A pathological state in which BLOOD GLUCOSE level is less than approximately 140 mg/100 ml of PLASMA at fasting, and above approximately 200 mg/100 ml plasma at 30-, 60-, or 90-minute during a GLUCOSE TOLERANCE TEST. This condition is seen frequently in DIABETES MELLITUS, but also occurs with other diseases and MALNUTRITION.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg).
Glucose in blood.
The condition resulting from the absence or deficiency of LACTASE in the MUCOSA cells of the GASTROINTESTINAL TRACT, and the inability to break down LACTOSE in milk for ABSORPTION. Bacterial fermentation of the unabsorbed lactose leads to symptoms that range from a mild indigestion (DYSPEPSIA) to severe DIARRHEA. Lactose intolerance may be an inborn error or acquired.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
An autosomal recessive fructose metabolism disorder due to deficient fructose-1-phosphate aldolase (EC 2.1.2.13) activity, resulting in accumulation of fructose-1-phosphate. The accumulated fructose-1-phosphate inhibits glycogenolysis and gluconeogenesis, causing severe hypoglycemia following ingestion of fructose. Prolonged fructose ingestion in infants leads ultimately to hepatic failure and death. Patients develop a strong distaste for sweet food, and avoid a chronic course of the disease by remaining on a fructose- and sucrose-free diet.
Consumption of excessive DIETARY FATS.
A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.
A status with BODY WEIGHT that is grossly above the acceptable or desirable weight, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
Symptoms of cerebral hypoperfusion or autonomic overaction which develop while the subject is standing, but are relieved on recumbency. Types of this include NEUROCARDIOGENIC SYNCOPE; POSTURAL ORTHOSTATIC TACHYCARDIA SYNDROME; and neurogenic ORTHOSTATIC HYPOTENSION. (From Noseworthy, JH., Neurological Therapeutics Principles and Practice, 2007, p2575-2576)
A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.
Diabetes mellitus induced by PREGNANCY but resolved at the end of pregnancy. It does not include previously diagnosed diabetics who become pregnant (PREGNANCY IN DIABETICS). Gestational diabetes usually develops in late pregnancy when insulin antagonistic hormones peaks leading to INSULIN RESISTANCE; GLUCOSE INTOLERANCE; and HYPERGLYCEMIA.
A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
Abstaining from all food.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS.
A glucose transport protein found in mature MUSCLE CELLS and ADIPOCYTES. It promotes transport of glucose from the BLOOD into target TISSUES. The inactive form of the protein is localized in CYTOPLASMIC VESICLES. In response to INSULIN, it is translocated to the PLASMA MEMBRANE where it facilitates glucose uptake.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
A glucose transport facilitator that is expressed primarily in PANCREATIC BETA CELLS; LIVER; and KIDNEYS. It may function as a GLUCOSE sensor to regulate INSULIN release and glucose HOMEOSTASIS.
Pathological conditions in which the BLOOD GLUCOSE cannot be maintained within the normal range, such as in HYPOGLYCEMIA and HYPERGLYCEMIA. Etiology of these disorders varies. Plasma glucose concentration is critical to survival for it is the predominant fuel for the CENTRAL NERVOUS SYSTEM.
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
Abnormally high BLOOD GLUCOSE level.
The time period before the development of symptomatic diabetes. For example, certain risk factors can be observed in subjects who subsequently develop INSULIN RESISTANCE as in type 2 diabetes (DIABETES MELLITUS, TYPE 2).
Substances which lower blood glucose levels.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
A cluster of metabolic risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The major components of metabolic syndrome X include excess ABDOMINAL FAT; atherogenic DYSLIPIDEMIA; HYPERTENSION; HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROMBOSIS) state. (from AHA/NHLBI/ADA Conference Proceedings, Circulation 2004; 109:551-556)
An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4.
A ubiquitously expressed glucose transporter that is important for constitutive, basal GLUCOSE transport. It is predominately expressed in ENDOTHELIAL CELLS and ERYTHROCYTES at the BLOOD-BRAIN BARRIER and is responsible for GLUCOSE entry into the BRAIN.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The appearance of an abnormally large amount of GLUCOSE in the urine, such as more than 500 mg/day in adults. It can be due to HYPERGLYCEMIA or genetic defects in renal reabsorption (RENAL GLYCOSURIA).
A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
Glycogen is a multibranched polysaccharide of glucose serving as the primary form of energy storage in animals, fungi, and bacteria, stored mainly in liver and muscle tissues. (Two sentences combined as per your request)
The chemical reactions involved in the production and utilization of various forms of energy in cells.
2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity.
Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid.
A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding.
The amount of fat or lipid deposit at a site or an organ in the body, an indicator of body fat status.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY.
A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage.
The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin.
Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Fatty tissue composed of WHITE ADIPOCYTES and generally found directly under the skin (SUBCUTANEOUS FAT) and around the internal organs (ABDOMINAL FAT). It has less vascularization and less coloration than the BROWN FAT. White fat provides heat insulation, mechanical cushion, and source of energy.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9.
A group of enzymes that catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate. They are found in invertebrates and microorganisms, and are highly specific for glucose. (Enzyme Nomenclature, 1992) EC 2.7.1.2.
A peptide of 36 or 37 amino acids that is derived from PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. GLP-1(1-37 or 1-36) is further N-terminally truncated resulting in GLP-1(7-37) or GLP-1-(7-36) which can be amidated. These GLP-1 peptides are known to enhance glucose-dependent INSULIN release, suppress GLUCAGON release and gastric emptying, lower BLOOD GLUCOSE, and reduce food intake.
Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
Increase in BODY WEIGHT over existing weight.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Inflammation in which both the anterior and posterior segments of the uvea are involved and a specific focus is not apparent. It is often severe and extensive and a serious threat to vision. Causes include systemic diseases such as tuberculosis, sarcoidosis, and syphilis, as well as malignancies. The intermediate segment of the eye is not involved.
Elements of limited time intervals, contributing to particular results or situations.
Self evaluation of whole blood glucose levels outside the clinical laboratory. A digital or battery-operated reflectance meter may be used. It has wide application in controlling unstable insulin-dependent diabetes.
The consumption of edible substances.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.
A 30-kDa COMPLEMENT C1Q-related protein, the most abundant gene product secreted by FAT CELLS of the white ADIPOSE TISSUE. Adiponectin modulates several physiological processes, such as metabolism of GLUCOSE and FATTY ACIDS, and immune responses. Decreased plasma adiponectin levels are associated with INSULIN RESISTANCE; TYPE 2 DIABETES MELLITUS; OBESITY; and ATHEROSCLEROSIS.
An independent state, an archipelago in the western Persian Gulf, northwest of Qatar. It comprises low-lying islands of Bahrain (the largest), Muharraq, Sitra, and several islets. It has extensive oil fields. The name comes from the Arabic al-bahrayn, "the two seas", with reference to its lying in the middle of a bay with its "two seas" east and west of it. (From Webster's New Geographical Dictionary, 1988, p107 & Room, Brewer's Dictionary of Names, 1992, p45)
A measure of a patient's ability to break down lactose.
An enzyme of the lyase class that catalyzes the conversion of ATP and oxaloacetate to ADP, phosphoenolpyruvate, and carbon dioxide. The enzyme is found in some bacteria, yeast, and Trypanosoma, and is important for the photosynthetic assimilation of carbon dioxide in some plants. EC 4.1.1.49.
Regular course of eating and drinking adopted by a person or animal.
An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI=weight (kg)/height squared (m2). BMI correlates with body fat (ADIPOSE TISSUE). Their relationship varies with age and gender. For adults, BMI falls into these categories: below 18.5 (underweight); 18.5-24.9 (normal); 25.0-29.9 (overweight); 30.0 and above (obese). (National Center for Health Statistics, Centers for Disease Control and Prevention)
Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277)
A subclass of group I phospholipases A2 that includes enzymes isolated from PANCREATIC JUICE. Members of this group have specificity for PHOSPHOLIPASE A2 RECEPTORS.
An island republic of the West Indies. Its capital is Roseau. It was discovered in 1493 by Columbus and held at different times by the French and the British in the 18th century. A member of the West Indies Federation, it achieved internal self-government in 1967 but became independent in 1978. It was named by Columbus who discovered it on Sunday, Domingo in Spanish, from the Latin Dominica dies, the Lord's Day. (From Webster's New Geographical Dictionary, 1988, p338 & Room, Brewer's Dictionary of Names, 1992, p151)
A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE.
Minor hemoglobin components of human erythrocytes designated A1a, A1b, and A1c. Hemoglobin A1c is most important since its sugar moiety is glucose covalently bound to the terminal amino acid of the beta chain. Since normal glycohemoglobin concentrations exclude marked blood glucose fluctuations over the preceding three to four weeks, the concentration of glycosylated hemoglobin A is a more reliable index of the blood sugar average over a long period of time.
A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH.
The relative amounts of various components in the body, such as percentage of body fat.
Maintenance of a constant blood glucose level by perfusion or infusion with glucose or insulin. It is used for the study of metabolic rates (e.g., in glucose, lipid, amino acid metabolism) at constant glucose concentration.
A phylum of gram-negative bacteria containing seven class-level groups from a wide variety of environments. Most members are chemoheterotrophs.
A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
A structurally-related group of signaling proteins that are phosphorylated by the INSULIN RECEPTOR PROTEIN-TYROSINE KINASE. The proteins share in common an N-terminal PHOSPHOLIPID-binding domain, a phosphotyrosine-binding domain that interacts with the phosphorylated INSULIN RECEPTOR, and a C-terminal TYROSINE-rich domain. Upon tyrosine phosphorylation insulin receptor substrate proteins interact with specific SH2 DOMAIN-containing proteins that are involved in insulin receptor signaling.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Conditions with excess LIPIDS in the blood.
The time frame after a meal or FOOD INTAKE.
Fatty tissue inside the ABDOMINAL CAVITY, including visceral fat and retroperitoneal fat. It is the most metabolically active fat in the body and easily accessible for LIPOLYSIS. Increased visceral fat is associated with metabolic complications of OBESITY.
Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene.
Expected weight of a healthy normal individual based on age, sex, and height. Thus, a malnourished person would weigh less than their ideal body weight.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A major glucose transporter found in NEURONS.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Abnormalities in the serum levels of LIPIDS, including overproduction or deficiency. Abnormal serum lipid profiles may include high total CHOLESTEROL, high TRIGLYCERIDES, low HIGH DENSITY LIPOPROTEIN CHOLESTEROL, and elevated LOW DENSITY LIPOPROTEIN CHOLESTEROL.
The physical characteristics of the body, including the mode of performance of functions, the activity of metabolic processes, the manner and degree of reactions to stimuli, and power of resistance to the attack of pathogenic organisms.
Gastrointestinal disturbances, skin eruptions, or shock due to allergic reactions to allergens in food.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
Total number of calories taken in daily whether ingested or by parenteral routes.
A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The measurement of an organ in volume, mass, or heaviness.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
Conditions or pathological processes associated with pregnancy. They can occur during or after pregnancy, and range from minor discomforts to serious diseases that require medical interventions. They include diseases in pregnant females, and pregnancies in females with diseases.
A significant drop in BLOOD PRESSURE after assuming a standing position. Orthostatic hypotension is a finding, and defined as a 20-mm Hg decrease in systolic pressure or a 10-mm Hg decrease in diastolic pressure 3 minutes after the person has risen from supine to standing. Symptoms generally include DIZZINESS, blurred vision, and SYNCOPE.
Methods and procedures for the diagnosis of diseases or dysfunction of the endocrine glands or demonstration of their physiological processes.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
A condition of fetal overgrowth leading to a large-for-gestational-age FETUS. It is defined as BIRTH WEIGHT greater than 4,000 grams or above the 90th percentile for population and sex-specific growth curves. It is commonly seen in GESTATIONAL DIABETES; PROLONGED PREGNANCY; and pregnancies complicated by pre-existing diabetes mellitus.
Generic term for diseases caused by an abnormal metabolic process. It can be congenital due to inherited enzyme abnormality (METABOLISM, INBORN ERRORS) or acquired due to disease of an endocrine organ or failure of a metabolically important organ such as the liver. (Stedman, 26th ed)
Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
Hormones released from neoplasms or from other cells that are not the usual sources of hormones.
Conditions or pathological processes associated with the disease of diabetes mellitus. Due to the impaired control of BLOOD GLUCOSE level in diabetic patients, pathological processes develop in numerous tissues and organs including the EYE, the KIDNEY, the BLOOD VESSELS, and the NERVE TISSUE.
An enzyme which catalyzes the hydrolysis of LACTOSE to D-GALACTOSE and D-GLUCOSE. Defects in the enzyme cause LACTOSE INTOLERANCE.
General term for a group of MALNUTRITION syndromes caused by failure of normal INTESTINAL ABSORPTION of nutrients.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals.
A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)
## I'm sorry for any confusion, but "Japan" is not a medical term or concept. It is a country located in Asia, known as Nihon-koku or Nippon-koku in Japanese, and is renowned for its unique culture, advanced technology, and rich history. If you have any questions related to medical topics, I would be happy to help answer them!
A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A statistical means of summarizing information from a series of measurements on one individual. It is frequently used in clinical pharmacology where the AUC from serum levels can be interpreted as the total uptake of whatever has been administered. As a plot of the concentration of a drug against time, after a single dose of medicine, producing a standard shape curve, it is a means of comparing the bioavailability of the same drug made by different companies. (From Winslade, Dictionary of Clinical Research, 1992)
Nutrition of a mother which affects the health of the FETUS and INFANT as well as herself.
A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading.
Polypeptides produced by the ADIPOCYTES. They include LEPTIN; ADIPONECTIN; RESISTIN; and many cytokines of the immune system, such as TUMOR NECROSIS FACTOR-ALPHA; INTERLEUKIN-6; and COMPLEMENT FACTOR D (also known as ADIPSIN). They have potent autocrine, paracrine, and endocrine functions.
In females, the period that is shortly after giving birth (PARTURITION).
A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
A continuous cell line that is a substrain of SWISS 3T3 CELLS developed though clonal isolation. The mouse fibroblast cells undergo an adipose-like conversion as they move to a confluent and contact-inhibited state.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1.
Inborn errors of carbohydrate metabolism are genetic disorders that result from enzyme deficiencies or transport defects in the metabolic pathways responsible for breaking down and processing carbohydrates, leading to accumulation of toxic intermediates or energy deficits, and typically presenting with multisystem clinical manifestations.
A condition of elevated levels of TRIGLYCERIDES in the blood.
An ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed)
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Calculation of the energy expenditure in the form of heat production of the whole body or individual organs based on respiratory gas exchange.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
A syndrome of ORTHOSTATIC INTOLERANCE combined with excessive upright TACHYCARDIA, and usually without associated ORTHOSTATIC HYPOTENSION. All variants have in common an excessively reduced venous return to the heart (central HYPOVOLEMIA) while upright.
The state of PREGNANCY in women with DIABETES MELLITUS. This does not include either symptomatic diabetes or GLUCOSE INTOLERANCE induced by pregnancy (DIABETES, GESTATIONAL) which resolves at the end of pregnancy.
'Glucosephosphates' are organic compounds resulting from the reaction of glucose with phosphoric acid, playing crucial roles in various metabolic processes, such as energy transfer and storage within cells.
An acquired disorder characterized by recurrent symptoms, referable to multiple organ systems, occurring in response to demonstrable exposure to many chemically unrelated compounds at doses below those established in the general population to cause harmful effects. (Cullen MR. The worker with multiple chemical sensitivities: an overview. Occup Med 1987;2(4):655-61)
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A protein-serine-threonine kinase that is activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. It plays a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A 12-kDa cysteine-rich polypeptide hormone secreted by FAT CELLS in the ADIPOSE TISSUE. It is the founding member of the resistin-like molecule (RELM) hormone family. Resistin suppresses the ability of INSULIN to stimulate cellular GLUCOSE uptake.
Cell surface receptors that bind glucagon with high affinity and trigger intracellular changes which influence the behavior of cells. Activation of glucagon receptors causes a variety of effects; the best understood is the initiation of a complex enzymatic cascade in the liver which ultimately increases the availability of glucose to body organs.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A change in cardiovascular function resulting in a reduction in BLOOD VOLUME, and reflex DIURESIS. It occurs frequently after actual or simulated WEIGHTLESSNESS.
The exercise capacity of an individual as measured by endurance (maximal exercise duration and/or maximal attained work load) during an EXERCISE TEST.
The mass or quantity of heaviness of an individual at BIRTH. It is expressed by units of pounds or kilograms.
A bile salt formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. It acts as detergent to solubilize fats in the small intestine and is itself absorbed. It is used as a cholagogue and choleretic.
A non-metabolizable glucose analogue that is not phosphorylated by hexokinase. 3-O-Methylglucose is used as a marker to assess glucose transport by evaluating its uptake within various cells and organ systems. (J Neurochem 1993;60(4):1498-504)
Cell surface receptors for obesity factor (LEPTIN), a hormone secreted by the WHITE ADIPOCYTES. Upon leptin-receptor interaction, the signal is mediated through the JAK2/STAT3 pathway to regulate food intake, energy balance and fat storage.
Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals.
Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM.
Methylglucosides are a type of sugar alcohols, specifically methylated glucose derivatives, which are used as sweetening agents, excipients, and solvents in pharmaceutical and cosmetic products due to their low toxicity and good solubility in water.
Sucrose present in the diet. It is added to food and drinks as a sweetener.
Phlorhizin is a non-transportable glucose analog that inhibits the sodium-glucose cotransporter 1 (SGLT1) and aldohexose transporter (GLUT2), leading to reduced intestinal absorption and increased renal excretion of glucose, which is used in research to study glucose transport and diabetes-related processes.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A condition caused by prolonged exposure to excessive HUMAN GROWTH HORMONE in adults. It is characterized by bony enlargement of the FACE; lower jaw (PROGNATHISM); hands; FEET; HEAD; and THORAX. The most common etiology is a GROWTH HORMONE-SECRETING PITUITARY ADENOMA. (From Joynt, Clinical Neurology, 1992, Ch36, pp79-80)
A group of inherited kidney disorders characterized by the abnormally elevated levels of AMINO ACIDS in URINE. Genetic mutations of transport proteins result in the defective reabsorption of free amino acids at the PROXIMAL RENAL TUBULES. Renal aminoaciduria are classified by the specific amino acid or acids involved.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
The consequences of exposing the FETUS in utero to certain factors, such as NUTRITION PHYSIOLOGICAL PHENOMENA; PHYSIOLOGICAL STRESS; DRUGS; RADIATION; and other physical or chemical factors. These consequences are observed later in the offspring after BIRTH.
A syndrome characterized by bilateral granulomatous UVEITIS with IRITIS and secondary GLAUCOMA, premature ALOPECIA, symmetrical VITILIGO, poliosis circumscripta (a strand of depigmented hair), HEARING DISORDERS, and meningeal signs (neck stiffness and headache). Examination of the cerebrospinal fluid reveals a pattern consistent with MENINGITIS, ASEPTIC. (Adams et al., Principles of Neurology, 6th ed, p748; Surv Ophthalmol 1995 Jan;39(4):265-292)
Ingestion of a greater than optimal quantity of food.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
Individuals whose ancestral origins are in the southeastern and eastern areas of the Asian continent.
The rate dynamics in chemical or physical systems.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The giving of drugs, chemicals, or other substances by mouth.
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.
Production or presence of gas in the gastrointestinal tract which may be expelled through the anus.
Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure.
The measurement around the body at the level of the ABDOMEN and just above the hip bone. The measurement is usually taken immediately after exhalation.
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.
Any tests done on exhaled air.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
A state of insufficient flesh on the body usually defined as having a body weight less than skeletal and physical standards. Depending on age, sex, and genetic background, a BODY MASS INDEX of less than 18.5 is considered as underweight.
A 28-amino acid, acylated, orexigenic peptide that is a ligand for GROWTH HORMONE SECRETAGOGUE RECEPTORS. Ghrelin is widely expressed but primarily in the stomach in the adults. Ghrelin acts centrally to stimulate growth hormone secretion and food intake, and peripherally to regulate energy homeostasis. Its large precursor protein, known as appetite-regulating hormone or motilin-related peptide, contains ghrelin and obestatin.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
The founding member of the sodium glucose transport proteins. It is predominately expressed in the INTESTINAL MUCOSA of the SMALL INTESTINE.
A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized.
The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues.

GH-binding protein in obese men with varying glucose tolerance: relationship to body fat distribution, insulin secretion and the GH-IGF-I axis. (1/1659)

Bioelectrical impedance for measurement of total body fat and computed tomography for visceral and subcutaneous fat at umbilicus levels were performed in 34 obese and 10 lean men. Insulin secretion in response to an oral glucose tolerance test (OGTT) and a GH stimulation test by L-dopa, growth hormone-binding protein (GHBP) and IGF-I were measured. Obese subjects were divided into three groups according to the OGTT. The obese type II diabetes mellitus group had the highest GHBP levels and the most visceral fat. GHBP levels were most strongly correlated with the ratio of visceral fat area to body weight (VWR) above any other parameters (r = 0.725, P<0.001). The insulin and free fatty acid (FFA) areas under curves (AUC) during the OGTT, and the IGF-I level, were also positively correlated with GHBP levels (r = 0.474, P<0.005; r = 0.572, P<0.005; r = 0.453. P<0.005). GH-AUC to the L-dopa stimulation test was negatively correlated with GHBP levels (r = -0.432. P<0.005). Stepwise multiple linear regression analysis showed that VWR, FFA-AUC and insulin-AUC significantly contributed to the variability of GHBP (r2 = 0.58). In conclusion, we demonstrated that: (i) visceral fat amount mainly determined GHBP levels in obese men with varying glucose tolerance: (ii) hyperglycemia per se did not influence the GHBP level, whereas insulin and FFA could play a role in regulation of GHBP: and (iii) although GH was not the main regulator of GHBP, the unchanged IGF-I level despite GH hyposecretion suggests that increased GHBP levels reflect GH hypersensitivity in order to compensate for decreased GH secretion in obesity.  (+info)

The role of apolipoprotein E and glucose intolerance in gallstone disease in middle aged subjects. (2/1659)

BACKGROUND: The polymorphism of apolipoprotein E has been suggested to be associated with the cholesterol content of gallstones, the crystallisation rate of gall bladder bile, and the prevalence of gallstone disease (GSD). AIMS: To investigate whether apolipoprotein E polymorphism modulates the susceptibility to GSD at the population level and to study the possible associations between impaired glucose tolerance, diabetes, and GSD. METHODS: Apolipoprotein E phenotypes were determined in a middle aged cohort of 261 randomly selected hypertensive men, 259 control men, 257 hypertensive women, and 267 control women. All subjects without a documented history of diabetes were submitted to a two hour oral glucose tolerance test (OGTT). GSD was verified by ultrasonography. RESULTS: In women with apolipoprotein E2 (phenotypes E2/2, 2/3, and 2/4) compared with women without E2 (E3/3, 4/3, and 4/4), the odds ratio for GSD was 0. 28 (95% confidence interval 0.08-0.92). There was no protective effect in men. The relative risk for GSD was 1.2 (0.8-1.7) for hypertensive women and 1.8 (1.0-2.7) for hypertensive men. In a stepwise multiple logistic regression model, E2 protected against GSD in women, whereas two hour blood glucose in the OGTT, serum insulin, and plasma triglycerides were risk factors. Elevated blood glucose during the OGTT was also a significant risk factor for GSD in men. CONCLUSIONS: The data suggest that apolipoprotein E2 is a genetic factor providing protection against GSD in women. In contrast, impaired glucose tolerance and frank diabetes are associated with the risk of GSD.  (+info)

Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. (3/1659)

We investigated whether variability at the insulin receptor substrate (IRS)-2 locus plays a role in the etiology of early-onset autosomal dominant type 2 diabetes. By means of radiation hybrid mapping, we placed the human IRS-2 gene on 13q at 8.6 cRays from SHGC-37358. Linkage between diabetes and two polymorphic markers located in this region (D13S285 and D13S1295) was then evaluated in 29 families with early-onset autosomal dominant type 2 diabetes. Included were 220 individuals with diabetes, impaired glucose tolerance, or gestational diabetes (mean age at diabetes diagnosis 36 +/- 17 years) and 146 nondiabetic subjects. Overall, strongly negative logarithm of odds (LOD) scores for linkage with diabetes were obtained by multipoint parametric analysis (LOD score -45.4 at D13S285 and -40.9 at D13S1295). No significant evidence of linkage was obtained under the hypothesis of heterogeneity or by nonparametric methods. Fourteen pedigrees for which linkage could not be excluded (LOD score > -2.0) were screened for mutations in the IRS-2 coding region by dideoxy fingerprinting. However, no mutations segregating with diabetes could be detected in these families. These data indicate that IRS-2 is not a major gene for early-onset autosomal dominant type 2 diabetes, although a role of mutations in the promoter region cannot be excluded at this time.  (+info)

Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? (4/1659)

