A spirostan found in DIOSCOREA and other plants. The 25S isomer is called yamogenin. Solasodine is a natural derivative formed by replacing the spiro-ring with a nitrogen, which can rearrange to SOLANINE.
Root-like underground horizontal stem of plants that produces shoots above and roots below. Distinguished from true roots which don't have buds and nodes. Similar to true roots in being underground and thickened by storage deposits.
A genus in the family Monascaceae, order EUROTIALES. One species, Monascus purpureus, has multiple uses in traditional Chinese medicine (MEDICINE, CHINESE TRADITIONAL).
An enlarged underground root or stem of some plants. It is usually rich in carbohydrates. Some, such as POTATOES, are important human FOOD. They may reproduce vegetatively from buds.
A plant genus best known for edible underground tubers. Yam may also refer to a moist variety of sweet potato, IPOMOEA BATATAS.
Cholestane derivatives containing a fused lactone ring at the 16,17-position and a spiroglycosidic linkage at C-22. Members include sarsaponin, DIOSGENIN and yamogenin.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.

Effects of "Chinese yam" on hepato-nephrotoxicity of acetaminophen in rats. (1/65)

AIM: To study the effect of yam in Taiwan, which is a commonly used Chinese medicine, on hepato-nephro-toxicity in rats. METHODS: Crude water extract of yam (Dioscorea alata L), was used to treat rats with an acute toxicity induced by acetaminophen (APAP) challenge. RESULTS: The pharmacological and biochemical studies showed the extract of yam had the effect of kidney secureness and liver fortification (P < 0.01). The pathologic sections showed good improvements in renal tubular degranulation changes, necrosis and disintegration. The extract of yam also possessed a good protection against the inflammation of central vein and necrosis of liver tissue. CONCLUSION: The liver and kidneys are originated from the same source. Pathologically, deficiency of the life essence in the kidney may lead to the blood deficiency in the liver. The results showed that the yam could prevent the damages of the liver and kidneys, thus preserving their functions. This could b e the reason why the yam was commonly used in traditional Chinese medicine, as seen in Liuwei Dihuang Wan be used in the case of deficiency of liver-yin and kidney-yin.  (+info)

Antitumor-promoting constituents from Dioscorea bulbifera L. in JB6 mouse epidermal cells. (2/65)

An antitumor-promoting effect was found in the extracts/ingredients of a plant used as a traditional medicine in mainland China, using the neoplastic transformation assay of mouse epidermal JB6 cell lines. The ethyl acetate soluble fraction of 75% ethanol extract of the rhizomes of Dioscorea bulbifera L. showed an inhibitory effect against the tumor promotion of JB6 (Cl 22 and Cl 41) cells induced by a promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Further investigation on the constituents of the EtOAc fraction from the rhizomes revealed the chemical structure to be kaempferol-3,5-dimethyl ether (1), caryatin (2), (+)-catechin (3), myricetin (4), quercetin-3-O-galactopyranoside (5), myricetin-3-O-galactopyranoside (6), myricetin-3-O-glucopyranoside (7) and diosbulbin B (8). Constituent antitumor-promoting activities were also examined in the same way. Compounds 1-7, characterized as flavonoids with the two hydroxyl groups at C-7 and C-4', showed the most potent inhibitory effect, but there seemed to be differences in the inhibitory effect between flavonol aglycones and flavonol glycosides. Compared with (-)-epicatechin, (+)-catechin exhibited much stronger inhibitory activity which suggested that chemical stereo structures of compounds affect the efficiency of inhibition. Compound 8 showed moderate activity. The constituents with antitumor-promoting activity from this plant are reported for the first time.  (+info)

Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. (3/65)

We investigated whether a plant chitinase can be used as a biocontrol agent instead of chemical fungicides by spraying chitinase E (family 19; class IV) from a yam (Dioscorea opposita Thunb) alone or together with beta-1,3-glucanase directly onto the surface of a powdery mildew infecting strawberry berries and leaves. Results were observed by eye and with a scanning electron microscope. The powdery mildew infecting the strawberries was degraded, mainly by the chitinase, and the disease did not appear again for more than 2 weeks. These results indicated that this kind of plant chitinase might be safe and biodegradable biocontrol agent for use instead of conventional fungicides.  (+info)

Tuber storage proteins. (4/65)

A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.  (+info)

Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. (5/65)

