Tumors or cancer of the ENDOCRINE GLANDS.
Ductless glands that secrete HORMONES directly into the BLOOD CIRCULATION. These hormones influence the METABOLISM and other functions of cells in the body.
A vascular endothelial growth factor whose expression is found largely restricted to the GONADS; ADRENAL CORTEX; and PLACENTA. It has similar biological activity to VASCULAR ENDOTHELIAL GROWTH FACTOR-A.
Tumors or cancer of the SALIVARY GLANDS.
Sebaceous gland neoplasms are uncommon cutaneous tumors that originate from the sebaceous glands, which can be benign (e.g., seborrheic keratosis, syringoma, trichofolliculoma) or malignant (e.g., sebaceous carcinoma, sebaceomatosis, mucoepidermoid carcinoma).
Tumors or cancer of the anal gland.
A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS.
Perianal glands, also known as hepatoid glands, are sebaceous glands located in the perianal region of many mammals, including humans, that produce and secret lubricating oils for skin protection and cleanliness.
Neoplasms of the sublingual glands.
A benign, slow-growing tumor, most commonly of the salivary gland, occurring as a small, painless, firm nodule, usually of the parotid gland, but also found in any major or accessory salivary gland anywhere in the oral cavity. It is most often seen in women in the fifth decade. Histologically, the tumor presents a variety of cells: cuboidal, columnar, and squamous cells, showing all forms of epithelial growth. (Dorland, 27th ed)
Tumors or cancer of the PAROTID GLAND.
A tumor of both low- and high-grade malignancy. The low-grade grow slowly, appear in any age group, and are readily cured by excision. The high-grade behave aggressively, widely infiltrate the salivary gland and produce lymph node and distant metastases. Mucoepidermoid carcinomas account for about 21% of the malignant tumors of the parotid gland and 10% of the sublingual gland. They are the most common malignant tumor of the parotid. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p575; Holland et al., Cancer Medicine, 3d ed, p1240)
A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively.
Tumors or cancer of the PALATE, including those of the hard palate, soft palate and UVULA.
Toxic, possibly carcinogenic, monomer of neoprene, a synthetic rubber; causes damage to skin, lungs, CNS, kidneys, liver, blood cells and fetuses. Synonym: 2-chlorobutadiene.
Carcinoma characterized by bands or cylinders of hyalinized or mucinous stroma separating or surrounded by nests or cords of small epithelial cells. When the cylinders occur within masses of epithelial cells, they give the tissue a perforated, sievelike, or cribriform appearance. Such tumors occur in the mammary glands, the mucous glands of the upper and lower respiratory tract, and the salivary glands. They are malignant but slow-growing, and tend to spread locally via the nerves. (Dorland, 27th ed)
A usually benign tumor made up predominantly of myoepithelial cells.
A benign tumor characterized histologically by tall columnar epithelium within a lymphoid tissue stroma. It is usually found in the salivary glands, especially the parotid.
Submandibular Gland Neoplasms are abnormal growths or tumors, which can be benign or malignant, originating from the glandular tissues of the submandibular salivary gland located beneath the mandible (jawbone).
Accessory salivary glands located in the lip, cheek, tongue, floor of mouth, palate and intramaxillary.
The system of glands that release their secretions (hormones) directly into the circulatory system. In addition to the ENDOCRINE GLANDS, included are the CHROMAFFIN SYSTEM and the NEUROSECRETORY SYSTEMS.
Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND).
Sweat gland neoplasms are abnormal growths that can be benign or malignant, originating from the sweat glands (eccrine or apocrine) and found anywhere on the skin surface.
Pathological processes of the ENDOCRINE GLANDS, and diseases resulting from abnormal level of available HORMONES.
Exogenous agents, synthetic and naturally occurring, which are capable of disrupting the functions of the ENDOCRINE SYSTEM including the maintenance of HOMEOSTASIS and the regulation of developmental processes. Endocrine disruptors are compounds that can mimic HORMONES, or enhance or block the binding of hormones to their receptors, or otherwise lead to activating or inhibiting the endocrine signaling pathways and hormone metabolism.
Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct.
MAMMARY GLANDS in the non-human MAMMALS.
One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed)
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.

Pharmacological characterization of beta2-adrenoceptor in PGT-beta mouse pineal gland tumour cells. (1/130)

1. The adrenoceptor in a mouse pineal gland tumour cell line (PGT-beta) was identified and characterized using pharmacological and physiological approaches. 2. Adrenaline and noradrenaline, adrenoceptor agonists, stimulated cyclic AMP generation in a concentration-dependent manner, but had no effect on inositol 1,4,5-trisphosphate production. Adrenaline was a more potent activator of cyclic AMP generation than noradrenaline, with half maximal-effective concentrations (EC50) seen at 175+/-22 nM and 18+/-2 microM for adrenaline and noradrenaline, respectively. 3. The addition of forskolin synergistically stimulated the adrenaline-mediated cyclic AMP generation in a concentration-dependent manner. 4. The pA2 value for the specific beta2-adrenoceptor antagonist ICI-118,551 (8.7+/-0.4) as an antagonist of the adrenaline-stimulated cyclic AMP generation were 3 units higher than the value for the betaI-adrenoceptor antagonist atenolol (5.6+/-0.3). 5. Treatment of the cells with adrenaline and forskolin evoked a 3 fold increase in the activity of serotonin N-acetyltransferase with the peak occurring 6 h after stimulation. 6. These results suggest the presence of beta2-adrenoceptors in mouse pineal cells and a functional relationship between the adenylyl cyclase system and the regulation of N-acetyltransferase expression.  (+info)

Presence of sorbin in human digestive tract and endocrine digestive tumours. (2/130)

