non-structural proteins involved in viral replication and pathogenesis.

Transmission of the Mumps virus occurs through respiratory droplets or direct contact with infected saliva. After infection, the incubation period ranges from 12 to 25 days, followed by a prodromal phase characterized by fever, headache, malaise, and muscle pain. The characteristic swelling of the parotid glands usually appears 1-3 days after the onset of symptoms.

Complications of mumps can include meningitis, encephalitis, orchitis, oophoritis, pancreatitis, and deafness. Prevention relies on vaccination with the measles-mumps-rubella (MMR) vaccine, which is highly effective in preventing mumps and its complications.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Peptide hydrolases, also known as proteases or peptidases, are a group of enzymes that catalyze the hydrolysis of peptide bonds in proteins and peptides. They play a crucial role in various biological processes such as protein degradation, digestion, cell signaling, and regulation of various physiological functions. Based on their catalytic mechanism and the specificity for the peptide bond, they are classified into several types, including serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. These enzymes have important clinical applications in the diagnosis and treatment of various diseases, such as cancer, viral infections, and inflammatory disorders.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Mosaic viruses are a group of plant viruses that can cause mottled or mosaic patterns of discoloration on leaves, which is why they're named as such. These viruses infect a wide range of plants, including important crops like tobacco, tomatoes, and cucumbers. The infection can lead to various symptoms such as stunted growth, leaf deformation, reduced yield, or even plant death.

Mosaic viruses are typically spread by insects, such as aphids, that feed on the sap of infected plants and then transmit the virus to healthy plants. They can also be spread through contaminated seeds, tools, or contact with infected plant material. Once inside a plant, these viruses hijack the plant's cellular machinery to replicate themselves, causing damage to the host plant in the process.

It is important to note that mosaic viruses are not related to human or animal health; they only affect plants.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I believe there may be a misunderstanding in your question. "Goat diseases" refers to illnesses that affect goats specifically. It does not mean diseases that are caused by goats or related to them in some way. Here are some examples of goat diseases:

1. Caprine Arthritis Encephalitis (CAE): A viral disease that affects goats, causing arthritis, pneumonia, and sometimes encephalitis.
2. Caseous Lymphadenitis (CL): A bacterial disease that causes abscesses in the lymph nodes of goats.
3. Contagious Caprine Pleuropneumonia (CCPP): A contagious respiratory disease caused by mycoplasma bacteria.
4. Johne's Disease: A chronic wasting disease caused by a type of bacterium called Mycobacterium avium subspecies paratuberculosis.
5. Pasteurellosis: A bacterial disease that can cause pneumonia, septicemia, and other infections in goats.
6. Salmonellosis: A bacterial disease caused by Salmonella bacteria, which can cause diarrhea, fever, and septicemia in goats.
7. Soremouth (Orf): A viral disease that causes sores and scabs around the mouth and nose of goats.

These are just a few examples of diseases that can affect goats. If you have any specific questions about goat health or diseases, I would recommend consulting with a veterinarian who specializes in small ruminants.

A carrier state is a condition in which a person carries and may be able to transmit a genetic disorder or infectious disease, but does not show any symptoms of the disease themselves. This occurs when an individual has a recessive allele for a genetic disorder or is infected with a pathogen, but does not have the necessary combination of genes or other factors required to develop the full-blown disease.

For example, in the case of cystic fibrosis, which is caused by mutations in the CFTR gene, a person who carries one normal allele and one mutated allele for the disease is considered a carrier. They do not have symptoms of cystic fibrosis themselves, but they can pass the mutated allele on to their offspring, who may then develop the disease if they inherit the mutation from both parents.

Similarly, in the case of infectious diseases, a person who is infected with a pathogen but does not show any symptoms may still be able to transmit the infection to others. This is known as being an asymptomatic carrier or a healthy carrier. For example, some people who are infected with hepatitis B virus (HBV) may not develop any symptoms of liver disease, but they can still transmit the virus to others through contact with their blood or other bodily fluids.

It's important to note that in some cases, carriers of certain genetic disorders or infectious diseases may have mild or atypical symptoms that do not meet the full criteria for a diagnosis of the disease. In these cases, they may be considered to have a "reduced penetrance" or "incomplete expression" of the disorder or infection.

Hepatitis A virus (HAV) is the causative agent of hepatitis A, a viral infection that causes inflammation of the liver. It is a small, non-enveloped, single-stranded RNA virus belonging to the Picornaviridae family and Hepatovirus genus. The virus primarily spreads through the fecal-oral route, often through contaminated food or water, or close contact with an infected person. After entering the body, HAV infects hepatocytes in the liver, leading to liver damage and associated symptoms such as jaundice, fatigue, abdominal pain, and nausea. The immune system eventually clears the infection, providing lifelong immunity against future HAV infections. Preventive measures include vaccination and practicing good hygiene to prevent transmission.

Semliki Forest Virus (SFV) is an alphavirus in the Togaviridae family, which is primarily transmitted to vertebrates through mosquito vectors. The virus was initially isolated from mosquitoes in the Semliki Forest of Uganda and has since been found in various parts of Africa and Asia. SFV infection in humans can cause a mild febrile illness characterized by fever, headache, muscle pain, and rash. However, it is more commonly known for causing severe disease in animals, particularly non-human primates and cattle, where it can lead to encephalitis or hemorrhagic fever. SFV has also been used as a model organism in laboratory studies of virus replication and pathogenesis.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Avian sarcoma viruses (ASVs) are a group of retroviruses that primarily infect birds and cause various types of tumors, particularly sarcomas. These viruses contain an oncogene, which is a gene that has the ability to transform normal cells into cancerous ones. The oncogene in ASVs is often derived from cellular genes called proto-oncogenes, which are normally involved in regulating cell growth and division.

ASVs can be divided into two main types: non-defective and defective. Non-defective ASVs contain a complete set of viral genes that allow them to replicate independently, while defective ASVs lack some of the necessary viral genes and require assistance from other viruses to replicate.

One well-known example of an avian sarcoma virus is the Rous sarcoma virus (RSV), which was first discovered in chickens by Peyton Rous in 1910. RSV causes a highly malignant form of sarcoma in chickens and has been extensively studied as a model system for cancer research. The oncogene in RSV is called v-src, which is derived from the normal cellular gene c-src.

Avian sarcoma viruses have contributed significantly to our understanding of the molecular mechanisms underlying cancer development and have provided valuable insights into the role of oncogenes in tumorigenesis.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

A tumor virus infection is a condition in which a person's cells become cancerous or transformed due to the integration and disruption of normal cellular functions by a viral pathogen. These viruses are also known as oncoviruses, and they can cause tumors or cancer by altering the host cell's genetic material, promoting uncontrolled cell growth and division, evading immune surveillance, and inhibiting apoptosis (programmed cell death).

Examples of tumor viruses include:

1. DNA tumor viruses: These are double-stranded DNA viruses that can cause cancer in humans. Examples include human papillomavirus (HPV), hepatitis B virus (HBV), and Merkel cell polyomavirus (MCV).
2. RNA tumor viruses: Also known as retroviruses, these single-stranded RNA viruses can cause cancer in humans. Examples include human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus (HIV).

Tumor virus infections are responsible for approximately 15-20% of all cancer cases worldwide, making them a significant public health concern. Prevention strategies, such as vaccination against HPV and HBV, have been shown to reduce the incidence of associated cancers.

Trimethylammonium compounds are organic substances that contain a quaternary ammonium cation (N(CH3)4+). This ion is composed of a nitrogen atom surrounded by four methyl groups, and it carries a positive charge. These compounds are widely used in various applications, including as antimicrobial agents, surfactants, and chemical intermediates. In the medical field, they can be found in some medications, such as certain types of anticholinergics and muscle relaxants. It is important to note that these compounds should be handled with care, as they can be irritating to the skin and mucous membranes.

Rotavirus is a genus of double-stranded RNA virus in the Reoviridae family, which is a leading cause of severe diarrhea and gastroenteritis in young children and infants worldwide. The virus infects and damages the cells lining the small intestine, resulting in symptoms such as vomiting, watery diarrhea, abdominal cramps, and fever.

Rotavirus is highly contagious and can be spread through contact with infected individuals or contaminated surfaces, food, or water. The virus is typically transmitted via the fecal-oral route, meaning that it enters the body through the mouth after coming into contact with contaminated hands, objects, or food.

Rotavirus infections are often self-limiting and resolve within a few days to a week, but severe cases can lead to dehydration, hospitalization, and even death, particularly in developing countries where access to medical care and rehydration therapy may be limited. Fortunately, there are effective vaccines available that can prevent rotavirus infection and reduce the severity of symptoms in those who do become infected.

BK virus, also known as BK polyomavirus, is a type of virus that belongs to the Polyomaviridae family. It is named after the initials of a patient in whom the virus was first isolated. The BK virus is a common infection in humans and is typically acquired during childhood. After the initial infection, the virus remains dormant in the body, often found in the urinary tract and kidneys.

In immunocompetent individuals, the virus usually does not cause any significant problems. However, in people with weakened immune systems, such as those who have undergone organ transplantation or have HIV/AIDS, BK virus can lead to severe complications. One of the most common manifestations of BK virus infection in immunocompromised individuals is hemorrhagic cystitis, a condition characterized by inflammation and bleeding in the bladder. In transplant recipients, BK virus can also cause nephropathy, leading to kidney damage or even failure.

There is no specific treatment for BK virus infection, but antiviral medications may be used to help control the virus's replication in some cases. Maintaining a strong immune system and monitoring viral load through regular testing are essential strategies for managing BK virus infections in immunocompromised individuals.

Seroepidemiologic studies are a type of epidemiological study that measures the presence and levels of antibodies in a population's blood serum to investigate the prevalence, distribution, and transmission of infectious diseases. These studies help to identify patterns of infection and immunity within a population, which can inform public health policies and interventions.

Seroepidemiologic studies typically involve collecting blood samples from a representative sample of individuals in a population and testing them for the presence of antibodies against specific pathogens. The results are then analyzed to estimate the prevalence of infection and immunity within the population, as well as any factors associated with increased or decreased risk of infection.

These studies can provide valuable insights into the spread of infectious diseases, including emerging and re-emerging infections, and help to monitor the effectiveness of vaccination programs. Additionally, seroepidemiologic studies can also be used to investigate the transmission dynamics of infectious agents, such as identifying sources of infection or tracking the spread of antibiotic resistance.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

Methylthioinosine is not a widely recognized or used term in medicine, and it does not have a specific medical definition. It is a chemical compound that is formed by the addition of a methylthio group (-CH3S-) to the nucleoside inosine. Inosine is a purine nucleoside that is formed from the deamination of adenosine.

Methylthioinosine has been studied in some laboratory experiments, but it is not commonly used in clinical medicine or treatment. Therefore, it is not a term that most medical professionals would be familiar with.

The JC (John Cunningham) virus, also known as human polyomavirus 2 (HPyV-2), is a type of double-stranded DNA virus that belongs to the Polyomaviridae family. It is named after the initials of the patient in whom it was first identified.

JC virus is a ubiquitous virus, meaning that it is commonly found in the general population worldwide. Most people get infected with JC virus during childhood and do not experience any symptoms. After the initial infection, the virus remains dormant in the kidneys and other organs of the body.

However, in individuals with weakened immune systems, such as those with HIV/AIDS or who have undergone organ transplantation, JC virus can reactivate and cause a serious brain infection called progressive multifocal leukoencephalopathy (PML). PML is a rare but often fatal disease that affects the white matter of the brain, causing cognitive decline, weakness, and paralysis.

There is currently no cure for PML, and treatment is focused on managing the underlying immune deficiency and controlling the symptoms of the disease.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

The Fluorescent Antibody Technique (FAT), Direct is a type of immunofluorescence assay used in laboratory diagnostic tests. It is a method for identifying and locating specific antigens in cells or tissues by using fluorescent-labeled antibodies that directly bind to the target antigen.

In this technique, a sample (such as a tissue section or cell smear) is prepared and then treated with a fluorescently labeled primary antibody that specifically binds to the antigen of interest. After washing away unbound antibodies, the sample is examined under a fluorescence microscope. If the antigen is present in the sample, it will be visible as distinct areas of fluorescence, allowing for the direct visualization and localization of the antigen within the cells or tissues.

Direct FAT is commonly used in diagnostic laboratories to identify and diagnose various infectious diseases, including bacterial, viral, and fungal infections. It can also be used to detect specific proteins or antigens in research and clinical settings.

Bluetongue virus (BTV) is an infectious agent that causes Bluetongue disease, a non-contagious viral disease affecting sheep and other ruminants. It is a member of the Orbivirus genus within the Reoviridae family. The virus is transmitted by biting midges of the Culicoides species and can infect various animals such as sheep, cattle, goats, and wild ruminants.

The virus has a double-stranded RNA genome and consists of ten segments that encode seven structural and four non-structural proteins. The clinical signs of Bluetongue disease in sheep include fever, salivation, swelling of the head and neck, nasal discharge, and respiratory distress, which can be severe or fatal. In contrast, cattle usually show milder symptoms or are asymptomatic, although they can serve as reservoirs for the virus.

Bluetongue virus is an important veterinary pathogen that has a significant economic impact on the global sheep industry. The disease is prevalent in many parts of the world, particularly in tropical and subtropical regions, but has also spread to temperate areas due to climate change and the movement of infected animals. Prevention and control measures include vaccination, insect control, and restricting the movement of infected animals.

Avian leukosis virus (ALV) is a type of retrovirus that primarily affects chickens and other birds. It is responsible for a group of diseases known as avian leukosis, which includes various types of tumors and immunosuppressive conditions. The virus is transmitted horizontally through the shedder's dander, feathers, and vertical transmission through infected eggs.

There are several subgroups of ALV (A, B, C, D, E, and J), each with different host ranges and pathogenicity. Some strains can cause rapid death in young chickens, while others may take years to develop clinical signs. The most common form of the disease is neoplastic, characterized by the development of various types of tumors such as lymphomas, myelomas, and sarcomas.

Avian leukosis virus infection can have significant economic impacts on the poultry industry due to decreased growth rates, increased mortality, and condemnation of infected birds at processing. Control measures include eradication programs, biosecurity practices, vaccination, and breeding for genetic resistance.

The digestive system is a complex group of organs and glands that process food. It converts the food we eat into nutrients, which the body uses for energy, growth, and cell repair. The digestive system also eliminates waste from the body. It is made up of the gastrointestinal tract (GI tract) and other organs that help the body break down and absorb food.

The GI tract includes the mouth, esophagus, stomach, small intestine, large intestine, and anus. Other organs that are part of the digestive system include the liver, pancreas, gallbladder, and salivary glands.

The process of digestion begins in the mouth, where food is chewed and mixed with saliva. The food then travels down the esophagus and into the stomach, where it is broken down further by stomach acids. The digested food then moves into the small intestine, where nutrients are absorbed into the bloodstream. The remaining waste material passes into the large intestine, where it is stored until it is eliminated through the anus.