In the process of screening for pancreatic lipase inhibitors, which could be used as an anti-obesity measure, the methanol extract of Dioscorea nipponica Makino powder (DP) appeared to have potent inhibitory activity against porcine pancreatic lipase with an IC50 value of 5-10 microg/ml, where the enzyme activity was assayed by using 4-methylumbelliferyl oleate as a substrate. Further purification of active components present in the herb generated dioscin that belongs to the saponin family. Dioscin and its aglycone, diosgenin, both suppressed the time-dependent increase of blood triacylglycerol level when orally injected with corn oil to mice, suggesting their inhibitory potential against fat absorption. Sprague-Dawley rats fed on a high-fat diet containing 5% Dioscorea nipponica Makino and 40% beef tallow gained significantly less body weight and adipose tissue than control animals fed on a high-fat diet alone during an 8-week experimental period (P<0.05).  (+info)

Two new pregnane glycosides from Dioscorea futschauensis R. KUNTH. (6/65)

Two new pregnane glycosides (1, 2) together with two known saponins were isolated from the rhizomes of Dioscorea futschauensis R. KUNTH. The structures of 1 and 2 were established as 16alpha-methoxyl-3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyran osyl-(1-->4)]-beta-D-glucopyranosyl)oxy]pregn-5-en-20-one and 21-methoxyl-3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl- (1-->4)]-beta-D-glucopyranosyl)oxy]pregn-5,16-en-20-one, respectively, on the basis of two-dimension NMR (2D NMR) and other spectral analysis. Their in vitro bioactivity against plant pathogenic fungus Pyricularia oryzae and osteoblastic proliferation stimulatory activity in the UMR106 cell line were evaluated.  (+info)

Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities. (7/65)

Four major proteins designated DB1, DB2, DB3, and DB4 were isolated and characterized from the yam tuber Dioscorea batatas. The ratios of their yields were 20:50:20:10. DB1 was a mannose-binding lectin (20 kDa) consisting of 10-kDa subunits and was classified as the monocot mannose-binding lectin family. DB2, accounting for 50% of the total protein, was the storage protein, commonly called dioscorins consisting of a 31-kDa subunit. On the basis of amino acid sequence, DB2 was classified to be dioscorin A. DB3 was a maltose-binding lectin, having an apparent molecular mass of 120 kDa and composed of a 66-kDa subunit and two 31-kDa subunits (DB3S). The 66-kDa subunit was further composed of two 31-kDa subunits (DB3L) cross-linked by disulfide bonds. DB3L and DB3S (242 and 241 amino acid residues, respectively) were homologous with each other with 72% sequence identity. They showed a sequence homology to dioscorin B and dioscorin A from Dioscorea alata, with 90 and 93% identity, respectively, and to carbonic anhydrase from Arabidopsis thaliana with about 45% identity. DB3S had one intrachain disulfide bond located at Cys(28)-Cys(187), whereas DB3L had one interchain disulfide bond (Cys(40)-Cys(40)') in addition to the intrachain disulfide bond (Cys(28)-Cys(188)) to form a 66-kDa subunit. DB1 and DB3 agglutinated rabbit erythrocytes at 2.7 and 3.9 microg/ml, respectively. Despite the structural homology between DB2 and DB3, DB2 had no lectin activity. The 66-kDa subunit itself revealed the full hemagglutinating activity of DB3, indicating that DB3L but not DB3S was responsible for the activity. The hemagglutinating activity of DB3 required Ca(2+) ions and was exclusively inhibited by maltose and oligomaltoses (e.g. maltopentaose and maltohexaose) but not by d-glucose. DB3 could not be classified into any known plant lectin family. DB4 was a chitinase, homologous to an acidic chitinase from Dioscorea japonica. DB1, DB2, and DB3 did not show any activity of carbonic anhydrase, amylase, or trypsin inhibitor activity. These results show that two of the four major proteins isolated from the yam tubers D. batatas have unique lectin activities.  (+info)

Antiosteoporotic activity of the water extract of Dioscorea spongiosa. (8/65)

After 60 MeOH and water extracts of natural crude drugs were screened for their ability to stimulate osteoblast proliferation, four MeOH extracts (Cynomorium songaricum, Drynaria fortunei, Lycium chinense, Rehmannia glutinosa) and seven water extracts (Cornus officinalis, Dendrobium nobile, Dioscorea spongiosa, Drynaria fortunei, Eucommia ulmoides, Lycium chinensis, Viscum coloratum) showed that potent activities were evaluated for inhibition of osteoclast formation. The results indicated that the water extract of D. spongiosa not only showed the strongest stimulation of osteoblast proliferation but also possessed potent inhibitory activity aganist osteoclast formation, whereas it showed lower cytotoxicity in osteoblast and bone marrow cells. A further in vivo experiment determined the antiosteoporotic activity of this extract, in which it inhibited the decrease in cancellous bone mineral content, cancellous bone mineral density, and cortical bone mineral content of the proximal tibia in ovariectomized rats.  (+info)

Diosgenin is a steroidal saponin molecule that is found in various plants, including yams and fenugreek. It is a type of compound called a sapogenin, which is the aglycone (non-sugar) part of a saponin. Diosgenin has been extensively studied for its potential medicinal properties, particularly as a precursor in the synthesis of various steroid hormones such as progesterone and cortisone.