BACKGROUND: Sorbin, a 153 amino acid peptide isolated from porcine intestine, was localised by immunohistochemistry in endocrine cells of the intestinal mucosa and pancreas and in the enteric nervous system in the pig. AIMS: To identify sorbin cells in normal human digestive tissues and to explore the expression of sorbin in 37 digestive endocrine tumours: 14 intestinal carcinoid tumours and 23 endocrine pancreatic tumours including six insulinomas. METHODS: Two polyclonal antibodies against the C-terminal and the N-terminal sequences of porcine sorbin raised in rabbit were used to evaluate sorbin expression by immunohistochemistry. RESULTS: In the human digestive tract, sorbin, characterised by both C-terminal and N-terminal immunoreactivity, was found in enterochromaffin cells of the gastric and intestinal epithelium from the pyloric junction to the descending colon. C-Terminal sorbin immunoreactivity alone was found in plexii from the enteric nervous system and in some insulin-containing cells of normal pancreas. C-Terminal and N-terminal antibodies disclosed sorbin in five of 14 intestinal carcinoid tumours; C-terminal antibody alone disclosed a C-terminal sorbin peptide in two of six insulinomas and three of 17 endocrine pancreatic tumours. The presence of sorbin was not associated with a specific clinical syndrome. CONCLUSIONS: Sorbin is present in the digestive tract in several forms. It is expressed in some intestinal and pancreatic endocrine tumours.  (+info)

Site-specific epithelial-mesenchymal interactions in digestive neuroendocrine tumors. An experimental in vivo and in vitro study. (3/130)

Little is known about the functional interactions between digestive neuroendocrine tumor cells and their stromal microenvironment. The focus of our study is whether mesenchymal cells modulate peptide expression, cell proliferation, and invasiveness in digestive neuroendocrine tumor cells. We designed an experimental in vivo and in vitro study using the mouse enteroendocrine cell line STC-1. In vivo, STC-1 cells were injected subcutaneously in 18 immunosuppressed newborn rats. At day 21, all animals presented poorly differentiated neuroendocrine tumors with lung metastases. Subcutaneous tumors were usually limited by a capsule containing basement membrane components and myofibroblasts that presented a low mitotic index. Lung tumors were devoid of capsule and poor in myofibroblasts, and their mitotic index was high. The profile of peptide expression in STC-1 tumors was different from that of cultured STC-1 cells. In vitro, STC-1 cells were cultured with fibroblasts of different origins, including dermis, lung, digestive tract, and liver. Based on their origin, myofibroblasts differentially modulated hormone synthesis, proliferation, spreading, and adhesion of STC-1 cells. In conclusion, our results show that site-specific functional interactions between mesenchymal and neuroendocrine cells may contribute to modulating the behavior of digestive neuroendocrine tumors, depending on their growth site.  (+info)

Hormonal approaches to the chemoprevention of endocrine-dependent tumors. (4/130)

The estrogen dependency of human breast cancer has been successfully exploited in the treatment of early and advanced diseases and provides a unique opportunity for chemoprevention of this common malignancy. Preliminary results with the antiestrogens Tamoxifen and Raloxifene show an encouraging reduction in the incidence of breast cancer. Alternative approaches include the use of highly selective and non-toxic aromatase inhibitors and, in premenopausal women, the use of LHRH agonists in conjunction with the administration of small doses of estrogen and progesterone. The rationale for these chemopreventive strategies and their possible limitations are briefly discussed.  (+info)

Metallothionein in pancreatic endocrine neoplasms. (5/130)

Metallothioneins (MTs) are intracellular proteins that bind to metal ions and are involved in heavy metal homeostasis and detoxification. Pancreatic islets were shown to be positive for zinc-containing matrix metalloproteinase-2 and -9 by immunocytochemical staining. The immunolocalization of matrix metalloproteinases in pancreatic islets prompted us to study further the link between zinc and MT in 34 cases of pancreatic endocrine neoplasms, including insulinomas, glucagonomas, gastrinomas, pancreatic polypeptide-omas, and non-functioning endocrine neoplasms. Four types of islet cells were found to be positive for MT, whereas pancreatic endocrine neoplasms mostly were either weakly positive or negative for MT. The presence of MT in normal islet cells and pancreatic endocrine neoplasms is consistent with the notion that MTs modulate zinc homeostasis and metabolism in pancreatic islet cells and pancreatic endocrine neoplasms as those tissues contain zinc-containing matrix metalloproteinases.  (+info)

Synaptic vesicle protein 2, A new neuroendocrine cell marker. (6/130)

Synaptic vesicle protein 2 (SV2) is a glycoprotein identified in the nervous system of several species, including man, but its occurrence in the human neuroendocrine (NE) cell system has not been investigated. By using a monoclonal antibody to SV2, immunoreactivities were demonstrated in NE cell types in human gastrointestinal tract, pancreas, anterior pituitary gland, thyroid, parathyroid, and adrenal medulla, and also in chief cells of gastric oxyntic mucosa. Immunoelectron microscopy of pancreatic islets revealed SV2 immunoreactivity in secretory granules. Comparison of SV2, synaptophysin, and chromogranin A immunoreactivity showed more SV2- and synaptophysin- than chromogranin A-immunoreactive cells in the antrum and pancreas. In the other gastrointestinal regions and in the other endocrine organs more SV2- than synaptophysin-immunoreactive cells were seen. More chromogranin A- than SV2-immunoreactive cells were observed in duodenum, colon, and parathyroid. Various NE tumors were examined and all contained SV2-immunoreactive cells. The staining patterns with the three markers agreed well, except in hindgut carcinoids, which showed strong SV2 immunoreactivity, weak synaptophysin but no chromogranin A immunostaining. In pituitary adenomas more cells were immunoreactive to SV2 than to the other two antibodies. In conclusion, SV2 is recognized as a further broad marker for NE cells and widens the arsenal of diagnostic tools for NE tumors. It is of special importance for identifying hindgut carcinoids.  (+info)

New perspectives for gene therapy in endocrinology. (7/130)