The liver, pancreas, and gallbladder play important roles in the digestive process as well. The liver produces bile, a substance that helps break down fats in the small intestine. The pancreas produces enzymes that help digest proteins, carbohydrates, and fats. The gallbladder stores bile until it is needed in the small intestine.

Overall, the digestive system is responsible for breaking down food, absorbing nutrients, and eliminating waste. It plays a critical role in maintaining our health and well-being.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Capsid proteins are the structural proteins that make up the capsid, which is the protective shell of a virus. The capsid encloses the viral genome and helps to protect it from degradation and detection by the host's immune system. Capsid proteins are typically arranged in a symmetrical pattern and can self-assemble into the capsid structure when exposed to the viral genome.

The specific arrangement and composition of capsid proteins vary between different types of viruses, and they play important roles in the virus's life cycle, including recognition and binding to host cells, entry into the cell, and release of the viral genome into the host cytoplasm. Capsid proteins can also serve as targets for antiviral therapies and vaccines.

Bovine mastitis is a common inflammatory condition that affects the mammary gland (udder) of dairy cows. It's primarily caused by bacterial infections, with Escherichia coli (E. coli), Streptococcus spp., and Staphylococcus aureus being some of the most common pathogens involved. The infection can lead to varying degrees of inflammation, which might result in decreased milk production, changes in milk composition, and, if left untreated, potentially severe systemic illness in the cow.

The clinical signs of bovine mastitis may include:
- Redness and heat in the affected quarter (or quarters) of the udder
- Swelling and pain upon palpation
- Decreased milk production or changes in milk appearance (such as flakes, clots, or watery consistency)
- Systemic signs like fever, loss of appetite, and depression in severe cases

Mastitis can be classified into two main types: clinical mastitis, which is characterized by visible signs of inflammation, and subclinical mastitis, where the infection might not present with obvious external symptoms but could still lead to decreased milk quality and production.

Prevention and control measures for bovine mastitis include good milking practices, maintaining a clean and dry environment for the cows, practicing proper udder hygiene, administering antibiotics or other treatments as necessary, and regularly monitoring milk for signs of infection through somatic cell count testing.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Sendai virus, also known as murine parainfluenza virus or pneumonia virus of mice, is a species of paramyxovirus that primarily infects rodents. It is an enveloped, negative-sense, single-stranded RNA virus with a nonsegmented genome. The virus is named after the city of Sendai in Japan where it was first isolated in 1952.

Sendai virus is highly contagious and can cause respiratory illness in mice, rats, and other small rodents. It replicates in the respiratory epithelium, leading to inflammation and necrosis of the airways. The virus can also suppress the host's immune response, making infected animals more susceptible to secondary bacterial infections.

In laboratory settings, Sendai virus is sometimes used as a tool for studying viral pathogenesis, immunology, and gene therapy. It has been used as a vector for delivering genes into mammalian cells, including human cells, due to its ability to efficiently infect and transduce a wide range of cell types.

It's important to note that Sendai virus is not known to infect humans or cause disease in humans, and it is not considered a significant public health concern.

The Moloney murine leukemia virus (Mo-MLV) is a type of retrovirus, specifically a gammaretrovirus, that is commonly found in mice. It was first discovered and isolated by John Moloney in 1960. Mo-MLV is known to cause various types of cancerous conditions, particularly leukemia, in susceptible mouse strains.

Mo-MLV has a single-stranded RNA genome that is reverse transcribed into double-stranded DNA upon infection of the host cell. This viral DNA then integrates into the host's genome and utilizes the host's cellular machinery to produce new virus particles. The Mo-MLV genome encodes for several viral proteins, including gag (group-specific antigen), pol (polymerase), and env (envelope) proteins, which are essential for the replication cycle of the virus.

Mo-MLV is widely used in laboratory research as a model retrovirus to study various aspects of viral replication, gene therapy, and oncogenesis. It has also been engineered as a vector for gene delivery applications due to its ability to efficiently integrate into the host genome and deliver large DNA sequences. However, it is important to note that Mo-MLV and other retroviruses have the potential to cause insertional mutagenesis, which can lead to unintended genetic alterations and adverse effects in some cases.

Interferon-beta (IFN-β) is a type of cytokine - specifically, it's a protein that is produced and released by cells in response to stimulation by a virus or other foreign substance. It belongs to the interferon family of cytokines, which play important roles in the body's immune response to infection.

IFN-β has antiviral properties and helps to regulate the immune system. It works by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to the activation of genes involved in the antiviral response. This results in the production of proteins that inhibit viral replication and promote the death of infected cells.

IFN-β is used as a medication for the treatment of certain autoimmune diseases, such as multiple sclerosis (MS). In MS, the immune system mistakenly attacks the protective coating around nerve fibers in the brain and spinal cord, causing inflammation and damage to the nerves. IFN-β has been shown to reduce the frequency and severity of relapses in people with MS, possibly by modulating the immune response and reducing inflammation.

It's important to note that while IFN-β is an important component of the body's natural defense system, it can also have side effects when used as a medication. Common side effects of IFN-β therapy include flu-like symptoms such as fever, chills, and muscle aches, as well as injection site reactions. More serious side effects are rare but can occur, so it's important to discuss the risks and benefits of this treatment with a healthcare provider.

I'm sorry for any confusion, but "replicon" is not a term that has a widely accepted or specific medical definition. It is a term that is used in the field of molecular biology, where it refers to a segment of DNA that contains an origin of replication. The origin of replication is the site on the DNA molecule where the process of DNA replication is initiated. This concept is important in the fields of genetics and virology, but it is not a term that is commonly used in clinical medicine.

If you have any questions related to the medical field, I would be happy to try to help answer them for you!

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Virus integration, in the context of molecular biology and virology, refers to the insertion of viral genetic material into the host cell's genome. This process is most commonly associated with retroviruses, such as HIV (Human Immunodeficiency Virus), which have an enzyme called reverse transcriptase that converts their RNA genome into DNA. This DNA can then integrate into the host's chromosomal DNA, becoming a permanent part of the host's genetic material.

This integration is a crucial step in the retroviral life cycle, allowing the virus to persist within the host cell and evade detection by the immune system. It also means that the viral genome can be passed on to daughter cells when the host cell divides.

However, it's important to note that not all viruses integrate their genetic material into the host's genome. Some viruses, like influenza, exist as separate entities within the host cell and do not become part of the host's DNA.

Bovine papillomavirus 1 (BPV-1) is a species of papillomavirus that primarily infects cattle, causing benign warts or papillomas in the skin and mucous membranes. It is not known to infect humans or cause disease in humans. BPV-1 is closely related to other papillomaviruses that can cause cancer in animals, but its role in human cancer is unclear.

BPV-1 is a double-stranded DNA virus that replicates in the nucleus of infected cells. It encodes several early and late proteins that are involved in viral replication and the transformation of host cells. BPV-1 has been extensively studied as a model system for understanding the molecular mechanisms of papillomavirus infection and oncogenesis.

In addition to its role in animal health, BPV-1 has also been used as a tool in biomedical research. For example, it can be used to transform cells in culture, providing a valuable resource for studying the properties of cancer cells and testing potential therapies. However, it is important to note that BPV-1 is not known to cause human disease and should not be used in any therapeutic context involving humans.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

Maternally-acquired immunity (MAI) refers to the passive immunity that is transferred from a mother to her offspring, typically through the placenta during pregnancy or through breast milk after birth. This immunity is temporary and provides protection to the newborn or young infant against infectious agents, such as bacteria and viruses, based on the mother's own immune experiences and responses.

In humans, maternally-acquired immunity is primarily mediated by the transfer of antibodies called immunoglobulins (IgG) across the placenta to the fetus during pregnancy. This process begins around the 20th week of gestation and continues until birth, providing the newborn with a range of protective antibodies against various pathogens. After birth, additional protection is provided through breast milk, which contains secretory immunoglobulin A (IgA) that helps to prevent infections in the infant's gastrointestinal and respiratory tracts.

Maternally-acquired immunity is an essential mechanism for protecting newborns and young infants, who have not yet developed their own active immune responses. However, it is important to note that maternally-acquired antibodies can also interfere with the infant's response to certain vaccines, as they may neutralize the vaccine antigens before the infant's immune system has a chance to mount its own response. This is one reason why some vaccines are not recommended for young infants and why the timing of vaccinations may be adjusted in cases where maternally-acquired immunity is present.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Simplexvirus is a genus of viruses in the family Herpesviridae, subfamily Alphaherpesvirinae. This genus contains two species: Human alphaherpesvirus 1 (also known as HSV-1 or herpes simplex virus type 1) and Human alphaherpesvirus 2 (also known as HSV-2 or herpes simplex virus type 2). These viruses are responsible for causing various medical conditions, most commonly oral and genital herpes. They are characterized by their ability to establish lifelong latency in the nervous system and reactivate periodically to cause recurrent symptoms.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Per the Centers for Disease Control and Prevention (CDC), Norovirus is a highly contagious virus that often causes vomiting and diarrhea. It is a common cause of gastroenteritis, which is an inflammation of the stomach and intestines. This infection is often referred to as the "stomach flu," although it is not related to the influenza virus.

Norovirus spreads easily from person to person, through contaminated food or water, or by touching contaminated surfaces. Symptoms usually develop 12 to 48 hours after exposure and include nausea, vomiting, diarrhea, stomach pain, fever, and headache.

The Norwalk virus is named after Norwalk, Ohio, where an outbreak of the illness occurred in 1968. It was first identified during an investigation into an outbreak of gastroenteritis among school children. The virus was later renamed norovirus in 2002 to reflect its broader range of hosts and clinical manifestations.

It's important to note that while Norwalk virus is a common cause of viral gastroenteritis, there are many other viruses, bacteria, and parasites that can also cause similar symptoms. If you suspect you have norovirus or any other foodborne illness, it's important to seek medical attention and avoid preparing food for others until your symptoms have resolved.

Yellow fever virus (YFV) is an single-stranded RNA virus belonging to the Flaviviridae family, genus Flavivirus. It is primarily transmitted to humans through the bite of infected mosquitoes, most commonly Aedes and Haemagogus species. The virus is named for the jaundice that can occur in some patients, giving their skin and eyes a yellowish color.

Yellow fever is endemic in tropical regions of Africa and South America, with outbreaks occurring when large numbers of people are infected. After an incubation period of 3 to 6 days, symptoms typically begin with fever, chills, headache, back pain, and muscle aches. In more severe cases, the infection can progress to cause bleeding, organ failure, and death.

Prevention measures include vaccination, mosquito control, and personal protective measures such as wearing long sleeves and using insect repellent in areas where yellow fever is endemic or outbreaks are occurring.

Escherichia coli (E. coli) infections refer to illnesses caused by the bacterium E. coli, which can cause a range of symptoms depending on the specific strain and site of infection. The majority of E. coli strains are harmless and live in the intestines of healthy humans and animals. However, some strains, particularly those that produce Shiga toxins, can cause severe illness.

E. coli infections can occur through various routes, including contaminated food or water, person-to-person contact, or direct contact with animals or their environments. Common symptoms of E. coli infections include diarrhea (often bloody), abdominal cramps, nausea, and vomiting. In severe cases, complications such as hemolytic uremic syndrome (HUS) can occur, which may lead to kidney failure and other long-term health problems.

Preventing E. coli infections involves practicing good hygiene, cooking meats thoroughly, avoiding cross-contamination of food during preparation, washing fruits and vegetables before eating, and avoiding unpasteurized dairy products and juices. Prompt medical attention is necessary if symptoms of an E. coli infection are suspected to prevent potential complications.

Animal husbandry is the practice of breeding and raising animals for agricultural purposes, such as for the production of meat, milk, eggs, or fiber. It involves providing proper care for the animals, including feeding, housing, health care, and breeding management. The goal of animal husbandry is to maintain healthy and productive animals while also being mindful of environmental sustainability and animal welfare.

Antigenic variation is a mechanism used by some microorganisms, such as bacteria and viruses, to evade the immune system and establish persistent infections. This occurs when these pathogens change or modify their surface antigens, which are molecules that can be recognized by the host's immune system and trigger an immune response.

The changes in the surface antigens can occur due to various mechanisms, such as gene mutation, gene rearrangement, or gene transfer. These changes can result in the production of new variants of the microorganism that are different enough from the original strain to avoid recognition by the host's immune system.

Antigenic variation is a significant challenge in developing effective vaccines against certain infectious diseases, such as malaria and influenza, because the constantly changing surface antigens make it difficult for the immune system to mount an effective response. Therefore, researchers are working on developing vaccines that target conserved regions of the microorganism that do not undergo antigenic variation or using a combination of antigens to increase the likelihood of recognition by the immune system.

Tobacco mosaic virus (TMV) is not typically considered in the context of medical definitions, as it's primarily known for its impact on plants rather than humans or animals. However, I will provide the botanical definition for your interest.

Tobacco mosaic virus (TMV) is a positive-sense single-stranded RNA virus that infects a wide range of plants, including tobacco, tomatoes, cucumbers, and many ornamental plants. The virus is named after its initial discovery in tobacco plants, which exhibit symptoms such as mosaic patterns of light and dark green on the leaves, leaf curling, and stunted growth. TMV is highly contagious and can be spread through mechanical means, such as touching infected plants or using contaminated tools. It's also one of the most well-studied viruses due to its impact on agriculture and its historical significance in early virology research.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Bovine coronavirus (BCoV) is a species of coronavirus that infects cattle and other animals such as yaks, deer, and occasionally humans. It is an enveloped, single-stranded, positive-sense RNA virus belonging to the genus Betacoronavirus in the family Coronaviridae.

BCoV primarily causes respiratory and enteric diseases in cattle, resulting in symptoms such as pneumonia, coughing, diarrhea, and decreased appetite. The virus is transmitted through direct contact with infected animals or their feces, contaminated food, water, or fomites.

In humans, BCoV infection is rare but has been associated with respiratory illnesses in people working closely with cattle, such as farmers, abattoir workers, and veterinarians. The symptoms of human BCoV infection are similar to those caused by other coronaviruses, including fever, cough, and shortness of breath.

Prevention measures for BCoV include good hygiene practices, wearing personal protective equipment when working with cattle, and vaccination of animals against the virus. There is currently no specific treatment or vaccine available for human BCoV infection.

Myxoma virus (MYXV) is a member of the Poxviridae family, specifically in the Leporipoxvirus genus. It is a double-stranded DNA virus that naturally infects European rabbits (Oryctolagus cuniculus) and causes a fatal disease called myxomatosis. The virus is transmitted through insect vectors such as mosquitoes and fleas, and it replicates in the cytoplasm of infected cells.