OBJECTIVE: To determine if impaired fasting glucose (IFG; fasting plasma glucose level 6.1-6.9 mmol/l) can predict future type 2 diabetes as accurately as does impaired glucose tolerance (IGT; 2-h plasma glucose level 7.8-11.0 mmol/l). RESEARCH DESIGN AND METHODS: A longitudinal population-based study was performed with surveys in 1987 and 1992 on the island of Mauritius, assessing diabetes status by the oral glucose tolerance test. A total of 3,717 subjects took part in both surveys. Of these subjects, 3,229 were not diabetic in 1987 and formed the basis of this study. RESULTS: At baseline, there were 607 subjects with IGT and 266 subjects with IFG. There were 297 subjects who developed diabetes by 1992. For predicting progression to type 2 diabetes, the sensitivity, specificity, and positive predictive values were 26, 94, and 29% for IFG and 50, 84, and 24% for IGT, respectively. Only 26% of subjects that progressed to type 2 diabetes were predicted by their IFG values, but a further 35% could be identified by also considering IGT. The sensitivities were 24% for IFG and 37% for IGT in men and 26% for IFG and 66% for IGT in women, respectively. CONCLUSIONS: These data demonstrate the higher sensitivity of IGT over IFG for predicting progression to type 2 diabetes. Screening by the criteria for IFG alone would identify fewer people who subsequently progress to type 2 diabetes than would the oral glucose tolerance test.  (+info)

Prevalence of undiagnosed diabetes and abnormalities of carbohydrate metabolism in a U.S. Army population. (5/1659)

OBJECTIVE: The Third National Health and Nutrition Examination Survey (NHANES III) reported that 4.3-6.3% of adult Americans have undiagnosed diabetes. 15.6% have impaired glucose tolerance, and 10.1% have impaired fasting glucose. By design, NHANES III excluded people in the U.S. military. The purpose of this study was to determine the prevalence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose among U.S. Army soldiers. RESEARCH DESIGN AND METHODS: A 2-h, 75-g oral glucose tolerance test was performed on a prospective, consecutive sample of 625 asymptomatic soldiers presenting to a U.S. Army medical clinic for physical examinations. Age of subjects was 32 +/- 9 years (mean +/- SD), and 81.0% of subjects were male. BMI was 26.2 +/- 3.7 kg/m2. Race/ethnicity categories included Caucasian (54.4%), African-American (24.4%), Hispanic (17.4%), and other (3.7%). A family history of diabetes was reported by 25.4% of the subjects, and the number of exercise sessions per week was 4.0 +/- 1.5. RESULTS: The prevalence of undiagnosed diabetes was 3 of 625 (0.5%) (95% CI, 0.1-1.4): impaired glucose tolerance, 11 of 598 (1.8%) (0.9-3.3); and impaired fasting glucose 6 of 585 (1.0%) (0.4-2.2). CONCLUSIONS: In this low-diabetes risk U.S. Army population, the prevalence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose were 0.5, 1.8, and 1.0%, respectively. The prevalence rates found in this study are approximately one-tenth of those found in NHANES III.  (+info)

Standardized comparison of glucose intolerance in west African-origin populations of rural and urban Cameroon, Jamaica, and Caribbean migrants to Britain. (6/1659)

OBJECTIVE: To compare the prevalence of glucose intolerance in genetically similar African-origin populations within Cameroon and from Jamaica and Britain. RESEARCH DESIGN AND METHODS: Subjects studied were from rural and urban Cameroon or from Jamaica, or were Caribbean migrants, mainly Jamaican, living in Manchester, England. Sampling bases included a local census of adults aged 25-74 years in Cameroon, districts statistically representative in Jamaica, and population registers in Manchester. African-Caribbean ethnicity required three grandparents of this ethnicity. Diabetes was defined by the World Health Organization (WHO) 1985 criteria using a 75-g oral glucose tolerance test (2-h > or = 11.1 mmol/l or hypoglycemic treatment) and by the new American Diabetes Association criteria (fasting glucose > or = 7.0 mmol/l or hypoglycemic treatment). RESULTS: For men, mean BMIs were greatest in urban Cameroon and Manchester (25-27 kg/m2); in women, these were similarly high in urban Cameroon and Jamaica and highest in Manchester (27-28 kg/m2). The age-standardized diabetes prevalence using WHO criteria was 0.8% in rural Cameroon, 2.0% in urban Cameroon, 8.5% in Jamaica, and 14.6% in Manchester, with no difference between sexes (men: 1.1%, 1.0%, 6.5%, 15.3%, women: 0.5%, 2.8%, 10.6%, 14.0%), all tests for trend P < 0.001. Impaired glucose tolerance was more frequent in Jamaica. CONCLUSIONS: The transition in glucose intolerance from Cameroon to Jamaica and Britain suggests that environment determines diabetes prevalence in these populations of similar genetic origin.  (+info)

Altered beta-cell characteristics in impaired glucose tolerant carriers of a GAA trinucleotide repeat polymorphism in the frataxin gene. (7/1659)

Friedreich's ataxia is associated with GAA trinucleotide repeat expansions in the frataxin gene. In the general population, these trinucleotide expansions are variable in length, and three types of expansions are seen: short, intermediate, and long repeats. Friedreich's ataxia patients are generally homozygous for the long repeats and exhibit diabetes as pronounced comorbidity. Ristow et al. recently reported an association between the intermediate-length normal allele in the frataxin gene and type 2 diabetes. We have investigated in 94 subjects with impaired glucose tolerance (IGT) as to whether the length of the GAA trinucleotide repeat polymorphism in the frataxin gene associates with parameters reflecting beta-cell function. A hyperglycemic clamp at 10 mmol/l glucose for 3 h was used to quantitate beta-cell characteristics. Carriers of one or two intermediate repeat alleles (n = 32) had a 50% higher median first- phase insulin response to glucose than the noncarriers. Furthermore, they needed less time to reach peak insulin. An analysis of the distribution of the various repeat lengths in elderly type 2 diabetic (n = 179) and control subjects (n = 183), with the same age and ethnic background, did not provide evidence for an association of the intermediate-length repeat allele with type 2 diabetes in Dutch Caucasians.  (+info)

High incidence of glucose intolerance in Vogt-Koyanagi-Harada disease. (8/1659)

AIMS: To evaluate glucose tolerance of patients with Vogt-Koyanagi-Harada (VKH) disease before systemic corticosteroid therapy, and to assess changes brought on by treatment. METHODS: 20 VKH patients with acute bilateral panuveitis were studied. 20 healthy adults and 11 Behcet's disease patients with active uveoretinitis served as controls. A 75 g oral glucose tolerance test (OGTT) was given in the acute stage of ocular inflammation before systemic corticosteroid therapy. The OGTT was repeated in the convalescent stage of VKH disease in the patients with glucose intolerance before treatment. Insulin response was examined at the same time as the OGTT when possible. RESULTS: 55% of VKH patients (11/20) showed glucose intolerance but no apparent insulin secretion deficiency was detected. Four of seven patients in the convalescent stage showed improvement of glucose tolerance. None of the normal controls or disease controls showed glucose intolerance. CONCLUSION: A high incidence of glucose intolerance was found in the acute stage of VKH disease. However, glucose intolerance improved in most cases after systemic corticosteroid therapy. It is possible that glucose intolerance seen in VKH patients may be related to the autoimmune inflammatory process of this disease.  (+info)

Glucose intolerance is a condition in which the body has difficulty processing and using glucose, or blood sugar, effectively. This results in higher than normal levels of glucose in the blood after eating, particularly after meals that are high in carbohydrates. Glucose intolerance can be an early sign of developing diabetes, specifically type 2 diabetes, and it may also indicate other metabolic disorders such as prediabetes or insulin resistance.

In a healthy individual, the pancreas produces insulin to help regulate blood sugar levels by facilitating glucose uptake in muscles, fat tissue, and the liver. When someone has glucose intolerance, their body may not produce enough insulin, or their cells may have become less responsive to insulin (insulin resistance), leading to impaired glucose metabolism.

Glucose intolerance can be diagnosed through various tests, including the oral glucose tolerance test (OGTT) and hemoglobin A1c (HbA1c) test. Treatment for glucose intolerance often involves lifestyle modifications such as weight loss, increased physical activity, and a balanced diet with reduced sugar and refined carbohydrate intake. In some cases, medication may be prescribed to help manage blood sugar levels more effectively.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

A Glucose Tolerance Test (GTT) is a medical test used to diagnose prediabetes, type 2 diabetes, and gestational diabetes. It measures how well your body is able to process glucose, which is a type of sugar.

During the test, you will be asked to fast (not eat or drink anything except water) for at least eight hours before the test. Then, a healthcare professional will take a blood sample to measure your fasting blood sugar level. After that, you will be given a sugary drink containing a specific amount of glucose. Your blood sugar levels will be measured again after two hours and sometimes also after one hour.

The results of the test will indicate how well your body is able to process the glucose and whether you have normal, impaired, or diabetic glucose tolerance. If your blood sugar levels are higher than normal but not high enough to be diagnosed with diabetes, you may have prediabetes, which means that you are at increased risk of developing type 2 diabetes in the future.

It is important to note that a Glucose Tolerance Test should be performed under the supervision of a healthcare professional, as high blood sugar levels can be dangerous if not properly managed.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Lactose intolerance is a digestive condition in which the body has difficulty digesting lactose, a sugar found in milk and dairy products. This occurs due to a deficiency or insufficiency of lactase, an enzyme produced by the small intestine that breaks down lactose into simpler sugars (glucose and galactose) for absorption. When there is not enough lactase to digest the consumed lactose, it passes undigested into the large intestine, where it is fermented by bacteria, leading to various gastrointestinal symptoms.

The symptoms of lactose intolerance may include bloating, cramps, diarrhea, nausea, and gas, usually occurring within 30 minutes to two hours after consuming dairy products. The severity of these symptoms can vary depending on the amount of lactose consumed and an individual's level of lactase deficiency or insufficiency.

Lactose intolerance is not life-threatening but can cause discomfort and may affect a person's quality of life. It is essential to manage the condition through dietary modifications, such as consuming smaller amounts of dairy products, choosing lactose-free or reduced-lactose options, or using lactase enzyme supplements before eating dairy products. In some cases, a healthcare professional may recommend additional management strategies based on an individual's specific needs and medical history.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Fructose intolerance, also known as hereditary fructose intolerance (HFI), is a genetic disorder that affects the body's ability to metabolize the sugar called fructose, which is found in fruits, vegetables, and processed foods. It is caused by a deficiency of an enzyme called aldolase B, which is necessary for the breakdown and absorption of fructose in the liver.

When individuals with fructose intolerance consume food or drinks containing fructose, the undigested fructose accumulates in the bloodstream and gets absorbed by other organs, leading to a range of symptoms such as abdominal pain, bloating, diarrhea, vomiting, and low blood sugar. Prolonged exposure to high levels of fructose can also cause liver damage, kidney failure, and growth retardation in children.

The diagnosis of fructose intolerance is usually made through a combination of clinical symptoms, genetic testing, and a fructose tolerance test. The treatment for fructose intolerance involves avoiding foods and drinks that contain fructose or limiting their consumption to very small amounts. In some cases, supplementation with enzyme replacement therapy may be recommended.

A high-fat diet is a type of eating plan that derives a significant proportion of its daily caloric intake from fat sources. While there is no universally agreed-upon definition for what constitutes a high-fat diet, it generally refers to diets in which total fat intake provides more than 30-35% of the total daily calories.

High-fat diets can vary widely in their specific composition and may include different types of fats, such as saturated, monounsaturated, polyunsaturated, and trans fats. Some high-fat diets emphasize the consumption of whole, unprocessed foods that are naturally high in fat, like nuts, seeds, avocados, fish, and olive oil. Others may allow for or even encourage the inclusion of processed and high-fat animal products, such as red meat, butter, and full-fat dairy.

It's important to note that not all high-fat diets are created equal, and some may be more healthful than others depending on their specific composition and the individual's overall dietary patterns. Some research suggests that high-fat diets that are low in carbohydrates and moderate in protein may offer health benefits for weight loss, blood sugar control, and cardiovascular risk factors, while other studies have raised concerns about the potential negative effects of high-fat diets on heart health and metabolic function.

As with any dietary approach, it's important to consult with a healthcare provider or registered dietitian before making significant changes to your eating habits, especially if you have any underlying medical conditions or are taking medications that may be affected by dietary changes.

Diabetes Mellitus, Type 2 is a metabolic disorder characterized by high blood glucose (or sugar) levels resulting from the body's inability to produce sufficient amounts of insulin or effectively use the insulin it produces. This form of diabetes usually develops gradually over several years and is often associated with older age, obesity, physical inactivity, family history of diabetes, and certain ethnicities.

In Type 2 diabetes, the body's cells become resistant to insulin, meaning they don't respond properly to the hormone. As a result, the pancreas produces more insulin to help glucose enter the cells. Over time, the pancreas can't keep up with the increased demand, leading to high blood glucose levels and diabetes.

Type 2 diabetes is managed through lifestyle modifications such as weight loss, regular exercise, and a healthy diet. Medications, including insulin therapy, may also be necessary to control blood glucose levels and prevent long-term complications associated with the disease, such as heart disease, nerve damage, kidney damage, and vision loss.

Obesity is a complex disease characterized by an excess accumulation of body fat to the extent that it negatively impacts health. It's typically defined using Body Mass Index (BMI), a measure calculated from a person's weight and height. A BMI of 30 or higher is indicative of obesity. However, it's important to note that while BMI can be a useful tool for identifying obesity in populations, it does not directly measure body fat and may not accurately reflect health status in individuals. Other factors such as waist circumference, blood pressure, cholesterol levels, and blood sugar levels should also be considered when assessing health risks associated with weight.

Orthostatic intolerance is a condition in which an individual experiences lightheadedness, dizziness, or fainting when standing or maintaining an upright position for extended periods. It is caused by an abnormal physiological response to gravity and results in inadequate blood flow to the brain upon standing.

The medical definition of orthostatic intolerance includes symptoms that are exacerbated by upright posture and relieved by recumbent (lying down) position. The underlying mechanisms involve dysfunction in the autonomic nervous system, which controls involuntary bodily functions such as heart rate, blood pressure, and vasoconstriction.

Orthostatic intolerance can be a symptom of various medical conditions, including postural orthostatic tachycardia syndrome (POTS), neurogenic orthostatic hypotension, and other autonomic disorders. Proper diagnosis and management require a thorough evaluation by a healthcare professional to identify the underlying cause and develop an appropriate treatment plan.

Insulin-secreting cells, also known as beta cells, are a type of cell found in the pancreas. They are responsible for producing and releasing insulin, a hormone that regulates blood glucose levels by allowing cells in the body to take in glucose from the bloodstream. Insulin-secreting cells are clustered together in the pancreatic islets, along with other types of cells that produce other hormones such as glucagon and somatostatin. In people with diabetes, these cells may not function properly, leading to an impaired ability to regulate blood sugar levels.

Gestational diabetes is a type of diabetes that occurs during pregnancy. It is characterized by an increase in blood sugar levels that begins or is first recognized during pregnancy. The condition usually develops around the 24th week of gestation and is caused by the body's inability to produce enough insulin to meet the increased demands of pregnancy.

Gestational diabetes typically resolves after delivery, but women who have had gestational diabetes are at an increased risk of developing type 2 diabetes later in life. It is important for women with gestational diabetes to manage their blood sugar levels during pregnancy to reduce the risk of complications for both the mother and the baby.

Management of gestational diabetes may include lifestyle modifications such as dietary changes and exercise, as well as monitoring blood sugar levels and potentially using insulin or other medications to control blood sugar levels. Regular prenatal care is essential for women with gestational diabetes to ensure that their blood sugar levels are properly managed and to monitor the growth and development of the fetus.

Diabetes Mellitus is a chronic metabolic disorder characterized by elevated levels of glucose in the blood (hyperglycemia) due to absolute or relative deficiency in insulin secretion and/or insulin action. There are two main types: Type 1 diabetes, which results from the autoimmune destruction of pancreatic beta cells leading to insulin deficiency, and Type 2 diabetes, which is associated with insulin resistance and relative insulin deficiency.

Type 1 diabetes typically presents in childhood or young adulthood, while Type 2 diabetes tends to occur later in life, often in association with obesity and physical inactivity. Both types of diabetes can lead to long-term complications such as damage to the eyes, kidneys, nerves, and cardiovascular system if left untreated or not well controlled.

The diagnosis of diabetes is usually made based on fasting plasma glucose levels, oral glucose tolerance tests, or hemoglobin A1c (HbA1c) levels. Treatment typically involves lifestyle modifications such as diet and exercise, along with medications to lower blood glucose levels and manage associated conditions.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

Fasting is defined in medical terms as the abstinence from food or drink for a period of time. This practice is often recommended before certain medical tests or procedures, as it helps to ensure that the results are not affected by recent eating or drinking.

In some cases, fasting may also be used as a therapeutic intervention, such as in the management of seizures or other neurological conditions. Fasting can help to lower blood sugar and insulin levels, which can have a variety of health benefits. However, it is important to note that prolonged fasting can also have negative effects on the body, including malnutrition, dehydration, and electrolyte imbalances.

Fasting is also a spiritual practice in many religions, including Christianity, Islam, Buddhism, and Hinduism. In these contexts, fasting is often seen as a way to purify the mind and body, to focus on spiritual practices, or to express devotion or mourning.

The Islets of Langerhans are clusters of specialized cells within the pancreas, an organ located behind the stomach. These islets are named after Paul Langerhans, who first identified them in 1869. They constitute around 1-2% of the total mass of the pancreas and are distributed throughout its substance.

The Islets of Langerhans contain several types of cells, including:

1. Alpha (α) cells: These produce and release glucagon, a hormone that helps to regulate blood sugar levels by promoting the conversion of glycogen to glucose in the liver when blood sugar levels are low.
2. Beta (β) cells: These produce and release insulin, a hormone that promotes the uptake and utilization of glucose by cells throughout the body, thereby lowering blood sugar levels.
3. Delta (δ) cells: These produce and release somatostatin, a hormone that inhibits the release of both insulin and glucagon and helps regulate their secretion in response to changing blood sugar levels.
4. PP cells (gamma or γ cells): These produce and release pancreatic polypeptide, which plays a role in regulating digestive enzyme secretion and gastrointestinal motility.

Dysfunction of the Islets of Langerhans can lead to various endocrine disorders, such as diabetes mellitus, where insulin-producing beta cells are damaged or destroyed, leading to impaired blood sugar regulation.

Hyperinsulinism is a medical condition characterized by an excess production and release of insulin from the pancreas. Insulin is a hormone that helps regulate blood sugar levels by allowing cells in the body to take in sugar (glucose) for energy or storage. In hyperinsulinism, the increased insulin levels can cause low blood sugar (hypoglycemia), which can lead to symptoms such as sweating, shaking, confusion, and in severe cases, seizures or loss of consciousness.

There are several types of hyperinsulinism, including congenital forms that are present at birth and acquired forms that develop later in life. Congenital hyperinsulinism is often caused by genetic mutations that affect the way insulin is produced or released from the pancreas. Acquired hyperinsulinism can be caused by factors such as certain medications, hormonal disorders, or tumors of the pancreas.

Treatment for hyperinsulinism depends on the underlying cause and severity of the condition. Treatment options may include dietary changes, medication to reduce insulin secretion, or surgery to remove part or all of the pancreas.

Glucose Transporter Type 4 (GLUT4) is a type of glucose transporter protein that plays a crucial role in regulating insulin-mediated glucose uptake into cells, particularly in muscle and fat tissues. GLUT4 is primarily located in intracellular vesicles within these cell types and moves to the plasma membrane upon stimulation by insulin or muscle contraction, facilitating the influx of glucose into the cell. Dysfunction in GLUT4 regulation has been implicated in various metabolic disorders, including type 2 diabetes and insulin resistance.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Glucose Transporter Type 2 (GLUT2) is a protein responsible for the facilitated diffusion of glucose across the cell membrane. It is a member of the solute carrier family 2 (SLC2), also known as the facilitative glucose transporter family. GLUT2 is primarily expressed in the liver, kidney, and intestines, where it plays a crucial role in regulating glucose homeostasis.

In the pancreas, GLUT2 is found in the beta cells of the islets of Langerhans, where it facilitates the uptake of glucose from the bloodstream into the cells. Once inside the cell, glucose is metabolized, leading to an increase in ATP levels and the closure of ATP-sensitive potassium channels. This results in the depolarization of the cell membrane and the subsequent opening of voltage-gated calcium channels, allowing for the release of insulin from secretory vesicles into the bloodstream.

In the intestines, GLUT2 is expressed in the enterocytes of the small intestine, where it facilitates the absorption of glucose and other monosaccharides from the lumen into the bloodstream. In the kidneys, GLUT2 is found in the proximal tubules, where it plays a role in reabsorbing glucose from the filtrate back into the bloodstream.

Mutations in the gene that encodes GLUT2 (SLC2A2) can lead to several genetic disorders, including Fanconi-Bickel syndrome, which is characterized by impaired glucose and galactose absorption in the intestines, hepatic glycogen accumulation, and renal tubular dysfunction.

Glucose metabolism disorders are a group of conditions that result from abnormalities in the body's ability to produce, store, or use glucose, which is a simple sugar that serves as the primary source of energy for the body's cells. These disorders can be categorized into two main types: those caused by insufficient insulin production (such as type 1 diabetes) and those caused by impaired insulin action (such as type 2 diabetes).

In healthy individuals, glucose is absorbed from food during digestion and enters the bloodstream. The pancreas responds to this increase in blood glucose levels by releasing insulin, a hormone that signals cells throughout the body to take up glucose from the bloodstream and use it for energy production or storage.

Glucose metabolism disorders can disrupt this process at various stages, leading to high blood glucose levels (hyperglycemia) or low blood glucose levels (hypoglycemia). Some common examples of these disorders include:

1. Diabetes Mellitus: A group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin production, impaired insulin action, or both. Type 1 diabetes results from the autoimmune destruction of pancreatic beta-cells that produce insulin, while type 2 diabetes is caused by a combination of insulin resistance and inadequate insulin secretion.
2. Gestational Diabetes: A form of high blood glucose that develops during pregnancy due to hormonal changes that impair insulin action.
3. Prediabetes: A condition where blood glucose levels are higher than normal but not yet high enough to be classified as diabetes.
4. Hypoglycemia: Abnormally low blood glucose levels, which can result from certain medications, hormonal deficiencies, or other medical conditions.
5. Glycogen Storage Diseases: A group of rare inherited metabolic disorders that affect the body's ability to store and break down glycogen, a complex carbohydrate that serves as an energy reserve in muscles and the liver.
6. Maturity-Onset Diabetes of the Young (MODY): A group of monogenic forms of diabetes caused by mutations in specific genes involved in insulin secretion or action.
7. Glucose Galactose Malabsorption: An inherited disorder that impairs the absorption of glucose and galactose, leading to severe diarrhea, dehydration, and high blood glucose levels.
8. Fructose Intolerance: A condition where the body cannot metabolize fructose properly due to a deficiency in the enzyme aldolase B, resulting in abdominal pain, diarrhea, and high blood glucose levels.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Gluconeogenesis is a metabolic pathway that occurs in the liver, kidneys, and to a lesser extent in the small intestine. It involves the synthesis of glucose from non-carbohydrate precursors such as lactate, pyruvate, glycerol, and certain amino acids. This process becomes particularly important during periods of fasting or starvation when glucose levels in the body begin to drop, and there is limited carbohydrate intake to replenish them.

Gluconeogenesis helps maintain blood glucose homeostasis by providing an alternative source of glucose for use by various tissues, especially the brain, which relies heavily on glucose as its primary energy source. It is a complex process that involves several enzymatic steps, many of which are regulated to ensure an adequate supply of glucose while preventing excessive production, which could lead to hyperglycemia.

Hyperglycemia is a medical term that refers to an abnormally high level of glucose (sugar) in the blood. Fasting hyperglycemia is defined as a fasting blood glucose level greater than or equal to 126 mg/dL (milligrams per deciliter) on two separate occasions. Alternatively, a random blood glucose level greater than or equal to 200 mg/dL in combination with symptoms of hyperglycemia (such as increased thirst, frequent urination, blurred vision, and fatigue) can also indicate hyperglycemia.

Hyperglycemia is often associated with diabetes mellitus, a chronic metabolic disorder characterized by high blood glucose levels due to insulin resistance or insufficient insulin production. However, hyperglycemia can also occur in other conditions such as stress, surgery, infection, certain medications, and hormonal imbalances.

Prolonged or untreated hyperglycemia can lead to serious complications such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and long-term damage to various organs such as the eyes, kidneys, nerves, and blood vessels. Therefore, it is essential to monitor blood glucose levels regularly and maintain them within normal ranges through proper diet, exercise, medication, and lifestyle modifications.

A prediabetic state, also known as impaired glucose tolerance or prediabetes, is a metabolic condition where blood sugar levels are higher than normal but not high enough to meet the diagnostic criteria for diabetes. It is often characterized by insulin resistance and beta-cell dysfunction, which can lead to an increased risk of developing type 2 diabetes, cardiovascular disease, and other complications if left untreated.