Gene therapy for endocrine diseases represents an exciting new type of molecular intervention that may be a curative one. Endocrine disorders that might be treated by gene therapy include monogenic diseases, such as GH deficiency and hypothalamic diabetes insipidus, and multifactorial diseases, such as diabetes mellitus, obesity and cancer. Premises seem promising for endocrine tumours, but many combined approaches of cell and gene therapy are foreseeable also for other endocrine disorders. This review outlines the principles of gene therapy, describes the endocrine disorders that might take advantage of gene transfer approaches, as well as the gene therapy interventions that have already been attempted, their major limitations and the problems that remain to be solved.  (+info)

Coexistence of an endocrine tumour in a serous cystadenoma (microcystic adenoma) of the pancreas, an unusual association. (8/130)

A pancreatic endocrine tumour arising within a serous cystadenoma is reported. A 49 year old woman was admitted with a history of epigastric pain, nausea, vomiting, and weight loss of two months duration. She had been diabetic for 12 years. An epigastric mass was palpated in the physical examination, and computed tomography revealed a multiloculated cystic lesion in the pancreas. Pathological examination of the pancreatic tumour revealed the coexistence of a serous cystadenoma and an endocrine tumour. The endocrine tumour, which was located inside the serous cystadenoma, was 1 cm in diameter. The first case of a serous cystadenoma of the pancreas containing a pancreatic endocrine tumour was reported in the literature recently. This paper reports another incidentally found pancreatic endocrine tumour arising within a serous cystadenoma.  (+info)

Endocrine gland neoplasms refer to abnormal growths (tumors) that develop in the endocrine glands. These glands are responsible for producing hormones, which are chemical messengers that regulate various functions and processes in the body. Neoplasms can be benign or malignant (cancerous). Benign neoplasms tend to grow slowly and do not spread to other parts of the body. Malignant neoplasms, on the other hand, can invade nearby tissues and organs and may also metastasize (spread) to distant sites.

Endocrine gland neoplasms can occur in any of the endocrine glands, including:

1. Pituitary gland: located at the base of the brain, it produces several hormones that regulate growth and development, as well as other bodily functions.
2. Thyroid gland: located in the neck, it produces thyroid hormones that regulate metabolism and calcium balance.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone that regulates calcium levels in the blood.
4. Adrenal glands: located on top of each kidney, they produce hormones such as adrenaline, cortisol, and aldosterone that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located behind the stomach, it produces insulin and glucagon, which regulate blood sugar levels, and digestive enzymes that help break down food.
6. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.
7. Gonads (ovaries and testicles): located in the pelvis (ovaries) and scrotum (testicles), they produce sex hormones such as estrogen, progesterone, and testosterone that regulate reproductive function and secondary sexual characteristics.

Endocrine gland neoplasms can cause various symptoms depending on the type and location of the tumor. For example, a pituitary gland neoplasm may cause headaches, vision problems, or hormonal imbalances, while an adrenal gland neoplasm may cause high blood pressure, weight gain, or mood changes.

Diagnosis of endocrine gland neoplasms typically involves a combination of medical history, physical examination, imaging studies such as CT or MRI scans, and laboratory tests to measure hormone levels. Treatment options may include surgery, radiation therapy, chemotherapy, or hormonal therapy, depending on the type and stage of the tumor.

Endocrine glands are ductless glands in the human body that release hormones directly into the bloodstream, which then carry the hormones to various tissues and organs in the body. These glands play a crucial role in regulating many of the body's functions, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Examples of endocrine glands include the pituitary gland, thyroid gland, parathyroid glands, adrenal glands, pineal gland, pancreas, ovaries, and testes. Each of these glands produces specific hormones that have unique effects on various target tissues in the body.

The endocrine system works closely with the nervous system to regulate many bodily functions through a complex network of feedback mechanisms. Disorders of the endocrine system can result in a wide range of symptoms and health problems, including diabetes, thyroid disease, growth disorders, and sexual dysfunction.

Vascular Endothelial Growth Factor (VEGF) is a type of protein that plays a crucial role in the formation of new blood vessels, a process known as angiogenesis. There are several different types of VEGF, and one of them is referred to as "endocrine-gland-derived VEGF" or "VEGF-E."

VEGF-E is specifically produced by certain endocrine glands, such as the pituitary gland, and it promotes the growth and proliferation of blood vessels. It does this by binding to and activating VEGF receptors on the surface of endothelial cells, which are the cells that line the interior surface of blood vessels.

VEGF-E has been studied as a potential therapeutic target for various medical conditions, including cancer, age-related macular degeneration, and diabetic retinopathy. However, more research is needed to fully understand its role in these diseases and to determine the safety and efficacy of VEGF-E-targeted therapies.

Salivary gland neoplasms refer to abnormal growths or tumors that develop in the salivary glands. These glands are responsible for producing saliva, which helps in digestion, lubrication of food and maintaining oral health. Salivary gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign neoplasms are slow-growing and typically do not spread to other parts of the body. They may cause symptoms such as swelling, painless lumps, or difficulty swallowing if they grow large enough to put pressure on surrounding tissues.

Malignant neoplasms, on the other hand, can be aggressive and have the potential to invade nearby structures and metastasize (spread) to distant organs. Symptoms of malignant salivary gland neoplasms may include rapid growth, pain, numbness, or paralysis of facial nerves.

Salivary gland neoplasms can occur in any of the major salivary glands (parotid, submandibular, and sublingual glands) or in the minor salivary glands located throughout the mouth and throat. The exact cause of these neoplasms is not fully understood, but risk factors may include exposure to radiation, certain viral infections, and genetic predisposition.

Sebaceous gland neoplasms are abnormal growths or tumors that develop in the sebaceous glands, which are small oil-producing glands found in the skin. These glands are responsible for producing sebum, a natural oil that helps keep the skin and hair moisturized. Sebaceous gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign sebaceous gland neoplasms include:

* Seborrheic keratosis: These are common, harmless growths that appear as rough, scaly patches on the skin. They can be tan, brown, or black in color and vary in size from small to large.
* Sebaceous adenoma: This is a benign tumor that arises from the sebaceous glands. It typically appears as a small, yellowish bump on the skin.