Myxoma virus has been studied extensively as a model organism for viral pathogenesis and host-pathogen interactions. It has also been explored as a potential oncolytic virus for cancer therapy due to its ability to selectively infect and kill certain types of cancer cells while leaving normal cells unharmed. However, it is important to note that the use of Myxoma virus in humans is still experimental and requires further research and development before it can be considered safe and effective for therapeutic purposes.

Cowpox virus is a species of the Orthopoxvirus genus, which belongs to the Poxviridae family. It is a double-stranded DNA virus that primarily infects cows and occasionally other animals such as cats, dogs, and humans. The virus causes a mild disease in its natural host, cattle, characterized by the development of pustular lesions on the udder or teats.

In humans, cowpox virus infection can cause a localized skin infection, typically following contact with an infected animal or contaminated fomites. The infection is usually self-limiting and resolves within 1-2 weeks without specific treatment. However, in rare cases, the virus may spread to other parts of the body and cause more severe symptoms.

Historically, cowpox virus has played a significant role in medical research as it was used by Edward Jenner in 1796 to develop the first successful vaccine against smallpox. The similarity between the two viruses allowed for cross-protection, providing immunity to smallpox without exposing individuals to the more deadly disease. Smallpox has since been eradicated globally, and vaccination with cowpox virus is no longer necessary. However, understanding the biology of cowpox virus remains important due to its potential use as a model organism for studying poxvirus infections and developing countermeasures against related viruses.

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

Respiratory Syncytial Virus (RSV) is a highly contagious virus that causes infections in the respiratory system. In humans, it primarily affects the nose, throat, lungs, and bronchioles (the airways leading to the lungs). It is a major cause of lower respiratory tract infections and bronchiolitis (inflammation of the small airways in the lung) in young children, but can also infect older children and adults.

Human Respiratory Syncytial Virus (hRSV) belongs to the family Pneumoviridae and is an enveloped, single-stranded, negative-sense RNA virus. The viral envelope contains two glycoproteins: the G protein, which facilitates attachment to host cells, and the F protein, which mediates fusion of the viral and host cell membranes.

Infection with hRSV typically occurs through direct contact with respiratory droplets from an infected person or contaminated surfaces. The incubation period ranges from 2 to 8 days, after which symptoms such as runny nose, cough, sneezing, fever, and wheezing may appear. In severe cases, particularly in infants, young children, older adults, and individuals with weakened immune systems, hRSV can cause pneumonia or bronchiolitis, leading to hospitalization and, in rare cases, death.

Currently, there is no approved vaccine for hRSV; however, passive immunization with palivizumab, a monoclonal antibody, is available for high-risk infants to prevent severe lower respiratory tract disease caused by hRSV. Supportive care and prevention of complications are the mainstays of treatment for hRSV infections.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Variola virus is the causative agent of smallpox, a highly contagious and deadly disease that was eradicated in 1980 due to a successful global vaccination campaign led by the World Health Organization (WHO). The virus belongs to the family Poxviridae and genus Orthopoxvirus. It is a large, enveloped, double-stranded DNA virus with a complex structure that includes a lipoprotein membrane and an outer protein layer called the lateral body.

The Variola virus has two main clinical forms: variola major and variola minor. Variola major is more severe and deadly, with a mortality rate of up to 30%, while variola minor is less severe and has a lower mortality rate. The virus is transmitted through direct contact with infected individuals or contaminated objects, such as clothing or bedding.

Smallpox was once a major public health threat worldwide, causing millions of deaths and severe illnesses. However, since its eradication, Variola virus has been kept in secure laboratories for research purposes only. The virus is considered a potential bioterrorism agent, and efforts are being made to develop new vaccines and antiviral treatments to protect against possible future outbreaks.

A nose, in a medical context, refers to the external part of the human body that is located on the face and serves as the primary organ for the sense of smell. It is composed of bone and cartilage, with a thin layer of skin covering it. The nose also contains nasal passages that are lined with mucous membranes and tiny hairs known as cilia. These structures help to filter, warm, and moisturize the air we breathe in before it reaches our lungs. Additionally, the nose plays an essential role in the process of verbal communication by shaping the sounds we make when we speak.

Lassa virus is an arenavirus that causes Lassa fever, a type of hemorrhagic fever. It is primarily transmitted to humans through contact with infected rodents or their urine and droppings. The virus can also be spread through person-to-person transmission via direct contact with the blood, urine, feces, or other bodily fluids of an infected person.

The virus was first discovered in 1969 in the town of Lassa in Nigeria, hence its name. It is endemic to West Africa and is a significant public health concern in countries such as Sierra Leone, Liberia, Guinea, and Nigeria. The symptoms of Lassa fever can range from mild to severe and may include fever, sore throat, muscle pain, chest pain, and vomiting. In severe cases, the virus can cause bleeding, organ failure, and death.

Prevention measures for Lassa fever include avoiding contact with rodents, storing food in rodent-proof containers, and practicing good hygiene. There is no vaccine available to prevent Lassa fever, but ribavirin, an antiviral drug, has been shown to be effective in treating the disease if administered early in the course of illness.

Neospora is a genus of intracellular parasites that belong to the phylum Apicomplexa. The most common species that affects animals is Neospora caninum, which is known to cause serious disease in cattle and dogs. It can also infect other warm-blooded animals, including sheep, goats, horses, and deer.

Neosporosis, the infection caused by Neospora, primarily affects the nervous system and muscles of the host animal. In cattle, it is a major cause of abortion, stillbirths, and neurological disorders. The parasite can be transmitted through the placenta from an infected mother to her offspring (congenital transmission), or through the ingestion of contaminated feed or water (horizontal transmission).

Neospora is a significant economic concern for the livestock industry, particularly in dairy and beef cattle operations. There is no effective vaccine or treatment available for neosporosis in animals, so prevention efforts focus on identifying and isolating infected animals to reduce the spread of the parasite.

Influenza, also known as the flu, is a highly contagious viral infection that attacks the respiratory system of humans. It is caused by influenza viruses A, B, or C and is characterized by the sudden onset of fever, chills, headache, muscle pain, sore throat, cough, runny nose, and fatigue. Influenza can lead to complications such as pneumonia, bronchitis, and ear infections, and can be particularly dangerous for young children, older adults, pregnant women, and people with weakened immune systems or chronic medical conditions. The virus is spread through respiratory droplets produced when an infected person coughs, sneezes, or talks, and can also survive on surfaces for a period of time. Influenza viruses are constantly changing, which makes it necessary to get vaccinated annually to protect against the most recent and prevalent strains.

Proctocolitis is a medical condition that refers to inflammation of both the rectum (proctitis) and the colon (colitis). It can cause symptoms such as diarrhea, abdominal cramps, and urgency to have a bowel movement. The inflammation can be caused by various factors, including infections, immune-mediated disorders, or irritants. In some cases, the specific cause of proctocolitis may not be identified (known as idiopathic proctocolitis). Treatment for proctocolitis depends on the underlying cause and may include medications to reduce inflammation, manage symptoms, and treat any underlying infections.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that is transmitted to humans through the bite of infected mosquitoes, primarily Aedes aegypti and Aedes albopictus. The name "Chikungunya" is derived from a Makonde word meaning "to become contorted," which describes the stooped posture developed as a result of severe arthralgia (joint pain) that is a primary symptom of infection with this virus.

CHIKV infection typically causes a febrile illness, characterized by an abrupt onset of high fever, severe joint pain, muscle pain, headache, nausea, fatigue, and rash. While the symptoms are usually self-limiting and resolve within 10 days, some individuals may experience persistent or recurring joint pain for several months or even years after the initial infection.

There is no specific antiviral treatment available for Chikungunya virus infection, and management primarily focuses on relieving symptoms with rest, fluids, and over-the-counter pain relievers such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs). Prevention measures include avoiding mosquito bites through the use of insect repellent, wearing long sleeves and pants, staying in air-conditioned or screened rooms, and eliminating standing water where mosquitoes breed.

Chikungunya virus is found primarily in Africa, Asia, and the Indian subcontinent, but it has also caused outbreaks in Europe and the Americas due to the spread of its vectors, Aedes aegypti and Aedes albopictus. The virus can cause large-scale epidemics, with millions of cases reported during outbreaks. There is currently no approved vaccine for Chikungunya virus infection.

"Pasteurella" is a genus of Gram-negative, facultatively anaerobic coccobacilli that are part of the family Pasteurellaceae. These bacteria are commonly found as normal flora in the upper respiratory tracts of animals, including cats, dogs, and livestock. They can cause a variety of infections in humans, such as wound infections, pneumonia, and septicemia, often following animal bites or scratches. Two notable species are Pasteurella multocida and Pasteurella canis. Proper identification and antibiotic susceptibility testing are essential for appropriate treatment.

I'm sorry for any confusion, but "Virus Physiological Phenomena" is not a widely recognized or established medical term or concept. It seems to be a combination of two concepts: "virus" and "physiological phenomena."

1. A virus is a small infectious agent that replicates inside the living cells of an organism. Viruses can cause many different types of illnesses, from the common cold to more serious diseases like HIV/AIDS or hepatitis.

2. Physiological phenomena refer to the functions and activities of living organisms and their parts, including cells, tissues, and organs.

If you're looking for information about how viruses affect physiological processes in the body, I would be happy to help provide some general information on that topic! However, it would be best to consult a specific medical text or expert for more detailed or specialized knowledge.

Encephalitis viruses are a group of viruses that can cause encephalitis, which is an inflammation of the brain. Some of the most common encephalitis viruses include:

1. Herpes simplex virus (HSV) type 1 and 2: These viruses are best known for causing cold sores and genital herpes, but they can also cause encephalitis, particularly in newborns and individuals with weakened immune systems.
2. Varicella-zoster virus (VZV): This virus causes chickenpox and shingles, and it can also lead to encephalitis, especially in people who have had chickenpox.
3. Enteroviruses: These viruses are often responsible for summertime meningitis outbreaks and can occasionally cause encephalitis.
4. Arboviruses: These viruses are transmitted through the bites of infected mosquitoes, ticks, or other insects. Examples include West Nile virus, St. Louis encephalitis virus, Eastern equine encephalitis virus, and Western equine encephalitis virus.
5. Rabies virus: This virus is transmitted through the bite of an infected animal and can cause encephalitis in its later stages.
6. Measles virus: Although rare in developed countries due to vaccination, measles can still cause encephalitis as a complication of the infection.
7. Mumps virus: Like measles, mumps is preventable through vaccination, but it can also lead to encephalitis as a rare complication.
8. Cytomegalovirus (CMV): This virus is a member of the herpesvirus family and can cause encephalitis in people with weakened immune systems, such as those with HIV/AIDS or organ transplant recipients.
9. La Crosse virus: This arbovirus is primarily transmitted through the bites of infected eastern treehole mosquitoes and mainly affects children.
10. Powassan virus: Another arbovirus, Powassan virus is transmitted through the bites of infected black-legged ticks (also known as deer ticks) and can cause severe encephalitis.

It's important to note that many of these viruses are preventable through vaccination or by avoiding exposure to infected animals or mosquitoes. If you suspect you may have been exposed to one of these viruses, consult a healthcare professional for proper diagnosis and treatment.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

Medical Definition of "Herpesvirus 1, Human" (also known as Human Herpesvirus 1 or HHV-1):

Herpesvirus 1, Human is a type of herpesvirus that primarily causes infection in humans. It is also commonly referred to as human herpesvirus 1 (HHV-1) or oral herpes. This virus is highly contagious and can be transmitted through direct contact with infected saliva, skin, or mucous membranes.

After initial infection, the virus typically remains dormant in the body's nerve cells and may reactivate later, causing recurrent symptoms. The most common manifestation of HHV-1 infection is oral herpes, characterized by cold sores or fever blisters around the mouth and lips. In some cases, HHV-1 can also cause other conditions such as encephalitis (inflammation of the brain) and keratitis (inflammation of the eye's cornea).

There is no cure for HHV-1 infection, but antiviral medications can help manage symptoms and reduce the severity and frequency of recurrent outbreaks.

DNA virus infections refer to diseases or conditions caused by the invasion and replication of DNA viruses in a host organism. DNA viruses are a type of virus that uses DNA as their genetic material. They can cause a variety of diseases, ranging from relatively mild illnesses to severe or life-threatening conditions.

Some examples of DNA viruses include herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), hepatitis B virus (HBV), and adenoviruses. These viruses can cause a range of diseases, including cold sores, genital herpes, chickenpox, shingles, cervical cancer, liver cancer, and respiratory infections.

DNA virus infections typically occur when the virus enters the body through a break in the skin or mucous membranes, such as those found in the eyes, nose, mouth, or genitals. Once inside the body, the virus infects cells and uses their machinery to replicate itself, often causing damage to the host cells in the process.

The symptoms of DNA virus infections can vary widely depending on the specific virus and the severity of the infection. Treatment may include antiviral medications, which can help to reduce the severity and duration of symptoms, as well as prevent the spread of the virus to others. In some cases, vaccines may be available to prevent DNA virus infections.

Fetal diseases are medical conditions or abnormalities that affect a fetus during pregnancy. These diseases can be caused by genetic factors, environmental influences, or a combination of both. They can range from mild to severe and may impact various organ systems in the developing fetus. Examples of fetal diseases include congenital heart defects, neural tube defects, chromosomal abnormalities such as Down syndrome, and infectious diseases such as toxoplasmosis or rubella. Fetal diseases can be diagnosed through prenatal testing, including ultrasound, amniocentesis, and chorionic villus sampling. Treatment options may include medication, surgery, or delivery of the fetus, depending on the nature and severity of the disease.

Epstein-Barr virus (EBV) infections, also known as infectious mononucleosis or "mono," is a viral infection that most commonly affects adolescents and young adults. The virus is transmitted through saliva and other bodily fluids, and can cause a variety of symptoms including fever, sore throat, swollen lymph nodes, fatigue, and skin rash.

EBV is a member of the herpesvirus family and establishes lifelong latency in infected individuals. After the initial infection, the virus remains dormant in the body and can reactivate later in life, causing symptoms such as fatigue and swollen lymph nodes. In some cases, EBV infection has been associated with the development of certain types of cancer, such as Burkitt's lymphoma and nasopharyngeal carcinoma.

The diagnosis of EBV infections is typically made based on a combination of clinical symptoms and laboratory tests, such as blood tests that detect the presence of EBV antibodies or viral DNA. Treatment is generally supportive and aimed at alleviating symptoms, as there is no specific antiviral therapy for EBV infections.

Foot-and-Mouth Disease Virus (FMDV) is a single-stranded, positive-sense RNA virus belonging to the family Picornaviridae and the genus Aphthovirus. It is the causative agent of Foot-and-Mouth Disease (FMD), a highly contagious and severe viral disease that affects cloven-hoofed animals, including cattle, swine, sheep, goats, and buffalo. The virus can be transmitted through direct contact with infected animals or their bodily fluids, as well as through aerosolized particles in the air. FMDV has seven distinct serotypes (O, A, C, Asia 1, and South African Territories [SAT] 1, 2, and 3), and infection with one serotype does not provide cross-protection against other serotypes. The virus primarily targets the animal's epithelial tissues, causing lesions and blisters in and around the mouth, feet, and mammary glands. FMD is not a direct threat to human health but poses significant economic consequences for the global livestock industry due to its high infectivity and morbidity rates.

