A condition characterized by the thickening of the ventricular ENDOCARDIUM and subendocardium (MYOCARDIUM), seen mostly in children and young adults in the TROPICAL CLIMATE. The fibrous tissue extends from the apex toward and often involves the HEART VALVES causing restrictive blood flow into the respective ventricles (CARDIOMYOPATHY, RESTRICTIVE).
A heterogeneous group of disorders with the common feature of prolonged eosinophilia of unknown cause and associated organ system dysfunction, including the heart, central nervous system, kidneys, lungs, gastrointestinal tract, and skin. There is a massive increase in the number of EOSINOPHILS in the blood, mimicking leukemia, and extensive eosinophilic infiltration of the various organs.
Abnormal increase of EOSINOPHILS in the blood, tissues or organs.
The innermost layer of the heart, comprised of endothelial cells.
A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS).
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury.
A republic in eastern Africa, south of SUDAN and west of KENYA. Its capital is Kampala.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY.
Inflammatory processes of the muscular walls of the heart (MYOCARDIUM) which result in injury to the cardiac muscle cells (MYOCYTES, CARDIAC). Manifestations range from subclinical to sudden death (DEATH, SUDDEN). Myocarditis in association with cardiac dysfunction is classified as inflammatory CARDIOMYOPATHY usually caused by INFECTION, autoimmune diseases, or responses to toxic substances. Myocarditis is also a common cause of DILATED CARDIOMYOPATHY and other cardiomyopathies.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.

Global biventricular dysfunction in patients with asymptomatic coronary artery disease may be caused by myocarditis. (1/250)

BACKGROUND: The causal role of asymptomatic critical coronary artery obstruction in patients presenting with severe global biventricular dysfunction but no evidence of myocardial infarction is uncertain. METHODS AND RESULTS: Among 291 patients aged >40 years undergoing a noninvasive (2-dimensional echocardiography) and invasive (catheterization, coronary angiography, and biventricular endomyocardial biopsy, 6 to 8 samples/patient) cardiac study because of progressive heart failure (New York Heart Association functional class III or IV) with global biventricular dysfunction and no history of myocardial ischemic events, 7 patients (2.4%; 7 men; mean age, 49+/-6.9 years) had severe coronary artery disease (3 vessels in 4 patients; 2 vessels in 1 patient, proximal occlusion of left anterior descending coronary artery in 2 patients). Left ventricular end-diastolic diameter and ejection fraction by 2-dimensional echocardiography were 73+/-10.5 mm and 23+/-6.5%, respectively, and right ventricular end-diastolic diameter and ejection fraction were 39+/-7 mm and 29+/-7.2%, respectively. Biopsy specimens showed extensive lymphocytic infiltrates with focal myocytolysis meeting the Dallas criteria for myocarditis in all patients (in 5 patients with and 2 patients without fibrosis). Cardiac autoantibodies were detected with indirect immunofluorescence in the serum of 2 patients with active myocarditis. The 2 patients with active inflammation received prednisone (1 mg. kg-1. d-1 for 4 weeks followed by 0.33 mg. kg-1. d-1 for 5 months) and azathioprine (2 mg. kg-1. d-1 for 5 months) in addition to conventional drug therapy for heart failure. At 8-month overall follow-up, cardiac volume and function improved considerably in immunosuppressed patients but remained unchanged in conventionally treated patients, of whom 1 died. CONCLUSIONS: Global biventricular dysfunction in patients with severe asymptomatic coronary artery disease and no evidence of previous myocardial infarction may be caused by myocarditis. Histologic findings may influence the treatment.  (+info)

Cell death in acromegalic cardiomyopathy. (2/250)

