A rare PARAGANGLIOMA involving the GLOMUS TYMPANICUM, a collection of chemoreceptor tissue adjacent to the TYMPANIC CAVITY. It can cause TINNITUS and conductive hearing loss (HEARING LOSS, CONDUCTIVE).
Several clusters of chemoreceptive and supporting cells associated with blood vessels and nerves (especially the glossopharyngeal and vagus). The nonchromaffin paraganglia sense pH, carbon dioxide, and oxygen concentrations in the blood and participate in respiratory, and perhaps circulatory, control. They include the CAROTID BODY; AORTIC BODIES; the GLOMUS JUGULARE; and the GLOMUS TYMPANICUM.
A relatively rare, usually benign neoplasm originating in the chemoreceptor tissue of the CAROTID BODY; GLOMUS JUGULARE; GLOMUS TYMPANICUM; AORTIC BODIES; and the female genital tract. It consists histologically of rounded or ovoid hyperchromatic cells that tend to be grouped in an alveolus-like pattern within a scant to moderate amount of fibrous stroma and a few large thin-walled vascular channels. (From Stedman, 27th ed)
Tumors or cancer of any part of the hearing and equilibrium system of the body (the EXTERNAL EAR, the MIDDLE EAR, and the INNER EAR).
A highly vascular ovoid body of chemoreceptive tissue lying adjacent to the TYMPANIC CAVITY. It is derived from NEURAL CREST tissue and is considered part of the diffuse neuroendocrine system. It is the site of a rare neoplasm called a GLOMUS TYMPANICUM TUMOR.
A narrow passageway that connects the upper part of the throat to the TYMPANIC CAVITY.
A blue-red, extremely painful vascular neoplasm involving a glomeriform arteriovenous anastomosis (glomus body), which may be found anywhere in the skin, most often in the distal portion of the fingers and toes, especially beneath the nail. It is composed of specialized pericytes (sometimes termed glomus cells), usually in single encapsulated nodular masses which may be several millimeters in diameter (From Stedman, 27th ed). CHEMODECTOMA, a tumor of NEURAL CREST origin, is also sometimes called a glomus tumor.
The space and structures directly internal to the TYMPANIC MEMBRANE and external to the inner ear (LABYRINTH). Its major components include the AUDITORY OSSICLES and the EUSTACHIAN TUBE that connects the cavity of middle ear (tympanic cavity) to the upper part of the throat.
Screens which absorb the energy in the x-ray beam that has penetrated the patient and convert this energy into a light pattern which has as nearly as possible the same information as the original x-ray beam. The more light a screen produces for a given input of x-radiation, the less x-ray exposure and thus shorter exposure time are needed to expose the film. In most film-screen systems, the film is sandwiched between two screens in a cassette so that the emulsion on each side is exposed to the light from its contiguous screen.
A paraganglioma involving the glomus jugulare, a microscopic collection of chemoreceptor tissue in the adventitia of the bulb of the jugular vein. It may cause paralysis of the vocal cords, attacks of dizziness, blackouts, and nystagmus. It is not resectable but radiation therapy is effective. It regresses slowly, but permanent control is regularly achieved. (From Dorland, 27th ed; Stedman, 25th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1603-4)
A phylum of fungi that are mutualistic symbionts and form ARBUSCULAR MYCORRHIZAE with PLANT ROOTS.
Symbiotic combination (dual organism) of the MYCELIUM of FUNGI with the roots of plants (PLANT ROOTS). The roots of almost all higher plants exhibit this mutually beneficial relationship, whereby the fungus supplies water and mineral salts to the plant, and the plant supplies CARBOHYDRATES to the fungus. There are two major types of mycorrhizae: ectomycorrhizae and endomycorrhizae.
A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control.