Gastroenteritis is not a medical condition itself, but rather a symptom-based description of inflammation in the gastrointestinal tract, primarily involving the stomach and intestines. It's often referred to as "stomach flu," although it's not caused by influenza virus.

Medically, gastroenteritis is defined as an inflammation of the mucous membrane of the stomach and intestines, usually resulting in symptoms such as diarrhea, abdominal cramps, nausea, vomiting, fever, and dehydration. This condition can be caused by various factors, including viral (like rotavirus or norovirus), bacterial (such as Salmonella, Shigella, or Escherichia coli), or parasitic infections, food poisoning, allergies, or the use of certain medications.

Gastroenteritis is generally self-limiting and resolves within a few days with proper hydration and rest. However, severe cases may require medical attention to prevent complications like dehydration, which can be particularly dangerous for young children, older adults, and individuals with weakened immune systems.

Medical Definition of "Herpesvirus 4, Human" (Epstein-Barr Virus)

"Herpesvirus 4, Human," also known as Epstein-Barr virus (EBV), is a member of the Herpesviridae family and is one of the most common human viruses. It is primarily transmitted through saliva and is often referred to as the "kissing disease."

EBV is the causative agent of infectious mononucleosis (IM), also known as glandular fever, which is characterized by symptoms such as fatigue, sore throat, fever, and swollen lymph nodes. The virus can also cause other diseases, including certain types of cancer, such as Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma.

Once a person becomes infected with EBV, the virus remains in the body for the rest of their life, residing in certain white blood cells called B lymphocytes. In most people, the virus remains dormant and does not cause any further symptoms. However, in some individuals, the virus may reactivate, leading to recurrent or persistent symptoms.

EBV infection is diagnosed through various tests, including blood tests that detect antibodies against the virus or direct detection of the virus itself through polymerase chain reaction (PCR) assays. There is no cure for EBV infection, and treatment is generally supportive, focusing on relieving symptoms and managing complications. Prevention measures include practicing good hygiene, avoiding close contact with infected individuals, and not sharing personal items such as toothbrushes or drinking glasses.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Feline Leukemia Virus (FeLV) is a retrovirus that primarily infects cats, causing a variety of diseases and disorders. It is the causative agent of feline leukemia, a name given to a syndrome characterized by a variety of symptoms such as lymphoma (cancer of the lymphatic system), anemia, immunosuppression, and reproductive disorders. FeLV is typically transmitted through close contact with infected cats, such as through saliva, nasal secretions, urine, and milk. It can also be spread through shared litter boxes and feeding dishes.

FeLV infects cells of the immune system, leading to a weakened immune response and making the cat more susceptible to other infections. The virus can also integrate its genetic material into the host's DNA, potentially causing cancerous changes in infected cells. FeLV is a significant health concern for cats, particularly those that are exposed to outdoor environments or come into contact with other cats. Vaccination and regular veterinary care can help protect cats from this virus.

Tick-borne encephalitis (TBE) viruses are a group of related viruses that are primarily transmitted to humans through the bite of infected ticks. The main strains of TBE viruses include:

1. European tick-borne encephalitis virus (TBEV-Eu): This strain is found mainly in Europe and causes the majority of human cases of TBE. It is transmitted by the tick species Ixodes ricinus.
2. Siberian tick-borne encephalitis virus (TBEV-Sib): This strain is prevalent in Russia, Mongolia, and China, and is transmitted by the tick species Ixodes persulcatus.
3. Far Eastern tick-borne encephalitis virus (TBEV-FE): Also known as Russian spring-summer encephalitis (RSSE) virus, this strain is found in Russia, China, and Japan, and is transmitted by the tick species Ixodes persulcatus.
4. Louping ill virus (LIV): This strain is primarily found in the United Kingdom, Ireland, Portugal, and Spain, and is transmitted by the tick species Ixodes ricinus. It mainly affects sheep but can also infect humans.
5. Turkish sheep encephalitis virus (TSEV): This strain is found in Turkey and Greece and is primarily associated with ovine encephalitis, although it can occasionally cause human disease.
6. Negishi virus (NGS): This strain has been identified in Japan and Russia, but its role in human disease remains unclear.

TBE viruses are members of the Flaviviridae family and are closely related to other mosquito-borne flaviviruses such as West Nile virus, dengue virus, and Zika virus. The incubation period for TBE is usually 7-14 days after a tick bite, but it can range from 2 to 28 days. Symptoms of TBE include fever, headache, muscle pain, fatigue, and vomiting, followed by neurological symptoms such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) or encephalitis (inflammation of the brain). Severe cases can lead to long-term complications or even death. No specific antiviral treatment is available for TBE, and management typically involves supportive care. Prevention measures include avoiding tick-infested areas, using insect repellents, wearing protective clothing, and promptly removing attached ticks. Vaccination is also recommended for individuals at high risk of exposure to TBE viruses.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

RNA virus infections refer to diseases or conditions caused by the invasion and replication of RNA (Ribonucleic acid) viruses in host cells. These viruses use RNA as their genetic material, which is different from DNA (Deoxyribonucleic acid) viruses. Upon entering a host cell, the RNA virus releases its genetic material, which then uses the host cell's machinery to produce new viral components and replicate. This process can lead to various outcomes, depending on the specific virus and the host's immune response:

1. Asymptomatic infection: Some RNA virus infections may not cause any noticeable symptoms and may only be discovered through diagnostic testing.
2. Acute infection: Many RNA viruses cause acute infections, characterized by the rapid onset of symptoms that typically last for a short period (days to weeks). Examples include the common cold (caused by rhinoviruses), influenza (caused by orthomyxoviruses), and some gastrointestinal infections (caused by noroviruses or rotaviruses).
3. Chronic infection: A few RNA viruses can establish chronic infections, where the virus persists in the host for an extended period, sometimes leading to long-term health complications. Examples include HIV (Human Immunodeficiency Virus), HCV (Hepatitis C Virus), and HTLV-1 (Human T-lymphotropic virus type 1).
4. Latent infection: Some RNA viruses, like herpesviruses, can establish latency in the host, where they remain dormant for extended periods but can reactivate under certain conditions, causing recurrent symptoms or diseases.
5. Oncogenic potential: Certain RNA viruses have oncogenic properties and can contribute to the development of cancer. For example, retroviruses like HTLV-1 can cause leukemia and lymphoma by integrating their genetic material into the host cell's DNA and altering gene expression.

Treatment for RNA virus infections varies depending on the specific virus and the severity of the infection. Antiviral medications, immunotherapy, and supportive care are common treatment strategies. Vaccines are also available to prevent some RNA virus infections, such as measles, mumps, rubella, influenza, and hepatitis A and B.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Dysentery is a medical condition characterized by inflammation of the intestine, particularly the colon, leading to severe diarrhea containing blood, mucus, and/or pus. It is typically caused by infectious agents such as bacteria (like Shigella, Salmonella, or Escherichia coli) or parasites (such as Entamoeba histolytica). The infection can be acquired through contaminated food, water, or direct contact with an infected person. Symptoms may also include abdominal cramps, fever, and dehydration. Immediate medical attention is required for proper diagnosis and treatment to prevent potential complications.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) is an enveloped, positive-stranded RNA virus belonging to the Arteriviridae family. It is the causative agent of Porcine Respiratory and Reproductive Syndrome (PRRS), also known as "blue ear disease" or "porcine reproductive and respiratory syndrome."

The virus primarily affects pigs, causing a wide range of clinical signs including respiratory distress in young animals and reproductive failure in pregnant sows. The infection can lead to late-term abortions, stillbirths, premature deliveries, and weak or mummified fetuses. In growing pigs, PRRSV can cause pneumonia, which is often accompanied by secondary bacterial infections.

PRRSV has a tropism for cells of the monocyte-macrophage lineage, and it replicates within these cells, leading to the release of pro-inflammatory cytokines and the development of the clinical signs associated with the disease. The virus is highly infectious and can spread rapidly in susceptible pig populations, making it a significant concern for the swine industry worldwide.

It's important to note that PRRSV has two distinct genotypes: Type 1 (European) and Type 2 (North American). Both types have a high degree of genetic diversity, which can make controlling the virus challenging. Vaccination is available for PRRSV, but it may not provide complete protection against all strains of the virus, and it may not prevent infection or shedding. Therefore, biosecurity measures, such as strict sanitation and animal movement controls, are critical to preventing the spread of this virus in pig populations.

Hepatitis viruses refer to a group of viral agents that primarily target the liver, causing inflammation and damage to hepatocytes (liver cells). This results in various clinical manifestations, ranging from an acute infection to a chronic, persistent infection. There are five main types of hepatitis viruses, named Hepatitis A, B, C, D, and E virus, each with distinct genetic material, modes of transmission, and disease severity.

1. Hepatitis A Virus (HAV): This is a single-stranded RNA virus that is primarily transmitted through the fecal-oral route, often via contaminated food or water. Infected individuals may experience symptoms such as jaundice, fatigue, abdominal pain, and loss of appetite. While most people recover completely within a few months, severe complications can occur in rare cases. A vaccine is available to prevent HAV infection.
2. Hepatitis B Virus (HBV): This is a double-stranded DNA virus that is primarily transmitted through contact with infected blood or bodily fluids, such as during sexual contact, sharing needles, or from mother to child during childbirth. HBV can cause both acute and chronic hepatitis, which may lead to severe liver complications like cirrhosis and liver cancer if left untreated. A vaccine is available to prevent HBV infection.
3. Hepatitis C Virus (HCV): This is a single-stranded RNA virus that is primarily transmitted through contact with infected blood, often through sharing needles or during medical procedures using contaminated equipment. Like HBV, HCV can cause both acute and chronic hepatitis, which may lead to severe liver complications if left untreated. No vaccine is currently available for HCV; however, antiviral treatments can cure the infection in many cases.
4. Hepatitis D Virus (HDV): This is a defective RNA virus that requires the presence of HBV to replicate and cause infection. HDV is primarily transmitted through contact with infected blood or bodily fluids, similar to HBV. Co-infection with both HBV and HDV can result in more severe liver disease compared to HBV infection alone. Antiviral treatments are available for HDV; however, a vaccine is not.
5. Hepatitis E Virus (HEV): This is a single-stranded RNA virus that primarily causes acute hepatitis and is usually transmitted through the fecal-oral route, often through contaminated food or water. In most cases, HEV infection resolves on its own without treatment. However, in pregnant women and individuals with weakened immune systems, HEV can cause severe liver complications. No vaccine is currently available for HEV in the United States; however, a vaccine has been approved in some countries.

A fetus is the developing offspring in a mammal, from the end of the embryonic period (approximately 8 weeks after fertilization in humans) until birth. In humans, the fetal stage of development starts from the eleventh week of pregnancy and continues until childbirth, which is termed as full-term pregnancy at around 37 to 40 weeks of gestation. During this time, the organ systems become fully developed and the body grows in size. The fetus is surrounded by the amniotic fluid within the amniotic sac and is connected to the placenta via the umbilical cord, through which it receives nutrients and oxygen from the mother. Regular prenatal care is essential during this period to monitor the growth and development of the fetus and ensure a healthy pregnancy and delivery.

Cell transformation, viral refers to the process by which a virus causes normal cells to become cancerous or tumorigenic. This occurs when the genetic material of the virus integrates into the DNA of the host cell and alters its regulation, leading to uncontrolled cell growth and division. Some viruses known to cause cell transformation include human papillomavirus (HPV), hepatitis B virus (HBV), and certain types of herpesviruses.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

Bovine tuberculosis (BTB) is a chronic infectious disease caused by the bacterium Mycobacterium bovis. It primarily affects cattle but can also spread to other mammals including humans, causing a similar disease known as zoonotic tuberculosis. The infection in animals typically occurs through inhalation of infectious droplets or ingestion of contaminated feed and water.

In cattle, the disease often affects the respiratory system, leading to symptoms such as chronic coughing, weight loss, and difficulty breathing. However, it can also affect other organs, including the intestines, lymph nodes, and mammary glands. Diagnosis of BTB typically involves a combination of clinical signs, laboratory tests, and epidemiological data.

Control measures for BTB include regular testing and culling of infected animals, movement restrictions, and vaccination of susceptible populations. In many countries, BTB is a notifiable disease, meaning that cases must be reported to the authorities. Proper cooking and pasteurization of dairy products can help prevent transmission to humans.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

'Clostridium difficile' (also known as 'C. difficile' or 'C. diff') is a type of Gram-positive, spore-forming bacterium that can be found in the environment, including in soil, water, and human and animal feces. It is a common cause of healthcare-associated infections, particularly in individuals who have recently received antibiotics or have other underlying health conditions that weaken their immune system.

C. difficile produces toxins that can cause a range of symptoms, from mild diarrhea to severe colitis (inflammation of the colon) and potentially life-threatening complications such as sepsis and toxic megacolon. The most common toxins produced by C. difficile are called TcdA and TcdB, which damage the lining of the intestine and cause inflammation.

C. difficile infections (CDIs) can be difficult to treat, particularly in severe cases or in patients who have recurrent infections. Treatment typically involves discontinuing any unnecessary antibiotics, if possible, and administering specific antibiotics that are effective against C. difficile, such as metronidazole, vancomycin, or fidaxomicin. In some cases, fecal microbiota transplantation (FMT) may be recommended as a last resort for patients with recurrent or severe CDIs who have not responded to other treatments.

Preventing the spread of C. difficile is critical in healthcare settings, and includes measures such as hand hygiene, contact precautions, environmental cleaning, and antibiotic stewardship programs that promote the appropriate use of antibiotics.

Haplorhini is a term used in the field of primatology and physical anthropology to refer to a parvorder of simian primates, which includes humans, apes (both great and small), and Old World monkeys. The name "Haplorhini" comes from the Greek words "haploos," meaning single or simple, and "rhinos," meaning nose.

The defining characteristic of Haplorhini is the presence of a simple, dry nose, as opposed to the wet, fleshy noses found in other primates, such as New World monkeys and strepsirrhines (which include lemurs and lorises). The nostrils of haplorhines are located close together at the tip of the snout, and they lack the rhinarium or "wet nose" that is present in other primates.

Haplorhini is further divided into two infraorders: Simiiformes (which includes apes and Old World monkeys) and Tarsioidea (which includes tarsiers). These groups are distinguished by various anatomical and behavioral differences, such as the presence or absence of a tail, the structure of the hand and foot, and the degree of sociality.