In the prediabetic state, fasting plasma glucose levels are between 100 and 125 mg/dL (5.6-6.9 mmol/L), or hemoglobin A1c (HbA1c) levels are between 5.7% and 6.4%. Lifestyle modifications, such as regular exercise, healthy eating habits, and weight loss, can help prevent or delay the progression of prediabetes to diabetes.

Hypoglycemic agents are a class of medications that are used to lower blood glucose levels in the treatment of diabetes mellitus. These medications work by increasing insulin sensitivity, stimulating insulin release from the pancreas, or inhibiting glucose production in the liver. Examples of hypoglycemic agents include sulfonylureas, meglitinides, biguanides, thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists. It's important to note that the term "hypoglycemic" refers to a condition of abnormally low blood glucose levels, but in this context, the term is used to describe agents that are used to treat high blood glucose levels (hyperglycemia) associated with diabetes.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Metabolic syndrome, also known as Syndrome X, is a cluster of conditions that increase the risk of heart disease, stroke, and diabetes. It is not a single disease but a group of risk factors that often co-occur. According to the American Heart Association and the National Heart, Lung, and Blood Institute, a person has metabolic syndrome if they have any three of the following five conditions:

1. Abdominal obesity (waist circumference of 40 inches or more in men, and 35 inches or more in women)
2. Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater
3. HDL cholesterol level of less than 40 mg/dL in men or less than 50 mg/dL in women
4. Systolic blood pressure of 130 millimeters of mercury (mmHg) or greater, or diastolic blood pressure of 85 mmHg or greater
5. Fasting glucose level of 100 mg/dL or greater

Metabolic syndrome is thought to be caused by a combination of genetic and lifestyle factors, such as physical inactivity and a diet high in refined carbohydrates and unhealthy fats. Treatment typically involves making lifestyle changes, such as eating a healthy diet, getting regular exercise, and losing weight if necessary. In some cases, medication may also be needed to manage individual components of the syndrome, such as high blood pressure or high cholesterol.

Glucose oxidase (GOD) is an enzyme that catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, while reducing oxygen to hydrogen peroxide in the process. This reaction is a part of the metabolic pathway in some organisms that convert glucose into energy. The systematic name for this enzyme is D-glucose:oxygen 1-oxidoreductase.

Glucose oxidase is commonly found in certain fungi, such as Aspergillus niger, and it has various applications in industry, medicine, and research. For instance, it's used in the production of glucose sensors for monitoring blood sugar levels, in the detection and quantification of glucose in food and beverages, and in the development of biosensors for environmental monitoring.

It's worth noting that while glucose oxidase has many applications, it should not be confused with glutathione peroxidase, another enzyme involved in the reduction of hydrogen peroxide to water.

Glucose Transporter Type 1 (GLUT1) is a specific type of protein called a glucose transporter, which is responsible for facilitating the transport of glucose across the blood-brain barrier and into the brain cells. It is encoded by the SLC2A1 gene and is primarily found in the endothelial cells of the blood-brain barrier, as well as in other tissues such as the erythrocytes (red blood cells), placenta, and kidney.

GLUT1 plays a critical role in maintaining normal glucose levels in the brain, as it is the main mechanism for glucose uptake into the brain. Disorders of GLUT1 can lead to impaired glucose transport, which can result in neurological symptoms such as seizures, developmental delay, and movement disorders. These disorders are known as GLUT1 deficiency syndromes.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Glycosuria is a medical term that refers to the presence of glucose in the urine. Under normal circumstances, the kidneys are able to reabsorb all of the filtered glucose back into the bloodstream. However, when the blood glucose levels become excessively high, such as in uncontrolled diabetes mellitus, the kidneys may not be able to reabsorb all of the glucose, and some of it will spill over into the urine.

Glycosuria can also occur in other conditions that affect glucose metabolism or renal function, such as impaired kidney function, certain medications, pregnancy, and rare genetic disorders. It is important to note that glycosuria alone does not necessarily indicate diabetes, but it may be a sign of an underlying medical condition that requires further evaluation by a healthcare professional.

Monosaccharide transport proteins are a type of membrane transport protein that facilitate the passive or active transport of monosaccharides, such as glucose, fructose, and galactose, across cell membranes. These proteins play a crucial role in the absorption, distribution, and metabolism of carbohydrates in the body.

There are two main types of monosaccharide transport proteins: facilitated diffusion transporters and active transporters. Facilitated diffusion transporters, also known as glucose transporters (GLUTs), passively transport monosaccharides down their concentration gradient without the need for energy. In contrast, active transporters, such as the sodium-glucose cotransporter (SGLT), use energy in the form of ATP to actively transport monosaccharides against their concentration gradient.

Monosaccharide transport proteins are found in various tissues throughout the body, including the intestines, kidneys, liver, and brain. They play a critical role in maintaining glucose homeostasis by regulating the uptake and release of glucose into and out of cells. Dysfunction of these transporters has been implicated in several diseases, such as diabetes, cancer, and neurological disorders.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Glycogen is a complex carbohydrate that serves as the primary form of energy storage in animals, fungi, and bacteria. It is a polysaccharide consisting of long, branched chains of glucose molecules linked together by glycosidic bonds. Glycogen is stored primarily in the liver and muscles, where it can be quickly broken down to release glucose into the bloodstream during periods of fasting or increased metabolic demand.

In the liver, glycogen plays a crucial role in maintaining blood glucose levels by releasing glucose when needed, such as between meals or during exercise. In muscles, glycogen serves as an immediate energy source for muscle contractions during intense physical activity. The ability to store and mobilize glycogen is essential for the proper functioning of various physiological processes, including athletic performance, glucose homeostasis, and overall metabolic health.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Deoxyglucose is a glucose molecule that has had one oxygen atom removed, resulting in the absence of a hydroxyl group (-OH) at the 2' position of the carbon chain. It is used in research and medical settings as a metabolic tracer to study glucose uptake and metabolism in cells and organisms.

Deoxyglucose can be taken up by cells through glucose transporters, but it cannot be further metabolized by glycolysis or other glucose-utilizing pathways. This leads to the accumulation of deoxyglucose within the cell, which can interfere with normal cellular processes and cause toxicity in high concentrations.

In medical research, deoxyglucose is sometimes labeled with radioactive isotopes such as carbon-14 or fluorine-18 to create radiolabeled deoxyglucose (FDG), which can be used in positron emission tomography (PET) scans to visualize and measure glucose uptake in tissues. This technique is commonly used in cancer imaging, as tumors often have increased glucose metabolism compared to normal tissue.

I cannot precisely define "obese mice" from a medical perspective because "obesity" is typically defined for humans and companion animals based on body weight relative to body size. However, I can provide you with relevant information regarding obese mice in a research or laboratory context.

Obesity in mice is often induced by providing them with a high-fat diet (HFD) to promote excessive weight gain and metabolic dysfunction. This allows researchers to study the effects of obesity on various health parameters, such as insulin resistance, inflammation, and cardiovascular function.

In laboratory settings, mice are often considered obese if their body weight is 10-20% higher than the average for their strain, age, and sex. Researchers also use body mass index (BMI) or body fat percentage to determine obesity in mice. For example:

* Body Mass Index (BMI): Mice with a BMI greater than 0.69 g/cm² are considered obese. To calculate BMI, divide the body weight in grams by the square of the nose-to-anus length in centimeters.
* Body Fat Percentage: Obesity can also be determined based on body fat percentage using non-invasive methods like magnetic resonance imaging (MRI) or computed tomography (CT) scans. Mice with more than 45% body fat are generally considered obese.

It is important to note that these thresholds may vary depending on the mouse strain, age, and sex. Researchers should consult relevant literature for their specific experimental setup when defining obesity in mice.

Fructose is a simple monosaccharide, also known as "fruit sugar." It is a naturally occurring carbohydrate that is found in fruits, vegetables, and honey. Fructose has the chemical formula C6H12O6 and is a hexose, or six-carbon sugar.

Fructose is absorbed directly into the bloodstream during digestion and is metabolized primarily in the liver. It is sweeter than other sugars such as glucose and sucrose (table sugar), which makes it a popular sweetener in many processed foods and beverages. However, consuming large amounts of fructose can have negative health effects, including increasing the risk of obesity, diabetes, and heart disease.

"Adiposity" is a medical term that refers to the condition of having an excessive amount of fat in the body. It is often used to describe obesity or being significantly overweight. Adipose tissue, which is the technical name for body fat, is important for many bodily functions, such as storing energy and insulating the body. However, an excess of adipose tissue can lead to a range of health problems, including heart disease, diabetes, and certain types of cancer.

There are different ways to measure adiposity, including body mass index (BMI), waist circumference, and skinfold thickness. BMI is the most commonly used method and is calculated by dividing a person's weight in kilograms by their height in meters squared. A BMI of 30 or higher is considered obese, while a BMI between 25 and 29.9 is considered overweight. However, it's important to note that BMI may not accurately reflect adiposity in some individuals, such as those with a lot of muscle mass.

In summary, adiposity refers to the condition of having too much body fat, which can increase the risk of various health problems.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

I couldn't find a medical definition specifically for "Diabetes Mellitus, Experimental." However, I can provide you with information about experimental diabetes research and its relevance to understanding the disease.

Experimental diabetes models are used in biomedical research to study the pathophysiology of diabetes mellitus and to test potential therapies or treatments. These models can be broadly categorized into two types: chemically-induced and genetically modified.

1. Chemically-induced diabetes models: These involve administering chemicals, such as alloxan or streptozotocin, to animals (commonly mice or rats) to destroy their pancreatic β-cells, which produce insulin. This results in hyperglycemia and symptoms similar to those seen in type 1 diabetes in humans.
2. Genetically modified diabetes models: These involve altering the genes of animals (commonly mice) to create a diabetes phenotype. Examples include non-obese diabetic (NOD) mice, which develop an autoimmune form of diabetes similar to human type 1 diabetes, and various strains of obese mice with insulin resistance, such as ob/ob or db/db mice, which model aspects of type 2 diabetes.

These experimental models help researchers better understand the mechanisms behind diabetes development and progression, identify new therapeutic targets, and test potential treatments before moving on to human clinical trials. However, it's essential to recognize that these models may not fully replicate all aspects of human diabetes, so findings from animal studies should be interpreted with caution.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

C-peptide is a byproduct that is produced when the hormone insulin is generated in the body. Insulin is a hormone that helps regulate blood sugar levels, and it is produced in the pancreas by specialized cells called beta cells. When these cells produce insulin, they also generate C-peptide as a part of the same process.

C-peptide is often used as a marker to measure the body's insulin production. By measuring C-peptide levels in the blood, healthcare providers can get an idea of how much insulin the body is producing on its own. This can be helpful in diagnosing and monitoring conditions such as diabetes, which is characterized by impaired insulin production or function.

It's worth noting that C-peptide is not typically used as a treatment for any medical conditions. Instead, it is primarily used as a diagnostic tool to help healthcare providers better understand their patients' health status and make informed treatment decisions.

Adipocytes are specialized cells that comprise adipose tissue, also known as fat tissue. They are responsible for storing energy in the form of lipids, particularly triglycerides, and releasing energy when needed through a process called lipolysis. There are two main types of adipocytes: white adipocytes and brown adipocytes. White adipocytes primarily store energy, while brown adipocytes dissipate energy as heat through the action of uncoupling protein 1 (UCP1).

In addition to their role in energy metabolism, adipocytes also secrete various hormones and signaling molecules that contribute to whole-body homeostasis. These include leptin, adiponectin, resistin, and inflammatory cytokines. Dysregulation of adipocyte function has been implicated in the development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Adipose tissue, white is a type of fatty tissue in the body that functions as the primary form of energy storage. It is composed of adipocytes, which are specialized cells that store energy in the form of lipids, primarily triglycerides. The main function of white adipose tissue is to provide energy to the body during periods of fasting or exercise by releasing free fatty acids into the bloodstream. It also plays a crucial role in maintaining homeostasis by regulating metabolism, insulin sensitivity, and inflammation. White adipose tissue can be found throughout the body, including beneath the skin (subcutaneous) and surrounding internal organs (visceral).

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Glucose-6-phosphatase is an enzyme that plays a crucial role in the regulation of glucose metabolism. It is primarily located in the endoplasmic reticulum of cells in liver, kidney, and intestinal mucosa. The main function of this enzyme is to remove the phosphate group from glucose-6-phosphate (G6P), converting it into free glucose, which can then be released into the bloodstream and used as a source of energy by cells throughout the body.

The reaction catalyzed by glucose-6-phosphatase is as follows:

Glucose-6-phosphate + H2O → Glucose + Pi (inorganic phosphate)

This enzyme is essential for maintaining normal blood glucose levels, particularly during periods of fasting or starvation. In these situations, the body needs to break down stored glycogen in the liver and convert it into glucose to supply energy to the brain and other vital organs. Glucose-6-phosphatase is a key enzyme in this process, allowing for the release of free glucose into the bloodstream.

Deficiencies or mutations in the gene encoding glucose-6-phosphatase can lead to several metabolic disorders, such as glycogen storage disease type I (von Gierke's disease) and other related conditions. These disorders are characterized by an accumulation of glycogen and/or fat in various organs, leading to impaired glucose metabolism, growth retardation, and increased risk of infection and liver dysfunction.

Glucokinase is an enzyme that plays a crucial role in regulating glucose metabolism. It is primarily found in the liver, pancreas, and brain. In the pancreas, glucokinase helps to trigger the release of insulin in response to rising blood glucose levels. In the liver, it plays a key role in controlling glucose storage and production.

Glucokinase has a unique property among hexokinases (enzymes that phosphorylate six-carbon sugars) in that it is not inhibited by its product, glucose-6-phosphate. This allows it to continue functioning even when glucose levels are high, making it an important regulator of glucose metabolism.

Defects in the gene that codes for glucokinase can lead to several types of inherited diabetes and other metabolic disorders.

Glucagon-like peptide 1 (GLP-1) is a hormone that is secreted by the intestines in response to food intake. It plays a crucial role in regulating blood sugar levels through several mechanisms, including stimulation of insulin secretion from the pancreas, inhibition of glucagon release, slowing gastric emptying, and promoting satiety. GLP-1 is an important target for the treatment of type 2 diabetes due to its insulin-secretory and glucose-lowering effects. In addition, GLP-1 receptor agonists are used in the management of obesity due to their ability to promote weight loss by reducing appetite and increasing feelings of fullness.

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

Weight gain is defined as an increase in body weight over time, which can be attributed to various factors such as an increase in muscle mass, fat mass, or total body water. It is typically measured in terms of pounds or kilograms and can be intentional or unintentional. Unintentional weight gain may be a cause for concern if it's significant or accompanied by other symptoms, as it could indicate an underlying medical condition such as hypothyroidism, diabetes, or heart disease.

It is important to note that while body mass index (BMI) can be used as a general guideline for weight status, it does not differentiate between muscle mass and fat mass. Therefore, an increase in muscle mass through activities like strength training could result in a higher BMI, but this may not necessarily be indicative of increased health risks associated with excess body fat.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Panuveitis is a medical term that refers to inflammation that affects the entire uveal tract, including the iris, ciliary body, and choroid. The uveal tract is the middle layer of the eye between the inner retina and the outer fibrous tunic (sclera). Panuveitis can also affect other parts of the eye, such as the vitreous, retina, and optic nerve.

The symptoms of panuveitis may include redness, pain, light sensitivity, blurred vision, floaters, and decreased visual acuity. The condition can be caused by various factors, including infections, autoimmune diseases, trauma, or unknown causes (idiopathic). Treatment typically involves the use of corticosteroids to reduce inflammation, as well as addressing any underlying cause if identified. If left untreated, panuveitis can lead to complications such as cataracts, glaucoma, and retinal damage, which can result in permanent vision loss.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Blood glucose self-monitoring is the regular measurement of blood glucose levels performed by individuals with diabetes to manage their condition. This process involves using a portable device, such as a glucometer or continuous glucose monitor (CGM), to measure the amount of glucose present in a small sample of blood, usually obtained through a fingerstick.

The primary purpose of self-monitoring is to help individuals with diabetes understand how various factors, such as food intake, physical activity, medication, and stress, affect their blood glucose levels. By tracking these patterns, they can make informed decisions about adjusting their diet, exercise, or medication regimens to maintain optimal glycemic control and reduce the risk of long-term complications associated with diabetes.

Self-monitoring is an essential component of diabetes self-management and education, enabling individuals to take an active role in their healthcare. Regular monitoring also allows healthcare professionals to assess a patient's adherence to their treatment plan and make necessary adjustments based on the data collected.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Glucose 1-Dehydrogenase (G1DH) is an enzyme that catalyzes the oxidation of β-D-glucose into D-glucono-1,5-lactone and reduces the cofactor NAD+ into NADH. This reaction plays a role in various biological processes, including glucose sensing and detoxification of reactive carbonyl species. G1DH is found in many organisms, including humans, and has several isoforms with different properties and functions.

Adiponectin is a hormone that is produced and secreted by adipose tissue, which is another name for body fat. This hormone plays an important role in regulating metabolism and energy homeostasis. It helps to regulate glucose levels, break down fatty acids, and has anti-inflammatory effects.

Adiponectin is unique because it is exclusively produced by adipose tissue, and its levels are inversely related to body fat mass. This means that lean individuals tend to have higher levels of adiponectin than obese individuals. Low levels of adiponectin have been associated with an increased risk of developing various metabolic disorders, such as insulin resistance, type 2 diabetes, and cardiovascular disease.

Overall, adiponectin is an important hormone that plays a crucial role in maintaining metabolic health, and its levels may serve as a useful biomarker for assessing metabolic risk.

I apologize for any confusion, but "Bahrain" is not a medical term or concept. It is an island country located in the Persian Gulf. If you have any questions related to medicine or health, I would be happy to try and help answer them.

The lactose tolerance test is a medical procedure used to determine the body's ability to digest lactose, a sugar found in milk and other dairy products. In this test, a patient is given a liquid that contains a high amount of lactose to drink. Blood samples are then taken over a two-hour period following the consumption of the lactose solution. These blood samples are tested for glucose levels.

If the body is able to digest lactose properly, the lactose will be broken down into glucose and absorbed into the bloodstream, resulting in an increase in blood glucose levels. However, if the body has difficulty digesting lactose (lactose intolerance), little or no increase in blood glucose levels will be observed.

A positive lactose tolerance test indicates that the individual can tolerate lactose and has a functioning lactase enzyme in their small intestine. A negative result suggests lactose intolerance, which is often due to insufficient lactase production. This condition can lead to symptoms such as bloating, diarrhea, and abdominal cramps after consuming dairy products.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Body Mass Index (BMI) is a measure used to assess whether a person has a healthy weight for their height. It's calculated by dividing a person's weight in kilograms by the square of their height in meters. Here is the medical definition:

Body Mass Index (BMI) = weight(kg) / [height(m)]^2

According to the World Health Organization, BMI categories are defined as follows:

* Less than 18.5: Underweight
* 18.5-24.9: Normal or healthy weight
* 25.0-29.9: Overweight
* 30.0 and above: Obese

It is important to note that while BMI can be a useful tool for identifying weight issues in populations, it does have limitations when applied to individuals. For example, it may not accurately reflect body fat distribution or muscle mass, which can affect health risks associated with excess weight. Therefore, BMI should be used as one of several factors when evaluating an individual's health status and risk for chronic diseases.

Dietary carbohydrates refer to the organic compounds in food that are primarily composed of carbon, hydrogen, and oxygen atoms, with a general formula of Cm(H2O)n. They are one of the three main macronutrients, along with proteins and fats, that provide energy to the body.

Carbohydrates can be classified into two main categories: simple carbohydrates (also known as simple sugars) and complex carbohydrates (also known as polysaccharides).

Simple carbohydrates are made up of one or two sugar molecules, such as glucose, fructose, and lactose. They are quickly absorbed by the body and provide a rapid source of energy. Simple carbohydrates are found in foods such as fruits, vegetables, dairy products, and sweeteners like table sugar, honey, and maple syrup.

Complex carbohydrates, on the other hand, are made up of long chains of sugar molecules that take longer to break down and absorb. They provide a more sustained source of energy and are found in foods such as whole grains, legumes, starchy vegetables, and nuts.

It is recommended that adults consume between 45-65% of their daily caloric intake from carbohydrates, with a focus on complex carbohydrates and limiting added sugars.

Group IB Phospholipases A2 (PLA2s) are a subclass of phospholipases A2, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IB PLA2s are secreted enzymes that require calcium ions for their activity and have a low molecular weight. They are produced by various tissues and cells, including pancreas, liver, and immune cells, and play important roles in various biological processes such as inflammation, host defense, and lipid metabolism. Group IB PLA2s have been implicated in several pathological conditions, including atherosclerosis, arthritis, and neurodegenerative diseases.

"Dominica" is a country and not a medical term. It is an island nation located in the Caribbean Sea, known for its lush rainforests, beautiful beaches, and natural hot springs. If you are looking for medical definitions, I would be happy to help with that. Could you please provide more information or clarify your question?

An insulin receptor is a transmembrane protein found on the surface of cells, primarily in the liver, muscle, and adipose tissue. It plays a crucial role in regulating glucose metabolism in the body. When insulin binds to its receptor, it triggers a series of intracellular signaling events that promote the uptake and utilization of glucose by cells, as well as the storage of excess glucose as glycogen or fat.

Insulin receptors are composed of two extracellular alpha subunits and two transmembrane beta subunits, which are linked together by disulfide bonds. The binding of insulin to the alpha subunits activates the tyrosine kinase activity of the beta subunits, leading to the phosphorylation of intracellular proteins and the initiation of downstream signaling pathways.

Abnormalities in insulin receptor function or number can contribute to the development of insulin resistance and type 2 diabetes.

Glycosylated Hemoglobin A, also known as Hemoglobin A1c or HbA1c, is a form of hemoglobin that is bound to glucose. It is formed in a non-enzymatic glycation reaction with glucose in the blood. The amount of this hemoglobin present in the blood is proportional to the average plasma glucose concentration over the previous 8-12 weeks, making it a useful indicator for monitoring long-term blood glucose control in people with diabetes mellitus.

In other words, HbA1c reflects the integrated effects of glucose regulation over time and is an important clinical marker for assessing glycemic control and risk of diabetic complications. The normal range for HbA1c in individuals without diabetes is typically less than 5.7%, while a value greater than 6.5% is indicative of diabetes.

Hypoglycemia is a medical condition characterized by an abnormally low level of glucose (sugar) in the blood. Generally, hypoglycemia is defined as a blood glucose level below 70 mg/dL (3.9 mmol/L), although symptoms may not occur until the blood sugar level falls below 55 mg/dL (3.0 mmol/L).

Hypoglycemia can occur in people with diabetes who are taking insulin or medications that increase insulin production, as well as those with certain medical conditions such as hormone deficiencies, severe liver illnesses, or disorders of the adrenal glands. Symptoms of hypoglycemia include sweating, shaking, confusion, rapid heartbeat, and in severe cases, loss of consciousness or seizures.

Hypoglycemia is typically treated by consuming fast-acting carbohydrates such as fruit juice, candy, or glucose tablets to rapidly raise blood sugar levels. If left untreated, hypoglycemia can lead to serious complications, including brain damage and even death.

Body composition refers to the relative proportions of different components that make up a person's body, including fat mass, lean muscle mass, bone mass, and total body water. It is an important measure of health and fitness, as changes in body composition can indicate shifts in overall health status. For example, an increase in fat mass and decrease in lean muscle mass can be indicative of poor nutrition, sedentary behavior, or certain medical conditions.

There are several methods for measuring body composition, including:

1. Bioelectrical impedance analysis (BIA): This method uses low-level electrical currents to estimate body fat percentage based on the conductivity of different tissues.
2. Dual-energy X-ray absorptiometry (DXA): This method uses low-dose X-rays to measure bone density and body composition, including lean muscle mass and fat distribution.
3. Hydrostatic weighing: This method involves submerging a person in water and measuring their weight underwater to estimate body density and fat mass.
4. Air displacement plethysmography (ADP): This method uses air displacement to measure body volume and density, which can be used to estimate body composition.

Understanding body composition can help individuals make informed decisions about their health and fitness goals, as well as provide valuable information for healthcare providers in the management of chronic diseases such as obesity, diabetes, and heart disease.

The glucose clamp technique is a method used in medical research, particularly in the study of glucose metabolism and insulin action. It's a controlled procedure that aims to maintain a steady state of plasma glucose concentration in an individual for a specific period.

In this technique, a continuous infusion of glucose is administered intravenously at a variable rate to balance the amount of glucose being removed from the circulation (for example, by insulin-stimulated uptake in muscle and fat tissue). This creates a "clamp" of stable plasma glucose concentration.

The rate of glucose infusion is adjusted according to frequent measurements of blood glucose levels, typically every 5 to 10 minutes, to keep the glucose level constant. The glucose clamp technique allows researchers to study how different factors, such as various doses of insulin or other drugs, affect glucose metabolism under standardized conditions.

There are two primary types of glucose clamps: the hyperglycemic clamp and the euglycemic clamp. The former aims to raise and maintain plasma glucose at a higher-than-normal level, while the latter maintains plasma glucose at a normal, euglycemic level.