Malignant sebaceous gland neoplasms include:

* Sebaceous carcinoma: This is a rare but aggressive form of skin cancer that arises from the sebaceous glands. It often appears as a hard, painless nodule on the eyelid or other areas of the face and can spread to other parts of the body if left untreated.
* Basal cell carcinoma: While not exclusively a sebaceous gland neoplasm, basal cell carcinomas can sometimes arise from the sebaceous glands. These are slow-growing but invasive skin cancers that typically appear as pearly or flesh-colored bumps on the skin.

It is important to have any new or changing growths on the skin evaluated by a healthcare professional to determine whether they are benign or malignant and to develop an appropriate treatment plan if necessary.

Anal gland neoplasms, also known as anal sac tumors, are abnormal growths that develop from the cells lining the anal glands. These glands are located on either side of the anus in dogs and some other animals, and they produce a scent used for marking territory.

Anal gland neoplasms can be benign or malignant (cancerous). Malignant tumors are more common and tend to grow quickly, invading surrounding tissues and spreading to other parts of the body (metastasis). Common symptoms of anal gland neoplasms include straining to defecate, bleeding from the rectum, and a firm mass that can be felt near the anus.

Treatment for anal gland neoplasms typically involves surgical removal of the tumor. In some cases, radiation therapy or chemotherapy may also be recommended. The prognosis for animals with anal gland neoplasms depends on several factors, including the size and location of the tumor, whether it has spread to other parts of the body, and the overall health of the animal.

The adrenal glands are a pair of endocrine glands that are located on top of the kidneys. Each gland has two parts: the outer cortex and the inner medulla. The adrenal cortex produces hormones such as cortisol, aldosterone, and androgens, which regulate metabolism, blood pressure, and other vital functions. The adrenal medulla produces catecholamines, including epinephrine (adrenaline) and norepinephrine (noradrenaline), which help the body respond to stress by increasing heart rate, blood pressure, and alertness.

Perianal glands, also known as hepatoid glands or circumanal glands, are specialized sebaceous glands located in the perianal region of many mammals, including dogs and cats. These glands are found in the skin around the anus and are responsible for producing a scent that is unique to each individual animal. The secretions from these glands play a role in territorial marking and communication.

In humans, there are no true perianal glands, but there are some sweat glands located in the perianal region that can sometimes become inflamed or infected, leading to conditions such as hidradenitis suppurativa or perianal abscesses. However, these conditions are not related to the perianal glands found in animals.

Sublingual gland neoplasms refer to the abnormal growths or tumors that develop in the sublingual salivary glands, which are located beneath the tongue in the floor of the mouth. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign sublingual gland neoplasms are typically slow-growing and cause little to no discomfort, although they may become large enough to interfere with speaking, swallowing, or breathing. Malignant sublingual gland neoplasms, on the other hand, can grow rapidly, invade surrounding tissues, and potentially spread (metastasize) to other parts of the body.

The most common type of benign sublingual gland neoplasm is a pleomorphic adenoma, while malignant tumors may include mucoepidermoid carcinoma, adenoid cystic carcinoma, or squamous cell carcinoma. Treatment options for sublingual gland neoplasms depend on the type, size, location, and stage of the tumor but often involve surgical excision, with or without radiation therapy or chemotherapy. Regular follow-up care is essential to monitor for recurrence or metastasis.

A pleomorphic adenoma is a type of benign (non-cancerous) tumor that typically develops in the salivary glands, although they can also occur in other areas such as the nasopharynx and skin. "Pleomorphic" refers to the diverse appearance of the cells within the tumor, which can vary in size, shape, and arrangement.

Pleomorphic adenomas are composed of a mixture of epithelial and mesenchymal cells, which can form glandular structures, squamous (scale-like) cells, and areas that resemble cartilage or bone. These tumors tend to grow slowly and usually do not spread to other parts of the body.

While pleomorphic adenomas are generally not dangerous, they can cause problems if they become large enough to press on surrounding tissues or structures. In some cases, these tumors may also undergo malignant transformation, leading to a cancerous growth known as carcinoma ex pleomorphic adenoma. Surgical removal is the standard treatment for pleomorphic adenomas, and the prognosis is generally good with proper management.

Parotid neoplasms refer to abnormal growths or tumors in the parotid gland, which is the largest of the salivary glands and is located in front of the ear and extends down the neck. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign parotid neoplasms are typically slow-growing, painless masses that may cause facial asymmetry or difficulty in chewing or swallowing if they become large enough to compress surrounding structures. The most common type of benign parotid tumor is a pleomorphic adenoma.

Malignant parotid neoplasms, on the other hand, are more aggressive and can invade nearby tissues and spread to other parts of the body. They may present as rapidly growing masses that are firm or fixed to surrounding structures. Common types of malignant parotid tumors include mucoepidermoid carcinoma, adenoid cystic carcinoma, and squamous cell carcinoma.

The diagnosis of parotid neoplasms typically involves a thorough clinical evaluation, imaging studies such as CT or MRI scans, and fine-needle aspiration biopsy (FNAB) to determine the nature of the tumor. Treatment options depend on the type, size, and location of the neoplasm but may include surgical excision, radiation therapy, and chemotherapy.

Mucoepidermoid carcinoma is a type of cancer that develops in the salivary glands or, less commonly, in other areas such as the lungs or skin. It is called "mucoepidermoid" because it contains two types of cells: mucus-secreting cells and squamous (or epidermoid) cells.

Mucoepidermoid carcinomas can vary in their behavior, ranging from low-grade tumors that grow slowly and rarely spread to other parts of the body, to high-grade tumors that are aggressive and can metastasize. The treatment and prognosis for mucoepidermoid carcinoma depend on several factors, including the grade and stage of the tumor, as well as the patient's overall health.