Overall, Haplorhini is a group of primates that share a number of distinctive features related to their sensory systems, locomotion, and social behavior. Understanding the evolutionary history and diversity of this group is an important area of research in anthropology, biology, and psychology.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Mamastrovirus is a genus of viruses in the family Astroviridae, which infect mammals. These non-enveloped, single-stranded, positive-sense RNA viruses are responsible for gastroenteritis in various mammalian species, including humans. The name "mamastrovirus" is derived from "mammal astrovirus."

Human mastastroviruses (HAstV) are further divided into eight major serotypes (HAstV-1 to HAstV-8), with additional genotypes and variants identified. Infection usually occurs through the fecal-oral route, leading to symptoms such as diarrhea, vomiting, abdominal pain, and fever. While mastastrovirus infections are often self-limiting, they can cause severe dehydration and other complications, particularly in young children, immunocompromised individuals, and the elderly.

Research into mamastroviruses continues to advance our understanding of their epidemiology, pathogenesis, and potential therapeutic targets for treating astrovirus-induced gastroenteritis.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

I'm sorry for any confusion, but "travel" is not a term that has a specific medical definition. In general, travel refers to the act of moving or journeying from one place to another, often over long distances. However, in a medical context, it might refer to the recommendation that individuals with certain medical conditions or those who are immunocompromised avoid traveling to areas where they may be at increased risk of exposure to infectious diseases. It's always best to check with a healthcare professional for advice related to specific medical situations and travel.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Human T-lymphotropic virus 1 (HTLV-1) is a complex retrovirus that infects CD4+ T lymphocytes and can cause adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus is primarily transmitted through breastfeeding, sexual contact, or contaminated blood products. After infection, the virus integrates into the host's genome and can remain latent for years or even decades before leading to disease. HTLV-1 is endemic in certain regions of the world, including Japan, the Caribbean, Central and South America, and parts of Africa.

"Satellite viruses" are a type of viruses that require the presence of another virus, known as a "helper virus," to complete their replication cycle. They lack certain genes that are essential for replication and therefore depend on the helper virus to provide these functions. Satellite viruses can either be satellite RNA or satellite DNA viruses, and they can affect plants, animals, and bacteria.

Satellite viruses can influence the severity of the disease caused by the helper virus, either increasing or decreasing it. They can also interfere with the replication of the helper virus and affect its transmission. The relationship between satellite viruses and their helper viruses is complex and can vary depending on the specific viruses involved.

It's important to note that the term "satellite virus" is not used consistently in the scientific literature, and some researchers may use it to refer to other types of dependent or defective viruses. Therefore, it's always a good idea to consult the original research when interpreting the use of this term.

Oncolytic viruses are a type of viruses that preferentially infect and kill cancer cells, while leaving normal cells relatively unharmed. These viruses can replicate inside the cancer cells, causing them to rupture and ultimately leading to their death. The release of new virus particles from the dead cancer cells allows the infection to spread to nearby cancer cells, resulting in a potential therapeutic effect.

Oncolytic viruses can be genetically modified to enhance their ability to target specific types of cancer cells and to increase their safety and efficacy. They may also be used in combination with other cancer therapies, such as chemotherapy or radiation therapy, to improve treatment outcomes. Oncolytic virus therapy is a promising area of cancer research, with several clinical trials underway to evaluate its potential benefits for patients with various types of cancer.

Orf virus, also known as contagious ecthyma virus, is a member of the Parapoxvirus genus in the Poxviridae family. It primarily affects sheep and goats, causing a contagious skin disease characterized by papules, vesicles, pustules, and scabs, mainly on the mouth and legs. The virus can also infect humans, particularly those who handle infected animals or consume raw meat from an infected animal. In human cases, it typically causes a papular or pustular dermatitis, often on the hands, fingers, or forearms. The infection is usually self-limiting and resolves within 4-6 weeks without scarring.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Viral core proteins are the structural proteins that make up the viral capsid or protein shell, enclosing and protecting the viral genome. These proteins play a crucial role in the assembly of the virion, assist in the infection process by helping to deliver the viral genome into the host cell, and may also have functions in regulating viral replication. The specific composition and structure of viral core proteins vary among different types of viruses.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Disease susceptibility, also known as genetic predisposition or genetic susceptibility, refers to the increased likelihood or risk of developing a particular disease due to inheriting specific genetic variations or mutations. These genetic factors can make an individual more vulnerable to certain diseases compared to those who do not have these genetic changes.

It is important to note that having a genetic predisposition does not guarantee that a person will definitely develop the disease. Other factors, such as environmental exposures, lifestyle choices, and additional genetic variations, can influence whether or not the disease will manifest. In some cases, early detection and intervention may help reduce the risk or delay the onset of the disease in individuals with a known genetic susceptibility.

Hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus that belongs to the family Hepeviridae and genus Orthohepevirus. It primarily infects the liver, causing acute hepatitis in humans. The virus is transmitted through the fecal-oral route, often through contaminated water or food sources. Ingestion of raw or undercooked pork or deer meat can also lead to HEV infection.

HEV infection typically results in self-limiting acute hepatitis, characterized by symptoms such as jaundice, fatigue, loss of appetite, abdominal pain, and dark urine. In some cases, particularly among pregnant women and individuals with weakened immune systems, HEV infection can lead to severe complications, including fulminant hepatic failure and death.

There are four main genotypes of HEV that infect humans: genotype 1 and 2 are primarily found in developing countries and are transmitted through contaminated water; genotype 3 and 4 are found worldwide and can be transmitted through both zoonotic and human-to-human routes.

Prevention measures include improving sanitation, access to clean water, and food safety practices. Currently, there is no specific antiviral treatment for HEV infection, but supportive care can help manage symptoms. A vaccine against HEV is available in China and has shown efficacy in preventing the disease.

Loperamide is an antidiarrheal medication that works by slowing down the movement of the intestines. This helps to increase the time between bowel movements and reduces the amount of liquid in stools, thereby helping to relieve diarrhea. It is available over-the-counter (OTC) and by prescription, depending on the strength and formulation.

Loperamide works by binding to opioid receptors in the gut, which helps to reduce the contractions of the intestines that can lead to diarrhea. It is important to note that loperamide should not be used for longer than 2 days without consulting a healthcare professional, as prolonged use can lead to serious side effects such as constipation, dizziness, and decreased alertness.

Loperamide is also known by its brand names, including Imodium, Pepto-Bismol Maximum Strength, and Kaopectate II. It is important to follow the instructions on the label carefully when taking loperamide, and to speak with a healthcare provider if you have any questions or concerns about using this medication.

Friend murine leukemia virus (F-MuLV) is a type of retrovirus that specifically infects mice. It was first discovered by Charlotte Friend in the 1950s and has since been widely used as a model system to study retroviral pathogenesis, oncogenesis, and immune responses.

F-MuLV is a complex retrovirus that contains several accessory genes, including gag, pol, env, and others. The virus can cause leukemia and other malignancies in susceptible mice, particularly when it is transmitted from mother to offspring through the milk.

The virus is also known to induce immunosuppression, which makes infected mice more susceptible to other infections and diseases. F-MuLV has been used extensively in laboratory research to investigate various aspects of retroviral biology, including viral entry, replication, gene expression, and host immune responses.

It is important to note that Friend murine leukemia virus only infects mice and is not known to cause any disease in humans or other animals.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

Viral load refers to the amount or quantity of virus (like HIV, Hepatitis C, SARS-CoV-2) present in an individual's blood or bodily fluids. It is often expressed as the number of virus copies per milliliter of blood or fluid. Monitoring viral load is important in managing and treating certain viral infections, as a higher viral load may indicate increased infectivity, disease progression, or response to treatment.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Enterotoxins are types of toxic substances that are produced by certain microorganisms, such as bacteria. These toxins are specifically designed to target and affect the cells in the intestines, leading to symptoms such as diarrhea, vomiting, and abdominal cramps. One well-known example of an enterotoxin is the toxin produced by Staphylococcus aureus bacteria, which can cause food poisoning. Another example is the cholera toxin produced by Vibrio cholerae, which can cause severe diarrhea and dehydration. Enterotoxins work by interfering with the normal functioning of intestinal cells, leading to fluid accumulation in the intestines and subsequent symptoms.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Medical Definition:

Mammary tumor virus, mouse (MMTV) is a type of retrovirus that specifically infects mice and is associated with the development of mammary tumors or breast cancer in these animals. The virus is primarily transmitted through mother's milk, leading to a high incidence of mammary tumors in female offspring.

MMTV contains an oncogene, which can integrate into the host's genome and induce uncontrolled cell growth and division, ultimately resulting in the formation of tumors. While MMTV is not known to infect humans, it has been a valuable model for studying retroviral pathogenesis and cancer biology.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Specimen handling is a set of procedures and practices followed in the collection, storage, transportation, and processing of medical samples or specimens (e.g., blood, tissue, urine, etc.) for laboratory analysis. Proper specimen handling ensures accurate test results, patient safety, and data integrity. It includes:

1. Correct labeling of the specimen container with required patient information.
2. Using appropriate containers and materials to collect, store, and transport the specimen.
3. Following proper collection techniques to avoid contamination or damage to the specimen.
4. Adhering to specific storage conditions (temperature, time, etc.) before testing.
5. Ensuring secure and timely transportation of the specimen to the laboratory.
6. Properly documenting all steps in the handling process for traceability and quality assurance.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Enterotoxigenic Escherichia coli (ETEC) is a type of diarrheagenic E. coli that causes traveler's diarrhea and diarrheal diseases in infants in developing countries. It produces one or two enterotoxins, known as heat-labile toxin (LT) and heat-stable toxin (ST), which cause the intestinal lining to secrete large amounts of water and electrolytes, resulting in watery diarrhea. ETEC is often transmitted through contaminated food or water and is a common cause of traveler's diarrhea in people traveling to areas with poor sanitation. It can also cause outbreaks in refugee camps, nursing homes, and other institutional settings. Prevention measures include avoiding consumption of untreated water and raw or undercooked foods, as well as practicing good personal hygiene.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Yue Li, Jimin Wang, Ryuta Kanai & Yorgo Modis (2013). Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. ... Among them was the subject of viral entry into host cells by the dengue virus, which became a cover story on Nature (journal). ... Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral ... Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol., 80, 11000-8 Alvaro Arjona ...
They cause Classical swine fever (CSF) and Bovine viral diarrhea(BVD). Mucosal disease is a distinct, chronic persistent ... Louis encephalitis virus, West Nile virus, Israel turkey meningoencephalomyelitis virus, Sitiawan virus, Wesselsbron virus, ... Flaviviruses include the West Nile virus, dengue virus, Tick-borne Encephalitis Virus, Yellow Fever Virus, and several other ... The family includes pathogens such as rabies virus, vesicular stomatitis virus and potato yellow dwarf virus that are of public ...
Simonyi, Erzsébet; Biró, Jenő (1967). "Immunization Experiments Against Hog Cholera with the Bovine Viral Diarrhoea Virus ... Simonyi's research interest were primarily with parasitology and virology of animals and she studied bovine viral diarrhea, ... Simonyi, Erzsébet; Bognár, Károly; Biró, Jenő; Palatka, Zoltán (1968). "Immunization Experiments against Bovine Viral Diarrhoea ... Simonyi, Erzsébet; Bognár, Károly; Biró, Jenő; Palatka, Zoltán (1968). "Immunization Experiments against Bovine Viral Diarrhoea ...
A complex disease caused by bovine pestivirus, also known as BVDV (bovine viral diarrhoea virus). The disease results in ... Cattle are bovine livestock and are thus very susceptible to diseases. Vaccinations for cattle are widely used in the livestock ... It causes diarrhoea, bellowing, mania, blindness, convulsions and death. Black disease occurs when the liver becomes damaged ... Cattle are very susceptible to diseases as they are a bovine livestock, the prevalence and frequency of these diseases ( ...
2008) Detection, characterization, and control of bovine viral diarrhea virus infection in a large commercial dairy herd. (2009 ... 2006) Serological evaluation of precolostral serum samples to detect Bovine viral diarrhea virus infections in large commercial ... and pathogenicity of porcine reproductive and respiratory syndrome virus on virus concentration in pigs. (2006) Evaluation of a ... "Kit for detecting swine infertility and respiratory syndrome (SIRS) virus". September 2003. US Patent 10/281,884. "Methods for ...
... bovine viral diarrhea virus NS3 endopeptidase, BVDV NS3 endopeptidase, classical swine fever virus NS3 endopeptidase, CSFV NS3 ... Xu J, Mendez E, Caron PR, Lin C, Murcko MA, Collett MS, Rice CM (July 1997). "Bovine viral diarrhea virus NS3 serine proteinase ... Tautz N, Kaiser A, Thiel HJ (August 2000). "NS3 serine protease of bovine viral diarrhea virus: characterization of active site ... protein p80 of bovine viral diarrhea virus is a proteinase involved in polyprotein processing". Virology. 184 (1): 341-50. doi: ...
"Direct RT-PCR from serum enables fast and cost-effective phylogenetic analysis of bovine viral diarrhoea virus". Journal of ... 2010). "A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus". Virol. J. ... RT-PCR is commonly used in studying the genomes of viruses whose genomes are composed of RNA, such as Influenzavirus A, ... September 2002). "Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 ...
2006). "Vertical Transmission Of Bovine Viral Diarrhoea Virus (BVDV) In Mousedeer (Tragulus Javanicus) And Spread To Domestic ... bovine viral diarrhea virus (BVDV 1), a pestivirus of the family flaviviridae has been detected in Java mouse-deer. Mouse-deer ... acquire this virus through fetal infection during early pregnancy. Once acquired, individuals with BVDV can gain lifelong ...
The bovine viral diarrhea virus (BVDV) is what causes bovine viral diarrhea (BVD). Bovine viral diarrhea virus type 1 (BVDV-1 ... causes Bovine viral diarrhea and Mucosal disease Pestivirus B or Bovine viral diarrhea virus 2 or (BVDV-2), causes Bovine viral ... Bovine viral diarrhea virus type 2 (BVDV-2), Border disease virus (BDV), and Classical swine fever (CSF) virus are the four ... "Isolation of different non-cytopathogenic bovine viral diarrhoea (BVD) viruses from cytopathogenic BVD virus stocks using ...
CSFV is closely related to the ruminant pestiviruses that cause bovine viral diarrhoea and border disease. The effect of ... Virus isolation - isolation of virus in cell culture. Histology of the brain shows vasculoendothelial proliferation and ... Antigen ELISA - detection of viral protein (antigen) in serum samples. RT-qPCR test - detection of viral RNA in samples, ... Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego. 1162 pp. ICTV ...
Viral agents include Bovine viral diarrhea (BVD), Infectious Bovine Rhinotracheitis (IBR), Bovine respiratory syncytial virus ( ... Bovine respiratory disease (BRD) is the most common and costly disease affecting beef cattle in the world. It is a complex, ... Viral agents are often present in the herd for an extended time, with almost no symptoms, and only cause severe complications ... Bovine Respiratory Disease, Clell Bagley and the Utah State University Cooperative Extension. Zecchinon L, Fett T, Desmecht D ( ...
... (BVD), bovine viral diarrhoea (UK English) or mucosal disease, previously referred to as bovine virus ... Bovine Viral Diarrhoea Virus, expert reviewed and published by Wikivet at http://en.wikivet.net/Bovine_Viral_Diarrhoea_Virus, ... Animal viruses Fray, M.D; Paton, D.J; Alenius, S.; et al. (2000). "The effects of bovine viral diarrhoea virus on cattle ... "Insertion of a bovine SMT3B gene in NS4B and duplication of NS3 in a bovine viral diarrhea virus genome correlate with the ...
Cattle - Retinal dysplasia occurs in utero through infection with bovine viral diarrhea. It is also inherited in Shorthorns and ... Cats - Retinal dysplasia occurs in utero or in newborns infected with feline leukemia virus or feline panleukopenia, which ... It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. ...
"Semiliki forest virus vector carrying the bovine viral diarrhea virus NS3 (p80) cDNA induced immune responses in mice and ... respiratory and reproductive disease-causing virus. Life sciences contributions at Research Gate: Reddy JR, Kwang J, ...
"Semiliki forest virus vector carrying the bovine viral diarrhea virus NS3 (p80) cDNA induced immune responses in mice and ...
Aebischer, Andrea (2014). "Rapid Genome Detection of Schmallenberg Virus and Bovine Viral Diarrhea Virus by Use of Isothermal ... and RPA for detection of Schmallenberg virus and bovine viral diarrhea virus, which effectively makes the point that each ... An international quality assessment of molecular detection of Rift Valley fever virus performed as well as the best RT-PCR ... for rapid detection of viral genomic DNA or RNA, pathogenic bacterial genomic DNA, as well as short length aptamer DNA. The ...
QI02AD02 Bovine viral diarrhea (BVD) QI02AD03 Bovine viral diarrhea + bovine respiratory syncytial virus QI02AD04 Bovine ... QI02AA01 Bovine viral diarrhea (BVD) QI02AA02 Bovine respiratory syncytial virus (BRSV) QI02AA03 Bovine rhinotracheitis virus ( ... bovine parainfluenza virus QI02AD07 Bovine respiratory syncytial virus + bovine parainfluenza virus QI02AD08 Bovine rotavirus ... bovine adenovirus + bovine reovirus QI02AA06 Bovine parainfluenza virus + bovine adenovirus + bovine reovirus + bovine ...
Bovine Viral Diarrhoea Virus (BVDV), Porcine Reproductive and Respiratory Syndrome (PRRS), and Bovine Spongiform Encephalopathy ...
... bovine viral diarrhoea. Nuttall found that the bovine viral diarrhoea virus was often present as a contaminant in foetal bovine ... While performing experiments designed to explore whether Thogoto virus, an influenza-like virus, can be transmitted between ... "Viral contamination of bovine foetal serum and cell cultures", Nature, 266 (5605): 835-37, Bibcode:1977Natur.266..835N, doi: ... Nuttall's group has continued to study the phenomenon, and have shown that immunity to tick-borne encephalitis virus does not ...
... using phenotypic screening in which the GT-1b replicon system was implemented in Huh7 cells and bovine viral diarrhea virus ... Bishé B, Syed G, Siddiqui A (October 2012). "Phosphoinositides in the hepatitis C virus life cycle". Viruses. 4 (10): 2340-58. ... Virus assembly is associated with domain 3. NS5A not only binds to cellular membranes, other non-structural proteins of the HCV ... Portals: Medicine Viruses (All articles with dead external links, Articles with dead external links from March 2023, Articles ...
The bovine viral diarrhoea virus (bovine virus diarrhea) is said to be recrudescent for some time after clinical signs have ...
... similar clinical signs may be caused in sheep and goats by bovine viral diarrhea virus (BVDV). It is therefore important to ... "Border disease in sheep caused by transmission of virus from cattle persistently infected with bovine virus diarrhoea virus". ... The disease was recognized before the virus, therefore the common name of the disease predates the understanding of the viral ... This virus is not host exclusive. It is noncytopathogenic -it does not kill its host cells. It is a single stranded RNA virus ...
... and bacterial viruses were discovered during these years. In 1957 equine arterivirus and the cause of bovine virus diarrhoea (a ... The study of the manner in which viruses cause disease is viral pathogenesis. The degree to which a virus causes disease is its ... This recombinant DNA can then be used to produce viral components without the need for native viruses. The viruses that ... Viral genome sequencing as become a central method in viral epidemiology and viral classification. Data from the sequencing of ...
The viral particles can be detected in fecal matter within 2 days and peak virus shedding occurs 4-5 days after infection. The ... virus can be found in the kidney, jejunum, spleen, liver and bursa of infected birds. Symptoms of this disease include diarrhea ... The genus Mamastrovirus includes Bovine astroviruses 1 and 2, Human astrovirus (types 1-8), Feline astrovirus 1, Porcine ... Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses ...
Because the virus is transmitted from sheep to bison and cattle, researchers are first focusing on the viral life cycle in ... inappetence and diarrhea. Some animals have neurologic signs, such as ataxia, nystagmus, and head pressing. Animals that become ... Researchers hope that inserting genes from the sheep MCF virus into the topi MCF virus will ultimately be an effective MCF ... Wikimedia Commons has media related to Bovine malignant catarrhal fever. Current status of Bovine malignant catarrhal fever ...
... bovine virus diarrhoea virus, and bovine herpes virus 1". Vet. Parasitol. 190 (1-2): 43-50. doi:10.1016/j.vetpar.2012.05.021. ... Aerosols have to be exhaled, sneezed, or coughed from an infected animal during viral shedding in order for transmission to ... Bovine alphaherpesvirus 1 (BoHV-1) is a virus of the family Herpesviridae and the subfamily Alphaherpesvirinae, known to cause ... Nandi S, Kumar M, Manohar M, Chauhan RS (2009). "Bovine herpes virus infections in cattle". Anim Health Res Rev. 10 (1): 85-98 ...
... bovine viral diarrhea virus 1) and Pestivirus C (classical swine fever virus, previously hog cholera virus)). Viruses in this ... GB virus B)) Genus Pegivirus (includes Pegivirus A (GB virus A), Pegivirus C (GB virus C), and Pegivirus B (GB virus D)) Genus ... Guaico Culex virus, Jingmen tick virus and Mogiana tick virus. These viruses have a segmented genome of 4 or 5 pieces. Two of ... Powassan virus, West Nile virus, Yellow fever virus, and Zika virus) Genus Hepacivirus (includes Hepacivirus C (hepatitis C ...
... bovine virus diarrhea-mucosal disease MeSH C22.196.148 - brucellosis, bovine MeSH C22.196.250 - encephalopathy, bovine ... viral MeSH C22.467.435 - hepatitis, viral, animal MeSH C22.467.435.442 - hepatitis, infectious canine MeSH C22.467.435.812 - ... bovine MeSH C22.196.831 - theileriasis MeSH C22.196.888 - trypanosomiasis, bovine MeSH C22.196.927 - tuberculosis, bovine MeSH ... bovine MeSH C22.735.050 - ape diseases MeSH C22.735.500 - monkey diseases MeSH C22.735.500.500 - marburg virus disease MeSH ...
Animal viral diseases, Bovine diseases, Betacoronaviruses, Infraspecific virus taxa). ... Clinical signs include profuse diarrhea and a significant drop in milk yield is seen in winter dysentery outbreaks. A ... Bovine coronavirus (BCV or BCoV) is a coronavirus which is a member of the species Betacoronavirus 1. The infecting virus is an ... Porcine Hemagglutinating Encephalomyelitis Virus, Bovine Coronavirus, and Human Coronavirus OC43". Journal of Virology. 80 (14 ...
In Canine minute virus NP1 has been shown to be essential for an early step in viral replication and is also required for the ... Bovine bocaviruses utilise endocytosis in clathrin-coated vesicles to enter cells; they are dependent upon acidification, and ... Diseases associated with this genus include, in humans, acute respiratory illness, and in cattle, diarrhea and mild respiratory ... Bocaparvovirus is a genus of viruses in the subfamily Parvovirinae of the virus family Parvoviridae. Humans, cattle, and dogs ...
... with bovine viral diarrhea virus (BVDV) at arrival at a feedlot, prevalence of chronically ill and dead PI cattle, and the ... Objective-To estimate prevalence of cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) at arrival at a ... Objective-To estimate prevalence of cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) at arrival at a ... Prevalence, outcome, and health consequences associated with persistent infection with bovine viral diarrhea virus in feedlot ...
The IDEXX RealPCR BVDV Mix is used for the identification of bovine viral Diarrhoea virus RNA ... Bovine Viral Diarrhoea Virus (BVDV). The IDEXX RealPCR BVDV Mix is used for the identification of bovine viral diarrhoea virus ... About Bovine Viral Diarrhoea Virus (BVDV). Bovine viral diarrhoea virus (BVDV) suppresses a cows immune system, making the ... Thats why BVDV is one of the worlds most costly bovine diseases, with losses of $15-$88 per head from reduced herd ...
Bovine viral diarrhea virus (BVDV) is an important pathogen of domestic cattle. Serologic, experimental, and individual case ... and immunohistochemical findings in two white-tailed deer fawns persistently infected with Bovine viral diarrhea virus 2008. ... studies explored the presence and pathogenesis of the virus in wild ungulates; however, there remain large gaps in knowledge ...
... which were typed as border disease virus subtype 3 (BDV-3), belonged to the bovine viral diarrhoea virus genotype 1 (BVDV-1) ... The effect of bovine viral diarrhoea virus on fertility in dairy cows: two case-control studies in the province of Styria, ... Retrospective epidemiological evaluation of molecular and animal husbandry data within the bovine viral diarrhoea virus (BVDV) ... within the compulsory bovine viral diarrhoea virus (BVDV) control programme in Western Austria, covering the federal provinces ...
... including the recognition of other potential sources of the virus. Bovine viral diarrhea virus does not possess strict host- ... The Role of White-tailed Deer (Odocoileus virginianus) in the Epidemiology of Bovine Viral Diarrhea Virus. View/. Open ... Bovine viral diarrhea virus (BVDV) is the prototypic member of the genus Pestivirus in the family Flaviviridae. Infections with ... Two serum samples contained virus neutralizing antibodies, and one skin sample was positive on immunohistochemistry. The viral ...
"Bovine viral diarrhea virus 1" virus name. The additional filters enable you with creating a sub-selection of items of this ... Filter by Virus host type. *Animal virus (1) Apply Animal virus filter ... For tropical and RG4 viruses. In the event of a major biological incident regarding tropical (exotic) viruses or Risk Group 4 ... For other human viruses of medical importance. The Charité University Berlin (CUB) is in charge of our hotline dedicated to ...