BACKGROUND: Prolonged untreated acromegaly leads to a nonspecific myopathy characterized by ventricular dysfunction and failure. However, the mechanisms responsible for the alterations of cardiac pump function remain to be defined. Because cell death is implicated in most cardiac disease processes, the possibility has been raised that myocyte apoptosis may occur in the acromegalic heart, contributing to the deterioration of ventricular hemodynamics. METHODS AND RESULTS: Ten acromegalic patients with diastolic dysfunction and 4 also with systolic dysfunction were subjected to electrocardiography, Holter monitoring, 2-dimensional echocardiography, cardiac catheterization, and biventricular and coronary angiography before surgical removal of a growth hormone-secreting pituitary adenoma. Endomyocardial biopsies were obtained and analyzed quantitatively in terms of tissue scarring and myocyte and nonmyocyte apoptosis. Myocardial samples from papillary muscles of patients who underwent valve replacement for mitral stenosis were used for comparison. The presence of apoptosis in myocytes and interstitial cells was determined by confocal microscopy with the use of 2 histochemical methods, consisting of terminal deoxynucleotidyl transferase (TdT) assay and Taq probe in situ ligation. Acromegaly was characterized by a 495-fold and 305-fold increase in apoptosis of myocytes and nonmyocytes, respectively. The magnitude of myocyte apoptosis correlated with the extent of impairment in ejection fraction and the duration of the disease. A similar correlation was found with the magnitude of collagen accumulation, indicative of previous myocyte necrosis. Myocyte death was independent from the hormonal levels of growth hormone and insulin-like growth factor-1. Apoptosis of interstitial cells did not correlate with ejection fraction. CONCLUSIONS: Myocyte cell death, apoptotic and necrotic in nature, may be critical for the development of ventricular dysfunction and its progression to cardiac failure with acromegaly.  (+info)

Poverty and eosinophilia are risk factors for endomyocardial fibrosis (EMF) in Uganda. (3/250)

OBJECTIVE: To determine the relative risks of socio-demographic, dietary, and environmental factors for endomyocardial fibrosis (EMF) in Uganda. METHOD: Unmatched case control study in Mulago Hospital, Kampala. Cases (n = 61) were sequential patients hospitalized with an echocardiographic diagnosis of EMF from June 1995 to March 1996. Controls (n = 120) were concurrent patients with other forms of heart disease (heart controls, n = 59) and subjects admitted for trauma or elective surgery (hospital controls, n = 61). All consenting subjects answered a structured questionnaire administered by trained interviewers. Complete blood counts, malaria films and stool examination for ova and parasites were performed. Questionnaires elicited information on home address, economic circumstances, variables concerned with environmental exposures and usual diet before becoming ill. RESULTS: After adjustment for age and sex, cases were significantly more likely than controls to have Rwanda/Burundi ethnic origins (P = 0.008). Compared with controls, cases had a lower level of education (P < 0.001 for heart controls and P = 0.07 for hospital controls), were more likely to be peasants (P < 0.001), and to come from Luwero or Mukono Districts (P = 0.003). After further adjustment for peasant occupation, cases were more likely than controls to walk barefoot (P = 0.015), consume cassava as their staple food (P < 0.001) and to lack fish or meat in dietary sauces (P = 0.02). Cases were more likely to exhibit absolute eosinophilia (P = 0.006). The effect of cassava diet was more marked in the younger age group, while the effect of eosinophilia was greater in adults. Socio-economic disadvantage is a risk for EMF. Absolute eosinophilia is a putative cause of EMF, a finding not explained by parasitism. CONCLUSION: Data indicate that relative poverty and environmental factors triggering eosinophilia appear to act in a geographically restricted region of Uganda in the aetiology of EMF.  (+info)

Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. (4/250)

It is generally admitted that the pathogenesis of perivascular and interstitial cardiac fibrosis involves the response to two types of stimuli: a hormonal one, mainly involving the renin-angiotensin-aldosterone system and the more recently described endothelin system, and a hemodynamic stimulus, particularly high blood pressure. We propose in the present review a third step which, although not exclusive, interacts with the hormonal and hemodynamic ones, and involves inflammatory mechanisms. Indeed, hypertension is invariably associated with inflammatory cell infiltration either in the intimal part of large vessels or in the adventitial region of arterioles. This has led us to hypothesize that arterial wall cells may trigger the initial communications attracting inflammatory cells to the perivascular region. In this paper, we review the proinflammatory intercellular communications as well as the intracellular signaling which confer an inflammatory phenotype to arteries. In this context, the profibrogenic and proinflammatory effects of hemodynamic overload and peptidergic systems such as angiotensin II and endothelin are considered. The study of the inflammatory process is not without interest, especially in view of the strong modulating effect of the inflammatory mediators both on the inflammatory process itself and on the fibrotic process. The principal and the most potent mediators are reviewed. Finally, the hypothesis that the inflammatory process could be in reality an immune specific process is suggested.  (+info)

Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. (5/250)

Transgenic (TG) mice with cardiac G(salpha) overexpression exhibit enhanced inotropic and chronotropic responses to sympathetic stimulation, but develop cardiomyopathy with age. We tested the hypothesis that cardiomyopathy in TG mice with G(salpha) overexpression could be averted with chronic beta-adrenergic receptor (beta-AR) blockade. TG mice and age-matched wild-type littermates were treated with the beta-AR blocker propranolol for 6-7 months, starting at a time when the cardiomyopathy was developing but was not yet severe enough to induce significant cardiac depression (9.5 months of age), and ending at a time when cardiac depression and cardiomyopathy would have been clearly manifest (16 months of age). Propranolol treatment, which can induce cardiac depression in the normal heart, actually prevented cardiac dilation and the depressed left ventricular function characteristic of older TG mice, and abolished premature mortality. Propranolol also prevented the increase in myocyte cross-sectional area and myocardial fibrosis. Myocyte apoptosis, already apparent in 9-month-old TG mice, was actually eliminated by chronic propranolol. This study indicates that chronic sympathetic stimulation over an extended period is deleterious and results in cardiomyopathy. Conversely, beta-AR blockade is salutary in this situation and can prevent the development of cardiomyopathy.  (+info)

Repetitive coxsackievirus infection induces cardiac dilatation in post-myocarditic mice. (6/250)

The relation between mycarditis and dilated cardiomyopathy (DCM) is controversial. To clarify the pathogenic mechanism of these diseases, the present study examined the effect of repetitive inoculation with coxsackievirus B3 (CVB3) in post-myocarditic mice. Inbred 3-week-old A/J mice were inoculated intraperitoneally with CVB3 (Nancy strain; 2x10(4) plaque-forming units) and reinfected in the same manner with CVB3 at 40 weeks (3W+/40W+). All mice were killed at 42 weeks old. The weight of the hearts of the 3W+/40W+ group were significantly increased compared with those of the 3W-/40W+ group, and both the heart weight/body weight and lung weight/body weight ratios of the 3W+/40W+ group were also significantly increased over those of the 3W-/40W- group, although the levels of serum neutralizing antibody titers were significantly increased in the 3W+/40W+ group over the level of the other groups. No increase in inflammatory cell infiltration or fibrosis progression was observed in the 3W+/40W+ group relative to the 3W+/40W- group, but the second inoculation resulted in a significant left ventricular dilatation and in left and right ventricular free wall thinning (3.31+/-0.20 mm vs 2.61+/-0.19 mm, p<0.05; 0.54+/-0.09 mm vs 0.72+/-0.16 mm, p<0.05, respectively). The sarcomere length was also significantly increased in the 3W+/40W+ group compared with that of the other groups, as determined by electron microscopy. Degenerative or necrotic areas in the infected hearts were not stained with anti-mouse IgG antibody, but were stained, only in 3W+/40W+ mice, with anti-mouse IgM antibody. The concentrations of TNF-alpha in the hearts of the 3W+/40W+ group were increased significantly over those of the 3W+/40W- group. Repetitive CVB3 infection produced cardiac dilatation without inflammatory cell infiltration in post- myocarditic mice. Autoimmunity mediated by the circulation of certain antibodies (eg, antibodies against the CVB3 genome or a CVB3-related protein) may be part of the pathogenic mechanism for this phenomenon. Thus, repetitive virus infection might contribute to the pathogenesis of cardiac dilatation.  (+info)