It is important to note that while I strive to provide accurate and up-to-date information, this definition may not capture all the nuances of this medical condition. Therefore, it is always best to consult with a healthcare professional for medical advice.

The thyroid gland is a major endocrine gland located in the neck, anterior to the trachea and extends from the lower third of the Adams apple to the suprasternal notch. It has two lateral lobes, connected by an isthmus, and sometimes a pyramidal lobe. This gland plays a crucial role in the metabolism, growth, and development of the human body through the production of thyroid hormones (triiodothyronine/T3 and thyroxine/T4) and calcitonin. The thyroid hormones regulate body temperature, heart rate, and the production of protein, while calcitonin helps in controlling calcium levels in the blood. The function of the thyroid gland is controlled by the hypothalamus and pituitary gland through the thyroid-stimulating hormone (TSH).

Palatal neoplasms refer to abnormal growths or tumors that occur on the palate, which is the roof of the mouth. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slower growing and less likely to spread, while malignant neoplasms are more aggressive and can invade nearby tissues and organs.

Palatal neoplasms can have various causes, including genetic factors, environmental exposures, and viral infections. They may present with symptoms such as mouth pain, difficulty swallowing, swelling or lumps in the mouth, bleeding, or numbness in the mouth or face.

The diagnosis of palatal neoplasms typically involves a thorough clinical examination, imaging studies, and sometimes biopsy to determine the type and extent of the growth. Treatment options depend on the type, size, location, and stage of the neoplasm but may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence or spread of the neoplasm.

Chloroprene is a colorless liquid with a mild, rubbery odor. It is chemically known as 2-chlorobuta-1,3-diene and is primarily used in the industrial production of polychloroprene, a type of synthetic rubber that is resistant to heat, oil, and weathering.

In a medical context, chloroprene itself is not commonly used or encountered. However, exposure to chloroprene during its manufacture or use in industrial settings has been associated with an increased risk of certain health effects, including neurological damage, liver toxicity, and cancer. Therefore, occupational safety regulations exist to limit worker exposure to this chemical.

Adenoid cystic carcinoma (AdCC) is a rare type of cancer that can occur in various glands and tissues of the body, most commonly in the salivary glands. AdCC is characterized by its slow growth and tendency to spread along nerves. It typically forms solid, cystic, or mixed tumors with distinct histological features, including epithelial cells arranged in tubular, cribriform, or solid patterns.

The term "carcinoma" refers to a malignant tumor originating from the epithelial cells lining various organs and glands. In this case, adenoid cystic carcinoma is a specific type of carcinoma that arises in the salivary glands or other glandular tissues.

The primary treatment options for AdCC include surgical resection, radiation therapy, and sometimes chemotherapy. Despite its slow growth, adenoid cystic carcinoma has a propensity to recur locally and metastasize to distant sites such as the lungs, bones, and liver. Long-term follow-up is essential due to the risk of late recurrences.

Myoepithelioma is a very rare, benign (non-cancerous) tumor that arises from the myoepithelial cells, which are found in various glands throughout the body, including salivary glands, sweat glands, and mammary glands. These tumors typically appear as slow-growing, painless masses. While they are usually benign, some myoepitheliomas can become malignant (cancerous) and invasive, leading to more serious health concerns. Treatment for myoepithelioma typically involves surgical removal of the tumor.

Adenolymphoma is a rare, benign tumor that arises from the lymphoid tissue found in glandular structures, such as the salivary glands. It is also known as Warthin's tumor or cystic papillary adenolymphoma.

The tumor is composed of multiple cyst-like spaces lined by columnar epithelial cells and surrounded by lymphoid tissue, which may contain lymphocytes, plasma cells, and occasionally, germinal centers. The etiology of adenolymphoma is unclear, but it has been associated with smoking and genetic factors.

Adenolymphomas are typically slow-growing and painless, although they can cause discomfort or facial asymmetry if they become large enough. They are usually diagnosed through imaging studies such as ultrasound, CT scan, or MRI, followed by a biopsy to confirm the diagnosis.

Treatment of adenolymphoma typically involves surgical excision, which is usually curative. Recurrence after surgery is rare, but long-term follow-up is recommended due to the potential for malignant transformation into squamous cell carcinoma or other malignancies.

Submandibular gland neoplasms refer to abnormal growths or tumors that develop in the submandibular glands. These are one of the three pairs of major salivary glands located beneath the jaw and produce saliva that helps in digestion. Submandibular gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign neoplasms are typically slow-growing, do not invade surrounding tissues, and rarely spread to other parts of the body. Common types of benign submandibular gland neoplasms include pleomorphic adenomas and monomorphic adenomas.

Malignant neoplasms, on the other hand, are aggressive and can invade nearby structures or metastasize (spread) to distant organs. Common types of malignant submandibular gland neoplasms include mucoepidermoid carcinoma, adenoid cystic carcinoma, and acinic cell carcinoma.

Symptoms of submandibular gland neoplasms may include a painless swelling or mass in the neck, difficulty swallowing, speaking, or breathing, numbness or tingling in the tongue or lips, and unexplained weight loss. Treatment options depend on the type, size, location, and stage of the tumor but often involve surgical excision, radiation therapy, and/or chemotherapy. Regular follow-up care is essential to monitor for recurrence or metastasis.

Minor salivary glands are numerous small exocrine glands that produce saliva and are distributed throughout the oral cavity, nasal cavity, pharynx, larynx, and paranasal sinuses. They are classified as "minor" due to their smaller size compared to the three pairs of major salivary glands (parotid, submandibular, and sublingual). The minor salivary glands are primarily mucous glands, although some contain serous cells. They are responsible for producing approximately 5-10% of the total saliva in the mouth. These glands help moisten the oral cavity, protect the mucosal lining, and facilitate speaking, chewing, and swallowing.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions and processes in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

The major endocrine glands include:

1. Pituitary gland: located at the base of the brain, it is often referred to as the "master gland" because it controls other glands' functions. It produces and releases several hormones that regulate growth, development, and reproduction.
2. Thyroid gland: located in the neck, it produces hormones that regulate metabolism, growth, and development.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone, which regulates calcium levels in the blood.
4. Adrenal glands: located on top of the kidneys, they produce hormones that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located in the abdomen, it produces hormones such as insulin and glucagon that regulate blood sugar levels.
6. Sex glands (ovaries and testes): they produce sex hormones such as estrogen, progesterone, and testosterone that regulate sexual development and reproduction.
7. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.