MATERIAL AND METHODS: RNA extracted from bovine viral diarrhoea virus (BVDV) was used as an internal control to monitor the ... Screening for hepatitis C virus (HCV) by polymerase chain reaction (PCR) will be mandatory for screening blood and plasma ... Use of bovine viral diarrhoea virus as an internal control for amplification of hepatitis C virus. Share Share Share ... Use of bovine viral diarrhoea virus as an internal control for amplification of hepatitis C virus. ...
Are your cows suffering from bovine viral diarrhea virus (BVD)? It may be because of contaminated feed or a related issue. For ... Bovine Viral Diarrhea Virus (BVD). What is BVD in cows?. Bovine Viral Diarrhea Virus is a widespread infectious disease among ... Bovine Viral Diarrhea and Mucosal Disease Complex BVDs Big Take About BVD ... BVD costs producers around $2 billion annually and therefore, BVD is one of the most expensive viral diseases in cattle. BVD ...
Worldwide distributed Bovine Viral Diarrhea Virus (BVDV) represents a high risk of infection in most bovine farms, in which it ... N2 - Worldwide distributed Bovine Viral Diarrhea Virus (BVDV) represents a high risk of infection in most bovine farms, in ... AB - Worldwide distributed Bovine Viral Diarrhea Virus (BVDV) represents a high risk of infection in most bovine farms, in ... abstract = "Worldwide distributed Bovine Viral Diarrhea Virus (BVDV) represents a high risk of infection in most bovine farms, ...
AsurDx™ Bovine Viral Diarrhea Virus (BVDV) Ag Test Kit. The AsurDxTM Bovine Viral Diarrhea Virus (BVDV) Ag Test Kit is designed ... shedding the virus continuously. Bovine viral diarrhea virus (BVDV) suppresses a cows immune system, making the animal ... for the detection of Bovine Viral Diarrhea Virus (BVDV) non-structural protein p80/p125 antigen in bovine whole blood (with ... Bovine fetus infected with non-cytopathic biotype of BVDV between days 30 and 125 of gestation can develop immune tolerance ...
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience ...
... bovine viral diarrhea virus. ... 70 kDa in Linda virus and BVDV-1), because Linda virus E1 has ... A) Western blot analysis of cells infected with novel virus provisionally termed Linda virus. Total protein of SK-6 cells ... The apparent molecular mass of monomeric E2 (LV 50 kDa and BVDV-1 55 kDa) shows that Linda virus E2 has a lower molecular ... B, C) Focus size of Linda virus 48 hours after infection of SK-6 cells (B) and MDBK cells (C) (original magnification ×20). D, ...
About Bovine Viral Diarrhea Virus (BVDV). Bovine viral diarrhea virus (BVDV) suppresses a cows immune system, making the ... Bovine Viral Diarrhea Virus (BVDV). The IDEXX BVDV Total Ab X3 Test is an enzyme immunoassay (ELISA) designed to detect BVDV ... Thats why BVDV is one of the worlds most costly bovine diseases, with losses of $15-$88 per head from reduced herd ...
Inactivated and subunit bovine viral diarrhea virus (BVDV) vaccines have shown limited protective efficacy. This study aimed to ... From: Recombinant E2 protein enhances protective efficacy of inactivated bovine viral diarrhea virus 2 vaccine in a goat model ...
Measuring bovine viral diarrhea virus vaccine response: using a commercially available ELISA as a surrogate for serum ... Measuring bovine viral diarrhea virus vaccine response: using a commercially available ELISA as a surrogate for serum ... Genetic selection in livestock offers the opportunity to improve bovine viral diarrhea virus (BVDV) vaccine response, but first ... Diarrhea Virus 1, Bovine Viral * Diarrhea Virus 2, Bovine Viral * Enzyme-Linked Immunosorbent Assay ...
In contrast, the antibody response in the subgroup of animals inoculated twice with homologous non-cytopathic virus was ... pathic viruses, respectively. Taken together, these data suggest that the differences in immune responses against cytopathic or ... Cross-infection studies of normal calves infected with homologous pairs of non-cytopathic and cytopathic bovine viral diarrhoea ... virus (BVDV) showed significant differences in both humoral and cell- mediated immune responses against either biotype over a ...
Yue Li, Jimin Wang, Ryuta Kanai & Yorgo Modis (2013). Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. ... Among them was the subject of viral entry into host cells by the dengue virus, which became a cover story on Nature (journal). ... Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral ... Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol., 80, 11000-8 Alvaro Arjona ...
HIV-1: Human Immunodeficiency Virus â€" 1. BVDV: Bovine Viral Diarrhea Virus. PRV: Pseudorabies Virus. SBV: Sindbis Virus. ... Because Octaplas is made from human plasma, it may carry a risk of transmitting infectious agents, e.g., viruses, the variant ... TNBP and Octoxynol used in the manufacturing process for viral inactivation may be present in the final product at levels not ... All plasma donations are tested for viral markers in compliance with US regulation. In addition, the manufacturing plasma pool ...
is closely related to border disease virus ( BDV. ) of sheep and to classical swine fever virus ( CSFV. ). The three viruses ... The Bovine Viral Diarrhoea (BVD) Eradication Scheme phase 4: guidance for vets. ... www.gov.scot/publications/bovine-viral-diarrhoea-bvd/ ... is the mechanism that allows this virus to spread and persist ... In bulls infected transiently the virus can be released in the semen for a limited time. In all but a few exceptional cases ...
Transmission of bovine viral diarrhoea virus by unhygienic vaccination procedures, ambient air, and from contaminated pens. Vet ... Transmission of bovine viral diarrhoea virus by unhygienic vaccination procedures, ambient air, and from contaminated pens. Vet ... Transmission of bovine viral diarrhoea virus by unhygienic vaccination procedures, ambient air, and from contaminated pens. Vet ... Transmission of bovine viral diarrhoea virus by unhygienic vaccination procedures, ambient air, and from contaminated pens. . ...
... provides a wide variety of tests for various Bovine and Swine diseases. ... Bovine Viral Diarrhea Virus (BVDV). Johnes Disease. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). ... Neogen offers veterinary diagnostics proficient in virus detection within bovine, ovine, and swine applications. Neogen is a ... With a variety of diagnostics available for bovine, ovine, and swine, Neogen has the veterinary applications necessary to ...
ENTERITIS AND LYMPHOCYTE DEPLETION IN PIGS INOCULATED WITH BOVINE VIRAL DIARRHEA VIRUS (Abstract Only) (28-Sep-98) ...
Bovine viral diarrhea (BVD), endemic in cattle worldwide, was first described in 1946, together with the eponymous RNA virus as ... Bovine viral diarrhea virus in Switzerland PLoS One. 2018 Dec 5;13(12):e0207604. doi: 10.1371/journal.pone.0207604. eCollection ... Diarrhea / veterinary * Diarrhea / virology * Diarrhea Viruses, Bovine Viral / genetics* * Diarrhea Viruses, Bovine Viral / ... The association of the two cattle populations with different BVD viral subgenotypes may have been preserved by a lack of cattle ...
BOVINE VIRAL DIARRHEA VIRAL INFECTIONS IN FEEDER CALVES WITH RESPIRATORY DISEASE: INTERACTIONS WITH PASTEURELLA SPP. ... PARAINFLUENZA-3 VIRUS AND BOVINE RESPIRATORY SYNCYTIAL VIRUS (Peer Reviewed Journal) (8-Aug-00) ... CORONAVIRUS AND PASTEURELLA INFECTIONS IN BOVINE SHIPPING FEVER PHEUMONIA AND EVANS CRITERIA FOR CAUSATION (Peer Reviewed ...
Categories: Diarrhea Viruses, Bovine Viral Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
... epizootic hemorrhagic disease virus and bovine ephemeral fever virus. Our findings demonstrated a very low seroprevalence (3%) ... In comparison to livestock, there are limited data on viral infections in all wildlife, including deer. The aim of this study ... However, deer could be a future source of viral infections for domestic animals in Australia. Further investigations are needed ... for ruminant Pestivirus, and none of the other viruses tested were detected. These results suggest that wild deer may currently ...
Bovine Viral Diarrhea Virus. September 2021 PDF (6.7 MB) Download. Staphylococcus aureus Mastitis. September 2021 PDF (6.1 MB) ... Do you record disease events for, at minimum, cows with these signs (abortion, lameness, mastitis, diarrhea, pneumonia, death) ... and calves with these signs (diarrhea, pneumonia, death)?. Have you established and implemented an SOP, in consultation with ...
Ciulli S.; Galletti E.; Bonato A.; Battilani M.; Scagliarini A.; Prosperi S., Bovine Viral Diarrhea virus (BVDV) variability in ... CIULLI S.; GALLETTI E.; BONATO A.; BATTILANI M.; SCAGLIARINI A.; PROSPERI S., Bovine Viral Diarrhoea Virus (BVDV) variability ... Gallina L; Scagliarini A; Ciulli S; Prosperi S., Cloning and expression of the Orf virus F1L gene: possible use as a subunit ... Scagliarini A; Gallina L; Dal Pozzo F; Battilani M; Ciulli S; Prosperi S; Pampiglione S., Diagnosis of orf virus infection in ...
LARSON, R.L. Bovine viral diarrhea virus-associated disease in feedlot cattle. Veterinary Clinics of North America: Food Animal ... FULTON, R.W. Host response to bovine viral diarrhea virus and interactions with infectious agents in the feedlot and breeding ... Host response to bovine viral diarrhea virus and interactions with infectious agents in the feedlot and breeding herd. ... Host response to bovine viral diarrhea virus and interactions with infectious agents in the feedlot and breeding herd. ...
  • Objective -To estimate prevalence of cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) at arrival at a feedlot, prevalence of chronically ill and dead PI cattle, and the magnitude of excess disease attributable to a PI animal. (avma.org)
  • The IDEXX RealPCR BVDV Mix is used for the identification of bovine viral diarrhoea virus RNA when combined with the shared reagents of the IDEXX RealPCR platform. (idexx.co.uk)
  • Bovine viral diarrhoea virus (BVDV) suppresses a cow's immune system, making the animal susceptible to a host of other infections. (idexx.co.uk)
  • That's why BVDV is one of the world's most costly bovine diseases, with losses of $15-$88 per head from reduced herd productivity, health and reproductive efficiency. (idexx.co.uk)
  • Bovine viral diarrhea virus (BVDV) is an important pathogen of domestic cattle. (fao.org)
  • A retrospective epidemiological investigation of molecular and animal husbandry data collected over an observation period of five years (2009-2014) within the compulsory bovine viral diarrhoea virus (BVDV) control programme in Western Austria, covering the federal provinces of Tyrol and Vorarlberg is presented in this study. (vetline.de)
  • All but 13 samples, which were typed as border disease virus subtype 3 (BDV-3), belonged to the bovine viral diarrhoea virus genotype 1 (BVDV-1) and clustered within six different subtypes (1b, 1e, 1f, 1h, 1d and 1k). (vetline.de)
  • Mit Ausnahme von 13 Proben, die als Border Disease Virus (BDV 3) identifiziert wurden, konnten alle der Bovinen Virus Diarrhoe Virus Spezies 1 (BVDV-1) zugeordnet werden. (vetline.de)
  • Bovine viral diarrhea virus (BVDV) is the prototypic member of the genus Pestivirus in the family Flaviviridae. (auburn.edu)
  • For the successful execution of these control measures, knowledge of the epidemiology of BVDV must be complete, including the recognition of other potential sources of the virus. (auburn.edu)
  • However, susceptibility of white-tailed deer to BVDV infection does not alone imply or prove a role in the epidemiology of the virus or prove the existence of a wildlife reservoir. (auburn.edu)
  • Persistently infected cattle are the most efficient source of BVDV and constitute the major source of transmission of the virus within and among cattle herds. (auburn.edu)
  • These findings demonstrate that BVDV may efficiently cross the species barrier to provide a potential alternative niche to ensure viral survival and propagation. (auburn.edu)
  • Shedding of BVDV as demonstrated in the PI fawns may result in maintenance of the virus within populations of white-tailed deer, and this would be central to perpetuation of a wildlife reservoir. (auburn.edu)
  • MATERIAL AND METHODS: RNA extracted from bovine viral diarrhoea virus (BVDV) was used as an internal control to monitor the efficiency of extraction, reverse transcription and amplification steps in HCV PCR. (ox.ac.uk)
  • Worldwide distributed Bovine Viral Diarrhea Virus (BVDV) represents a high risk of infection in most bovine farms, in which it is associated with gastrointestinal, respiratory, and reproductive diseases. (unamur.be)
  • The AsurDx TM Bovine Viral Diarrhea Virus (BVDV) Ag Test Kit is designed for the detection of Bovine Viral Diarrhea Virus (BVDV) non-structural protein p80/p125 antigen in bovine whole blood (with heparin or EDTA), plasma, serum, leucocytes or ear notch samples. (biostoneah.com)
  • Bovine fetus infected with non-cytopathic biotype of BVDV between days 30 and 125 of gestation can develop immune tolerance against the virus and will be born persistently infected (PI) shedding the virus continuously. (biostoneah.com)
  • One of the most immunogenic proteins of BVDV is non-structural NS2/3 (p80/p125), which is essential for the BVDV viral RNA replication and cytopathogenicity. (biostoneah.com)
  • Total protein of SK-6 cells infected with Linda virus and MDBK cells infected with BVDV-1 (strain NADL) was probed with the pestivirus E2-specific antibody 6A5. (cdc.gov)
  • The apparent molecular mass of monomeric E2 (LV 50 kDa and BVDV-1 55 kDa) shows that Linda virus E2 has a lower molecular weight than BVDV-1 E2 as a result of fewer N-linked glycosylation sites. (cdc.gov)
  • In contrast, the mass of E1-E2 heterodimers is comparable (≈70 kDa in Linda virus and BVDV-1), because Linda virus E1 has an additional N-linked glycosylation site. (cdc.gov)
  • BVDV, bovine viral diarrhea virus. (cdc.gov)
  • Genetic selection in livestock offers the opportunity to improve bovine viral diarrhea virus (BVDV) vaccine response, but first we must define how vaccine response should be measured. (tamu.edu)
  • Cross-infection studies of normal calves infected with homologous pairs of non-cytopathic and cytopathic bovine viral diarrhoea virus (BVDV) showed significant differences in both humoral and cell- mediated immune responses against either biotype over a period of 5 months. (microbiologyresearch.org)
  • The identification and genetic characterization of bovine viral diarrhea virus (BVDV) isolate 17237 detected in western Slovakia is described. (elis.sk)
  • The percentage of nucleotide and deduced amino acid identity in analyzed genes implied that the isolate was closely related to the bovine viral diarrhea virus 2 (BVDV-2). (elis.sk)
  • The cleavage sites between viral proteins were similar to the ones of a reference strain of BVDV-2. (elis.sk)
  • Bovine viral diarrhea virus (BVDV) is one of the RNA viruses, which causes a severe disease in cattle. (whale.to)
  • Since BVDV is able to cross the bovine placenta easily, the fetal bovine tissues and serums also become infected with the virus. (whale.to)
  • Therefore, it is quite possible for an adventitious BVDV to be present in live virus prepared in cell cultures supplemented with fetal bovine serums. (whale.to)
  • Detection of BVDV contamination in virus vaccines has been hampered because most of the BVDV strains are noncytopathic in cell cultures. (whale.to)
  • BVDV RNA was demonstrated in human live virus vaccines produced in Japan, Italy and Switzerland. (whale.to)
  • BVDV in fetal bovine serum that is used to grow the substrate cells used for the preparation of the virus vaccines is a likely source of the contamination. (whale.to)
  • The present data so not necessarily indicate that the virus vaccines examined were contaminated with infectious BVDV, but any adventitious viral agents in a vaccine is undesirable. (whale.to)
  • Since noncytopathic strains of BVDV are capable of incorporating the host cellular RNA into their genomes, BVDV contamination would raise another issue with regard to the safety of virus vaccines produced in continuous cell lines which are potentially oncogenic. (whale.to)
  • In conclusion, the fetal bovine serums should be standardized for the production of vaccines, and be examined for the presence of noncytopathic strains of BVDV. (whale.to)
  • Dr. Ryo Harasawa of the University of Tokyo (Japan), Dr. Massimo Giangaspero of the University of Milan (Italy), and their colleagues in Germany, Belgium and Italy examined for the presence of BVDV in virus vaccines produced in Europe, US, and Japan, by using reverse transcription-PCR. (whale.to)
  • There is no evidence presented to substantiate contamination of human virus vaccines with infectious BVDV, but they urge people to beware of the risk of infection because iatrogenic infections have been reported for veterinary virus vaccines contaminated with infectious BVDV. (whale.to)
  • They also recommend that the virus vaccines be screened for the presence of adventitious BVDV by sensitive PCR in advance and PCR-positive vaccines be further examined for the presence of infectious BVDV by culture methods. (whale.to)
  • Detection of antibodies to bovine viral diarrhea virus (BVDV) type 1a by virus neutralization. (tamu.edu)
  • Bovine viral diarrhea virus (BVDV), which is prevalent worldwide, is one of the most important viral pathogens and causes substantial economic loss to the livestock industry. (koreamed.org)