Active succinate dehydrogenase (SDH) and lack of SDHD mutations in sporadic paragangliomas. (1/6)

BACKGROUND: Paragangliomas are benign, slow-growing tumours of the head and neck region. The candidate gene for familial and some sporadic paragangliomas, SDHD (succinate dehydrogenase, subunit D), has been mapped to the PGL1 locus in 11q23.3. MATERIALS AND METHODS: Normal and tumour DNA of 17 patients with sporadic paragangliomas were analysed by sequencing (SDHD, SDHB and SDHC genes), fluorescence in situ hybridisation (FISH). In addition, loss of heterozygosity (LOH) and succinate dehydrogenase (SDH) enzyme activity assays were performed. RESULTS AND CONCLUSION: Only two patients from our collective showed SDH gene mutations, one in SDHD and one in SDHB, respectively. Moreover, SDH activity detected in 5/8 patients confirmed the fact that SDH inactivation is not a major event in sporadic paragangliomas. LOH and FISH analysis demonstrated a frequent loss of regions within chromosome 11, indicating that additional genes in 11q may play a role in tumour genesis of sporadic paragangliomas.  (+info)

Glomus tympanicum: a report of two cases. (2/6)

Two cases of glomus tympanium tumor of the middle ear stage 'type A' according to Fisch classification, are presented due to their rarity in this part of the world. These tumors were excised by end aural tympanotomy approach and there has been no recurrence in both patients to date.  (+info)

Tympanic paragangliomas: case reports. (3/6)

Glomus tumors, also called paragangliomas, originate from nonchromaffin cells. The tumor is typically vascular and grows from capillary and pre-capillary vessels in-between epithelial cells. It is worth mentioning that the most common symptoms are pulsating tinnitus and hearing loss. Imaging studies (CT and MRI) are necessary for diagnosis. This paper shows five patients seen at the Hospital between 1995 and 2001 presenting glomus tympanicum. Women were most commonly affected, and the age ranged from 48 to 60 years (mean age of 50 years). The most common complaints were pulsating tinnitus and hearing loss. All patients were treated surgically.  (+info)

Nasopharyngeal extension of glomus tympanicum: an unusual clinical and imaging manifestation. (4/6)

Nasopharyngeal extension of the glomus tympanicum is rare. Only 2 cases have been reported in the literature to date. We present a reported case of a large nasopharyngeal extension of recurrent glomus tympanicum, with various kinds of imaging and histopathology and a review of the literature.  (+info)

Middle ear adenomatous tumor: a not so rare glomus tympanicum-mimicking lesion. (5/6)

 (+info)

An unusual cause of vertigo and syncope: a case report. (6/6)

A 72-year-old woman with recurrent bouts of vertigo and syncope was found to have a glomus tympanicum tumor. Surgical removal of this tumor resulted in complete symptom resolution. This report summarizes the presentation, workup, treatment, and clinical significance of this case when dealing with these presenting symptoms.  (+info)

A Glomus Tympanicum Tumor, also known as a paraganglioma of the middle ear, is a rare, benign tumor that develops from the glomus body, which is a small collection of cells located near the middle ear's round window. These tumors typically appear as red or bluish masses behind the eardrum (tympanic membrane) and can cause symptoms such as hearing loss, pulsatile tinnitus (a rhythmic sound in the ear that matches the heartbeat), and vertigo (dizziness).

The growth of these tumors is usually slow, but they can become quite large over time if left untreated. While glomus tympanicum tumors are not cancerous, they can still cause significant problems with hearing and balance due to their location in the middle ear. Treatment options for these tumors typically include surgical removal or radiation therapy. Regular follow-up care is necessary to monitor for any recurrence of the tumor after treatment.

Paraganglia, nonchromaffin are neuroendocrine tissues that originate from the neural crest and are widely distributed throughout the body. They are similar to chromaffin paraganglia (which contain catecholamines) but do not contain catecholamines or only contain them in trace amounts. Instead, they produce and secrete various neuropeptides and hormones, such as serotonin, somatostatin, and calcitonin gene-related peptide (CGRP).

Nonchromaffin paraganglia are divided into two main groups: the head and neck (HNP) and the thoracoabdominal (TAP) paraganglia. The HNP include the carotid body, jugular body, vagal body, and laryngeal paraganglia, while the TAP include the aorticopulmonary, organ of Zuckerkandl, and other abdominal and pelvic paraganglia.