The endocrine system works closely with the nervous system to maintain homeostasis or balance in the body's internal environment. Hormones are chemical messengers that travel through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. Disorders of the endocrine system can result from overproduction or underproduction of hormones, leading to various health problems such as diabetes, thyroid disorders, growth disorders, and sexual dysfunction.

Salivary glands are exocrine glands that produce saliva, which is secreted into the oral cavity to keep the mouth and throat moist, aid in digestion by initiating food breakdown, and help maintain dental health. There are three major pairs of salivary glands: the parotid glands located in the cheeks, the submandibular glands found beneath the jaw, and the sublingual glands situated under the tongue. Additionally, there are numerous minor salivary glands distributed throughout the oral cavity lining. These glands release their secretions through a system of ducts into the mouth.

Sweat gland neoplasms are abnormal growths that develop in the sweat glands. These growths can be benign (noncancerous) or malignant (cancerous). Benign sweat gland neoplasms include hidradenomas and syringomas, which are usually slow-growing and cause little to no symptoms. Malignant sweat gland neoplasms, also known as sweat gland carcinomas, are rare but aggressive cancers that can spread to other parts of the body. They may cause symptoms such as a lump or mass under the skin, pain, swelling, and redness. Treatment typically involves surgical removal of the growth.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Endocrine system diseases or disorders occur when there is a problem with the production or regulation of hormones. This can result from:

1. Overproduction or underproduction of hormones by the endocrine glands.
2. Impaired response of target cells to hormones.
3. Disruption in the feedback mechanisms that regulate hormone production.

Examples of endocrine system diseases include:

1. Diabetes Mellitus - a group of metabolic disorders characterized by high blood sugar levels due to insulin deficiency or resistance.
2. Hypothyroidism - underactive thyroid gland leading to slow metabolism, weight gain, fatigue, and depression.
3. Hyperthyroidism - overactive thyroid gland causing rapid heartbeat, anxiety, weight loss, and heat intolerance.
4. Cushing's Syndrome - excess cortisol production resulting in obesity, high blood pressure, and weak muscles.
5. Addison's Disease - insufficient adrenal hormone production leading to weakness, fatigue, and low blood pressure.
6. Acromegaly - overproduction of growth hormone after puberty causing enlargement of bones, organs, and soft tissues.
7. Gigantism - similar to acromegaly but occurs before puberty resulting in excessive height and body size.
8. Hypopituitarism - underactive pituitary gland leading to deficiencies in various hormones.
9. Hyperparathyroidism - overactivity of the parathyroid glands causing calcium imbalances and kidney stones.
10. Precocious Puberty - early onset of puberty due to premature activation of the pituitary gland.

Treatment for endocrine system diseases varies depending on the specific disorder and may involve medication, surgery, lifestyle changes, or a combination of these approaches.

Endocrine disruptors are defined as exogenous (external) substances or mixtures that interfere with the way hormones work in the body, leading to negative health effects. They can mimic, block, or alter the normal synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, development, and/or behavior.

Endocrine disruptors can be found in various sources, including industrial chemicals, pesticides, pharmaceuticals, and personal care products. They have been linked to a range of health problems, such as cancer, reproductive issues, developmental disorders, neurological impairments, and immune system dysfunction.

Examples of endocrine disruptors include bisphenol A (BPA), phthalates, dioxins, polychlorinated biphenyls (PCBs), perfluoroalkyl substances (PFAS), and certain pesticides like dichlorodiphenyltrichloroethane (DDT) and vinclozolin.

It is important to note that endocrine disruptors can have effects at very low doses, and their impact may depend on the timing of exposure, particularly during critical windows of development such as fetal growth and early childhood.

Exocrine glands are a type of gland in the human body that produce and release substances through ducts onto an external or internal surface. These glands are responsible for secreting various substances such as enzymes, hormones, and lubricants that help in digestion, protection, and other bodily functions.

Exocrine glands can be further classified into three types based on their mode of secretion:

1. Merocrine glands: These glands release their secretions by exocytosis, where the secretory product is enclosed in a vesicle that fuses with the cell membrane and releases its contents outside the cell. Examples include sweat glands and mucous glands.
2. Apocrine glands: These glands release their secretions by pinching off a portion of the cytoplasm along with the secretory product. An example is the apocrine sweat gland found in the armpits and genital area.
3. Holocrine glands: These glands release their secretions by disintegrating and releasing the entire cell, including its organelles and secretory products. An example is the sebaceous gland found in the skin, which releases an oily substance called sebum.

Mammary glands are specialized exocrine glands found in mammals, including humans and other animals. These glands are responsible for producing milk, which is used to nurse offspring after birth. The mammary glands are located in the breast region of female mammals and are usually rudimentary or absent in males.

In animals, mammary glands can vary in number and location depending on the species. For example, humans and other primates have two mammary glands, one in each breast. Cows, goats, and sheep, on the other hand, have multiple pairs of mammary glands located in their lower abdominal region.

Mammary glands are made up of several structures, including lobules, ducts, and connective tissue. The lobules contain clusters of milk-secreting cells called alveoli, which produce and store milk. The ducts transport the milk from the lobules to the nipple, where it is released during lactation.

Mammary glands are an essential feature of mammals, as they provide a source of nutrition for newborn offspring. They also play a role in the development and maintenance of the mother-infant bond, as nursing provides opportunities for physical contact and bonding between the mother and her young.