Verrucomicrobia is a phylum of bacteria that includes both free-living and symbiotic species. These bacteria are characterized by their unique cell wall structure, which contains a specific type of polysaccharide called Verrucomicrobial polysaccharides. They are widely distributed in various environments, including soil, freshwater, marine habitats, and the guts of animals. Some members of this phylum have been found to play important roles in biogeochemical cycles and in host-associated microbiomes. However, a medical definition of Verrucomicrobia is not commonly used as they are not typically associated with specific human diseases or medical conditions.

Proinsulin is the precursor protein to insulin, produced in the beta cells of the pancreas. It has a molecular weight of around 9,000 daltons and is composed of three distinct regions: the A-chain, the B-chain, and the C-peptide. The A-chain and B-chain are linked together by disulfide bonds and will eventually become the insulin molecule after a series of enzymatic cleavages. The C-peptide is removed during this process and is released into the bloodstream in equimolar amounts to insulin. Proinsulin levels can be measured in the blood and are sometimes used as a marker for beta cell function in certain clinical settings, such as diagnosing or monitoring insulinoma (a tumor of the pancreas that produces insulin) or assessing the risk of diabetes-related complications.

Insulin Receptor Substrate (IRS) proteins are a family of cytoplasmic signaling proteins that play a crucial role in the insulin signaling pathway. There are four main isoforms in humans, namely IRS-1, IRS-2, IRS-3, and IRS-4, which contain several conserved domains for interacting with various signaling molecules.

When insulin binds to its receptor, the intracellular tyrosine kinase domain of the receptor becomes activated and phosphorylates specific tyrosine residues on IRS proteins. This leads to the recruitment and activation of downstream effectors, such as PI3K and Grb2/SOS, which ultimately result in metabolic responses (e.g., glucose uptake, glycogen synthesis) and mitogenic responses (e.g., cell proliferation, differentiation).

Dysregulation of the IRS-mediated insulin signaling pathway has been implicated in several pathological conditions, including insulin resistance, type 2 diabetes, and certain types of cancer.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Hyperlipidemias are a group of disorders characterized by an excess of lipids (fats) or lipoproteins in the blood. These include elevated levels of cholesterol, triglycerides, or both. Hyperlipidemias can be inherited (primary) or caused by other medical conditions (secondary). They are a significant risk factor for developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

There are two main types of lipids that are commonly measured in the blood: low-density lipoprotein (LDL) cholesterol, often referred to as "bad" cholesterol, and high-density lipoprotein (HDL) cholesterol, known as "good" cholesterol. High levels of LDL cholesterol can lead to the formation of plaques in the arteries, which can narrow or block them and increase the risk of heart attack or stroke. On the other hand, high levels of HDL cholesterol are protective because they help remove LDL cholesterol from the bloodstream.

Triglycerides are another type of lipid that can be measured in the blood. Elevated triglyceride levels can also contribute to the development of cardiovascular disease, particularly when combined with high LDL cholesterol and low HDL cholesterol levels.

Hyperlipidemias are typically diagnosed through a blood test that measures the levels of various lipids and lipoproteins in the blood. Treatment may include lifestyle changes, such as following a healthy diet, getting regular exercise, losing weight, and quitting smoking, as well as medication to lower lipid levels if necessary.

The postprandial period is the time frame following a meal, during which the body is engaged in the process of digestion, absorption, and assimilation of nutrients. In a medical context, this term generally refers to the few hours after eating when the body is responding to the ingested food, particularly in terms of changes in metabolism and insulin levels.

The postprandial period can be of specific interest in the study and management of conditions such as diabetes, where understanding how the body handles glucose during this time can inform treatment decisions and strategies for maintaining healthy blood sugar levels.

Intra-abdominal fat, also known as visceral fat, is the fat that is stored within the abdominal cavity and surrounds the internal organs such as the liver, pancreas, and intestines. It's different from subcutaneous fat, which is the fat found just under the skin. Intra-abdominal fat is metabolically active and has been linked to an increased risk of various health conditions, including type 2 diabetes, heart disease, high blood pressure, and stroke. The accumulation of intra-abdominal fat can be influenced by factors such as diet, physical activity, genetics, and age. Waist circumference and imaging tests, such as CT scans and MRIs, are commonly used to measure intra-abdominal fat.

I'm sorry for any confusion, but "Rats, Zucker" is not a standard medical term or abbreviation in human medicine. It seems to be an incorrect combination of two terms from the field of laboratory animal science.

1. "Rats" are commonly used laboratory animals.
2. "Zucker" is a surname and also refers to a strain of laboratory rats, specifically the Zucker Diabetic Fatty (ZDF) rat, which is a model for studying type 2 diabetes mellitus.

If you have any questions related to human medicine or healthcare, I would be happy to help clarify those for you.

"Ideal Body Weight" is a term that has been used in medicine to describe an approximate weight range that is considered healthy for a person's height and build. However, it's important to note that there is no universally accepted definition of "Ideal Body Weight," and different methods can yield different results.

One commonly used method to estimate Ideal Body Weight is the Hamwi method, which suggests the following formulae:

* For men: IBW = 106 pounds for the first 5 feet of height + 6 pounds for each additional inch over 5 feet.
* For women: IBW = 100 pounds for the first 5 feet of height + 5 pounds for each additional inch over 5 feet.

Another method is the Devine formula, which takes into account a person's frame size and suggests the following formulae:

* For men with small frames: IBW = (height in inches - 60) x 13.2
* For men with medium frames: IBW = (height in inches - 60) x 12.8
* For men with large frames: IBW = (height in inches - 60) x 12.3
* For women with small frames: IBW = (height in inches - 60) x 10.9
* For women with medium frames: IBW = (height in inches - 60) x 10.5
* For women with large frames: IBW = (height in inches - 60) x 9.8

It's important to note that these methods are only estimates and may not be accurate for everyone, especially those who have a significant amount of muscle mass or body fat. Ultimately, the most important factor is to maintain a healthy body composition, with a balance between lean muscle mass and body fat, rather than focusing solely on achieving a specific Ideal Body Weight.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Glucose Transporter Type 3 (GLUT3) is defined in medical terms as a specific type of glucose transporter protein, also known as solute carrier family 2, member 1 (SLC2A1). It is primarily found in the membranes of neurons and plays a crucial role in facilitating the transport of glucose from the extracellular space into the intracellular compartment of these cells. GLUT3 is notable for its high affinity for glucose, allowing it to effectively transport this essential energy source even under conditions of low glucose concentration. Its presence in neurons is particularly important, as these cells have a high demand for glucose to support their metabolic needs and maintain proper function.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Dyslipidemia is a condition characterized by an abnormal amount of cholesterol and/or triglycerides in the blood. It can be caused by genetic factors, lifestyle habits such as poor diet and lack of exercise, or other medical conditions such as diabetes or hypothyroidism.

There are several types of dyslipidemias, including:

1. Hypercholesterolemia: This is an excess of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood. High levels of LDL cholesterol can lead to the formation of plaque in the arteries, increasing the risk of heart disease and stroke.
2. Hypertriglyceridemia: This is an excess of triglycerides, a type of fat found in the blood, which can also contribute to the development of plaque in the arteries.
3. Mixed dyslipidemia: This is a combination of high LDL cholesterol and high triglycerides.
4. Low high-density lipoprotein (HDL) cholesterol: HDL cholesterol, also known as "good" cholesterol, helps remove LDL cholesterol from the blood. Low levels of HDL cholesterol can increase the risk of heart disease and stroke.

Dyslipidemias often do not cause any symptoms but can be detected through a blood test that measures cholesterol and triglyceride levels. Treatment typically involves lifestyle changes such as eating a healthy diet, getting regular exercise, and quitting smoking. In some cases, medication may also be necessary to lower cholesterol or triglyceride levels.

The term "body constitution" is often used in traditional systems of medicine, such as Traditional Chinese Medicine (TCM) and Ayurveda. It refers to the unique combination of physical and psychological characteristics that make up an individual's inherent nature and predisposition to certain health conditions. In TCM, for example, a person's body constitution may be classified as being predominantly hot, cold, damp, or dry, which can influence their susceptibility to certain diseases and their response to treatment. Similarly, in Ayurveda, an individual's constitution is determined by the balance of three fundamental energies or doshas: Vata, Pitta, and Kapha. Understanding a person's body constitution is thought to be essential for developing a personalized approach to healthcare that addresses their unique needs and tendencies. However, it should be noted that this concept is not widely recognized in modern Western medicine.

Food hypersensitivity is an umbrella term that encompasses both immunologic and non-immunologic adverse reactions to food. It is also known as "food allergy" or "food intolerance." Food hypersensitivity occurs when the body's immune system or digestive system reacts negatively to a particular food or food component.

Immunologic food hypersensitivity, commonly referred to as a food allergy, involves an immune response mediated by immunoglobulin E (IgE) antibodies. Upon ingestion of the offending food, IgE antibodies bind to the food antigens and trigger the release of histamine and other chemical mediators from mast cells and basophils, leading to symptoms such as hives, swelling, itching, difficulty breathing, or anaphylaxis.

Non-immunologic food hypersensitivity, on the other hand, does not involve the immune system. Instead, it is caused by various mechanisms, including enzyme deficiencies, pharmacological reactions, and metabolic disorders. Examples of non-immunologic food hypersensitivities include lactose intolerance, gluten sensitivity, and histamine intolerance.

It's important to note that the term "food hypersensitivity" is often used interchangeably with "food allergy," but it has a broader definition that includes both immunologic and non-immunologic reactions.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

"Energy intake" is a medical term that refers to the amount of energy or calories consumed through food and drink. It is an important concept in the study of nutrition, metabolism, and energy balance, and is often used in research and clinical settings to assess an individual's dietary habits and health status.

Energy intake is typically measured in kilocalories (kcal) or joules (J), with one kcal equivalent to approximately 4.184 J. The recommended daily energy intake varies depending on factors such as age, sex, weight, height, physical activity level, and overall health status.

It's important to note that excessive energy intake, particularly when combined with a sedentary lifestyle, can lead to weight gain and an increased risk of chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease. On the other hand, inadequate energy intake can lead to malnutrition, decreased immune function, and other health problems. Therefore, it's essential to maintain a balanced energy intake that meets individual nutritional needs while promoting overall health and well-being.

Lactose is a disaccharide, a type of sugar, that is naturally found in milk and dairy products. It is made up of two simple sugars, glucose and galactose, linked together. In order for the body to absorb and use lactose, it must be broken down into these simpler sugars by an enzyme called lactase, which is produced in the lining of the small intestine.

People who have a deficiency of lactase are unable to fully digest lactose, leading to symptoms such as bloating, diarrhea, and abdominal cramps, a condition known as lactose intolerance.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Glycolysis is a fundamental metabolic pathway that occurs in the cytoplasm of cells, consisting of a series of biochemical reactions. It's the process by which a six-carbon glucose molecule is broken down into two three-carbon pyruvate molecules. This process generates a net gain of two ATP molecules (the main energy currency in cells), two NADH molecules, and two water molecules.

Glycolysis can be divided into two stages: the preparatory phase (or 'energy investment' phase) and the payoff phase (or 'energy generation' phase). During the preparatory phase, glucose is phosphorylated twice to form glucose-6-phosphate and then converted to fructose-1,6-bisphosphate. These reactions consume two ATP molecules but set up the subsequent breakdown of fructose-1,6-bisphosphate into triose phosphates in the payoff phase. In this second stage, each triose phosphate is further oxidized and degraded to produce one pyruvate molecule, one NADH molecule, and one ATP molecule through substrate-level phosphorylation.

Glycolysis does not require oxygen to proceed; thus, it can occur under both aerobic (with oxygen) and anaerobic (without oxygen) conditions. In the absence of oxygen, the pyruvate produced during glycolysis is further metabolized through fermentation pathways such as lactic acid fermentation or alcohol fermentation to regenerate NAD+, which is necessary for glycolysis to continue.

In summary, glycolysis is a crucial process in cellular energy metabolism, allowing cells to convert glucose into ATP and other essential molecules while also serving as a starting point for various other biochemical pathways.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Pregnancy complications refer to any health problems that arise during pregnancy which can put both the mother and the baby at risk. These complications may occur at any point during the pregnancy, from conception until childbirth. Some common pregnancy complications include:

1. Gestational diabetes: a type of diabetes that develops during pregnancy in women who did not have diabetes before becoming pregnant.
2. Preeclampsia: a pregnancy complication characterized by high blood pressure and damage to organs such as the liver or kidneys.
3. Placenta previa: a condition where the placenta covers the cervix, which can cause bleeding and may require delivery via cesarean section.
4. Preterm labor: when labor begins before 37 weeks of gestation, which can lead to premature birth and other complications.
5. Intrauterine growth restriction (IUGR): a condition where the fetus does not grow at a normal rate inside the womb.
6. Multiple pregnancies: carrying more than one baby, such as twins or triplets, which can increase the risk of premature labor and other complications.
7. Rh incompatibility: a condition where the mother's blood type is different from the baby's, which can cause anemia and jaundice in the newborn.
8. Pregnancy loss: including miscarriage, stillbirth, or ectopic pregnancy, which can be emotionally devastating for the parents.

It is important to monitor pregnancy closely and seek medical attention promptly if any concerning symptoms arise. With proper care and management, many pregnancy complications can be treated effectively, reducing the risk of harm to both the mother and the baby.

Orthostatic hypotension is a type of low blood pressure that occurs when you stand up from a sitting or lying position. The drop in blood pressure causes a brief period of lightheadedness or dizziness, and can even cause fainting in some cases. This condition is also known as postural hypotension.

Orthostatic hypotension is caused by a rapid decrease in blood pressure when you stand up, which reduces the amount of blood that reaches your brain. Normally, when you stand up, your body compensates for this by increasing your heart rate and constricting blood vessels to maintain blood pressure. However, if these mechanisms fail or are impaired, orthostatic hypotension can occur.

Orthostatic hypotension is more common in older adults, but it can also affect younger people who have certain medical conditions or take certain medications. Some of the risk factors for orthostatic hypotension include dehydration, prolonged bed rest, pregnancy, diabetes, heart disease, Parkinson's disease, and certain neurological disorders.

If you experience symptoms of orthostatic hypotension, it is important to seek medical attention. Your healthcare provider can perform tests to determine the underlying cause of your symptoms and recommend appropriate treatment options. Treatment may include lifestyle changes, such as increasing fluid intake, avoiding alcohol and caffeine, and gradually changing positions from lying down or sitting to standing up. In some cases, medication may be necessary to manage orthostatic hypotension.

Diagnostic techniques in endocrinology are methods used to identify and diagnose various endocrine disorders. These techniques include:

1. Hormone measurements: Measuring the levels of hormones in blood, urine, or saliva can help identify excess or deficiency of specific hormones. This is often done through immunoassays, which use antibodies to detect and quantify hormones.

2. Provocative and suppression tests: These tests involve administering a medication that stimulates or suppresses the release of a particular hormone. Blood samples are taken before and after the medication is given to assess changes in hormone levels. Examples include the glucose tolerance test for diabetes, the ACTH stimulation test for adrenal insufficiency, and the thyroid suppression test for hyperthyroidism.

3. Imaging studies: Various imaging techniques can be used to visualize endocrine glands and identify structural abnormalities such as tumors or nodules. These include X-rays, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine scans using radioactive tracers.

4. Genetic testing: Molecular genetic tests can be used to identify genetic mutations associated with certain endocrine disorders, such as multiple endocrine neoplasia type 1 or 2, or congenital adrenal hyperplasia.

5. Biopsy: In some cases, a small sample of tissue may be removed from an endocrine gland for microscopic examination (biopsy). This can help confirm the presence of cancer or other abnormalities.

6. Functional tests: These tests assess the ability of an endocrine gland to produce and secrete hormones in response to various stimuli. Examples include the glucagon stimulation test for gastrinoma and the calcium infusion test for hyperparathyroidism.

7. Wearable monitoring devices: Continuous glucose monitoring systems (CGMS) are wearable devices that measure interstitial glucose levels continuously over several days, providing valuable information about glycemic control in patients with diabetes.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Glucose dehydrogenases (GDHs) are a group of enzymes that catalyze the oxidation of glucose to generate gluconic acid or glucuronic acid. This reaction involves the transfer of electrons from glucose to an electron acceptor, most commonly nicotinamide adenine dinucleotide (NAD+) or phenazine methosulfate (PMS).

GDHs are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They play important roles in different biological processes, such as glucose metabolism, energy production, and detoxification of harmful substances. Based on their cofactor specificity, GDHs can be classified into two main types: NAD(P)-dependent GDHs and PQQ-dependent GDHs.

NAD(P)-dependent GDHs use NAD+ or NADP+ as a cofactor to oxidize glucose to glucono-1,5-lactone, which is then hydrolyzed to gluconic acid by an accompanying enzyme. These GDHs are involved in various metabolic pathways, such as the Entner-Doudoroff pathway and the oxidative pentose phosphate pathway.

PQQ-dependent GDHs, on the other hand, use pyrroloquinoline quinone (PQQ) as a cofactor to catalyze the oxidation of glucose to gluconic acid directly. These GDHs are typically found in bacteria and play a role in energy production and detoxification.

Overall, glucose dehydrogenases are essential enzymes that contribute to the maintenance of glucose homeostasis and energy balance in living organisms.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Fetal macrosomia is a medical condition where the fetus in the womb is significantly larger than normal. While there is no consensus on an exact weight that defines macrosomia, it is generally defined as a fetus with an estimated weight of 4,000 grams (8 pounds 13 ounces) or more at birth.

Fetal macrosomia can be caused by several factors, including maternal diabetes, post-term pregnancy, excessive weight gain during pregnancy, and prior history of macrosomic infants. Macrosomic infants are at an increased risk for complications during labor and delivery, such as shoulder dystocia, birth injuries, and hypoglycemia.

It is important for healthcare providers to monitor fetal growth carefully during pregnancy, particularly in women who have risk factors for macrosomia. Regular prenatal care, including ultrasound measurements of the fetus, can help identify cases of fetal macrosomia and allow for appropriate management and delivery planning.

Metabolic diseases are a group of disorders caused by abnormal chemical reactions in your body's cells. These reactions are part of a complex process called metabolism, where your body converts the food you eat into energy.

There are several types of metabolic diseases, but they most commonly result from:

1. Your body not producing enough of certain enzymes that are needed to convert food into energy.
2. Your body producing too much of certain substances or toxins, often due to a genetic disorder.

Examples of metabolic diseases include phenylketonuria (PKU), diabetes, and gout. PKU is a rare condition where the body cannot break down an amino acid called phenylalanine, which can lead to serious health problems if left untreated. Diabetes is a common disorder that occurs when your body doesn't produce enough insulin or can't properly use the insulin it produces, leading to high blood sugar levels. Gout is a type of arthritis that results from too much uric acid in the body, which can form crystals in the joints and cause pain and inflammation.

Metabolic diseases can be inherited or acquired through environmental factors such as diet or lifestyle choices. Many metabolic diseases can be managed with proper medical care, including medication, dietary changes, and lifestyle modifications.

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

Ectopic hormone production refers to the situation when a hormone is produced in an unusual location or by a type of cell that does not typically produce it. This can occur due to various reasons such as genetic mutations, cancer, or other medical conditions. The ectopic hormone production can lead to hormonal imbalances and related symptoms, as the regulation of hormones in the body becomes disrupted.

For example, in some cases of lung cancer, the tumor cells may produce adrenocorticotropic hormone (ACTH), which is typically produced by the pituitary gland. This ectopic ACTH production can result in Cushing's syndrome, a condition characterized by symptoms such as weight gain, muscle weakness, and high blood pressure.

It's important to note that ectopic hormone production is relatively rare and usually occurs in the context of specific medical conditions. If you suspect that you or someone else may have ectopic hormone production, it's important to seek medical attention from a healthcare professional who can provide appropriate evaluation and treatment.

Diabetes complications refer to a range of health issues that can develop as a result of poorly managed diabetes over time. These complications can affect various parts of the body and can be classified into two main categories: macrovascular and microvascular.

Macrovascular complications include:

* Cardiovascular disease (CVD): People with diabetes are at an increased risk of developing CVD, including coronary artery disease, peripheral artery disease, and stroke.
* Peripheral arterial disease (PAD): This condition affects the blood vessels that supply oxygen and nutrients to the limbs, particularly the legs. PAD can cause pain, numbness, or weakness in the legs and may increase the risk of amputation.

Microvascular complications include:

* Diabetic neuropathy: This is a type of nerve damage that can occur due to prolonged high blood sugar levels. It commonly affects the feet and legs, causing symptoms such as numbness, tingling, or pain.
* Diabetic retinopathy: This condition affects the blood vessels in the eye and can cause vision loss or blindness if left untreated.
* Diabetic nephropathy: This is a type of kidney damage that can occur due to diabetes. It can lead to kidney failure if not managed properly.

Other complications of diabetes include:

* Increased risk of infections, particularly skin and urinary tract infections.
* Slow healing of wounds, which can increase the risk of infection and amputation.
* Gum disease and other oral health problems.
* Hearing impairment.
* Sexual dysfunction.

Preventing or managing diabetes complications involves maintaining good blood sugar control, regular monitoring of blood glucose levels, following a healthy lifestyle, and receiving routine medical care.

Lactase is a specific enzyme that is produced by the cells lining the small intestine in humans and other mammals. Its primary function is to break down lactose, a sugar found in milk and dairy products, into simpler sugars called glucose and galactose, which can then be absorbed into the bloodstream.

Lactase is most active during infancy and early childhood, when breast milk or formula is the primary source of nutrition. However, in some individuals, lactase production decreases after weaning, leading to a condition called lactose intolerance. Lactose intolerant individuals have difficulty digesting lactose, which can result in various gastrointestinal symptoms such as bloating, cramps, diarrhea, and gas.

Supplemental lactase enzymes are available over the counter to help lactose-intolerant individuals digest dairy products more comfortably.

Malabsorption syndromes refer to a group of disorders in which the small intestine is unable to properly absorb nutrients from food, leading to various gastrointestinal and systemic symptoms. This can result from a variety of underlying conditions, including:

1. Mucosal damage: Conditions such as celiac disease, inflammatory bowel disease (IBD), or bacterial overgrowth that cause damage to the lining of the small intestine, impairing nutrient absorption.
2. Pancreatic insufficiency: A lack of digestive enzymes produced by the pancreas can lead to poor breakdown and absorption of fats, proteins, and carbohydrates. Examples include chronic pancreatitis or cystic fibrosis.
3. Bile acid deficiency: Insufficient bile acids, which are necessary for fat emulsification and absorption, can result in steatorrhea (fatty stools) and malabsorption. This may occur due to liver dysfunction, gallbladder removal, or ileal resection.
4. Motility disorders: Abnormalities in small intestine motility can affect nutrient absorption, as seen in conditions like gastroparesis, intestinal pseudo-obstruction, or scleroderma.
5. Structural abnormalities: Congenital or acquired structural defects of the small intestine, such as short bowel syndrome, may lead to malabsorption.
6. Infections: Certain bacterial, viral, or parasitic infections can cause transient malabsorption by damaging the intestinal mucosa or altering gut flora.

Symptoms of malabsorption syndromes may include diarrhea, steatorrhea, bloating, abdominal cramps, weight loss, and nutrient deficiencies. Diagnosis typically involves a combination of clinical evaluation, laboratory tests, radiologic imaging, and sometimes endoscopic procedures to identify the underlying cause. Treatment is focused on addressing the specific etiology and providing supportive care to manage symptoms and prevent complications.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Streptozocin is an antibiotic and antineoplastic agent, which is primarily used in the treatment of metastatic pancreatic islet cell carcinoma (a type of pancreatic cancer). It is a naturally occurring compound produced by the bacterium Streptomyces achromogenes.

Medically, streptozocin is classified as an alkylating agent due to its ability to interact with DNA and RNA, disrupting the growth and multiplication of malignant cells. However, it can also have adverse effects on non-cancerous cells, particularly in the kidneys and pancreas, leading to potential side effects such as nephrotoxicity (kidney damage) and hyperglycemia (high blood sugar).

It is essential that streptozocin be administered under the supervision of a healthcare professional, who can monitor its effectiveness and potential side effects. The drug is typically given through intravenous infusion, with the dosage and duration tailored to individual patient needs and treatment responses.

Lactic acid, also known as 2-hydroxypropanoic acid, is a chemical compound that plays a significant role in various biological processes. In the context of medicine and biochemistry, lactic acid is primarily discussed in relation to muscle metabolism and cellular energy production. Here's a medical definition for lactic acid:

Lactic acid (LA): A carboxylic acid with the molecular formula C3H6O3 that plays a crucial role in anaerobic respiration, particularly during strenuous exercise or conditions of reduced oxygen availability. It is formed through the conversion of pyruvate, catalyzed by the enzyme lactate dehydrogenase (LDH), when there is insufficient oxygen to complete the final step of cellular respiration in the Krebs cycle. The accumulation of lactic acid can lead to acidosis and muscle fatigue. Additionally, lactic acid serves as a vital intermediary in various metabolic pathways and is involved in the production of glucose through gluconeogenesis in the liver.

I'm sorry for any confusion, but "Japan" is not a medical term. Japan is the name of a country, officially known as Nippon-koku or Nihon-koku in Japanese, and is located in East Asia. It is an island nation in the Pacific Ocean with a population of about 126 million people.