Nonchromaffin paragangliomas are rare tumors that arise from these tissues. They can be functional or nonfunctional, depending on whether they produce and secrete hormones or not. Functional tumors can cause a variety of symptoms due to the excessive release of hormones, while nonfunctional tumors usually present as masses that may compress surrounding structures.

Paraganglioma, extra-adrenal, is a type of rare tumor that develops in the nervous system's paraganglia, which are groups of specialized cells that are responsible for regulating blood pressure and other bodily functions. Unlike adrenal paragangliomas, which form in the adrenal glands located on top of the kidneys, extra-adrenal paragangliomas develop outside of the adrenal glands, in various locations along the sympathetic and parasympathetic nervous systems. These tumors can be functional or nonfunctional, meaning they may or may not produce hormones such as catecholamines (epinephrine, norepinephrine, and dopamine). Functional extra-adrenal paragangliomas can cause symptoms related to excessive hormone production, including hypertension, sweating, headaches, and rapid heartbeat. Treatment typically involves surgical removal of the tumor, along with preoperative preparation to manage potential hormonal imbalances.

Ear neoplasms refer to abnormal growths or tumors that occur in the ear. These growths can be benign (non-cancerous) or malignant (cancerous) and can affect any part of the ear, including the outer ear, middle ear, inner ear, and the ear canal.

Benign ear neoplasms are typically slow-growing and do not spread to other parts of the body. Examples include exostoses, osteomas, and ceruminous adenomas. These types of growths are usually removed surgically for cosmetic reasons or if they cause discomfort or hearing problems.

Malignant ear neoplasms, on the other hand, can be aggressive and may spread to other parts of the body. Examples include squamous cell carcinoma, basal cell carcinoma, and adenoid cystic carcinoma. These types of tumors often require more extensive treatment, such as surgery, radiation therapy, and chemotherapy.

It is important to note that any new growth or change in the ear should be evaluated by a healthcare professional to determine the nature of the growth and develop an appropriate treatment plan.

Glomus tympanicum is a small, highly vascular tumor that develops in the middle ear, specifically in the glomus body which is a part of the tympanic plexus (a network of blood vessels) near the hearing bones. It's also known as paraganglioma of the middle ear. These tumors are usually benign but they can cause serious problems due to their location, such as conductive hearing loss, pulsatile tinnitus (a rhythmic buzzing or whooshing sound in the ear), and less commonly, disequilibrium or vertigo. Treatment options include observation, radiation therapy, or surgical removal.

The Eustachian tube, also known as the auditory tube or pharyngotympanic tube, is a narrow canal that connects the middle ear cavity to the back of the nasopharynx (the upper part of the throat behind the nose). Its function is to maintain equal air pressure on both sides of the eardrum and to drain any fluid accumulation from the middle ear. The Eustachian tube is lined with mucous membrane and contains tiny hair-like structures called cilia that help to move mucus and fluid out of the middle ear. It opens and closes to regulate air pressure and drainage, which typically occurs during swallowing or yawning.

A Glomus tumor is a rare, benign (non-cancerous) neoplasm that arises from the glomus body, a specialized form of blood vessel found in the skin, particularly in the fingers and toes. These tumors are highly vascular and usually appear as small, blue or red nodules just beneath the nail bed or on the fingertips. They can also occur in other parts of the body such as the stomach, lung, and kidney, but these locations are much less common.

Glomus tumors typically present with symptoms like severe pain, especially when exposed to cold temperatures or pressure. The pain is often described as sharp, stabbing, or throbbing, and it can be debilitating for some individuals. Diagnosis of glomus tumors usually involves a physical examination, imaging studies such as MRI or CT scans, and sometimes biopsy. Treatment options include surgical excision, which is often curative, and in some cases, embolization or sclerotherapy may be used to reduce the blood flow to the tumor before surgery.

The middle ear is the middle of the three parts of the ear, located between the outer ear and inner ear. It contains three small bones called ossicles (the malleus, incus, and stapes) that transmit and amplify sound vibrations from the eardrum to the inner ear. The middle ear also contains the Eustachian tube, which helps regulate air pressure in the middle ear and protects against infection by allowing fluid to drain from the middle ear into the back of the throat.