L-NAME-induced protein remodeling and fibrosis in the rat heart. (7/250)

The aim of the present study was to determine whether NO deficiency itself or rather the elevation of systolic blood pressure is responsible for the protein and structural remodeling of the heart during hypertension induced by long-term treatment by nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Three groups of rats were investigated. The first group served as control. In the second group L-NAME was given in the dose of 20 mg/kg/day in the drinking water and in the third group L-NAME was given in the dose of 40 mg/kg/day during 4 weeks. While L-NAME treatment in both doses caused essentially the same increase in systolic blood pressure (SBP), NO synthase activity and cGMP concentration in the left ventricle decreased by 17% and 13%, respectively in the 20 mg/kg/day L-NAME group and by 69% and 27%, respectively in the 40 mg/kg/day L-NAME group. The protein profile of the left ventricle in both L-NAME groups was characterized by an increased concentration of metabolic proteins. Nevertheless, a significant increase in the concentration of pepsin-soluble collagenous proteins and the concentration of hydroxyproline in pepsin-insoluble collagenous proteins was found only in the group receiving 40 mg/kg/day L-NAME. The morphometric evaluation revealed a significant increase in myocardial fibrosis in both L-NAME groups. However, this was more pronounced in the 40 mg/kg/day L-NAME group. It is concluded that NO deficiency resulted in significant enhancement of fibrotic tissue growth in proportion to the administered L-NAME dose, while SBP was increased similarly in both L-NAME groups. Thus, NO deficiency rather than hemodynamic changes appears to be crucially involved in collagenous protein and fibrotic tissue changes of the left ventricle in hypertension induced by L-NAME.  (+info)

Human chronic chagasic cardiopathy: participation of parasite antigens, subsets of lymphocytes, cytokines and microvascular abnormalities. (8/250)

This article tries to demonstrate by new pathological findings (with the use of immunohistochemical technique and confocal laser microscopy) that chronic chagasic cardiomyopathy is a result of multiple factors involving myocarditis, immunodepression, severe fibrosis and microvessels dilatation and that all of these alterations are probably directly related with the presence of Trypanosoma cruzi parasites in the host associated with inadequate immunological response of the host.  (+info)

Endomyocardial fibrosis is a rare heart condition characterized by the thickening and scarring (fibrosis) of the inner layer of the heart muscle (endocardium) and the muscular walls of the lower chambers of the heart (ventricles). This process can restrict the heart's ability to fill properly with blood, leading to symptoms such as shortness of breath, fatigue, and fluid retention. The exact cause of endomyocardial fibrosis is not fully understood, but it is believed to involve an abnormal immune response or inflammation. It is more commonly found in tropical regions of Africa and Asia. Treatment typically involves medications to manage symptoms and improve heart function, as well as potentially surgical interventions to remove the scar tissue and restore normal heart function.

Hypereosinophilic Syndrome (HES) is a group of disorders characterized by persistent eosinophilia (an abnormal increase in the number of eosinophils, a type of white blood cell) leading to organ damage. The eosinophil count in the peripheral blood is typically greater than 1500 cells/μL. HES can affect various organs, including the heart, skin, nervous system, and digestive tract, causing symptoms such as shortness of breath, cough, fatigue, skin rashes, muscle weakness, and abdominal pain. The exact cause of HES is not fully understood, but it is thought to be related to abnormal production or activation of eosinophils. Treatment may include corticosteroids, immunosuppressive drugs, and targeted therapies that reduce eosinophil levels.

Eosinophilia is a medical condition characterized by an abnormally high concentration of eosinophils in the circulating blood. Eosinophils are a type of white blood cell that play an important role in the immune system, particularly in fighting off parasitic infections and regulating allergic reactions. However, when their numbers become excessively high, they can contribute to tissue damage and inflammation.

Eosinophilia is typically defined as a count of more than 500 eosinophils per microliter of blood. Mild eosinophilia (up to 1,500 cells/μL) may not cause any symptoms and may be discovered during routine blood tests. However, higher levels of eosinophilia can lead to various symptoms such as coughing, wheezing, skin rashes, and organ damage, depending on the underlying cause.