If you have any medical questions or terms that you would like me to define, please let me know!

Metformin is a type of biguanide antihyperglycemic agent used primarily in the treatment of type 2 diabetes mellitus. It works by decreasing glucose production in the liver, reducing glucose absorption in the gut, and increasing insulin sensitivity in muscle and fat tissue. By lowering both basal and postprandial plasma glucose levels, metformin helps to control blood sugar levels and improve glycemic control. It is also used off-label for various other indications such as polycystic ovary syndrome (PCOS) and gestational diabetes. Common side effects include diarrhea, nausea, vomiting, and abdominal discomfort. Lactic acidosis is a rare but serious side effect that requires immediate medical attention.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

The term "Area Under Curve" (AUC) is commonly used in the medical field, particularly in the analysis of diagnostic tests or pharmacokinetic studies. The AUC refers to the mathematical calculation of the area between a curve and the x-axis in a graph, typically representing a concentration-time profile.

In the context of diagnostic tests, the AUC is used to evaluate the performance of a test by measuring the entire two-dimensional area underneath the receiver operating characteristic (ROC) curve, which plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold settings. The AUC ranges from 0 to 1, where a higher AUC indicates better test performance:

* An AUC of 0.5 suggests that the test is no better than chance.
* An AUC between 0.7 and 0.8 implies moderate accuracy.
* An AUC between 0.8 and 0.9 indicates high accuracy.
* An AUC greater than 0.9 signifies very high accuracy.

In pharmacokinetic studies, the AUC is used to assess drug exposure over time by calculating the area under a plasma concentration-time curve (AUC(0-t) or AUC(0-\∞)) following drug administration. This value can help determine dosing regimens and evaluate potential drug interactions:

* AUC(0-t): Represents the area under the plasma concentration-time curve from time zero to the last measurable concentration (t).
* AUC(0-\∞): Refers to the area under the plasma concentration-time curve from time zero to infinity, which estimates total drug exposure.

Maternal nutritional physiological phenomena refer to the various changes and processes that occur in a woman's body during pregnancy, lactation, and postpartum periods to meet the increased nutritional demands and support the growth and development of the fetus or infant. These phenomena involve complex interactions between maternal nutrition, hormonal regulation, metabolism, and physiological functions to ensure optimal pregnancy outcomes and offspring health.

Examples of maternal nutritional physiological phenomena include:

1. Adaptations in maternal nutrient metabolism: During pregnancy, the mother's body undergoes various adaptations to increase the availability of essential nutrients for fetal growth and development. For instance, there are increased absorption and utilization of glucose, amino acids, and fatty acids, as well as enhanced storage of glycogen and lipids in maternal tissues.
2. Placental transfer of nutrients: The placenta plays a crucial role in facilitating the exchange of nutrients between the mother and fetus. It selectively transports essential nutrients such as glucose, amino acids, fatty acids, vitamins, and minerals from the maternal circulation to the fetal compartment while removing waste products.
3. Maternal weight gain: Pregnant women typically experience an increase in body weight due to the growth of the fetus, placenta, amniotic fluid, and maternal tissues such as the uterus and breasts. Adequate gestational weight gain is essential for ensuring optimal pregnancy outcomes and reducing the risk of adverse perinatal complications.
4. Changes in maternal hormonal regulation: Pregnancy is associated with significant changes in hormonal profiles, including increased levels of estrogen, progesterone, human chorionic gonadotropin (hCG), and other hormones that regulate various physiological functions such as glucose metabolism, appetite regulation, and maternal-fetal immune tolerance.
5. Lactation: Following childbirth, the mother's body undergoes further adaptations to support lactation and breastfeeding. This involves the production and secretion of milk, which contains essential nutrients and bioactive components that promote infant growth, development, and immunity.
6. Nutrient requirements: Pregnancy and lactation increase women's nutritional demands for various micronutrients such as iron, calcium, folate, vitamin D, and omega-3 fatty acids. Meeting these increased nutritional needs is crucial for ensuring optimal pregnancy outcomes and supporting maternal health during the postpartum period.

Understanding these physiological adaptations and their implications for maternal and fetal health is essential for developing evidence-based interventions to promote positive pregnancy outcomes, reduce the risk of adverse perinatal complications, and support women's health throughout the reproductive lifespan.

Polycyctic Ovary Syndrome (PCOS) is a complex endocrine-metabolic disorder characterized by the presence of hyperandrogenism (excess male hormones), ovulatory dysfunction, and polycystic ovaries. The Rotterdam criteria are commonly used for diagnosis, which require at least two of the following three features:

1. Oligo- or anovulation (irregular menstrual cycles)
2. Clinical and/or biochemical signs of hyperandrogenism (e.g., hirsutism, acne, or high levels of androgens in the blood)
3. Polycystic ovaries on ultrasound examination (presence of 12 or more follicles measuring 2-9 mm in diameter, or increased ovarian volume >10 mL)

The exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic and environmental factors. Insulin resistance and obesity are common findings in women with PCOS, which can contribute to the development of metabolic complications such as type 2 diabetes, dyslipidemia, and cardiovascular disease.

Management of PCOS typically involves a multidisciplinary approach that includes lifestyle modifications (diet, exercise, weight loss), medications to regulate menstrual cycles and reduce hyperandrogenism (e.g., oral contraceptives, metformin, anti-androgens), and fertility treatments if desired. Regular monitoring of metabolic parameters and long-term follow-up are essential for optimal management and prevention of complications.

Adipokines are hormones and signaling molecules produced by adipose tissue, which is composed of adipocytes (fat cells) and stromal vascular fraction (SVF) that includes preadipocytes, fibroblasts, immune cells, and endothelial cells. Adipokines play crucial roles in various biological processes such as energy metabolism, insulin sensitivity, inflammation, immunity, angiogenesis, and neuroendocrine regulation.

Some well-known adipokines include:

1. Leptin - regulates appetite, energy expenditure, and glucose homeostasis
2. Adiponectin - improves insulin sensitivity, reduces inflammation, and has anti-atherogenic properties
3. Resistin - impairs insulin sensitivity and is associated with obesity and type 2 diabetes
4. Tumor necrosis factor-alpha (TNF-α) - contributes to chronic low-grade inflammation in obesity, insulin resistance, and metabolic dysfunction
5. Interleukin-6 (IL-6) - involved in the regulation of energy metabolism, immune response, and inflammation
6. Plasminogen activator inhibitor-1 (PAI-1) - associated with cardiovascular risk by impairing fibrinolysis and promoting thrombosis
7. Visfatin - has insulin-mimetic properties and contributes to inflammation and insulin resistance
8. Chemerin - regulates adipogenesis, energy metabolism, and immune response
9. Apelin - involved in the regulation of energy homeostasis, cardiovascular function, and fluid balance
10. Omentin - improves insulin sensitivity and has anti-inflammatory properties

The dysregulation of adipokine production and secretion is associated with various pathological conditions such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD), cancer, and neurodegenerative disorders.

The postpartum period refers to the time frame immediately following childbirth, typically defined as the first 6-12 weeks. During this time, significant physical and emotional changes occur as the body recovers from pregnancy and delivery. Hormone levels fluctuate dramatically, leading to various symptoms such as mood swings, fatigue, and breast engorgement. The reproductive system also undergoes significant changes, with the uterus returning to its pre-pregnancy size and shape, and the cervix closing.

It is essential to monitor physical and emotional health during this period, as complications such as postpartum depression, infection, or difficulty breastfeeding may arise. Regular check-ups with healthcare providers are recommended to ensure a healthy recovery and address any concerns. Additionally, proper rest, nutrition, and support from family and friends can help facilitate a smooth transition into this new phase of life.

11-Beta-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) is an enzyme that plays a crucial role in the metabolism of steroid hormones, particularly cortisol, in the body. Cortisol is a glucocorticoid hormone produced by the adrenal glands that helps regulate various physiological processes such as metabolism, immune response, and stress response.

11β-HSD1 is primarily expressed in liver, fat, and muscle tissues, where it catalyzes the conversion of cortisone to cortisol. Cortisone is a biologically inactive form of cortisol that is produced when cortisol levels are high, and it needs to be converted back to cortisol for the hormone to exert its effects.

By increasing the availability of active cortisol in these tissues, 11β-HSD1 has been implicated in several metabolic disorders, including obesity, insulin resistance, and type 2 diabetes. Inhibitors of 11β-HSD1 are currently being investigated as potential therapeutic agents for the treatment of these conditions.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

3T3-L1 cells are a widely used cell line in biomedical research, particularly in the study of adipocytes (fat cells) and adipose tissue. These cells are derived from mouse embryo fibroblasts and have the ability to differentiate into adipocytes under specific culture conditions.

When 3T3-L1 cells are exposed to a cocktail of hormones and growth factors, they undergo a process called adipogenesis, during which they differentiate into mature adipocytes. These differentiated cells exhibit many characteristics of fat cells, including the accumulation of lipid droplets, expression of adipocyte-specific genes and proteins, and the ability to respond to hormones such as insulin.

Researchers use 3T3-L1 cells to study various aspects of adipocyte biology, including the regulation of fat metabolism, the development of obesity and related metabolic disorders, and the effects of drugs or other compounds on adipose tissue function. However, it is important to note that because these cells are derived from mice, they may not always behave exactly the same way as human adipocytes, so results obtained using 3T3-L1 cells must be validated in human cell lines or animal models before they can be applied to human health.

Muscle proteins are a type of protein that are found in muscle tissue and are responsible for providing structure, strength, and functionality to muscles. The two major types of muscle proteins are:

1. Contractile proteins: These include actin and myosin, which are responsible for the contraction and relaxation of muscles. They work together to cause muscle movement by sliding along each other and shortening the muscle fibers.
2. Structural proteins: These include titin, nebulin, and desmin, which provide structural support and stability to muscle fibers. Titin is the largest protein in the human body and acts as a molecular spring that helps maintain the integrity of the sarcomere (the basic unit of muscle contraction). Nebulin helps regulate the length of the sarcomere, while desmin forms a network of filaments that connects adjacent muscle fibers together.

Overall, muscle proteins play a critical role in maintaining muscle health and function, and their dysregulation can lead to various muscle-related disorders such as muscular dystrophy, myopathies, and sarcopenia.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Hexokinase is an enzyme that plays a crucial role in the initial step of glucose metabolism, which is the phosphorylation of glucose to form glucose-6-phosphate. This reaction is the first step in most glucose catabolic pathways, including glycolysis, pentose phosphate pathway, and glycogen synthesis.

Hexokinase has a high affinity for glucose, meaning it can bind and phosphorylate glucose even at low concentrations. This property makes hexokinase an important regulator of glucose metabolism in cells. There are four isoforms of hexokinase (I-IV) found in different tissues, with hexokinase IV (also known as glucokinase) being primarily expressed in the liver and pancreas.

In summary, hexokinase is a vital enzyme involved in glucose metabolism, catalyzing the conversion of glucose to glucose-6-phosphate, and playing a crucial role in regulating cellular energy homeostasis.

Inborn errors of carbohydrate metabolism refer to genetic disorders that affect the body's ability to break down and process carbohydrates, which are sugars and starches that provide energy for the body. These disorders are caused by defects in enzymes or transport proteins that play a critical role in the metabolic pathways involved in carbohydrate metabolism.

There are several types of inborn errors of carbohydrate metabolism, including:

1. Galactosemia: This disorder affects the body's ability to metabolize the sugar galactose, which is found in milk and other dairy products. It is caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase.
2. Glycogen storage diseases: These disorders affect the body's ability to store and break down glycogen, which is a complex carbohydrate that serves as a source of energy for the body. There are several types of glycogen storage diseases, each caused by a deficiency in a different enzyme involved in glycogen metabolism.
3. Hereditary fructose intolerance: This disorder affects the body's ability to metabolize the sugar fructose, which is found in fruits and sweeteners. It is caused by a deficiency of the enzyme aldolase B.
4. Pentose phosphate pathway disorders: These disorders affect the body's ability to metabolize certain sugars and generate energy through the pentose phosphate pathway. They are caused by defects in enzymes involved in this pathway.

Symptoms of inborn errors of carbohydrate metabolism can vary widely depending on the specific disorder and its severity. Treatment typically involves dietary restrictions, supplementation with necessary enzymes or cofactors, and management of complications. In some cases, enzyme replacement therapy or even organ transplantation may be considered.

Hypertriglyceridemia is a medical condition characterized by an elevated level of triglycerides in the blood. Triglycerides are a type of fat (lipid) found in your blood that can increase the risk of developing heart disease, especially when levels are very high.

In general, hypertriglyceridemia is defined as having triglyceride levels greater than 150 milligrams per deciliter (mg/dL) of blood. However, the specific definition of hypertriglyceridemia may vary depending on individual risk factors and medical history.

Hypertriglyceridemia can be caused by a variety of factors, including genetics, obesity, physical inactivity, excessive alcohol consumption, and certain medications. In some cases, it may also be a secondary consequence of other medical conditions such as diabetes or hypothyroidism. Treatment for hypertriglyceridemia typically involves lifestyle modifications such as dietary changes, increased exercise, and weight loss, as well as medication if necessary.

Glucose-6-phosphate (G6P) is a vital intermediate compound in the metabolism of glucose, which is a simple sugar that serves as a primary source of energy for living organisms. G6P plays a critical role in both glycolysis and gluconeogenesis pathways, contributing to the regulation of blood glucose levels and energy production within cells.

In biochemistry, glucose-6-phosphate is defined as:

A hexose sugar phosphate ester formed by the phosphorylation of glucose at the 6th carbon atom by ATP in a reaction catalyzed by the enzyme hexokinase or glucokinase. This reaction is the first step in both glycolysis and glucose storage (glycogen synthesis) processes, ensuring that glucose can be effectively utilized for energy production or stored for later use.

G6P serves as a crucial metabolic branch point, leading to various pathways such as:

1. Glycolysis: In the presence of sufficient ATP and NAD+ levels, G6P is further metabolized through glycolysis to generate pyruvate, which enters the citric acid cycle for additional energy production in the form of ATP, NADH, and FADH2.
2. Gluconeogenesis: During periods of low blood glucose levels, G6P can be synthesized back into glucose through the gluconeogenesis pathway, primarily occurring in the liver and kidneys. This process helps maintain stable blood glucose concentrations and provides energy to cells when dietary intake is insufficient.
3. Pentose phosphate pathway (PPP): A portion of G6P can be shunted into the PPP, an alternative metabolic route that generates NADPH, ribose-5-phosphate for nucleotide synthesis, and erythrose-4-phosphate for aromatic amino acid production. The PPP is essential in maintaining redox balance within cells and supporting biosynthetic processes.

Overall, glucose-6-phosphate plays a critical role as a central metabolic intermediate, connecting various pathways to regulate energy homeostasis, redox balance, and biosynthesis in response to cellular demands and environmental cues.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

AMP-activated protein kinases (AMPK) are a group of heterotrimeric enzymes that play a crucial role in cellular energy homeostasis. They are composed of a catalytic subunit (α) and two regulatory subunits (β and γ). AMPK is activated under conditions of low energy charge, such as ATP depletion, hypoxia, or exercise, through an increase in the AMP:ATP ratio.

Once activated, AMPK phosphorylates and regulates various downstream targets involved in metabolic pathways, including glycolysis, fatty acid oxidation, and protein synthesis. This results in the inhibition of energy-consuming processes and the promotion of energy-producing processes, ultimately helping to restore cellular energy balance.

AMPK has been implicated in a variety of physiological processes, including glucose and lipid metabolism, autophagy, mitochondrial biogenesis, and inflammation. Dysregulation of AMPK activity has been linked to several diseases, such as diabetes, obesity, cancer, and neurodegenerative disorders. Therefore, AMPK is an attractive target for therapeutic interventions in these conditions.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Indirect calorimetry is a method used to estimate an individual's energy expenditure or metabolic rate. It does not directly measure the heat produced by the body, but instead calculates it based on the amount of oxygen consumed and carbon dioxide produced during respiration. The principle behind indirect calorimetry is that the body's energy production is closely related to its consumption of oxygen and production of carbon dioxide during cellular metabolism.

The most common application of indirect calorimetry is in measuring an individual's resting metabolic rate (RMR), which is the amount of energy required to maintain basic bodily functions while at rest. This measurement can be used to determine an individual's daily caloric needs and help guide weight loss or gain strategies, as well as assess nutritional status and health.

Indirect calorimetry can also be used in clinical settings to monitor the energy expenditure of critically ill patients, who may have altered metabolic rates due to illness or injury. This information can help healthcare providers optimize nutrition support and monitor recovery.

Overall, indirect calorimetry is a valuable tool for assessing an individual's energy needs and metabolic status in both healthy and clinical populations.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Postural Orthostatic Tachycardia Syndrome (POTS) is a condition characterized by an abnormally rapid heart rate (tachycardia) that occurs upon standing, leading to symptoms such as dizziness, lightheadedness, and fainting. The diagnostic criteria for POTS include:

1. A heart rate increase of 30 beats per minute or more within the first 10 minutes of standing or a heart rate of 120 beats per minute or more within the first 10 minutes of standing, measured by a heart rate monitor.
2. The presence of symptoms such as lightheadedness, dizziness, blurred vision, weakness, fatigue, headache, shortness of breath, or chest pain upon standing that are relieved by lying down.
3. Symptoms must be present for at least three months and occur in the absence of other medical conditions that could explain them.

POTS is thought to be caused by a dysfunction of the autonomic nervous system, which controls involuntary functions such as heart rate and blood pressure. Treatment may include lifestyle modifications, such as increasing fluid and salt intake, wearing compression stockings, and avoiding prolonged standing or sitting. Medications that help regulate blood pressure and heart rate may also be prescribed.

'Pregnancy in Diabetics' refers to the condition where an individual with pre-existing diabetes mellitus becomes pregnant. This can be further categorized into two types:

1. Pre-gestational diabetes: This is when a woman is diagnosed with diabetes before she becomes pregnant. It includes both Type 1 and Type 2 diabetes. Proper control of blood sugar levels prior to conception and during pregnancy is crucial to reduce the risk of complications for both the mother and the baby.

2. Gestational diabetes: This is when a woman develops high blood sugar levels during pregnancy, typically in the second or third trimester. While it usually resolves after delivery, women with gestational diabetes have a higher risk of developing Type 2 diabetes later in life. Proper management of gestational diabetes is essential to ensure a healthy pregnancy and reduce the risk of complications for both the mother and the baby.

Glucose phosphates are organic compounds that result from the reaction of glucose (a simple sugar) with phosphate groups. These compounds play a crucial role in various metabolic processes, particularly in energy metabolism within cells. The addition of phosphate groups to glucose makes it more reactive and enables it to undergo further reactions that lead to the formation of important molecules such as adenosine triphosphate (ATP), which is a primary source of energy for cellular functions.

One notable example of a glucose phosphate is glucose 1-phosphate, which is an intermediate in several metabolic pathways, including glycogenesis (the process of forming glycogen, a storage form of glucose) and glycolysis (the breakdown of glucose to release energy). Another example is glucose 6-phosphate, which is a key regulator of carbohydrate metabolism and serves as an important intermediate in the pentose phosphate pathway, a metabolic route that generates reducing equivalents (NADPH) and ribose sugars for nucleotide synthesis.

In summary, glucose phosphates are essential compounds in cellular metabolism, facilitating energy production, storage, and utilization.

Multiple Chemical Sensitivity (MCS), also known as Idiosyncratic Intolerance, is a chronic condition characterized by symptoms that the affected person attributes to low-level exposure to chemicals in the environment. These reactions are not part of a recognized allergic response and are often delayed in onset.

The American Academy of Allergy, Asthma & Immunology (AAAAI) defines MCS as: "A heightened sensitivity to chemicals that most people tolerate well... Symptoms can include headache, fatigue, difficulty concentrating, confusion, joint pain, and digestive disturbances."

However, it's important to note that the medical community has not reached a consensus on the definition, cause, or diagnosis of MCS. Some healthcare providers question its validity as a distinct medical entity due to lack of consistent scientific evidence supporting the relationship between exposure levels and symptoms.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Protein-kinase B, also known as AKT, is a group of intracellular proteins that play a crucial role in various cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration. The AKT family includes three isoforms: AKT1, AKT2, and AKT3, which are encoded by the genes PKBalpha, PKBbeta, and PKBgamma, respectively.

Proto-oncogene proteins c-AKT refer to the normal, non-mutated forms of these proteins that are involved in the regulation of cell growth and survival under physiological conditions. However, when these genes are mutated or overexpressed, they can become oncogenes, leading to uncontrolled cell growth and cancer development.

Activation of c-AKT occurs through a signaling cascade that begins with the binding of extracellular ligands such as insulin-like growth factor 1 (IGF-1) or epidermal growth factor (EGF) to their respective receptors on the cell surface. This triggers a series of phosphorylation events that ultimately lead to the activation of c-AKT, which then phosphorylates downstream targets involved in various cellular processes.

In summary, proto-oncogene proteins c-AKT are normal intracellular proteins that play essential roles in regulating cell growth and survival under physiological conditions. However, their dysregulation can contribute to cancer development and progression.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Resistin is a hormone-like substance that is primarily produced by adipose (fat) cells in mammals and has been implicated in the development of insulin resistance, which is a condition that can lead to type 2 diabetes. It is also known as "adipose tissue-specific secretory factor" or ADSF.

Resistin is thought to play a role in regulating glucose metabolism and insulin sensitivity by affecting the function of insulin-responsive cells, such as muscle and liver cells. In particular, resistin has been shown to interfere with the ability of insulin to stimulate glucose uptake in these cells, leading to reduced insulin sensitivity and increased blood glucose levels.

Resistin is found at higher levels in people who are overweight or obese, and its levels have been linked to the development of insulin resistance and type 2 diabetes. However, the exact role that resistin plays in these conditions is not fully understood, and more research is needed to determine its precise mechanisms of action and potential therapeutic uses.

Glucagon receptors are a type of G protein-coupled receptor found on the surface of cells in the body, particularly in the liver, fat, and muscle tissues. These receptors bind to the hormone glucagon, which is produced and released by the alpha cells of the pancreas in response to low blood sugar levels (hypoglycemia).

When glucagon binds to its receptor, it triggers a series of intracellular signaling events that lead to the breakdown of glycogen (a stored form of glucose) in the liver and the release of glucose into the bloodstream. This helps to raise blood sugar levels back to normal.

Glucagon receptors also play a role in regulating fat metabolism, as activation of these receptors in adipose tissue can stimulate the breakdown of triglycerides (a type of fat) into free fatty acids and glycerol, which can then be used as energy sources.

Abnormalities in glucagon receptor function or expression have been implicated in various metabolic disorders, including diabetes and obesity.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Cardiovascular deconditioning is a condition that results from a decrease in the body's ability to adapt to physical stress due to a lack of regular physical activity and exercise. This leads to changes in the cardiovascular system, including reduced blood volume, stroke volume, and maximal oxygen uptake (VO2 max), as well as increased heart rate and systolic blood pressure during exercise.

Physical deconditioning can occur in individuals who are bedridden, sedentary, or have undergone prolonged periods of inactivity due to illness, injury, or other factors. It is also a concern for astronauts who experience reduced physical activity and muscle atrophy during spaceflight.

Cardiovascular deconditioning can lead to decreased exercise tolerance, fatigue, shortness of breath, and an increased risk of cardiovascular disease. Regular exercise and physical activity are essential for maintaining cardiovascular fitness and preventing deconditioning.

Exercise tolerance is a term used to describe the ability of an individual to perform physical activity or exercise without experiencing symptoms such as shortness of breath, chest pain, or undue fatigue. It is often used as a measure of cardiovascular fitness and can be assessed through various tests, such as a stress test or a six-minute walk test. Exercise intolerance may indicate the presence of underlying medical conditions, such as heart disease, lung disease, or deconditioning.

Birth weight refers to the first weight of a newborn infant, usually taken immediately after birth. It is a critical vital sign that indicates the baby's health status and is used as a predictor for various short-term and long-term health outcomes.

Typically, a full-term newborn's weight ranges from 5.5 to 8.8 pounds (2.5 to 4 kg), although normal birth weights can vary significantly based on factors such as gestational age, genetics, maternal health, and nutrition. Low birth weight is defined as less than 5.5 pounds (2.5 kg), while high birth weight is greater than 8.8 pounds (4 kg).

Low birth weight babies are at a higher risk for various medical complications, including respiratory distress syndrome, jaundice, infections, and developmental delays. High birth weight babies may face challenges with delivery, increased risk of obesity, and potential metabolic issues later in life. Regular prenatal care is essential to monitor fetal growth and ensure a healthy pregnancy and optimal birth weight for the baby.

Taurochenodeoxycholic acid (TCDCA) is a bile acid that is conjugated with the amino acid taurine. Bile acids are synthesized from cholesterol in the liver and released into the small intestine to aid in the digestion and absorption of fats and fat-soluble vitamins. TCDCA, along with other bile acids, is reabsorbed in the terminal ileum and transported back to the liver through the enterohepatic circulation. It plays a role in maintaining cholesterol homeostasis and has been studied for its potential therapeutic effects in various medical conditions, including gallstones, cholestatic liver diseases, and neurological disorders.