X-ray intensifying screens are medical imaging devices that contain phosphorescent materials, which emit light in response to the absorption of X-ray radiation. They are used in conjunction with X-ray film to enhance the visualization of radiographic images by converting X-rays into visible light. The screens are placed inside a cassette, along with the X-ray film, and exposed to X-rays during medical imaging procedures such as radiography or fluoroscopy.

The phosphorescent materials in the intensifying screens absorb most of the X-ray energy and re-emit it as visible light, which then exposes the X-ray film. This process increases the efficiency of the X-ray exposure, reducing the amount of radiation required to produce a diagnostic image. The use of intensifying screens can significantly improve the quality and detail of radiographic images while minimizing patient exposure to ionizing radiation.

A Glomus Jugulare Tumor is a rare, usually benign, slow-growing tumor that develops from the glomus body, a small collection of modified blood vessels involved in temperature regulation, located near the jugular bulb in the skull. This type of tumor can cause symptoms such as hearing loss, pulsatile tinnitus (a rhythmic sound in the ear), and cranial nerve palsies due to its proximity to critical structures in the head and neck. Treatment typically involves surgical removal or radiation therapy.

Glomeromycota is a phylum of fungi that form arbuscular mycorrhizae, which are symbiotic associations with the roots of most land plants. These fungi exist exclusively as tiny, threadlike structures called hyphae, which penetrate the cells of plant roots and form unique structures called arbuscules where nutrient exchange occurs. The fungi receive carbon from the plant in the form of sugars, while they provide essential mineral nutrients like phosphorus and nitrogen to the plant.

Glomeromycota fungi have a mutualistic relationship with plants, helping them to grow and survive in nutrient-poor soils. They also play a crucial role in soil ecology by promoting aggregate formation, improving soil structure, and increasing its water-holding capacity. These fungi are found worldwide and can be detected in almost all terrestrial ecosystems.

It is worth noting that Glomeromycota fungi lack a sexual reproductive stage, and their identification and classification rely on the morphology of their vegetative structures and molecular data.

Mycorrhizae are symbiotic associations between fungi and the roots of most plant species. In a mycorrhizal association, fungi colonize the root tissues of plants and extend their mycelial networks into the surrounding soil. This association enhances the nutrient uptake capacity of the host plant, particularly with regards to phosphorus and nitrogen, while the fungi receive carbohydrates from the plant for their own growth and metabolism.

Mycorrhizal fungi can be broadly classified into two types: ectomycorrhizae and endomycorrhizae (or arbuscular mycorrhizae). Ectomycorrhizae form a sheath around the root surface, while endomycorrhizae penetrate the root cells and form structures called arbuscules, where nutrient exchange occurs. Mycorrhizal associations play crucial roles in maintaining ecosystem stability, promoting plant growth, and improving soil structure and fertility.

The carotid body is a small chemoreceptor organ located near the bifurcation of the common carotid artery into the internal and external carotid arteries. It plays a crucial role in the regulation of respiration, blood pressure, and pH balance by detecting changes in the chemical composition of the blood, particularly oxygen levels, carbon dioxide levels, and hydrogen ion concentration (pH).

The carotid body contains specialized nerve endings called glomus cells that are sensitive to changes in these chemical parameters. When there is a decrease in oxygen or an increase in carbon dioxide or hydrogen ions, the glomus cells release neurotransmitters such as acetylcholine and dopamine, which activate afferent nerve fibers leading to the brainstem's nucleus tractus solitarius. This information is then integrated with other physiological signals in the brainstem, resulting in appropriate adjustments in breathing rate, depth, and pattern, as well as changes in heart rate and blood vessel diameter to maintain homeostasis.

Dysfunction of the carotid body can lead to various disorders, such as hypertension, sleep apnea, and chronic lung disease. In some cases, overactivity of the carotid body may result in conditions like primary breathing pattern disorders or pseudohypoxia, where the body responds as if it is experiencing hypoxia despite normal oxygen levels.

No FAQ available that match "glomus tympanicum tumor"

No images available that match "glomus tympanicum tumor"