A rare central nervous system demyelinating condition affecting children and young adults. Pathologic findings include a large, sharply defined, asymmetric focus of myelin destruction that may involve an entire lobe or cerebral hemisphere. The clinical course tends to be progressive and includes dementia, cortical blindness, cortical deafness, spastic hemiplegia, and pseudobulbar palsy. Concentric sclerosis of Balo is differentiated from diffuse cerebral sclerosis of Schilder by the pathologic finding of alternating bands of destruction and preservation of myelin in concentric rings. Alpers' Syndrome refers to a heterogeneous group of diseases that feature progressive cerebral deterioration and liver disease. (From Adams et al., Principles of Neurology, 6th ed, p914; Dev Neurosci 1991;13(4-5):267-73)
An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903)
A pathological process consisting of hardening or fibrosis of an anatomical structure, often a vessel or a nerve.
The arterial blood vessels supplying the CEREBRUM.
A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94)
Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).

Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease. (1/120)

Pelizaeus-Merzbacher Disease (PMD) is an X-linked developmental defect of myelination affecting the central nervous system and segregating with the proteolipoprotein (PLP) locus. Investigating 82 strictly selected sporadic cases of PMD, we found PLP mutations in 77%; complete PLP-gene duplications were the most frequent abnormality (62%), whereas point mutations in coding or splice-site regions of the gene were involved less frequently (38%). We analyzed the maternal status of 56 cases to determine the origin of both types of PLP mutation, since this is relevant to genetic counseling. In the 22 point mutations, 68% of mothers were heterozygous for the mutation, a value identical to the two-thirds of carrier mothers that would be expected if there were an equal mutation rate in male and female germ cells. In sharp contrast, among the 34 duplicated cases, 91% of mothers were carriers, a value significantly (chi2=9. 20, P<.01) in favor of a male bias, with an estimation of the male/female mutation frequency (k) of 9.3. Moreover, we observed the occurrence of de novo mutations between parental and grandparental generations in 17 three-generation families, which allowed a direct estimation of the k value (k=11). Again, a significant male mutation imbalance was observed only for the duplications. The mechanism responsible for this strong male bias in the duplications may involve an unequal sister chromatid exchange, since two deletion events, responsible for mild clinical manifestations, have been reported in PLP-related diseases.  (+info)

Embryonic stem cell-derived glial precursors: a source of myelinating transplants. (2/120)

Self-renewing, totipotent embryonic stem (ES) cells may provide a virtually unlimited donor source for transplantation. A protocol that permits the in vitro generation of precursors for oligodendrocytes and astrocytes from ES cells was devised. Transplantation in a rat model of a human myelin disease shows that these ES cell-derived precursors interact with host neurons and efficiently myelinate axons in brain and spinal cord. Thus, ES cells can serve as a valuable source of cell type-specific somatic precursors for neural transplantation.  (+info)

Identification of a new exon in the myelin proteolipid protein gene encoding novel protein isoforms that are restricted to the somata of oligodendrocytes and neurons. (3/120)

The myelin proteolipid protein (PLP) gene (i.e., the PLP/DM20 gene) has been of some interest because of its role in certain human demyelinating diseases, such as Pelizaeus-Merzbacher disease. A substantial amount of evidence, including neuronal pathology in knock-out and transgenic animals, suggests the gene also has functions unrelated to myelin structure, but the products of the gene responsible for these putative functions have not yet been identified. Here we report the identification of a new exon of the PLP/DM20 gene and at least two new products of the gene that contain this exon. The new exon, located between exons 1 and 2, is spliced into PLP and DM20 mRNAs creating a new translation initiation site that generates PLP and DM20 proteins with a 12 amino acid leader sequence. This leader sequence appears to target these proteins to a different cellular compartment within the cell bodies of oligodendrocytes and away from the myelin membranes. Furthermore, these new products are also expressed in a number of neuronal populations within the postnatal mouse brain, including the cerebellum, hippocampus, and olfactory system. We term these products somal-restricted PLP and DM20 proteins to distinguish them from the classic PLP and DM20 proteolipids. They represent putative candidates for some of the nonmyelin-related functions of the PLP/DM20 gene.  (+info)

Pathognomonic MR imaging findings in Balo concentric sclerosis. (4/120)

Irregular, concentric zones of increased signal on T2-weighted cranial MR imaging studies may strongly suggest Balo concentric sclerosis (BCS), a rare but recognized variant of multiple sclerosis. Differentiating BCS from multiple sclerosis or neoplasm can be difficult clinically, but MR imaging findings noted in this case may be pathognomonic.  (+info)

Balo's concentric sclerosis: clinical and radiologic features of five cases. (5/120)