3-O-Methylglucose is a form of glucose that has a methyl group (-CH3) attached to the third hydroxyl group (-OH) on the glucose molecule. It is a non-metabolizable sugar analog, which means it cannot be broken down and used for energy by the body's cells.

This compound is sometimes used in scientific research as a marker to study the absorption and transport of glucose in the body. Since 3-O-Methylglucose is not metabolized, it can be detected and measured in various tissues and fluids after it has been absorbed, allowing researchers to track its movement through the body.

It's important to note that 3-O-Methylglucose should not be confused with 3-O-Methyldopa, which is a medication used to treat high blood pressure.

Leptin receptors are cell surface receptors that bind to and respond to the hormone leptin. These receptors are found in various tissues throughout the body, including the hypothalamus in the brain, which plays a crucial role in regulating energy balance and appetite. Leptin is a hormone produced by adipose (fat) tissue that signals information about the size of fat stores to the brain. When leptin binds to its receptors, it activates signaling pathways that help regulate energy intake and expenditure, body weight, and glucose metabolism.

There are several subtypes of leptin receptors (LEPR), including LEPRa, LEPRb, LEPC, and LEPD. Among these, the LEPRb isoform is the most widely expressed and functionally important form. Mutations in the gene encoding the leptin receptor can lead to obesity, hyperphagia (excessive hunger), and impaired energy metabolism, highlighting the importance of this receptor in maintaining energy balance and overall health.

Feeding behavior refers to the various actions and mechanisms involved in the intake of food and nutrition for the purpose of sustaining life, growth, and health. This complex process encompasses a coordinated series of activities, including:

1. Food selection: The identification, pursuit, and acquisition of appropriate food sources based on sensory cues (smell, taste, appearance) and individual preferences.
2. Preparation: The manipulation and processing of food to make it suitable for consumption, such as chewing, grinding, or chopping.
3. Ingestion: The act of transferring food from the oral cavity into the digestive system through swallowing.
4. Digestion: The mechanical and chemical breakdown of food within the gastrointestinal tract to facilitate nutrient absorption and eliminate waste products.
5. Assimilation: The uptake and utilization of absorbed nutrients by cells and tissues for energy production, growth, repair, and maintenance.
6. Elimination: The removal of undigested material and waste products from the body through defecation.

Feeding behavior is regulated by a complex interplay between neural, hormonal, and psychological factors that help maintain energy balance and ensure adequate nutrient intake. Disruptions in feeding behavior can lead to various medical conditions, such as malnutrition, obesity, eating disorders, and gastrointestinal motility disorders.

Cardiovascular diseases (CVDs) are a class of diseases that affect the heart and blood vessels. They are the leading cause of death globally, according to the World Health Organization (WHO). The term "cardiovascular disease" refers to a group of conditions that include:

1. Coronary artery disease (CAD): This is the most common type of heart disease and occurs when the arteries that supply blood to the heart become narrowed or blocked due to the buildup of cholesterol, fat, and other substances in the walls of the arteries. This can lead to chest pain, shortness of breath, or a heart attack.
2. Heart failure: This occurs when the heart is unable to pump blood efficiently to meet the body's needs. It can be caused by various conditions, including coronary artery disease, high blood pressure, and cardiomyopathy.
3. Stroke: A stroke occurs when the blood supply to a part of the brain is interrupted or reduced, often due to a clot or a ruptured blood vessel. This can cause brain damage or death.
4. Peripheral artery disease (PAD): This occurs when the arteries that supply blood to the limbs become narrowed or blocked, leading to pain, numbness, or weakness in the legs or arms.
5. Rheumatic heart disease: This is a complication of untreated strep throat and can cause damage to the heart valves, leading to heart failure or other complications.
6. Congenital heart defects: These are structural problems with the heart that are present at birth. They can range from mild to severe and may require medical intervention.
7. Cardiomyopathy: This is a disease of the heart muscle that makes it harder for the heart to pump blood efficiently. It can be caused by various factors, including genetics, infections, and certain medications.
8. Heart arrhythmias: These are abnormal heart rhythms that can cause the heart to beat too fast, too slow, or irregularly. They can lead to symptoms such as palpitations, dizziness, or fainting.
9. Valvular heart disease: This occurs when one or more of the heart valves become damaged or diseased, leading to problems with blood flow through the heart.
10. Aortic aneurysm and dissection: These are conditions that affect the aorta, the largest artery in the body. An aneurysm is a bulge in the aorta, while a dissection is a tear in the inner layer of the aorta. Both can be life-threatening if not treated promptly.

It's important to note that many of these conditions can be managed or treated with medical interventions such as medications, surgery, or lifestyle changes. If you have any concerns about your heart health, it's important to speak with a healthcare provider.

Methylglucosides are not a medical term, but rather a chemical term referring to a type of compound known as glycosides, where a methanol molecule is linked to a glucose molecule. They do not have a specific medical relevance, but they can be used in various industrial and laboratory applications, including as sweetening agents or intermediates in chemical reactions.

However, if you meant "Methylglucamine," it is a related term that has medical significance. Methylglucamine is an organic compound used as an excipient (an inactive substance that serves as a vehicle or medium for a drug) in some pharmaceutical formulations. It is often used as a solubilizing agent to improve the solubility and absorption of certain drugs, particularly those that are poorly soluble in water. Methylglucamine is generally considered safe and non-toxic, although it can cause gastrointestinal symptoms such as diarrhea or nausea in some individuals if taken in large amounts.

Dietary sucrose is a type of sugar that is commonly found in the human diet. It is a disaccharide, meaning it is composed of two monosaccharides: glucose and fructose. Sucrose is naturally occurring in many fruits and vegetables, but it is also added to a wide variety of processed foods and beverages as a sweetener.

In the body, sucrose is broken down into its component monosaccharides during digestion, which are then absorbed into the bloodstream and used for energy. While small amounts of sucrose can be part of a healthy diet, consuming large amounts of added sugars, including sucrose, has been linked to a variety of negative health outcomes, such as obesity, type 2 diabetes, and heart disease. Therefore, it is recommended that people limit their intake of added sugars and focus on getting their sugars from whole foods, such as fruits and vegetables.

Phlorhizin is not a medical condition or term, but rather a chemical compound. It is a glucoside that can be found in the bark of apple trees and other related plants. Phlorhizin has been studied in the field of medicine for its potential effects on various health conditions. Specifically, it has been shown to inhibit the enzyme called glucose transporter 2 (GLUT2), which is involved in the absorption of glucose in the body. As a result, phlorhizin has been investigated as a potential treatment for diabetes, as it may help regulate blood sugar levels. However, more research is needed to fully understand its effects and safety profile before it can be used as a medical treatment.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Acromegaly is a rare hormonal disorder that typically occurs in middle-aged adults. It results from the pituitary gland producing too much growth hormone (GH) during adulthood. The excessive production of GH leads to abnormal growth of body tissues, particularly in the hands, feet, and face.

The term "acromegaly" is derived from two Greek words: "akros," meaning extremities, and "megaly," meaning enlargement. In most cases, acromegaly is caused by a benign tumor (adenoma) of the pituitary gland, which results in overproduction of GH.

Common symptoms include enlarged hands and feet, coarse facial features, deepened voice, joint pain, and sweating. If left untreated, acromegaly can lead to serious complications such as diabetes, hypertension, heart disease, and arthritis. Treatment usually involves surgical removal of the tumor, radiation therapy, or medication to control GH production.

Renal aminoacidurias are a group of inherited kidney disorders characterized by the abnormal excretion of amino acids in the urine (aminoaciduria). This condition results from defects in the renal tubular transport systems that are responsible for the reabsorption of amino acids from the filtrate in the kidneys.

There are several types of renal aminoacidurias, each associated with a specific genetic mutation affecting different transporter proteins in the proximal renal tubules. The most common type is cystinuria, which is caused by a defect in the transport system for four amino acids: cystine, ornithine, lysine, and arginine. Other types of renal aminoacidurias include Hartnup disorder, Lowe syndrome, and Dent disease, among others.

The clinical manifestations of renal aminoacidurias vary depending on the specific type and severity of the disorder. Some individuals may be asymptomatic or have only mild symptoms, while others may experience severe complications such as kidney stones, urinary tract infections, neurological symptoms, or growth retardation.

Treatment for renal aminoacidurias typically involves dietary modifications, increased fluid intake, and medications to reduce the risk of kidney stone formation and other complications. In some cases, surgery may be necessary to remove large kidney stones.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

"Prenatal exposure delayed effects" refer to the adverse health outcomes or symptoms that become apparent in an individual during their development or later in life, which are caused by exposure to certain environmental factors or substances while they were still in the womb. These effects may not be immediately observable at birth and can take weeks, months, years, or even decades to manifest. They can result from maternal exposure to various agents such as infectious diseases, medications, illicit drugs, tobacco smoke, alcohol, or environmental pollutants during pregnancy. The delayed effects can impact multiple organ systems and may include physical, cognitive, behavioral, and developmental abnormalities. It is important to note that the risk and severity of these effects can depend on several factors, including the timing, duration, and intensity of the exposure, as well as the individual's genetic susceptibility.

I'm sorry for any confusion, but "Uveomeningoencephalitic Syndrome" is not a widely recognized or established medical term. It seems to be a combination of different terms from various medical conditions.

1. Uveitis refers to inflammation of the uvea, the middle layer of the eye between the retina and the white of the eye.
2. Meningoencephalitis refers to inflammation of both the meninges (the protective membranes covering the brain and spinal cord) and the brain itself (encephalitis).

If you're looking for information on a specific medical condition that you think might be related to these terms, I would recommend consulting a healthcare professional or searching for information on conditions like uveitis or meningoencephalitis.

Hyperphagia is a medical term that describes excessive eating or increased appetite, often to the point of compulsive overeating. It's more than just a simple increase in hunger or appetite; it's characterized by consuming large amounts of food beyond what is needed for normal growth and health.

This condition can be associated with several medical conditions. For instance, it's a common symptom in Prader-Willi syndrome, a genetic disorder that affects appetite, growth, and cognitive development. It can also occur in certain types of brain injuries or disorders affecting the hypothalamus, a part of the brain that regulates hunger and fullness signals.

However, it's important to note that hyperphagia should not be confused with binge eating disorder, another eating disorder characterized by consuming large amounts of food in a short period of time, but without the feeling of loss of control that is typical of binge eating.

As always, if you or someone else is experiencing symptoms of hyperphagia, it's important to seek medical advice to identify and treat any underlying conditions.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

The term "Asian Continental Ancestry Group" is a medical/ethnic classification used to describe a person's genetic background and ancestry. According to this categorization, individuals with origins in the Asian continent are grouped together. This includes populations from regions such as East Asia (e.g., China, Japan, Korea), South Asia (e.g., India, Pakistan, Bangladesh), Southeast Asia (e.g., Philippines, Indonesia, Thailand), and Central Asia (e.g., Kazakhstan, Uzbekistan, Tajikistan). It is important to note that this broad categorization may not fully capture the genetic diversity within these regions or accurately reflect an individual's specific ancestral origins.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

PPAR gamma, or Peroxisome Proliferator-Activated Receptor gamma, is a nuclear receptor protein that functions as a transcription factor. It plays a crucial role in the regulation of genes involved in adipogenesis (the process of forming mature fat cells), lipid metabolism, insulin sensitivity, and glucose homeostasis. PPAR gamma is primarily expressed in adipose tissue but can also be found in other tissues such as the immune system, large intestine, and brain.

PPAR gamma forms a heterodimer with another nuclear receptor protein, RXR (Retinoid X Receptor), and binds to specific DNA sequences called PPREs (Peroxisome Proliferator Response Elements) in the promoter regions of target genes. Upon binding, PPAR gamma modulates the transcription of these genes, either activating or repressing their expression.

Agonists of PPAR gamma, such as thiazolidinediones (TZDs), are used clinically to treat type 2 diabetes due to their insulin-sensitizing effects. These drugs work by binding to and activating PPAR gamma, which in turn leads to the upregulation of genes involved in glucose uptake and metabolism in adipose tissue and skeletal muscle.

In summary, PPAR gamma is a nuclear receptor protein that regulates gene expression related to adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis. Its activation has therapeutic implications for the treatment of type 2 diabetes and other metabolic disorders.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Oral administration is a route of giving medications or other substances by mouth. This can be in the form of tablets, capsules, liquids, pastes, or other forms that can be swallowed. Once ingested, the substance is absorbed through the gastrointestinal tract and enters the bloodstream to reach its intended target site in the body. Oral administration is a common and convenient route of medication delivery, but it may not be appropriate for all substances or in certain situations, such as when rapid onset of action is required or when the patient has difficulty swallowing.

Fructose-bisphosphate aldolase is a crucial enzyme in the glycolytic pathway, which is a metabolic process that breaks down glucose to produce energy. This enzyme catalyzes the conversion of fructose-1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.

There are two main types of aldolase isoenzymes in humans, classified as aldolase A (or muscle type) and aldolase B (or liver type). Fructose-bisphosphate aldolase refers specifically to aldolase A, which is primarily found in the muscles, brain, and red blood cells. Aldolase B, on the other hand, is predominantly found in the liver, kidney, and small intestine.

Deficiency or dysfunction of fructose-bisphosphate aldolase can lead to metabolic disorders, such as hereditary fructose intolerance, which results from a deficiency in another enzyme called aldolase B. However, it is essential to note that the term "fructose-bisphosphate aldolase" typically refers to aldolase A and not aldolase B.

Flatulence is the medical term for the release of intestinal gas from the rectum, commonly known as passing gas or farting. It is a normal bodily function that occurs when the body digests food in the stomach and intestines.

During digestion, the body breaks down food into nutrients that can be absorbed into the bloodstream. However, not all food particles can be fully broken down, and some of them reach the large intestine, where they are fermented by bacteria. This fermentation process produces gases such as nitrogen, oxygen, carbon dioxide, hydrogen, and methane.

The buildup of these gases in the digestive tract can cause discomfort, bloating, and the urge to pass gas. The average person passes gas about 10-20 times a day, although this can vary widely from person to person.

While flatulence is a normal bodily function, excessive or frequent passing of gas can be a sign of an underlying digestive issue such as irritable bowel syndrome (IBS), lactose intolerance, or gastrointestinal infections. If you are experiencing persistent or severe symptoms, it is recommended to consult with a healthcare professional for further evaluation and treatment.

Hormones are defined as chemical messengers that are produced by endocrine glands or specialized cells and are transported through the bloodstream to tissues and organs, where they elicit specific responses. They play crucial roles in regulating various physiological processes such as growth, development, metabolism, reproduction, and mood. Examples of hormones include insulin, estrogen, testosterone, adrenaline, and thyroxine.

Exercise is defined in the medical context as a physical activity that is planned, structured, and repetitive, with the primary aim of improving or maintaining one or more components of physical fitness. Components of physical fitness include cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, and body composition. Exercise can be classified based on its intensity (light, moderate, or vigorous), duration (length of time), and frequency (number of times per week). Common types of exercise include aerobic exercises, such as walking, jogging, cycling, and swimming; resistance exercises, such as weightlifting; flexibility exercises, such as stretching; and balance exercises. Exercise has numerous health benefits, including reducing the risk of chronic diseases, improving mental health, and enhancing overall quality of life.

Waist circumference is a measurement of the distance around a person's waist. It is typically taken at the narrowest point between the bottom of the ribcage and the top of the hips, also known as the natural waist. This measurement is used as an indicator of abdominal obesity and health status. A high waist circumference (generally 35 inches or more for women and 40 inches or more for men) is associated with an increased risk of conditions such as type 2 diabetes, heart disease, and stroke. It is often used in conjunction with other measures like blood pressure, body mass index (BMI), and cholesterol levels to assess overall health.

Inborn errors of amino acid metabolism refer to genetic disorders that affect the body's ability to properly break down and process individual amino acids, which are the building blocks of proteins. These disorders can result in an accumulation of toxic levels of certain amino acids or their byproducts in the body, leading to a variety of symptoms and health complications.

There are many different types of inborn errors of amino acid metabolism, each affecting a specific amino acid or group of amino acids. Some examples include:

* Phenylketonuria (PKU): This disorder affects the breakdown of the amino acid phenylalanine, leading to its accumulation in the body and causing brain damage if left untreated.
* Maple syrup urine disease: This disorder affects the breakdown of the branched-chain amino acids leucine, isoleucine, and valine, leading to their accumulation in the body and causing neurological problems.
* Homocystinuria: This disorder affects the breakdown of the amino acid methionine, leading to its accumulation in the body and causing a range of symptoms including developmental delay, intellectual disability, and cardiovascular problems.

Treatment for inborn errors of amino acid metabolism typically involves dietary restrictions or supplementation to manage the levels of affected amino acids in the body. In some cases, medication or other therapies may also be necessary. Early diagnosis and treatment can help prevent or minimize the severity of symptoms and health complications associated with these disorders.

A breath test is a medical or forensic procedure used to analyze a sample of exhaled breath in order to detect and measure the presence of various substances, most commonly alcohol. The test is typically conducted using a device called a breathalyzer, which measures the amount of alcohol in the breath and converts it into a reading of blood alcohol concentration (BAC).

In addition to alcohol, breath tests can also be used to detect other substances such as drugs or volatile organic compounds (VOCs) that may indicate certain medical conditions. However, these types of breath tests are less common and may not be as reliable or accurate as other diagnostic tests.

Breath testing is commonly used by law enforcement officers to determine whether a driver is impaired by alcohol and to establish probable cause for arrest. It is also used in some healthcare settings to monitor patients who are being treated for alcohol abuse or dependence.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

"Thinness" is not a term that is typically used in medical definitions. However, it generally refers to having a lower than average body weight or low body mass index (BMI) for a person's height. In medical terms, being significantly underweight might be defined as having a BMI of less than 18.5. It's important to note that while low body weight can be a sign of health issues like malnutrition or eating disorders, being thin does not necessarily equate to being healthy. A person's overall health is determined by a variety of factors, including diet, exercise, genetics, and the presence or absence of chronic diseases.

Ghrelin is a hormone primarily produced and released by the stomach with some production in the small intestine, pancreas, and brain. It is often referred to as the "hunger hormone" because it stimulates appetite, promotes food intake, and contributes to the regulation of energy balance.

Ghrelin levels increase before meals and decrease after eating. In addition to its role in regulating appetite and meal initiation, ghrelin also has other functions, such as modulating glucose metabolism, insulin secretion, gastric motility, and cardiovascular function. Its receptor, the growth hormone secretagogue receptor (GHS-R), is found in various tissues throughout the body, indicating its wide range of physiological roles.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Sodium-Glucose Transporter 1 (SGLT1) is a protein found in the membrane of intestinal and kidney cells. It is responsible for the active transport of glucose and sodium ions from the lumen into the epithelial cells. In the intestine, SGLT1 plays a crucial role in glucose absorption after meals, while in the kidneys, it helps reabsorb glucose back into the bloodstream to prevent wasting through urine. The transport process is driven by the sodium gradient created by Na+/K+ ATPase, which actively pumps sodium ions out of the cell. SGLT1 inhibitors are used in the treatment of type 2 diabetes to reduce glucose reabsorption and enhance urinary glucose excretion, leading to better glycemic control.

Growth Hormone (GH), also known as somatotropin, is a peptide hormone secreted by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in regulating growth, cell reproduction, and regeneration by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1) in the liver and other tissues. GH also has important metabolic functions, such as increasing glucose levels, enhancing protein synthesis, and reducing fat storage. Its secretion is regulated by two hypothalamic hormones: growth hormone-releasing hormone (GHRH), which stimulates its release, and somatostatin (SRIF), which inhibits its release. Abnormal levels of GH can lead to various medical conditions, such as dwarfism or gigantism if there are deficiencies or excesses, respectively.

Lipolysis is the process by which fat cells (adipocytes) break down stored triglycerides into glycerol and free fatty acids. This process occurs when the body needs to use stored fat as a source of energy, such as during fasting, exercise, or in response to certain hormonal signals. The breakdown products of lipolysis can be used directly by cells for energy production or can be released into the bloodstream and transported to other tissues for use. Lipolysis is regulated by several hormones, including adrenaline (epinephrine), noradrenaline (norepinephrine), cortisol, glucagon, and growth hormone, which act on lipases, enzymes that mediate the breakdown of triglycerides.

"Sex factors" is a term used in medicine and epidemiology to refer to the differences in disease incidence, prevalence, or response to treatment that are observed between males and females. These differences can be attributed to biological differences such as genetics, hormones, and anatomy, as well as social and cultural factors related to gender.

For example, some conditions such as autoimmune diseases, depression, and osteoporosis are more common in women, while others such as cardiovascular disease and certain types of cancer are more prevalent in men. Additionally, sex differences have been observed in the effectiveness and side effects of various medications and treatments.

It is important to consider sex factors in medical research and clinical practice to ensure that patients receive appropriate and effective care.

Corticosterone is a hormone produced by the adrenal gland in many animals, including humans. It is a type of glucocorticoid steroid hormone that plays an important role in the body's response to stress, immune function, metabolism, and regulation of inflammation. Corticosterone helps to regulate the balance of sodium and potassium in the body and also plays a role in the development and functioning of the nervous system. It is the primary glucocorticoid hormone in rodents, while cortisol is the primary glucocorticoid hormone in humans and other primates.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Liver glycogen is the reserve form of glucose stored in hepatocytes (liver cells) for the maintenance of normal blood sugar levels. It is a polysaccharide, a complex carbohydrate, that is broken down into glucose molecules when blood glucose levels are low. This process helps to maintain the body's energy needs between meals and during periods of fasting or exercise. The amount of glycogen stored in the liver can vary depending on factors such as meal consumption, activity level, and insulin regulation.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

The abdomen refers to the portion of the body that lies between the thorax (chest) and the pelvis. It is a musculo-fascial cavity containing the digestive, urinary, and reproductive organs. The abdominal cavity is divided into several regions and quadrants for medical description and examination purposes. These include the upper and lower abdomen, as well as nine quadrants formed by the intersection of the midline and a horizontal line drawn at the level of the umbilicus (navel).

The major organs located within the abdominal cavity include:

1. Stomach - muscular organ responsible for initial digestion of food
2. Small intestine - long, coiled tube where most nutrient absorption occurs
3. Large intestine - consists of the colon and rectum; absorbs water and stores waste products
4. Liver - largest internal organ, involved in protein synthesis, detoxification, and metabolism
5. Pancreas - secretes digestive enzymes and hormones such as insulin
6. Spleen - filters blood and removes old red blood cells
7. Kidneys - pair of organs responsible for filtering waste products from the blood and producing urine
8. Adrenal glands - sit atop each kidney, produce hormones that regulate metabolism, immune response, and stress response

The abdomen is an essential part of the human body, playing a crucial role in digestion, absorption, and elimination of food and waste materials, as well as various metabolic processes.

Adipose tissue, brown, also known as brown adipose tissue (BAT), is a type of fat in mammals that plays a crucial role in non-shivering thermogenesis, which is the process of generating heat and maintaining body temperature through the burning of calories. Unlike white adipose tissue, which primarily stores energy in the form of lipids, brown adipose tissue contains numerous mitochondria rich in iron, giving it a brown appearance. These mitochondria contain a protein called uncoupling protein 1 (UCP1), which allows for the efficient conversion of stored energy into heat rather than ATP production.

Brown adipose tissue is typically found in newborns and hibernating animals, but recent studies have shown that adults also possess functional brown adipose tissue, particularly around the neck, shoulders, and spine. The activation of brown adipose tissue has been suggested as a potential strategy for combating obesity and related metabolic disorders due to its ability to burn calories and increase energy expenditure. However, further research is needed to fully understand the mechanisms underlying brown adipose tissue function and its therapeutic potential in treating these conditions.

Bed rest is a medical recommendation for a person to limit their activities and remain in bed for a period of time. It is often ordered by healthcare providers to help the body recover from certain medical conditions or treatments, such as:

* Infections
* Pregnancy complications
* Recent surgery
* Heart problems
* Blood pressure fluctuations
* Bleeding
* Bone fractures
* Certain neurological conditions

The duration of bed rest can vary depending on the individual's medical condition and response to treatment. While on bed rest, patients are typically advised to change positions frequently to prevent complications such as bedsores, blood clots, and muscle weakness. They may also receive physical therapy, occupational therapy, or other treatments to help maintain their strength and mobility during this period.

Cell size refers to the volume or spatial dimensions of a cell, which can vary widely depending on the type and function of the cell. In general, eukaryotic cells (cells with a true nucleus) tend to be larger than prokaryotic cells (cells without a true nucleus). The size of a cell is determined by various factors such as genetic makeup, the cell's role in the organism, and its environment.

The study of cell size and its relationship to cell function is an active area of research in biology, with implications for our understanding of cellular processes, evolution, and disease. For example, changes in cell size have been linked to various pathological conditions, including cancer and neurodegenerative disorders. Therefore, measuring and analyzing cell size can provide valuable insights into the health and function of cells and tissues.