The causes of eosinophilia are varied and can include allergic reactions, parasitic infections, autoimmune disorders, certain medications, and some types of cancer. Accurate diagnosis and treatment of eosinophilia require identification and management of the underlying cause.

The endocardium is the innermost layer of tissue that lines the chambers of the heart and the valves between them. It is a thin, smooth membrane that is in contact with the blood within the heart. This layer helps to maintain the heart's internal environment, facilitates the smooth movement of blood through the heart, and provides a protective barrier against infection and other harmful substances. The endocardium is composed of simple squamous epithelial cells called endothelial cells, which are supported by a thin layer of connective tissue.

Cardiomyopathies are a group of diseases that affect the heart muscle, leading to mechanical and/or electrical dysfunction. The American Heart Association (AHA) defines cardiomyopathies as "a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not always) exhibit inappropriate ventricular hypertrophy or dilatation and frequently lead to heart failure."

There are several types of cardiomyopathies, including:

1. Dilated cardiomyopathy (DCM): This is the most common type of cardiomyopathy, characterized by an enlarged left ventricle and impaired systolic function, leading to heart failure.
2. Hypertrophic cardiomyopathy (HCM): In this type, there is abnormal thickening of the heart muscle, particularly in the septum between the two ventricles, which can obstruct blood flow and increase the risk of arrhythmias.
3. Restrictive cardiomyopathy (RCM): This is a rare form of cardiomyopathy characterized by stiffness of the heart muscle, impaired relaxation, and diastolic dysfunction, leading to reduced filling of the ventricles and heart failure.
4. Arrhythmogenic right ventricular cardiomyopathy (ARVC): In this type, there is replacement of the normal heart muscle with fatty or fibrous tissue, primarily affecting the right ventricle, which can lead to arrhythmias and sudden cardiac death.
5. Unclassified cardiomyopathies: These are conditions that do not fit into any of the above categories but still significantly affect the heart muscle and function.

Cardiomyopathies can be caused by genetic factors, acquired conditions (e.g., infections, toxins, or autoimmune disorders), or a combination of both. The diagnosis typically involves a comprehensive evaluation, including medical history, physical examination, electrocardiogram (ECG), echocardiography, cardiac magnetic resonance imaging (MRI), and sometimes genetic testing. Treatment depends on the type and severity of the condition but may include medications, lifestyle modifications, implantable devices, or even heart transplantation in severe cases.

Echocardiography is a medical procedure that uses sound waves to produce detailed images of the heart's structure, function, and motion. It is a non-invasive test that can help diagnose various heart conditions, such as valve problems, heart muscle damage, blood clots, and congenital heart defects.

During an echocardiogram, a transducer (a device that sends and receives sound waves) is placed on the chest or passed through the esophagus to obtain images of the heart. The sound waves produced by the transducer bounce off the heart structures and return to the transducer, which then converts them into electrical signals that are processed to create images of the heart.

There are several types of echocardiograms, including:

* Transthoracic echocardiography (TTE): This is the most common type of echocardiogram and involves placing the transducer on the chest.
* Transesophageal echocardiography (TEE): This type of echocardiogram involves passing a specialized transducer through the esophagus to obtain images of the heart from a closer proximity.
* Stress echocardiography: This type of echocardiogram is performed during exercise or medication-induced stress to assess how the heart functions under stress.
* Doppler echocardiography: This type of echocardiogram uses sound waves to measure blood flow and velocity in the heart and blood vessels.

Echocardiography is a valuable tool for diagnosing and managing various heart conditions, as it provides detailed information about the structure and function of the heart. It is generally safe, non-invasive, and painless, making it a popular choice for doctors and patients alike.

The heart ventricles are the two lower chambers of the heart that receive blood from the atria and pump it to the lungs or the rest of the body. The right ventricle pumps deoxygenated blood to the lungs, while the left ventricle pumps oxygenated blood to the rest of the body. Both ventricles have thick, muscular walls to generate the pressure necessary to pump blood through the circulatory system.