The submandibular glands are one of the major salivary glands in the human body. They are located beneath the mandible (jawbone) and produce saliva that helps in digestion, lubrication, and protection of the oral cavity. The saliva produced by the submandibular glands contains enzymes like amylase and mucin, which aid in the digestion of carbohydrates and provide moisture to the mouth and throat. Any medical condition or disease that affects the submandibular gland may impact its function and could lead to problems such as dry mouth (xerostomia), swelling, pain, or infection.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

An endocrine gland neoplasm is a neoplasm affecting one or more glands of the endocrine system.[citation needed]Examples ... Conditions such as pancreatic cancer or ovarian cancer can be considered endocrine tumors, or classified under other systems. ... Pinealoma is often grouped with brain tumors because of its location.[citation needed] Multiple endocrine neoplasia "Thyroid ... Endocrine neoplasia, All stub articles, Neoplasm stubs). ...
Search Keyword: Endocrine Gland Neoplasms This is a study to evaluate the efficacy and safety of belzutifan monotherapy in ...
Endocrine Gland Neoplasms - surgery. Endocrine Surgical Procedures. Specialty. Clinical Decision-Making. Endocrinology. ... Endocrine Gland Neoplasms - surgery. Neuroendocrine Tumors - surgery. Abstract. This book brings together recognized experts in ... Endocrine surgery has been an area of special interest to surgeons for well over a century, while the increasing incidence of ... Difficult Decisions in Endocrine Surgery: An Evidence-Based Approach features a wealth of information on ideal approaches for ...
Categories: Endocrine Gland Neoplasms Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
Digestive System Neoplasms. Carcinoma, Neuroendocrine. Endocrine Gland Neoplasms. Neoplasms, Thoracic. Gastrointestinal ... Rectal Cancer Salivary Gland Cancer Sarcoma Sickle Cell Disease Skin Cancer Stomach Cancer Testicular Cancer Thyroid Cancer ... Lymphedema Melanoma Merkel Cell Carcinoma Mesothelioma Multiple Myeloma Myelodysplastic Syndrome Myeloproliferative Neoplasms ... Chronic Myeloid Leukemia Colon Cancer Cutaneous Lymphoma Endocrine Tumors Endometrial Cancer Esophageal Cancer Gastrointestinal ...
124 Malignant neoplasms of thyroid and other endocrine glands (C73-C75). 125 Other malignant neoplasms of other and unspecified ... 120 Malignant neoplasm of eye and adnexa (C69). 121 1 Malignant neoplasms of meninges, brain and other parts of central nervous ... 096 Malignant neoplasms of bone and articular cartilage (C40-C41). 097 1 Melanoma and other malignant neoplasms of skin (C43- ... 090 1 Malignant neoplasms of respiratory and intrathoracic organs (C30-C39). 091 Of nasal cavity, middle ear and accessory ...
Endocrine Gland Neoplasms [C04.588.322]. *Multiple Endocrine Neoplasia [C04.588.322.400]. *Multiple Endocrine Neoplasia Type 2b ... Multiple Endocrine Neoplasia Type 2b [C04.700.630.510]. *Congenital, Hereditary, and Neonatal Diseases and Abnormalities [C16] ... "Multiple Endocrine Neoplasia Type 2b" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, ... This graph shows the total number of publications written about "Multiple Endocrine Neoplasia Type 2b" by people in this ...
The Icd-10 code range for Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes D37-D48 is medical ... Neoplasm of uncertain behavior of brain and central nervous system, Neoplasm of uncertain behavior of endocrine glands, ... Neoplasm of uncertain behavior of female genital organs, Neoplasm of uncertain behavior of male genital organs, Neoplasm of ... contains ICD-10 codes for Neoplasm of uncertain behavior of oral cavity and digestive organs, Neoplasm of uncertain behavior of ...
Endocrine Gland Neoplasms [C04.588.322]. *Adrenal Gland Neoplasms [C04.588.322.078]. *Adrenal Cortex Neoplasms [C04.588.322.078 ... "Adrenal Cortex Neoplasms" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... This graph shows the total number of publications written about "Adrenal Cortex Neoplasms" by people in this website by year, ... Below are the most recent publications written about "Adrenal Cortex Neoplasms" by people in Profiles. ...
A 474% increase in neoplasms of the thyroid and other endocrine glands. • A 487% increase in demyelinating. • A 487% increase ...
Endocrine Gland Neoplasms [C04.588.322]. *Ovarian Neoplasms [C04.588.322.455]. *Hereditary Breast and Ovarian Cancer Syndrome [ ... Endocrine Gland Neoplasms [C19.344]. *Ovarian Neoplasms [C19.344.410]. *Hereditary Breast and Ovarian Cancer Syndrome [C19.344. ...
Endocrine Gland Neoplasms Medicine & Life Sciences 24% * Radiotherapy Medicine & Life Sciences 21% ... N2 - Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its ... AB - Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its ... Although thyroid cancer is a comparatively rare malignancy, it represents the vast majority of endocrine cancers and its ...
Endocrine Gland Neoplasms +. 2646. Eye Neoplasms +. 117. Head and Neck Neoplasms +. 1607. ... A collective term for precoordinated organ/neoplasm headings locating neoplasms by organ, as BRAIN NEOPLASMS; DUODENAL ... NEOPLASMS; LIVER NEOPLASMS; etc.. Synonyms:. exact_synonym: Neoplasm Site; Neoplasm Sites; Neoplasms by Sites. ...
Uterine NeoplasmsBreast NeoplasmsColonic NeoplasmsBone Marrow NeoplasmsEndocrine Gland NeoplasmsIntestinal NeoplasmsNeoplasms, ... Cord NeoplasmsVaginal NeoplasmsAdrenal Gland NeoplasmsNervous System NeoplasmsPenile NeoplasmsNeoplasm SeedingGenital Neoplasms ... OutcomeBone Marrow NeoplasmsPreoperative CareEndocrine Gland NeoplasmsNeoplasm ProteinsBiopsyIntestinal NeoplasmsNeoplasms, ... Pancreatic NeoplasmsNeoplasmsLymphatic MetastasisSkin NeoplasmsNeoplasms, Cystic, Mucinous, and SerousLung NeoplasmsNeoplasms, ...