Diosgenin is not typically found in its free form in plants but rather as part of saponins, which are glycosides that have both a sugar and a non-sugar component. The saponins containing diosgenin are converted to diosgenin through a process called hydrolysis, which involves breaking down the saponins using heat, acid, or enzymes.

Diosgenin has been shown to have various potential health benefits, including anti-inflammatory, antioxidant, and cardioprotective effects. It may also have potential as an anticancer agent, although more research is needed to confirm its effectiveness and safety for this use. Diosgenin is available as a dietary supplement, but it is important to consult with a healthcare provider before taking any new supplements.

A rhizome is not typically used as a medical term, but it is a term borrowed from botany that has been adopted in some areas of medicine, particularly in psychiatry and psychotherapy.

In its original botanical sense, a rhizome is a horizontal stem of a plant that grows underground, often sending out roots and shoots from its nodes. This growth pattern is contrasted with that of a root system, which grows downward, and a stem system, which grows upward.

In psychiatry and psychotherapy, the term "rhizome" has been used as a metaphor to describe a non-hierarchical and decentralized approach to understanding mental processes and subjectivity. The rhizome model emphasizes the complexity, multiplicity, and interconnectedness of these processes, and rejects simplistic or reductionist explanations that focus on a single cause or origin. Instead, it encourages a more holistic and dynamic view of mental life, one that is open to multiple perspectives and interpretations.

It's important to note that the use of the term "rhizome" in this context is metaphorical and not medical in the strict sense. It is a way of thinking about mental processes and subjectivity that has been influenced by poststructuralist and feminist theories, among others.

"Monascus" is not a medical term itself, but it is a genus of fungi that has been used in traditional medicine and food production. The most common species is Monascus purpureus, which is used to produce red yeast rice by fermenting rice. Red yeast rice contains several compounds, including monacolins, which have been shown to lower cholesterol levels.

In some studies, Monascus-derived products have been investigated for their potential health benefits, such as improving lipid metabolism and reducing the risk of cardiovascular disease. However, it is important to note that the use of Monascus-derived supplements should be done under the guidance of a healthcare professional due to potential risks associated with contamination and inconsistent product quality.

A plant tuber is not a medical term per se, but rather a term from botany. However, I can certainly provide a definition for you.

Tubers are specialized underground stems or roots that serve as storage organs for many types of plants. They consist of enlarged structures filled with nutrients, such as carbohydrates, proteins, and other organic compounds. Tubers can be classified into two main categories: true tubers and false tubers.

True tubers are swollen underground stems, such as those found in potatoes (Solanum tuberosum). They have nodes and internodes like aboveground stems, but they lack leaves or buds. Instead, they have small bumps called "eyes" that contain dormant buds, which can sprout to produce new plants when conditions are favorable.

False tubers, on the other hand, are enlarged roots, such as those found in cassava (Manihot esculenta). They do not have nodes and internodes like true tubers but instead store nutrients in their fleshy tissues.

While plant tubers may not have a direct medical definition, they are essential to human health and nutrition. Many tuber crops provide important sources of carbohydrates, vitamins, minerals, and other nutrients in diets around the world.

'Dioscorea' is the medical term for a genus of plants commonly known as yams. These plants belong to the family Dioscoreaceae and are native to tropical and warm temperate regions of the world. The tubers or roots of some species of Dioscorea are edible and are an important food source in many parts of the world, particularly in Africa and Asia. Some species of Dioscorea contain steroidal saponins, which have been used in traditional medicine for their anti-inflammatory and other properties. However, it is important to note that some species of Dioscorea are toxic and should not be consumed without proper preparation and knowledge.

I'm sorry for any confusion, but "Spirostans" is not a recognized term in medical terminology. It seems like it might be a reference to a specific chemical compound or class of compounds, possibly related to steroids, based on the prefix "spiro-" and the suffix "-stan." However, I cannot provide a precise definition without more context.

If you're referring to a specific medical or scientific concept, could you please provide more information or check the spelling? I'm here to help, and I want to make sure I give you the most accurate and helpful response possible.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

A genetic locus (plural: loci) is a specific location on a chromosome where a particular gene or DNA sequence is found. It is the precise position where a specific genetic element, such as a gene or marker, is located on a chromsomere. This location is defined in terms of its relationship to other genetic markers and features on the same chromosome. Genetic loci can be used in linkage and association studies to identify the inheritance patterns and potential relationships between genes and various traits or diseases.

No FAQ available that match "dioscorea"

No images available that match "dioscorea"