Balo's concentric sclerosis (BCS) is a rare demyelinating disease considered to be a variant of multiple sclerosis. Five BCS cases were diagnosed antemortem based on their typical concentric mass patterns on MR images and based on clinical and CSF findings. Histopathologic investigation was also performed in one case. Our case report supports the concept that BCS may be a self-limited disease that is not always fatal. Characteristic MR imaging findings may allow antemortem diagnosis of BCS when performed at the onset of the disease.  (+info)

MR spectroscopic findings in a case of Alpers-Huttenlocher syndrome. (6/120)

Alpers-Huttenlocher syndrome, considered a mitochondrial disease, combines encephalopathy and liver failure. An 11-year-old boy with Alpers-Huttenlocher syndrome underwent conventional MR imaging, diffusion-weighted imaging, and proton MR spectroscopy. Diffusion-weighted imaging showed cytotoxic edema interpreted as acute-phase encephalopathy. MR spectroscopy revealed a lactate peak in the cortex that appeared abnormal on diffusion-weighted images, possibly representing respiratory deficiency with anaerobic metabolism. MR spectroscopy proved to be more sensitive regarding lactate detection than did neurometabolic examination of serum and CSF. A reduced N-acetylaspartate-creatine ratio was detected in both the cortex that appeared abnormal and the cortex that appeared normal on the diffusion-weighted images, indicating neuronal damage that was widespread, even beyond the boundaries of conventional MR imaging changes.  (+info)

Demyelinization induced in the brains of monkeys by means of fast neutrons; pathogenesis of the lesion and comparison with the lesions of multiple sclerosis and Schilder's disease. (7/120)

Demyelinization was regularly conspicuous in the white matter of the rostral portions of the brains of 6 monkeys sacrificed 14 to 22 months after exposure of the ocular regions to 850 r.e.p. of 14 mev. neutron radiation and it was not present in the brain of a monkey 2 months after radiation under identical conditions; or in those of 5 non-radiated animals serving as controls. In early lesions, the individual myelin sheaths were varicose and fragmented, while the neurons, axons, and glial cells remained normal in appearance. With the passage of time, the degeneration of myelin became more marked and in later stages was accompanied by a degeneration of the axis cylinders, a proliferation of astrocytes and microglia, and minor cytological changes in the oligodendroglia, the whole process occurring essentially without inflammation or notable changes in the cerebral or meningeal blood vessels. The findings show that neutron radiation has the property of destroying myelin in the living animal and inducing changes that are notably similar in their pathogenesis to those that characterize disseminated encephalomyelitis in human beings.  (+info)

Devic's neuromyelitis optica and Schilder's myelinoclastic diffuse sclerosis. (8/120)

An adult patient developed both Devic's neuromyelitis optica and Schilder's myelinoclastic diffuse sclerosis, suggesting that these entities represent rare topographical and aggressive variants within the spectrum of multiple sclerosis.  (+info)

Diffuse cerebral sclerosis of Schilder, also known as Schilder's disease, is a rare inflammatory demyelinating disorder of the central nervous system. It primarily affects children and young adults, but can occur at any age. The condition is characterized by widespread destruction of the myelin sheath, which surrounds and protects nerve fibers in the brain.

The hallmark feature of Schilder's disease is the presence of multiple, large, symmetrical lesions in the white matter of both cerebral hemispheres. These lesions are typically located in the parieto-occipital regions of the brain and can extend to involve other areas as well.

The symptoms of Schilder's disease vary depending on the location and extent of the lesions, but may include:

* Progressive intellectual decline
* Seizures
* Visual disturbances
* Weakness or paralysis on one side of the body (hemiparesis)
* Loss of sensation in various parts of the body
* Speech difficulties
* Behavioral changes, such as irritability, mood swings, and depression

The exact cause of Schilder's disease is not known, but it is believed to be an autoimmune disorder, in which the body's own immune system mistakenly attacks the myelin sheath. There is no cure for Schilder's disease, and treatment typically involves corticosteroids or other immunosuppressive therapies to reduce inflammation and slow the progression of the disease. Despite treatment, many patients with Schilder's disease experience significant disability and may require long-term care.

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), which includes the brain, spinal cord, and optic nerves. In MS, the immune system mistakenly attacks the protective covering of nerve fibers, called myelin, leading to damage and scarring (sclerosis). This results in disrupted communication between the brain and the rest of the body, causing a variety of neurological symptoms that can vary widely from person to person.

The term "multiple" refers to the numerous areas of scarring that occur throughout the CNS in this condition. The progression, severity, and specific symptoms of MS are unpredictable and may include vision problems, muscle weakness, numbness or tingling, difficulty with balance and coordination, cognitive impairment, and mood changes. There is currently no cure for MS, but various treatments can help manage symptoms, modify the course of the disease, and improve quality of life for those affected.

Sclerosis is a medical term that refers to the abnormal hardening or scarring of body tissues, particularly in the context of various degenerative diseases affecting the nervous system. The term "sclerosis" comes from the Greek word "skleros," which means hard. In these conditions, the normally flexible and adaptable nerve cells or their protective coverings (myelin sheath) become rigid and inflexible due to the buildup of scar tissue or abnormal protein deposits.