Malignant neoplasms of thyroid and other endocrine glands - 474% increase. *Female infertility - 472% increase ...
Endocrine Gland Neoplasms 100% * Pancreatic Neoplasms 60% * RNA Polymerase II 55% * Neoplasms 20% ... Human PAF complexes in endocrine tumors and pancreatic cancer. Deb, S., Ponnusamy, M. P., Senapati, S., Dey, P. & Batra, S. K. ... Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Raut, P., Nimmakayala, R. K., Batra, S. K. & ...
... by neoplasms and ectopic endocrine tissue or hyperfunction and hypofunction of endocrine glands associated with neoplasms and ... Endocrine, nutritional and metabolic diseases. Note*All neoplasms, whether functionally active or not, are classified in ...
Endocrine Gland Neoplasms Medicine & Life Sciences 68% * Pediatrics Medicine & Life Sciences 56% ... N2 - Papillary thyroid carcinoma is the most common endocrine cancer in the paediatric population. Although the disease is ... AB - Papillary thyroid carcinoma is the most common endocrine cancer in the paediatric population. Although the disease is ... Papillary thyroid carcinoma is the most common endocrine cancer in the paediatric population. Although the disease is diagnosed ...
Neoplasm of unspecified behavior of brain, endocrine glands and other CNS. R85.614. Cytologic evidence of malignancy on smear ... Benign neoplasm of pituitary gland, craniopharyngeal duct and pineal gland. D42.-, D43.-. Neoplasm of uncertain or unknown ... Neoplasm of uncertain or unknown behavior of other endocrine glands (see "must collect" list for D44.3-D44.5) Note: Screen for ... Neoplasm of uncertain or unknown behavior of pituitary gland, craniopharyngeal duct and pineal gland. ...
Malignant neoplasms of thyroid and other endocrine glands................................C73-C75 99 Other malignant neoplasms ... In situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown behavior.......D00-D48 # Diseases of the blood and ... In situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown behavior.........D00-D48 7# Anemias ... C97 41# In situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown behavior.........D00-D48 42# Anemias ...
Endocrine Gland Neoplasms. *Leukemogenesis. *Hyperplasia. *Multiple Endocrine Neoplasia. *Malignant Neoplasm Of Thyroid ...
Multiple Endocrine Neoplasia. *Endocrine Gland Neoplasms. *Infertility. *Multiple Endocrine Neoplasia Type 1 ... Research of Prolactinoma has been linked to Pituitary Neoplasms, Pituitary Diseases, Adenoma, Neoplasms, Pituitary Adenoma. The ... prolactinoma of pituitary gland, prolactinoma (disorder), prolactinoma, familial, familial prolactinoma, pituitary adenoma. ...
Neoplasm of unspecified behavior of endocrine glands and other parts of nervous system ... Other specified malignant neoplasm of skin of unspecified ear and external auricular canal ... Other specified malignant neoplasm of skin of right ear and external auricular canal ... Other specified malignant neoplasm of skin of left ear and external auricular canal ...
Malignant neoplasms of thyroid and other endocrine glands: 474 percent increase. *Female infertility: 472 percent increase ...
Endocrine Gland Neoplasms [C04.588.322]. *Pituitary Neoplasms [C04.588.322.609]. *ACTH-Secreting Pituitary Adenoma [C04.588. ...
She also had active AC and was clinically diagnosed as multiple endocrine neoplasm type 1 because of pHPT and AC. Two enlarged ... parathyroid glands were detected by preoperative examinations. We performed total parathyroidectomy and thyroidectomy. After ...
C57 is a non-billable diagnosis code for malignant neoplasm of other and unsp female genital organs, use codes with a higher ... C73-C75 - Malignant neoplasms of thyroid and other endocrine glands * C76-C80 - Malignant neoplasms of ill-defined, other ... Neoplasms (C00-D48) * Malignant neoplasms of female genital organs (C51-C58) * Malignant neoplasm of other and unsp female ... C56 - Malignant neoplasm of ovary* C56.1 - Malignant neoplasm of right ovary* C56.2 - Malignant neoplasm of left ovary* C56.3 ...
Karolinska Institutet Links pertaining to Endocrine System Diseases Karolinska Institutet Contents: Acromegaly - Addison Disea ... Endocrine Gland Neoplasms - Endocrine System Diseases - Gigantism - Gonadal Disorders - Graves Disease - Hermaphroditism - ... Acromegaly - Addison Disease - Adrenal Gland Diseases - Adrenal Hyperplasia, Congenital - Androgen-Insensitivity Syndrome - ... Thyroid Neoplasms - Thyroid Nodule - Thyroiditis - Thyroiditis, Autoimmune - Thyroiditis, Subacute - Wolfram Syndrome - ...
These data give an unique overview of the burden of endocrine carcinomas in Europe. A list of tumour entities based on the ... In 2003, more than 315,000 persons in the EU (27 countries) were alive with a past diagnosis of a carcinoma of endocrine organs ... The aim of this study was to describe the incidence, prevalence and survival of endocrine tumours using a large database, which ... Over 33,594 cases of endocrine carcinomas were analysed in this study. Incidence rates increased with age and were highest in ...
Thyroid Neoplasms Vocal Cord Paralysis Endocrine System Diseases Endocrine Gland Neoplasms Neoplasms by Site Head and Neck ... Neoplasms Laryngeal Diseases Respiratory Tract Diseases Otorhinolaryngologic Diseases Vagus Nerve Diseases Cranial Nerve ...

No FAQ available that match "endocrine gland neoplasms"

No images available that match "endocrine gland neoplasms"