Lipogenesis is the biological process by which fatty acids are synthesized and stored as lipids or fat in living organisms. This process occurs primarily in the liver and adipose tissue, with excess glucose being converted into fatty acids and then esterified to form triglycerides. These triglycerides are then packaged with proteins and cholesterol to form lipoproteins, which are transported throughout the body for energy storage or use. Lipogenesis is a complex process involving multiple enzymes and metabolic pathways, and it is tightly regulated by hormones such as insulin, glucagon, and adrenaline. Disorders of lipogenesis can lead to conditions such as obesity, fatty liver disease, and metabolic disorders.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Protein Tyrosine Phosphatase, Non-Receptor Type 1 (PTPN1) is a type of enzyme that belongs to the protein tyrosine phosphatase (PTP) family. PTPs play crucial roles in regulating various cellular processes by removing phosphate groups from phosphorylated tyrosine residues on proteins, thereby controlling the activity of many proteins involved in signal transduction pathways.

PTPN1, also known as PTP1B, is a non-receptor type PTP that is localized to the endoplasmic reticulum and cytosol of cells. It has been extensively studied due to its important role in regulating various cellular signaling pathways, including those involved in metabolism, cell growth, differentiation, and survival.

PTPN1 dephosphorylates several key signaling molecules, such as the insulin receptor, epidermal growth factor receptor (EGFR), and Janus kinase 2 (JAK2). By negatively regulating these signaling pathways, PTPN1 acts as a tumor suppressor and plays a role in preventing excessive cell growth and survival. However, dysregulation of PTPN1 has been implicated in various diseases, including diabetes, obesity, and cancer.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Caloric restriction refers to a dietary regimen that involves reducing the total calorie intake while still maintaining adequate nutrition and micronutrient intake. This is often achieved by limiting the consumption of high-calorie, nutrient-poor foods and increasing the intake of nutrient-dense, low-calorie foods such as fruits, vegetables, and lean proteins.

Caloric restriction has been shown to have numerous health benefits, including increased lifespan, improved insulin sensitivity, reduced inflammation, and decreased risk of chronic diseases such as cancer, diabetes, and heart disease. It is important to note that caloric restriction should not be confused with starvation or malnutrition, which can have negative effects on health. Instead, it involves a careful balance of reducing calorie intake while still ensuring adequate nutrition and energy needs are met.

It is recommended that individuals who are considering caloric restriction consult with a healthcare professional or registered dietitian to ensure that they are following a safe and effective plan that meets their individual nutritional needs.

A Glucose Solution, Hypertonic is a medical solution that contains a higher concentration of glucose (sugar) than is found in normal body fluids. This results in an osmotic gradient that draws water from the surrounding tissues and increases the osmolarity of the body fluids. It is often used in medical settings to treat certain conditions such as hypoglycemia (low blood sugar) or dehydration due to diarrhea or vomiting. However, it's important to note that hypertonic glucose solutions should be used with caution because high concentrations of glucose can lead to complications like hyperglycemia and dehydration if not properly managed.

Head-down tilt (HDT) is a positioning technique often used in medical settings, particularly during diagnostic procedures or treatment interventions. In this position, the person lies down on a specially designed table with their head tilted below the horizontal plane, typically at an angle of 6 degrees to 15 degrees, but sometimes as steep as 90 degrees. This posture allows for various medical evaluations such as carotid sinus massage or intracranial pressure monitoring. It is also used in space medicine to simulate some effects of weightlessness on the human body during spaceflight. Please note that prolonged exposure to head-down tilt can have physiological consequences, including changes in blood pressure, heart rate, and eye function, which should be monitored and managed by healthcare professionals.

Anthropometry is the scientific study of measurements and proportions of the human body. It involves the systematic measurement and analysis of various physical characteristics, such as height, weight, blood pressure, waist circumference, and other body measurements. These measurements are used in a variety of fields, including medicine, ergonomics, forensics, and fashion design, to assess health status, fitness level, or to design products and environments that fit the human body. In a medical context, anthropometry is often used to assess growth and development, health status, and disease risk factors in individuals and populations.

Insulin-like growth factor I (IGF-I) is a hormone that plays a crucial role in growth and development. It is a small protein with structural and functional similarity to insulin, hence the name "insulin-like." IGF-I is primarily produced in the liver under the regulation of growth hormone (GH).

IGF-I binds to its specific receptor, the IGF-1 receptor, which is widely expressed throughout the body. This binding activates a signaling cascade that promotes cell proliferation, differentiation, and survival. In addition, IGF-I has anabolic effects on various tissues, including muscle, bone, and cartilage, contributing to their growth and maintenance.

IGF-I is essential for normal growth during childhood and adolescence, and it continues to play a role in maintaining tissue homeostasis throughout adulthood. Abnormal levels of IGF-I have been associated with various medical conditions, such as growth disorders, diabetes, and certain types of cancer.

Thiazolidinediones are a class of medications used to treat type 2 diabetes. They work by increasing the body's sensitivity to insulin, which helps to control blood sugar levels. These drugs bind to peroxisome proliferator-activated receptors (PPARs), specifically PPAR-gamma, and modulate gene expression related to glucose metabolism and lipid metabolism.

Examples of thiazolidinediones include pioglitazone and rosiglitazone. Common side effects of these medications include weight gain, fluid retention, and an increased risk of bone fractures. They have also been associated with an increased risk of heart failure and bladder cancer, which has led to restrictions or withdrawal of some thiazolidinediones in various countries.

It is important to note that thiazolidinediones should be used under the close supervision of a healthcare provider and in conjunction with lifestyle modifications such as diet and exercise.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Medical definitions for "milk hypersensitivity" include:

1. The American Academy of Allergy, Asthma & Immunology (AAAAI) defines milk hypersensitivity as an abnormal immune response to one or more proteins found in cow's milk. This reaction can be either an immediate immunoglobulin E (IgE)-mediated allergy or a non-IgE-mediated cow's milk protein intolerance (CMPI).
2. According to the American Academy of Pediatrics (AAP), milk hypersensitivity is an adverse reaction to milk proteins, which can be either an immunoglobulin E (IgE)-mediated allergy or a non-IgE-mediated immune response, causing gastrointestinal symptoms.
3. The Merck Manual defines milk hypersensitivity as an abnormal reaction to one or more proteins in cow's milk, which can manifest as immediate IgE-mediated allergic reactions or delayed non-IgE-mediated reactions, causing various gastrointestinal and skin symptoms.

In summary, milk hypersensitivity is a broad term that encompasses both immune-mediated allergic reactions (IgE and non-IgE) to cow's milk proteins, leading to various clinical manifestations affecting the gastrointestinal system, skin, or respiratory tract.

A tilt-table test is a diagnostic procedure used to evaluate symptoms of syncope (fainting) or near-syncope. It measures your body's cardiovascular response to changes in position. During the test, you lie on a table that can be tilted to change the angle of your body from horizontal to upright. This simulates what happens when you stand up from a lying down position.

The test monitors heart rate, blood pressure, and oxygen levels while you're in different positions. If you experience symptoms like dizziness or fainting during the test, these can provide clues about the cause of your symptoms. The test is used to diagnose conditions like orthostatic hypotension (a sudden drop in blood pressure when standing), vasovagal syncope (fainting due to an overactive vagus nerve), and other heart rhythm disorders.

Real-Time Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences in real-time. It is a sensitive and specific method that allows for the quantification of target nucleic acids, such as DNA or RNA, through the use of fluorescent reporter molecules.

The RT-PCR process involves several steps: first, the template DNA is denatured to separate the double-stranded DNA into single strands. Then, primers (short sequences of DNA) specific to the target sequence are added and allowed to anneal to the template DNA. Next, a heat-stable enzyme called Taq polymerase adds nucleotides to the annealed primers, extending them along the template DNA until a new double-stranded DNA molecule is formed.

During each amplification cycle, fluorescent reporter molecules are added that bind specifically to the newly synthesized DNA. As more and more copies of the target sequence are generated, the amount of fluorescence increases in proportion to the number of copies present. This allows for real-time monitoring of the PCR reaction and quantification of the target nucleic acid.

RT-PCR is commonly used in medical diagnostics, research, and forensics to detect and quantify specific DNA or RNA sequences. It has been widely used in the diagnosis of infectious diseases, genetic disorders, and cancer, as well as in the identification of microbial pathogens and the detection of gene expression.

I'm sorry for any confusion, but "Hydrogen" is not a medical term. It is a chemical element with the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, making up about 75% of its elemental mass.

In a medical context, hydrogen can be discussed in terms of molecular hydrogen (H2) which has been studied for potential therapeutic benefits. Some research explores its use as an antioxidant and anti-inflammatory agent, but more studies are needed to confirm these effects and understand the mechanisms behind them.

Aspirin-induced asthma (AIA) is a specific form of asthma that is characterized by the worsening of respiratory symptoms after ingesting aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs). AIA is also known as NSAID-exacerbated respiratory disease (NERD) or aspirin-sensitive asthma.

People with AIA typically experience bronchoconstriction, nasal congestion, and rhinorrhea after taking aspirin or other NSAIDs that inhibit cyclooxygenase-1 (COX-1). These symptoms can range from mild to severe and may occur within a few minutes to several hours after ingesting the medication.

In addition to respiratory symptoms, some people with AIA may also develop skin reactions, such as hives or angioedema, and gastrointestinal symptoms, such as abdominal pain or diarrhea. The exact mechanism by which aspirin and other NSAIDs trigger these symptoms in people with AIA is not fully understood, but it is thought to be related to an imbalance in the production of prostaglandins and leukotrienes, two types of lipid mediators that play a role in inflammation.

Avoiding aspirin and other NSAIDs is the primary treatment for AIA. In some cases, medications such as corticosteroids, leukotriene modifiers, or antihistamines may be prescribed to help manage symptoms. Desensitization therapy, which involves gradually increasing the dose of aspirin under medical supervision, may also be an option for some people with AIA who are unable to avoid NSAIDs altogether.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Fetal growth retardation, also known as intrauterine growth restriction (IUGR), is a condition in which a fetus fails to grow at the expected rate during pregnancy. This can be caused by various factors such as maternal health problems, placental insufficiency, chromosomal abnormalities, and genetic disorders. The fetus may be smaller than expected for its gestational age, have reduced movement, and may be at risk for complications during labor and delivery. It is important to monitor fetal growth and development closely throughout pregnancy to detect any potential issues early on and provide appropriate medical interventions.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

HDL (High-Density Lipoprotein) cholesterol is often referred to as "good" cholesterol. It is a type of lipoprotein that helps remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. High levels of HDL cholesterol have been associated with a lower risk of heart disease and stroke.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Dizziness is a term used to describe a range of sensations, such as feeling lightheaded, faint, unsteady, or a false sense of spinning or moving. Medically, dizziness is often described as a non-specific symptom that can be caused by various underlying conditions or factors. These may include:

1. Inner ear disorders (such as benign paroxysmal positional vertigo, labyrinthitis, vestibular neuronitis, or Meniere's disease)
2. Cardiovascular problems (like low blood pressure, arrhythmias, or orthostatic hypotension)
3. Neurological issues (such as migraines, multiple sclerosis, or stroke)
4. Anxiety disorders and panic attacks
5. Side effects of medications
6. Dehydration or overheating
7. Infections (like viral infections or bacterial meningitis)
8. Head or neck injuries
9. Low blood sugar levels (hypoglycemia)

It is essential to consult a healthcare professional if you experience persistent dizziness, as it can be a sign of a more severe underlying condition. The appropriate treatment will depend on the specific cause of the dizziness.

"Sex characteristics" refer to the anatomical, chromosomal, and genetic features that define males and females. These include both primary sex characteristics (such as reproductive organs like ovaries or testes) and secondary sex characteristics (such as breasts or facial hair) that typically develop during puberty. Sex characteristics are primarily determined by the presence of either X or Y chromosomes, with XX individuals usually developing as females and XY individuals usually developing as males, although variations and exceptions to this rule do occur.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

I'm sorry for any confusion, but "Linear Models" is actually a term from the field of statistics and machine learning, rather than medicine. A linear model is a type of statistical model that is used to analyze the relationship between two or more variables. In a linear model, the relationship between the dependent variable (the outcome or result) and the independent variable(s) (the factors being studied) is assumed to be linear, meaning that it can be described by a straight line on a graph.

The equation for a simple linear model with one independent variable (x) and one dependent variable (y) looks like this:

y = β0 + β1*x + ε

In this equation, β0 is the y-intercept or the value of y when x equals zero, β1 is the slope or the change in y for each unit increase in x, and ε is the error term or the difference between the actual values of y and the predicted values of y based on the linear model.

Linear models are widely used in medical research to study the relationship between various factors (such as exposure to a risk factor or treatment) and health outcomes (such as disease incidence or mortality). They can also be used to adjust for confounding variables, which are factors that may influence both the independent variable and the dependent variable, and thus affect the observed relationship between them.

Medically, "milk" is not defined. However, it is important to note that human babies are fed with breast milk, which is the secretion from the mammary glands of humans. It is rich in nutrients like proteins, fats, carbohydrates (lactose), vitamins and minerals that are essential for growth and development.

Other mammals also produce milk to feed their young. These include cows, goats, and sheep, among others. Their milk is often consumed by humans as a source of nutrition, especially in dairy products. However, the composition of these milks can vary significantly from human breast milk.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

PPAR-alpha (Peroxisome Proliferator-Activated Receptor alpha) is a type of nuclear receptor protein that functions as a transcription factor, regulating the expression of specific genes involved in lipid metabolism. It plays a crucial role in the breakdown of fatty acids and the synthesis of high-density lipoproteins (HDL or "good" cholesterol) in the liver. PPAR-alpha activation also has anti-inflammatory effects, making it a potential therapeutic target for metabolic disorders such as diabetes, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD).

Glucocorticoids are a class of steroid hormones that are naturally produced in the adrenal gland, or can be synthetically manufactured. They play an essential role in the metabolism of carbohydrates, proteins, and fats, and have significant anti-inflammatory effects. Glucocorticoids suppress immune responses and inflammation by inhibiting the release of inflammatory mediators from various cells, such as mast cells, eosinophils, and lymphocytes. They are frequently used in medical treatment for a wide range of conditions, including allergies, asthma, rheumatoid arthritis, dermatological disorders, and certain cancers. Prolonged use or high doses of glucocorticoids can lead to several side effects, such as weight gain, mood changes, osteoporosis, and increased susceptibility to infections.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

"Gene knockout techniques" refer to a group of biomedical research methods used in genetics and molecular biology to study the function of specific genes in an organism. These techniques involve introducing a deliberate, controlled genetic modification that results in the inactivation or "knockout" of a particular gene. This is typically achieved through various methods such as homologous recombination, where a modified version of the gene with inserted mutations is introduced into the organism's genome, replacing the original functional gene. The resulting organism, known as a "knockout mouse" or other model organisms, lacks the function of the targeted gene and can be used to study its role in biological processes, disease development, and potential therapeutic interventions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Drug hypersensitivity is an abnormal immune response to a medication or its metabolites. It is a type of adverse drug reaction that occurs in susceptible individuals, characterized by the activation of the immune system leading to inflammation and tissue damage. This reaction can range from mild symptoms such as skin rashes, hives, and itching to more severe reactions like anaphylaxis, which can be life-threatening.

Drug hypersensitivity reactions can be classified into two main types: immediate (or IgE-mediated) and delayed (or non-IgE-mediated). Immediate reactions occur within minutes to a few hours after taking the medication and are mediated by the release of histamine and other inflammatory mediators from mast cells and basophils. Delayed reactions, on the other hand, can take several days to develop and are caused by T-cell activation and subsequent cytokine release.

Common drugs that can cause hypersensitivity reactions include antibiotics (such as penicillins and sulfonamides), nonsteroidal anti-inflammatory drugs (NSAIDs), monoclonal antibodies, and chemotherapeutic agents. It is important to note that previous exposure to a medication does not always guarantee the development of hypersensitivity reactions, as they can also occur after the first administration in some cases.

The diagnosis of drug hypersensitivity involves a thorough medical history, physical examination, and sometimes skin or laboratory tests. Treatment typically includes avoiding the offending medication and managing symptoms with antihistamines, corticosteroids, or other medications as needed. In severe cases, emergency medical care may be required to treat anaphylaxis or other life-threatening reactions.

"Space flight" is not a term that has a specific medical definition. However, in general, it refers to the act of traveling through space, outside of Earth's atmosphere, aboard a spacecraft. This can include trips to the International Space Station (ISS), lunar missions, or travel to other planets and moons within our solar system.

From a medical perspective, space flight presents unique challenges to the human body, including exposure to microgravity, radiation, and isolation from Earth's biosphere. These factors can have significant impacts on various physiological systems, including the cardiovascular, musculoskeletal, sensory, and immune systems. As a result, space medicine has emerged as a distinct field of study focused on understanding and mitigating these risks to ensure the health and safety of astronauts during space flight.

Hydrocortisone is a synthetic glucocorticoid, which is a class of steroid hormones. It is identical to the naturally occurring cortisol, a hormone produced by the adrenal gland that helps regulate metabolism and helps your body respond to stress. Hydrocortisone has anti-inflammatory effects and is used to treat various inflammatory conditions such as allergies, skin disorders, and autoimmune diseases. It works by suppressing the immune system's response to reduce swelling, redness, itching, and other symptoms caused by inflammation.

Hydrocortisone is available in different forms, including oral tablets, topical creams, lotions, gels, and ointments, as well as injectable solutions. The specific use and dosage depend on the condition being treated and the individual patient's medical history and current health status.

As with any medication, hydrocortisone can have side effects, especially when used in high doses or for extended periods. Common side effects include increased appetite, weight gain, mood changes, insomnia, and skin thinning. Long-term use of hydrocortisone may also increase the risk of developing osteoporosis, diabetes, cataracts, and other health problems. Therefore, it is essential to follow your healthcare provider's instructions carefully when using this medication.

Endoplasmic reticulum (ER) stress refers to a cellular condition characterized by the accumulation of misfolded or unfolded proteins within the ER lumen, leading to disruption of its normal functions. The ER is a membrane-bound organelle responsible for protein folding, modification, and transport, as well as lipid synthesis and calcium homeostasis. Various physiological and pathological conditions can cause an imbalance between the rate of protein entry into the ER and its folding capacity, resulting in ER stress.

To cope with this stress, cells have evolved a set of signaling pathways called the unfolded protein response (UPR). The UPR aims to restore ER homeostasis by reducing global protein synthesis, enhancing ER-associated degradation (ERAD) of misfolded proteins, and upregulating the expression of genes involved in protein folding, modification, and quality control.

The UPR is mediated by three major signaling branches:

1. Inositol-requiring enzyme 1α (IRE1α): IRE1α is an ER transmembrane protein with endoribonuclease activity that catalyzes the splicing of X-box binding protein 1 (XBP1) mRNA, leading to the expression of a potent transcription factor, spliced XBP1 (sXBP1). sXBP1 upregulates genes involved in ERAD and protein folding.
2. Activating transcription factor 6 (ATF6): ATF6 is an ER transmembrane protein that, upon ER stress, undergoes proteolytic cleavage to release its cytoplasmic domain, which acts as a potent transcription factor. ATF6 upregulates genes involved in protein folding and degradation.
3. Protein kinase R-like endoplasmic reticulum kinase (PERK): PERK is an ER transmembrane protein that phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α) upon ER stress, leading to a global reduction in protein synthesis and preferential translation of activating transcription factor 4 (ATF4). ATF4 upregulates genes involved in amino acid metabolism, redox homeostasis, and apoptosis.

These three branches of the UPR work together to restore ER homeostasis by increasing protein folding capacity, reducing global protein synthesis, and promoting degradation of misfolded proteins. However, if the stress persists or becomes too severe, the UPR can trigger cell death through apoptosis.

In summary, the unfolded protein response (UPR) is a complex signaling network that helps maintain ER homeostasis by detecting and responding to the accumulation of misfolded proteins in the ER lumen. The UPR involves three main branches: IRE1α, ATF6, and PERK, which work together to restore ER homeostasis through increased protein folding capacity, reduced global protein synthesis, and enhanced degradation of misfolded proteins. Persistent or severe ER stress can lead to the activation of cell death pathways by the UPR.

Uridine Diphosphate Glucose (UDP-glucose) is a nucleotide sugar that plays a crucial role in the synthesis and metabolism of carbohydrates in the body. It is formed from uridine triphosphate (UTP) and glucose-1-phosphate through the action of the enzyme UDP-glucose pyrophosphorylase.

UDP-glucose serves as a key intermediate in various biochemical pathways, including glycogen synthesis, where it donates glucose molecules to form glycogen, a large polymeric storage form of glucose found primarily in the liver and muscles. It is also involved in the biosynthesis of other carbohydrate-containing compounds such as proteoglycans and glycolipids.

Moreover, UDP-glucose is an essential substrate for the enzyme glucosyltransferase, which is responsible for adding glucose molecules to various acceptor molecules during the process of glycosylation. This post-translational modification is critical for the proper folding and functioning of many proteins.

Overall, UDP-glucose is a vital metabolic intermediate that plays a central role in carbohydrate metabolism and protein function.

Amino acid transport disorders are a group of inherited metabolic disorders that affect the way in which amino acids (the building blocks of proteins) are transported into and out of cells in the body. These disorders occur when there is a defect in the genes responsible for producing the transporters that move amino acids across cell membranes.

There are several different types of amino acid transport disorders, each affecting a specific transporter or group of transporters. Some examples include:

* Cystinuria: This disorder affects the transporter that moves cystine and other basic amino acids (lysine, arginine, and ornithine) from the blood into the kidney cells. As a result, these amino acids accumulate in the urine and can form stones in the kidneys and bladder.
* Hartnup disorder: This disorder affects the transporter that moves neutral amino acids (such as tryptophan, alanine, serine, and glutamine) from the intestines into the bloodstream and from the kidney cells back into the bloodstream. As a result, these amino acids are not properly absorbed or reabsorbed, leading to symptoms such as skin rashes, ataxia, and cognitive impairment.
* Lysinuric protein intolerance: This disorder affects the transporter that moves basic amino acids (lysine, arginine, and ornithine) from the lysosomes (a type of organelle within cells) into the cytosol (the fluid inside the cell). As a result, these amino acids accumulate in the lysosomes and can cause damage to the cells.

Symptoms of amino acid transport disorders can vary widely depending on the specific disorder and the severity of the defect. Treatment may include dietary restrictions, supplements, and medications to help manage symptoms and prevent complications. In some cases, treatment may also involve replacing the missing or defective transporter with a functional one through gene therapy.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Xylose is a type of sugar that is commonly found in plants and wood. In the context of medical definitions, xylose is often used in tests to assess the function of the small intestine. The most common test is called the "xylose absorption test," which measures the ability of the small intestine to absorb this sugar.

In this test, a patient is given a small amount of xylose to drink, and then several blood and/or urine samples are collected over the next few hours. The amount of xylose that appears in these samples is measured and used to determine how well the small intestine is absorbing nutrients.

Abnormal results on a xylose absorption test can indicate various gastrointestinal disorders, such as malabsorption syndromes, celiac disease, or bacterial overgrowth in the small intestine.

Multivariate analysis is a statistical method used to examine the relationship between multiple independent variables and a dependent variable. It allows for the simultaneous examination of the effects of two or more independent variables on an outcome, while controlling for the effects of other variables in the model. This technique can be used to identify patterns, associations, and interactions among multiple variables, and is commonly used in medical research to understand complex health outcomes and disease processes. Examples of multivariate analysis methods include multiple regression, factor analysis, cluster analysis, and discriminant analysis.