There are several types of sclerosis, but one of the most well-known is multiple sclerosis (MS). In MS, the immune system mistakenly attacks the myelin sheath surrounding nerve fibers in the brain and spinal cord, leading to scarring and damage that disrupts communication between the brain and the rest of the body. This results in a wide range of symptoms, such as muscle weakness, numbness, vision problems, balance issues, and cognitive impairment.

Other conditions that involve sclerosis include:

1. Amyotrophic lateral sclerosis (ALS): Also known as Lou Gehrig's disease, ALS is a progressive neurodegenerative disorder affecting motor neurons in the brain and spinal cord, leading to muscle weakness, stiffness, and atrophy.
2. Systemic sclerosis: A rare autoimmune connective tissue disorder characterized by thickening and hardening of the skin and internal organs due to excessive collagen deposition.
3. Plaque psoriasis: A chronic inflammatory skin condition marked by red, scaly patches (plaques) resulting from rapid turnover and accumulation of skin cells.
4. Adhesive capsulitis: Also known as frozen shoulder, this condition involves stiffening and thickening of the shoulder joint's capsule due to scarring or inflammation, leading to limited mobility and pain.

Cerebral arteries refer to the blood vessels that supply oxygenated blood to the brain. These arteries branch off from the internal carotid arteries and the vertebral arteries, which combine to form the basilar artery. The major cerebral arteries include:

1. Anterior cerebral artery (ACA): This artery supplies blood to the frontal lobes of the brain, including the motor and sensory cortices responsible for movement and sensation in the lower limbs.
2. Middle cerebral artery (MCA): The MCA is the largest of the cerebral arteries and supplies blood to the lateral surface of the brain, including the temporal, parietal, and frontal lobes. It is responsible for providing blood to areas involved in motor function, sensory perception, speech, memory, and vision.
3. Posterior cerebral artery (PCA): The PCA supplies blood to the occipital lobe, which is responsible for visual processing, as well as parts of the temporal and parietal lobes.
4. Anterior communicating artery (ACoA) and posterior communicating arteries (PComAs): These are small arteries that connect the major cerebral arteries, forming an important circulatory network called the Circle of Willis. The ACoA connects the two ACAs, while the PComAs connect the ICA with the PCA and the basilar artery.

These cerebral arteries play a crucial role in maintaining proper brain function by delivering oxygenated blood to various regions of the brain. Any damage or obstruction to these arteries can lead to serious neurological conditions, such as strokes or transient ischemic attacks (TIAs).

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that affects nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movements, such as speaking, walking, breathing, and swallowing. The condition is characterized by the degeneration of motor neurons in the brain (upper motor neurons) and spinal cord (lower motor neurons), leading to their death.

The term "amyotrophic" comes from the Greek words "a" meaning no or negative, "myo" referring to muscle, and "trophic" relating to nutrition. When a motor neuron degenerates and can no longer send impulses to the muscle, the muscle becomes weak and eventually atrophies due to lack of use.

The term "lateral sclerosis" refers to the hardening or scarring (sclerosis) of the lateral columns of the spinal cord, which are primarily composed of nerve fibers that carry information from the brain to the muscles.

ALS is often called Lou Gehrig's disease, named after the famous American baseball player who was diagnosed with the condition in 1939. The exact cause of ALS remains unknown, but it is believed to involve a combination of genetic and environmental factors. There is currently no cure for ALS, and treatment primarily focuses on managing symptoms and maintaining quality of life.

The progression of ALS varies from person to person, with some individuals experiencing rapid decline over just a few years, while others may have a more slow-progressing form of the disease that lasts several decades. The majority of people with ALS die from respiratory failure within 3 to 5 years after the onset of symptoms. However, approximately 10% of those affected live for 10 or more years following diagnosis.

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes non-cancerous (benign) tumors to grow in many parts of the body. These tumors can affect the brain, skin, heart, kidneys, eyes, and lungs. The signs and symptoms of TSC can vary widely, depending on where the tumors develop and how severely a person is affected.

The condition is caused by mutations in either the TSC1 or TSC2 gene, which regulate a protein that helps control cell growth and division. When these genes are mutated, the protein is not produced correctly, leading to excessive cell growth and the development of tumors.

TSC is typically diagnosed based on clinical symptoms, medical imaging, and genetic testing. Treatment for TSC often involves a multidisciplinary approach, with specialists in neurology, dermatology, cardiology, nephrology, pulmonology, and ophthalmology working together to manage the various symptoms of the condition. Medications, surgery, and other therapies may be used to help control seizures, developmental delays, skin abnormalities, and other complications of TSC.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

No FAQ available that match "diffuse cerebral sclerosis of schilder"

No images available that match "diffuse cerebral sclerosis of schilder"