  • Bovine viral diarrhoea virus (BVDV) in cattle is a complex disease that is caused by bovine pestivirus. (wa.gov.au)
  • US scientists report that they have produced a gene-edited calf with reduced susceptibility to bovine viral diarrhea virus (BVDV), an innovation they say could potentially reduce antimicrobial use in cattle. (umn.edu)
  • In addition, when pregnant cows are infected, BVDV can cross the placenta and infect developing calves, resulting in abortion, congenital malformation, or persistently infected cattle who constantly shed the virus and are at risk for secondary bacterial infections. (umn.edu)
  • He currently studies the transmission and evolution of this virus and the consequences of BVDV variability on vaccination strategies. (debategraph.org)
  • Bovine Viral Diarrhea Virus is a widespread infectious disease among dairy cows and cattle generally challenging milk production and animal growth. (dairylawyers.com)
  • BVD costs producers around $2 billion annually and therefore, BVD is one of the most expensive viral diseases in cattle. (dairylawyers.com)
  • Molecular specificity of the antibody responses of cattle naturally and experimentally infected with cytopathic and noncytopathic bovine viral diarrhea virus biotypes. (microbiologyresearch.org)
  • is the mechanism that allows this virus to spread and persist within a population of cattle. (gov.scot)
  • Neogen is a certified BioTracking laboratory offering the BioPRYN early-stage bovine, ovine, and swine detection pregnancy veterinary diagnostic assay service for beef and dairy cattle producers. (neogen.com)
  • Bovine viral diarrhea (BVD), endemic in cattle worldwide, was first described in 1946, together with the eponymous RNA virus as its cause. (nih.gov)
  • A search for associations between the nucleotide sequences of over 7,000 BVD viral strains obtained during a national campaign to eradicate BVD and features common to the hosts of these strains enabled us to trace back in time the presence of BVD in the Swiss cattle population. (nih.gov)
  • The association of the two cattle populations with different BVD viral subgenotypes may have been preserved by a lack of cattle imports, trade barriers within the country, and unique virus-host interactions. (nih.gov)
  • The congruent traces of history in the distribution of the two cattle breeds and distinct viral subgenotypes suggests that BVD may have been endemic in Switzerland for at least 600 years. (nih.gov)
  • For this purpose, the aims of this study were to evaluate the effect of two metaphylactic protocols on the morbidity of feedlot cattle with a known sanitary history, occurrence of pulmonary lesions at slaughter, and the possible participation of Mannheimia haemolytica, Histophilus somni, Bovine alphaherpesvirus 1 (BoHV-1) and bovine respiratory syncytial virus (BRSV) in the development of BRD. (scielo.br)
  • It is caused by a virus related to the one that causes Bovine Viral Diarrhea disease in cattle. (infonet-biovision.org)
  • Bovine Viral Diarrhea and Mucosal Disease Complex Bovine viral diarrhea/mucosal disease is a pestivirus infection of cattle and other ruminants. (merckvetmanual.com)
  • Food and Environmental Safety category, oral -Sara Gragg, Texas Tech University, for " Salmonella in lymph nodes of cattle presented for harvest," and William Chaney, Texas Tech University, for "Development of a semi-quantitative ranking scheme to estimate the concentration of Escherichia coli O157:H7 in bovine feces. (avma.org)
  • One Shot BVD helps provide beef and dairy cattle with combined respiratory protection against Mannheimia haemolytica and bovine viral diarrhea (BVD) Types 1 and 2 viruses in a single dose. (animalhealthexpress.com)
  • Bovine viral diarrhea virus is of special interest due to its impact on the cattle industry, involvement in the bovine respiratory disease (BRD) complex and several unique virological features. (debategraph.org)
  • Reports of spontaneous bovine (i.e., cattle) abortions and deaths began in December 2022 after unusually heavy rains during September-November. (cdc.gov)
  • This newborn calf may become persistently infected (PI), which means the virus will last the entire length of the animal's life. (dairylawyers.com)
  • The virus usually enters a flock through the purchase of a persistently infected sheep. (infonet-biovision.org)
  • Measuring bovine viral diarrhea virus vaccine response: using a commercially available ELISA as a surrogate for serum neutralization assays. (tamu.edu)
  • Prospects for a virus non-structural protein as a subunit vaccine. (microbiologyresearch.org)
  • Major on-going efforts are focused on the development of an African Swine Fever Virus subunit vaccine and a broadly protective Bovine Viral Diarrhea Virus vaccine, adjuvants, and diagnostic tools. (k-state.edu)
  • Whole genome characterization of a novel porcine reproductive and respiratory syndrome virus 1 isolate: Genetic evidence for recombination between Amervac vaccine and circulating strains in mainland China. (cdc.gov)
  • B, C) Focus size of Linda virus 48 hours after infection of SK-6 cells (B) and MDBK cells (C) (original magnification ×20). (cdc.gov)
  • animal is a potent source of infection releasing the virus in secretions from the respiratory, digestive and reproductive tracts. (gov.scot)
  • For patient education resources, see Digestive Disorders Center , as well as Gastroenteritis (Stomach Flu) , Norovirus Infection , and Diarrhea . (medscape.com)
  • Clinical manifestations are related to intestinal infection, but the exact mechanism of the induction of diarrhea is not clear. (medscape.com)
  • 2-7 Although SARS has not re-appeared, sporadic cases of human infection with avian influenza viruses continue to occur. (who.int)
  • 8 Common non-influenza respiratory viruses are also important causes of significant acute respiratory infection in the country. (who.int)
  • Es wird über eine retrospektive epidemiologische Erhebung mit Auswertung von molekularbiologischen Daten und Einzeltierdaten über einen Zeitraum von fünf Jahren (2009-2014) im Rahmen des Bovine Virus Diarrhoe/Mucosal Disease Bekämpfungsprogrammes in Österreich berichtet. (vetline.de)
  • Differences in virus-induced polypeptides in cells infected by cytopathic and noncytopathic biotypes of bovine virus diarrhea-mucosal disease virus. (microbiologyresearch.org)
  • D, E) Detection of pestiviral E2 within neuronal tissue of Linda virus-positive, congenital tremor-affected piglets showing positive signals in neurons of the nucleus of the trigeminal nerve (D) (original magnification ×10) and within glial cells in the cerebellar white matter (E) (original magnification ×20). (cdc.gov)
  • Neogen offers veterinary diagnostics proficient in virus detection within bovine, ovine, and swine applications. (neogen.com)
  • Diagnostic tests for CSFV detection include RT-qPCR, virus isolation, immunofluorescence assay, and detection of antibodies by serologic tests such as ELISA and virus neutralization. (merckvetmanual.com)
  • The primary aim of this study was to assist the Virology Laboratory at the Nha Trang Pasteur Institute (NTPI) to develop laboratory preparedness for respiratory virus outbreaks, including the detection of common respiratory viruses and avian influenza viruses. (who.int)
  • Bovine respiratory diseases (BRD) affect production rates negatively because it compromise health and well-being of the affected animal. (scielo.br)
  • The bovine respiratory diseases (BRD) complex is a multifactorial entity, since there is interaction between stress factors and the susceptibility of the host to viral and bacterial agents ( DEDONDER & APLEY, 2015 DEDONDER, K.D. (scielo.br)
  • Calves may develop diseases, among which respiratory diseases (e.g., bovine respiratory diseases, BRD) and enteric diseases are most frequently observed ( 10 - 12 ). (frontiersin.org)
  • Early in his career, he spent several years with the NCSU Department of Poultry Science researching viral and bacterial diseases of turkeys. (avma.org)
  • Countless species of animals are sources of viral, bacterial and parasitic diseases transmitted to humans. (who.int)
  • Helps protect against bovine respiratory syncytial virus (BRSV), infectious bovine rhinotracheitis (IBR) virus, parainfluenza 3 (PI 3 ) virus, M. haemolytica and BVD Types 1 and 2 viruses. (animalhealthexpress.com)
  • Helps provide comprehensive respiratory protection against BRSV, infectious bovine rhinotracheitis (IBR) virus, parainfluenza 3 (PI 3 ) virus, M. haemolytica and BVD Types 1 and 2 viruses. (animalhealthexpress.com)
  • In the 1970s and 1980s, typing of Norwalk-like virus (NLV) relied solely on immunologic methods involving human clinical samples as the source of antigens and antibodies. (medscape.com)
  • Use of bovine viral diarrhoea virus as an internal control for amplification of hepatitis C virus. (ox.ac.uk)
  • BACKGROUND AND OBJECTIVES: Screening for hepatitis C virus (HCV) by polymerase chain reaction (PCR) will be mandatory for screening blood and plasma donors in Europe and elsewhere. (ox.ac.uk)
  • Offers superior respiratory protection against bovine respiratory syncytial virus (BRSV) of INFORCE 3 with the complementary M. haemolytica and BVD protection of ONE SHOT BVD. (animalhealthexpress.com)
  • The bovine respiratory 'virome' (all viruses in the cow's upper and lower respiratory tract) will be characterized, especially the normal changes that will occur during the cow's live, following vaccination, antimicrobial treatment and when a cow gets sick. (debategraph.org)
  • With a variety of diagnostics available for bovine, ovine, and swine, Neogen has the veterinary applications necessary to conduct a wide-range of assays for your animals. (neogen.com)
  • These viruses are highly prevalent in bovine and ovine populations and can infect pigs. (merckvetmanual.com)
  • One Shot BVD helps offer combine respiratory protection against Mannheimia haemolytica, the No. 1 calf killer, and bovine viral diarrhea. (animalhealthexpress.com)
  • Bovine Leucosis Virus and its impact on the dairy industry is his new target for exploration, a program funded by ALMA and Alberta Milk has started in September 2015 aiming to design a BLV control strategy for Alberta. (debategraph.org)
  • Structure of the dengue virus envelope protein after membrane fusion. (wikipedia.org)
  • West Nile virus envelope protein inhibits dsRNA-induced innate immune responses. (wikipedia.org)
  • The three viruses are grouped together as pestiviruses. (gov.scot)
  • That viruses infect our wildlife is clear, but which viruses these are and what the impact is, is part of this study. (debategraph.org)
  • Viruses in genogroup III and V infect bovine and murine species, respectively. (medscape.com)
  • Rift Valley fever (RVF) is a zoonotic mosquito-borne viral hemorrhagic fever (VHF) caused by Rift Valley fever virus (RVFV). (cdc.gov)
  • in the United States, viruses are the leading cause of acute gastroenteritis. (medscape.com)
  • The clinician encounters acute viral gastroenteritis in 3 settings. (medscape.com)
  • Using broadly reactive reverse-transcription polymerase chain reaction for calicivirus to study stool specimens from children with acute gastroenteritis, studies have found these viruses in 7-22% of cases. (medscape.com)
  • Norovirus, formerly referred to as Norwalk virus, is the most common cause of epidemic nonbacterial gastroenteritis in the world. (medscape.com)
  • Further, Health Canada has also approved additional kill claims on non-porous surfaces for viruses that may cause African Swine Fever and Porcine Epidemic Diarrhea. (zacks.com)
  • The label claims stipulate that Neogen Viroxide Super can kill the virus on hard non-porous surfaces, which is the main source of Avian Influenza A, Bovine Viral Diarrhea, Porcine Respiratory and Reproductive Syndrome (PRRS), and African Swine Fever. (zacks.com)
  • Viruses in genogroups I, II, and IV are primarily human pathogens, although genogroup II contains a porcine-specific virus. (medscape.com)
  • This is the first immunohistochemical, morphological, and molecular identification of A. terreus in bovine placenta and aborted fetuses. (bvsalud.org)
  • Bovine Respiratory Disease Complex (BRDC) continues to be the most significant and challenging feedlot health problem throughout North America. (thebeefsite.com)
  • Epidemiology and Animal Health Economics category, oral -Matthew Allerson, University of Minnesota, for "The impact of maternally derived immunity on influenza virus transmission in neonatal pig populations," and Heidi Pecoraro, Colorado State University, for "Comparison of virus isolation, one-step real-time reverse transcriptase-PCR assay, and two rapid influenza diagnostic tests for detecting canine influenza virus (H3N8) shedding in dogs. (avma.org)
  • In Viet Nam, human infections with avian influenza A(H5N1) virus have occurred since 2003 1 and cases of severe acute respiratory syndrome (SARS) occurred in 2004. (who.int)
  • His strong collaboration with the virology department during that time sparked his still ongoing passion for viruses. (debategraph.org)
  • Viral spread from person to person occurs by fecal-oral transmission of contaminated food and water. (medscape.com)
  • On February 4, 2023, the Uganda National Public Health Emergency Operations Center was notified of a suspected viral hemorrhagic fever case in a male abattoir worker and meat roaster aged 42 years from Mbarara City, the second largest city in Uganda. (cdc.gov)
  • Suspecting a viral hemorrhagic fever, clinicians isolated him, provided supportive care, and referred him back to MRRH, where he died on February 4. (cdc.gov)
  • A postmortem blood sample tested at the Uganda Virus Research Institute for any ebolavirus , marburgvirus , Crimean-Congo hemorrhagic fever virus , and RVFV, was positive on February 5 for RVFV by reverse transcription-polymerase chain reaction (RT-PCR) ( 5 ), and immunoglobulin M (IgM) and immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) ( 3 ). (cdc.gov)
  • The disease is caused by a herpes virus and usually results in respiratory disease, but may also cause sporadic abortions in cows. (infonet-biovision.org)
  • Antigenic Drift Defines a New D4 Subgenotype of Measles Virus. (cdc.gov)
  • Classical swine fever (CSF) is a highly contagious and often fatal viral disease of swine. (merckvetmanual.com)
  • Classical swine fever virus (CSFV) is a high consequence pathogen. (merckvetmanual.com)
  • Classical swine fever is caused by a small, enveloped RNA virus in the genus Pestivirus of the family Flaviviridae. (merckvetmanual.com)
  • Adenovirus- vectored Novel African Swine Fever Virus Antigens Elicit Robust Immune Responses in Swine. (k-state.edu)
  • Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens. (k-state.edu)
  • In May 2020 he helped Roger Highfield to set up a blog at the Science Museum Group with the theme Coronavirus: How the Virus Works. (wikipedia.org)
  • In July 2020 he contributed graphics of the COVID-19 virus to the BBC News article by John Sudworth with title Wuhan: City of silence - Looking for answers in the place where coronavirus started. (wikipedia.org)
  • Some physical signs of BVD are fever, nasal discharge, diarrhea, and the inability to move about naturally. (dairylawyers.com)
  • A suspected RVF case was defined as the occurrence of fever with a negative malaria test and two or more signs or symptoms (headache, muscle pain, dizziness, blurred vision, nausea, vomiting, abdominal pain, or diarrhea) in a resident of or a visitor to Mbarara during or after December 2022. (cdc.gov)
  • Longitudinal sequencing of HIV-1 infected patients with low-level viremia for years while on ART shows no indications for genetic evolution of the virus. (cdc.gov)
  • Bovine viral diarrhea virus does not possess strict host-specificity and infections have been demonstrated in over 50 species in the mammalian order Artiodactyla. (auburn.edu)
  • Rotavirus infections induce maldigestion of carbohydrates, and their accumulation in the intestinal lumen, as well as a malabsorption of nutrients and a concomitant inhibition of water reabsorption, can lead to a malabsorption component of diarrhea. (medscape.com)
  • All singlet fawns were demonstrated to be PI by immunohistochemistry and ELISA on skin samples, and RT-PCR and virus isolation procedures on blood and tissues samples. (auburn.edu)
  • Types 1 and 2 viruses, two of the major respiratory viruses that cause bovine respiratory disease (BRD). (animalhealthexpress.com)
  • Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. (who.int)
  • modified live virus and killed vaccines are available. (infonet-biovision.org)
  • It is important to avoid the risk of contamination of virus vaccines for human use. (whale.to)
  • PI animals may be identified by a variety of techniques such as virus isolation, polymerase chain reaction (PCR) or immunohistochemistry (IHC). (biostoneah.com)
  • Norwalk virus was officially renamed norovirus by the International Committee on Taxonomy of Viruses in 2002. (medscape.com)
  • Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens. (k-state.edu)
  • Studies also suggest that one of the nonstructural viral proteins may act as an enterotoxin, promoting active chloride secretion mediated through increases in intracellular calcium concentration. (medscape.com)
  • Genomic characterization of Zika virus isolated from Indonesia. (cdc.gov)