Fibrosis is a pathological process characterized by the excessive accumulation and/or altered deposition of extracellular matrix components, particularly collagen, in various tissues and organs. This results in the formation of fibrous scar tissue that can impair organ function and structure. Fibrosis can occur as a result of chronic inflammation, tissue injury, or abnormal repair mechanisms, and it is a common feature of many diseases, including liver cirrhosis, lung fibrosis, heart failure, and kidney disease.

In medical terms, fibrosis is defined as:

"The process of producing scar tissue (consisting of collagen) in response to injury or chronic inflammation in normal connective tissue. This can lead to the thickening and stiffening of affected tissues and organs, impairing their function."

I'm sorry for any confusion, but "Uganda" is not a medical term or concept. It is the name of a country located in East Africa, known officially as the Republic of Uganda. If you have any questions about medical terms or concepts, I would be happy to help with those!

Cystic fibrosis (CF) is a genetic disorder that primarily affects the lungs and digestive system. It is caused by mutations in the CFTR gene, which regulates the movement of salt and water in and out of cells. When this gene is not functioning properly, thick, sticky mucus builds up in various organs, leading to a range of symptoms.

In the lungs, this mucus can clog the airways, making it difficult to breathe and increasing the risk of lung infections. Over time, lung damage can occur, which may lead to respiratory failure. In the digestive system, the thick mucus can prevent the release of digestive enzymes from the pancreas, impairing nutrient absorption and leading to malnutrition. CF can also affect the reproductive system, liver, and other organs.

Symptoms of cystic fibrosis may include persistent coughing, wheezing, lung infections, difficulty gaining weight, greasy stools, and frequent greasy diarrhea. The severity of the disease can vary significantly among individuals, depending on the specific genetic mutations they have inherited.

Currently, there is no cure for cystic fibrosis, but treatments are available to help manage symptoms and slow the progression of the disease. These may include airway clearance techniques, medications to thin mucus, antibiotics to treat infections, enzyme replacement therapy, and a high-calorie, high-fat diet. Lung transplantation is an option for some individuals with advanced lung disease.

Electrocardiography (ECG or EKG) is a medical procedure that records the electrical activity of the heart. It provides a graphic representation of the electrical changes that occur during each heartbeat. The resulting tracing, called an electrocardiogram, can reveal information about the heart's rate and rhythm, as well as any damage to its cells or abnormalities in its conduction system.

During an ECG, small electrodes are placed on the skin of the chest, arms, and legs. These electrodes detect the electrical signals produced by the heart and transmit them to a machine that amplifies and records them. The procedure is non-invasive, painless, and quick, usually taking only a few minutes.

ECGs are commonly used to diagnose and monitor various heart conditions, including arrhythmias, coronary artery disease, heart attacks, and electrolyte imbalances. They can also be used to evaluate the effectiveness of certain medications or treatments.

Myocarditis is an inflammation of the myocardium, which is the middle layer of the heart wall. The myocardium is composed of cardiac muscle cells and is responsible for the heart's pumping function. Myocarditis can be caused by various infectious and non-infectious agents, including viruses, bacteria, fungi, parasites, autoimmune diseases, toxins, and drugs.

In myocarditis, the inflammation can damage the cardiac muscle cells, leading to decreased heart function, arrhythmias (irregular heart rhythms), and in severe cases, heart failure or even sudden death. Symptoms of myocarditis may include chest pain, shortness of breath, fatigue, palpitations, and swelling in the legs, ankles, or abdomen.

The diagnosis of myocarditis is often based on a combination of clinical presentation, laboratory tests, electrocardiogram (ECG), echocardiography, cardiac magnetic resonance imaging (MRI), and endomyocardial biopsy. Treatment depends on the underlying cause and severity of the disease and may include medications to support heart function, reduce inflammation, control arrhythmias, and prevent further damage to the heart muscle. In some cases, hospitalization and intensive care may be necessary.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

No FAQ available that match "endomyocardial fibrosis"

No images available that match "endomyocardial fibrosis"