... glucose intolerance; hyperinsulinemia; and increased adiposity, i.e. symptoms, typical for human prediabetes. Several small ... "Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not ... "ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes". ... of PIKfyve with type 2 diabetes is inferred by the observations that PIKfyve perturbation inhibits insulin-regulated glucose ...
This is due to the degree of glucose intolerance of patients that participate in the clinical studies. Glucose intolerance is a ... Another important point to mention is that diabetes is not always caused by glucose intolerance. As mentioned before, Cr(III) ... Anderson, Richard (1998). "Chromium, Glucose Intolerance and Diabetes". Journal of the American College of Nutrition. 17 (6): ... has been shown to only influence glucose intolerance and not insulin levels. Furthermore, the environments in which the studies ...
"Gut Bacteria, Artificial Sweeteners, and Glucose Intolerance". www.newswise.com. Retrieved 2017-08-02. "Israeli doctors give ...
Others: glucose intolerance, insulin resistance, immune dysfunction. Depending on the length of drug use, there is a chance ... AAS have been shown to alter fasting blood sugar and glucose tolerance tests. AAS such as testosterone also increase the risk ...
Murphy, M.B; Kohner, E; Lewis, P.J; Schumer, B; Dollery, C.T (December 1982). "Glucose intolerance in hypertensive patients ...
... and glucose intolerance. It has been suggested that vitamin D may induce beneficial effects on diabetic complications by ... and glucose intolerance. Finally, vitamin D may reduce the risk of vascular complications by modulating lipid profile. ... by stimulating gluconeogenesis thereby increasing the renal glucose output. In addition to the endogenous renal glucose ... It may replace glucose in many chemical reactions due to its similarity in structure, may prevent the non-enzymatic ...
Glucose is contraindicated in patients with glucose intolerance. Sorbitol metabolizes to fructose in the liver and is ... These solutions include glucose, glycine, dextran (Hyskon), mannitol, sorbitol and a mannitol/sorbital mixture (Purisol). Water ...
Blagosklonny MV (August 2019). "Fasting and rapamycin: diabetes versus benevolent glucose intolerance". Cell Death & Disease. ...
Murphy MB, Lewis PJ, Kohner E, Schumer B, Dollery CT (December 1982). "Glucose intolerance in hypertensive patients treated ... Lewis PJ, Kohner EM, Petrie A, Dollery CT (March 1976). "Deterioration of glucose tolerance in hypertensive patients on ... Adverse effects of thiazide diuretics include hypercholesterolemia, and impaired glucose tolerance with increased risk of ...
Lipman, RL; Raskin, P; Love, T; Triebwasser, J; Lecocq, FR; Schnure, JJ (February 1972). "Glucose intolerance during decreased ... In a well-designed 7-d bed rest study, insulin action on both whole-body glucose uptake rate and leg glucose uptake rate was ... glucose intolerance). While this association is quite clearly documented in bed rest studies, the association is not yet ... and blood glucose levels exceeded those of the controls 2 h after glucose loading. ...
... is associated with hypertension, obesity, dyslipidemia, insulin resistance, and glucose intolerance. These ... As more GLUT4 receptors are present on the membrane more glucose is taken up into cells decreasing blood glucose levels which ... A link between hypertension obesity and glucose intolerance". J. Clin. Invest. 75 (3): 809-17. doi:10.1172/JCI111776. PMC ... a threshold concentration of insulin is reached causing the cells to uptake glucose and therefore decreases blood glucose ...
It is also associated with glucose intolerance and hyperuricemia.[citation needed] In medicine, combined hyperlipidemia (or - ...
Affected rats exhibited significant pancreatic dysfunction and glucose intolerance. Other animal studies have reported insulin ... which was accompanied by a decrease in gene expression of specific transcription factors and blood glucose regulating hormones ...
October 2002). "Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated ... Central obesity is associated with glucose intolerance and dyslipidemia. Once dyslipidemia becomes a severe problem, an ... These effects were not attenuated when compared to similar glucose consumption. Intake of trans fat from industrial oils has ... fat feeding in rodent models of obesity/type 2 diabetes suggest a link between resistin expression and control of glucose ...
2003). "Glucose intolerance and serum aminotransferase activities in Japanese men". J. Hepatol. 38 (1): 18-23. doi:10.1016/ ...
July 2014). "Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity". The Journal of ...
It may be a result of glucose intolerance during the pregnancy period. However, it can be prevented by behavioral and dietary ... The body uses glucose for energy. Without insulin, glucose is unable to enter the cells where it will be used for this and ... the effectiveness of the insulin dose at controlling blood glucose is evaluated. This is done by a series of blood glucose ... it is the mechanism behind metabolizing fat instead of glucose and the appearance of ketones. Since the glucose that normally ...
"PAX6 mutation as a genetic factor common to aniridia and glucose intolerance". Diabetes. 51 (1): 224-30. doi:10.2337/diabetes. ...
2017). "Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis". Genome ... by the gut microbiota and the end products are converted to glucose via gluconeogenesis that account for glucose intolerance. ...
Other reactions include glucose intolerance, hyperuricemia, macular edema, and macular cysts. Corn (maize) became a staple food ...
This role helps explain why defects in transglutaminase can lead to glucose intolerance. Though small GTPases are involved, the ... by which serotonin controls the release of insulin from beta cells in the pancreas and so the regulation of blood glucose ...
... and Glucose Intolerance". Cell Metabolism. 8 (4): 310-317. doi:10.1016/j.cmet.2008.07.008. PMC 2581738. PMID 18840361. Parton, ...
Fetuin-B significantly increases hepatic steatosis and mediates impaired insulin action and glucose intolerance. ANGPTL8/ ... These proteins regulate glucose and lipid metabolism in the liver but also in the skeletal muscle or the adipose tissue. It is ...
Glucose intolerance and diabetes mellitus can be treated with a different diet and lifestyle changes. -Regular eye checkups are ...
Other risk factors are insulin resistance or intolerance to glucose, prothrombotic state or proinflammatory state. Older people ... with a family history of type 2 diabetes should be tested regularly to determine whether they have irregular levels of glucose ...
Increased abundance of Roseburia is associated with weight loss and reduced glucose intolerance in mice. LPSN lpsn.dsmz.de ...
Furthermore, it reduces the level of plasma leptin, mitigates liver damage and alleviates glucose intolerance. Finally K21 ... Nybom SM, Collado MC, Surono IS, Salminen SJ, Meriluoto JA (May 2008). "Effect of glucose in removal of microcystin-LR by ...
In adults, reviews have not found intermittent feeding to increase glucose variability or gastrointestinal intolerance. A meta- ... Monnier L, Colette C, Lapinski H, Boniface H (April 2004). "Self-monitoring of blood glucose in diabetic patients: from the ... when the liver glucose reserves are depleted, occurring after 12 to 36 hours of continued fast; The shift from preferential ... especially on glucose metabolism and leptin. Preliminary studies found that eating when melatonin is secreted - during darkness ...
... deletion in mice causes anemia, glucose intolerance, dyslipidemia, hyperkalemia and elevated serum angiotensin II. Some ...
... nerve deafness and glucose intolerance". Am J Med. 60 (1): 23-32. doi:10.1016/0002-9343(76)90529-5. PMID 1251844. Okada T, ...
The most widely used classification of diabetes mellitus (DM) and allied categories of glucose intolerance is that recommended ... Varying forms of glucose intolerance. Glucose intolerance may be present in many patients with cirrhosis due to decreased ... encoded search term (Glucose Intolerance) and Glucose Intolerance What to Read Next on Medscape ... Glucose intolerance is an umbrella term for a group of metabolic conditions that result in higher than normal blood glucose ...
Citation Information: J Clin Invest. 2003;111(9):1282-1284. https://doi.org/10.1172/JCI18526 ...
The consumption of artificial sweeteners results in glucose intolerance mediated by changes in the gut microbiota in both mice ... and Glucose Intolerance. The consumption of artificial sweeteners results in glucose intolerance mediated by changes in the gut ... WIKIMEDIA, STEVE SNODGRASSNon-caloric sweeteners can spur glucose intolerance in mice and some people, according to a study ... Four weeks of treatment with gut bacteria-depleting antibiotics reversed the glucose intolerance in mice that continued to ...
Glucose intolerances may be linked to non-caloric artificial sweeteners, according to research published in Nature. ... or sucrose demonstrated comparable glucose tolerance compared to the NAS mice, which showed glucose intolerance. The mice were ... Glucose intolerances may be linked to non-caloric artificial sweeteners, according to research published in Nature. ... Results concluded consumption of commonly NAS formulas can impact the development of glucose intolerance through induction of ...
... is associated with an elevated risk of postpartum glucose intolerance, according to a study published in Endocrinology and ... Women With GDM, Vitamin D Deficiency May Have Higher Risk of Postpartum Glucose Intolerance. April 2, 2020. Gianna Melillo ... The risk of postpartum glucose intolerance was still 2 times (95% CI, 1.13-3.55) higher in women with vitamin D deficiency than ... Vitamin D deficiency at mid-pregnancy is associated with a higher risk of postpartum glucose intolerance in women with ...
Artificial sweeteners induce glucose intolerance by altering the gutmicrobiota by Jotham Suez et al published in Nature on ... expert reaction to non-caloric artificial sweeteners (NAS) and glucose intolerance A paper published in the journal Nature has ... This in turn leads to metabolic changes in mice, such as glucose intolerance that have a knock-on effect on promoting type 2 ... However, in diabetes, blood glucose levels can be elevated higher than normal and for a longer period - this is the basis for ...
Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. In: Journal of Clinical ... 2002). Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. Journal of ... Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. / Andrews, RC; Herlihy, O ... Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. Journal of Clinical ...
In addition, following CUS, fasting insulin levels were increased and were accompanied by signs of impaired glucose tolerance ... environment by increased lipocalin-2 expression in white adipose tissue may contribute to stress-induced glucose intolerance. ... Chronic stress is associated with increased risk of glucose intolerance and cardiovascular diseases, albeit through undefined ... Thus, the direct effect of glucocorticoids on the levels of glucose cannot be the explanation for the glucose intolerance found ...
medtigo points is our unique point redemption system created to award users for interacting on our site. These points can be redeemed for special discounts on the medtigo marketplace as well as towards the membership cost itself ...
The most widely used classification of diabetes mellitus (DM) and allied categories of glucose intolerance is that recommended ... Varying forms of glucose intolerance. Glucose intolerance may be present in many patients with cirrhosis due to decreased ... encoded search term (Glucose Intolerance) and Glucose Intolerance What to Read Next on Medscape ... Impaired glucose tolerance (IGT), considered the most common form of glucose intolerance in the United States, is present in 11 ...
Glucose Intolerance Humans Impaired Glucose Intolerance Linear Models Logistic Models Phthalates Phthalic Acids Pregnancy ... Phthalates are common plasticizer chemicals that have been linked to glucose intolerance in the general population, but there ... Maternal Urinary Phthalate Metabolites in Relation to Gestational Diabetes and Glucose Intolerance During Pregnancy. ... Additional phthalate metabolites were also found to be linked to glucose intolerance, with possible stronger associations in ...
The glucagon-like peptide receptor agonist exenatide protects against glucocorticoid-induced glucose intolerance and islet-cell ... The glucagon-like peptide receptor agonist exenatide protects against glucocorticoid-induced glucose intolerance and islet-cell ... The glucagon-like peptide receptor agonist exenatide protects against glucocorticoid-induced glucose intolerance and islet-cell ... T1 - The glucagon-like peptide receptor agonist exenatide protects against glucocorticoid-induced glucose intolerance and islet ...
I will try and help your thinking by letting you know where blood glucose levels (BGLs) fitted into care in food sensitive ... Copyright © 2023 - Joan Breakey Food Intolerance Pro • All rights reserved.. Powered on Genesis Framework • Website designed & ... Does blood sugar improve for those who manage their fructose and lactose and intolerance well? A: These are interesting ...
Diabetes/glucose intolerance. * 4.3.1. We suggest that all children with CKD2-5D or with a kidney transplant and O&MS receive ... Diabetes/glucose intolerance. Weight management through lifestyle modification, including nutrition and exercise, is the ... Children with risk factors for new onset diabetes after transplantation (NODAT) and post-transplant glucose intolerance, ... Measure BP, fasting TG, HDL, and glucose levels in children with CKD2-5D and after transplantation if BMI , +1 SD (level A; ...
Suman Kirti, Senior Consultant Endocrinologist at Holy Family Hospital, New Delhi, explained about impaired glucose intolerance ... What is impaired glucose intolerance?. #aswift_1 { width: 100% !important; } Diabetes & Endocrinology. , Pathology ...
Gut bacteria, artificial sweeteners and glucose intolerance. Weizmann Institute of Science. Journal. Nature. Keywords. * /Life ... nonetheless have a direct effect on the bodys ability to utilize glucose. Glucose intolerance - generally thought to occur ... These mice developed glucose intolerance, as compared to mice that drank water, or even sugar water. Repeating the experiment ... The findings showed that many - but not all - of the volunteers had begun to develop glucose intolerance after just one week of ...
Conclusion - A high incidence of glucose intolerance was found in the acute stage of VKH disease. However, glucose intolerance ... Conclusion - A high incidence of glucose intolerance was found in the acute stage of VKH disease. However, glucose intolerance ... Conclusion - A high incidence of glucose intolerance was found in the acute stage of VKH disease. However, glucose intolerance ... Conclusion - A high incidence of glucose intolerance was found in the acute stage of VKH disease. However, glucose intolerance ...
... « on: September 26, 2012, 04:32:44 AM » ... Article i found on Thal Minor research/glucose intolerance/low HDL levels. * Thalassemia Patients and Friends ... Article i found on Thal Minor research/glucose intolerance/low HDL levels *0 Replies ... Article i found on Thal Minor research/glucose intolerance/low HDL levels ...
Daytime Eating May Limit Glucose Intolerance in Night Shift Workers. Posted at 22:23h in Author Interviews, Brigham & Womens ... Laboratory studies in humans have shown glucose intolerance in both non-shift workers and shift workers exposed to simulated ... 2021) Daytime eating prevents internal circadian misalignment and glucose intolerance in night work. Science Advances. doi.org/ ... maintains internal circadian alignment and prevents glucose intolerance.. MedicalResearch.com: What recommendations do you have ...
... occurs when blood glucose levels are over 11mmol/L. ... Glucose Intolerance. Glucose intolerance is an umbrella term ... Blood glucose levels stay high for extended periods of time - this can lead to the development of long term complications ... Diabetes UK advise people with type 1 diabetes to test for ketones if blood glucose levels rise above 15 mmol/l or the signs of ... If blood glucose levels remain high for long periods of time, contact your health team for advice. ...
... glucose intolerance; hyperinsulinemia; and increased adiposity, i.e. symptoms, typical for human prediabetes. Several small ... "Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not ... "ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes". ... of PIKfyve with type 2 diabetes is inferred by the observations that PIKfyve perturbation inhibits insulin-regulated glucose ...
We demonstrate that aged lamin C only-expressing mice (Lmna glucose tolerant due ...
Glucose intolerance requiring treatment.. *Prepregnancy. Diagnosis before this pregnancy. *Gestational. Diagnosis during this ...
Glucose intolerance has been linked to obesity and diabetes. This study examines whether chemical modifications cause the ... Recent research has shown that consuming sucralose can lead to glucose intolerance and a reduction in beneficial gut bacteria ... Artificial Sweetener Safety - Do molecular interactions with sucralose alter gut bacteria and cause glucose intolerance?. By ... In animal models sucralose has led to changes in glucose tolerance and alterations of beneficial gut bacteria. Given the ...
... the sugars glucose and galactose, which primarily results in severe diarrhea. Explore symptoms, inheritance, genetics of this ... Glucose-galactose malabsorption is a condition in which the body cannot take in (absorb) ... Carbohydrate intolerance. *Complex carbohydrate intolerance. *Congenital glucose-galactose intolerance. *Congenital glucose- ... Glucose-galactose malabsorption is a condition in which the body cannot take in (absorb) the sugars glucose and galactose, ...
... obesity and glucose intolerance in mice on high-fat diet 22/01/2020. and, damage, Diet, drug, glucose, high-fat, in, ... Home » Wellness » New drug prevents liver damage, obesity and glucose intolerance in mice on high-fat diet ... Mice given a new drug targeting a key gene involved in lipid and glucose metabolism could tolerate a high-fat diet regimen ( ... At later stages of the disease, CTPI-2 also reversed liver damage, induced weight loss and restored the glucose metabolic ...
Gut Bacteria, Artificial Sweeteners and Glucose Intolerance. 17.09.2014. Nutrition, Viruses & Microorganisms, Immunology, ... coordination between our gut bacteria and our biological clocks may be crucial for preventing obesity and glucose intolerance ...
Artificial sweeteners induce glucose intolerance by altering the gut microbiota.Sep 16, 2014. ... Aspartame exposure may promote hyperglycemia and insulin intolerance. MSG may interact with aspartame to further impair glucose ...
We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, ... Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling Gut. 2018 Dec; ... enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose ...
We assessed the long-term effect of lifestyle intervention on long-term outcomes among adults with impaired glucose tolerance ... Background: Lifestyle interventions among people with impaired glucose tolerance reduce the incidence of diabetes, but their ... Interpretation: A 6-year lifestyle intervention programme for Chinese people with impaired glucose tolerance can reduce ... These findings emphasise the long-term clinical benefits of lifestyle intervention for patients with impaired glucose tolerance ...
  • Sasaki N, Ozono R, Higashi Y, Maeda R, Kihara Y. Association of insulin resistance, plasma glucose level, and serum insulin level with hypertension in a population with different stages of impaired glucose metabolism. (medscape.com)
  • Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. (nih.gov)
  • The data show that (a) glucose intolerance does not develop with CRF in the absence of PTH, (b) PTH does not affect metabolic clearance of insulin or tissue resistance to insulin in CRF, and (c) the normalization of metabolism in CRF in the absence of PTH is due to increased insulin secretion. (jci.org)
  • Akt is involved in upregulating the insulin-signaling pathways essential for maintaining glucose metabolism. (termedia.pl)
  • Subjects with disturbed glucose metabolism may be at risk of impaired cognitive function, as these disturbances can influence cognition through atherosclerosis, thrombosis and hypertension. (eur.nl)
  • In overt hyperthyroidism, although impaired glucose tolerance has long been observed as a frequent complication, the impact of subclinical hyperthyroidism on glucose metabolism is unclear. (ac.ir)
  • The theoretical background for the work mainly stands on the reduction in brown adipose tissue activity due to high ambient temperature that is expected to negatively impact glucose metabolism. (bmj.com)
  • The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. (nih.gov)
  • Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. (nih.gov)
  • Therefore, AdipoR1 and R2 serve as the predominant receptors for adiponectin in vivo and play important roles in the regulation of glucose and lipid metabolism, inflammation and oxidative stress in vivo . (nature.com)
  • RESEARCH DESIGN AND METHODS -We determined the optimum diagnostic criteria to identify people with abnormal glucose tolerance using fasting plasma glucose, 2-h post-glucose load plasma glucose, and HbA 1c in 936 Canadians of South Asian, Chinese, and European descent. (diabetesjournals.org)
  • Main outcome measures - Two hour post load plasma glucose concentration, BMI, waist circumference, and waist-hip ratio. (ncl.ac.uk)
  • Plasma glucose levels (milligrams per dl ± SEM) at 90 and 120 minutes after ingestion of glucose were significantly higher (p=0.005 and p=0.06 respectively) in the subclinical hyperthyroid (SHR) patients (162 ± 17, 146 ± 16 respectively) compared to euthyroid (EU) normal subjects(101±7 and 94±5 respectively). (ac.ir)
  • Subclinical hyperthyroidism results in glucose intolerance despite normal fasting plasma glucose, findings that recommend oral glucose tolerance tests for SHR patients. (ac.ir)
  • There was no significant correlation between GH, IGF-1 concentrations and fasting plasma glucose. (qxmd.com)
  • There was no correlation between the duration of the disease and fasting plasma glucose. (qxmd.com)
  • Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. (unil.ch)
  • The study established that non-caloric artificial sweeteners induce glucose intolerance in mice by altering their gut microbiota. (medicalnewstoday.com)
  • Objective - To compare the prevalence of glucose intolerance (impaired glucose tolerance and diabetes), and its relationship to body mass index (BMI) and waist-hip ratio in Chinese and Europid adults. (ncl.ac.uk)
  • Conclusions - The prevalence of glucose intolerance in Chinese men and women, despite lower BMIs, is similar to or higher than that in local Europid men and women and intermediate between levels found in China and those in Mauritius. (ncl.ac.uk)
  • Does the prevalence of glucose intolerance depend on the level of activity of the disease and the duration of the symptoms? (qxmd.com)
  • They also evidenced an independent association between the prevalence of glucose intolerance worldwide and mean annual temperature on a global scale. (bmj.com)
  • Immune-mediated causes of impaired glucose tolerance include stiff person syndrome and anti-insulin receptor abnormalities. (medscape.com)
  • Also, chromium supplements, specifically chromium picolinate, in amounts of 400 to 1000 mcg/d ameliorate glucose metabolic abnormalities in some patients with insulin resistance or type 2 diabetes. (nih.gov)
  • Abnormalities in glucose homeostasis in acromegaly. (qxmd.com)
  • Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. (nih.gov)
  • Artificial sweeteners induce glucose intolerance by altering the gut microbiota. (greenmedinfo.com)
  • Other causes of glucose intolerance are liver disease (as in cirrhosis) and renal failure. (medscape.com)
  • These data established the potential use of oral insulin administration with glycosphingolipids to alleviate glucose intolerance and associated liver damage and hyperlipidemia via increased Akt expression in the liver. (termedia.pl)
  • Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. (nih.gov)
  • 9. Baseline studies should include a complete blood count (CBC) with differential, serum electrolytes, liver function tests, renal function tests, blood glucose, urinalysis, and chest x-ray. (bigislandvideonews.com)
  • Participants with glucose intolerance (2-h blood glucose 7.0 -11.0 mmol/l) were recruited from a Workforce Diabetes Survey. (medscape.com)
  • Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: an interventional study. (medscape.com)
  • These data suggest that DEHP may decrease the adipocyte pool at birth, which initially increases adaptive adipocyte maturation and lipid accumulation, but leads to adipose tissue dysfunction in adulthood, decreasing the capacity to adapt to a HF diet, and leading to systemic glucose intolerance. (johnshopkins.edu)
  • Intravenous glucose tolerance tests (IVGTT) and euglycemic and hyperglycemic clamp studies were performed in dogs with CRF with (NPX) and without parathyroid glands (NPX-PTX). (jci.org)
  • Therefore, we compared glucose tolerance tests in patients with subclinical hyperth-yroidism and a group of healthy controls. (ac.ir)
  • Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. (nih.gov)
  • To investigate the effect of NNSs on glycemic response, participants wore a continuous glucose monitor throughout the clinical trial, and completed glucose tolerance tests on pre-determined days. (medicalnewstoday.com)
  • both the time course and the magnitude of suppression of hepatic glucose production by insulin were similar in both in groups. (jci.org)
  • While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. (nih.gov)
  • Supplementation of diabetic patients with vanadium salts in doses ranging from 25 to 100 mg of elemental vanadium daily for up to six weeks elicits partial normalization of glucose metabolic irregularities. (nih.gov)
  • Metabolic syndrome (MS) is usually a cluster of glucose intolerance, hypertension, and dyslipidemia with visceral fats accumulation. (opioid-receptors.com)
  • This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. (nature.com)
  • The NPX dogs displayed glucose intolerance after CRF and blood glucose concentrations during IVGTT were significantly (P less than 0.01) higher than corresponding values before CRF. (jci.org)
  • OBJECTIVE -Identifying individuals who have elevated glucose concentrations is important for clinicians so that preventive strategies can be invoked, and it is useful for researchers who study associations between elevated glucose and adverse health outcomes. (diabetesjournals.org)
  • Basal glucose concentrations were not significantly different between the subclinical hyperthyroidism and euthyroidism group. (ac.ir)
  • SHR patients showed higher postprandial glucose concentrations (area under the curve, AUC90, 120 18072±4779 and 18130±1758 mg/dlmin ± SEM respectively) versus EU normal subjects (AUC90, 120 1045±516, 13360 ± 643 mg/dl min ± SEM, P= 0.026, 0.018 respectively). (ac.ir)
  • In each patient glucose and insulin concentrations were assessed when fasting and during the 75 g OGTT. (qxmd.com)
  • There was no statistically significant differences in gender, duration of the disease, basal plasma GH, IGF-1 or fasting insulin concentrations between normoglycaemic patients and those with impairments in glucose tolerance. (qxmd.com)
  • An intravenous glucose tolerance test showed that the fractional rate (K) had decreased to 0.89%/min (normal greater than 1.2). (nih.gov)
  • Regular insulin daily (45 micron) in the infusate nearly maintained euglycemia but despite this, and even with further glucose intake to restore weight loss, intravenous glucose tolerance test (K) and respiratory quotient were unchanged. (nih.gov)
  • After this the intravenous glucose tolerance test (K) and respiratory quotient became normal (1.35 and 0.78, respectively). (nih.gov)
  • Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. (nih.gov)
  • Conclusions The natural history for people at high risk of developing type 2 diabetes is weight gain and deterioration in glucose tolerance. (medscape.com)
  • T2DM, which is commonly asymptomatic, frequently is not recognized until random blood glucose is measured. (nih.gov)
  • In contrast, blood glucose levels after IVGTT in NPX-PTX before and after CRF were not different. (jci.org)
  • Blood insulin levels after IVGTT in NPX-PTX were more than twice higher than in NPX animals (P less than 0.01) and for any given level of blood glucose concentration, the insulin levels were higher in NPX-PTX than NPX dogs. (jci.org)
  • Because such foods are usually lower in calories than those containing natural sugars, many have considered them a good option for people who are trying to lose weight or keep their blood glucose levels in check. (nih.gov)
  • It's caused by the body's inability to properly use insulin or make enough insulin, resulting in elevated levels of glucose in the blood. (healthspot.org)
  • I was then given a glucose drink, and after a while they took another blood test. (medhelp.org)
  • Objective: We evaluated the association between 11 urinary phthalate metabolites and GDM, impaired glucose tolerance (IGT), and continuous blood glucose concentration during pregnancy in The Infant Development and Environment Study (TIDES). (cdc.gov)
  • We fit linear regression models to examine the percent change in blood glucose per IQR increase in ln-transformed, SG-adjusted T1 and T1T3avg phthalates. (cdc.gov)
  • Results: In our sample of 705 pregnant women, we observed 60 cases of GDM, 90 cases of IGT, and an average GLT blood glucose of 113.6 +/- 27.7 mg/dL. (cdc.gov)
  • 12. [Immunoreactive insulin and blood glucose levels following oral glucose load in patientss with dumping-syndrome]. (nih.gov)
  • 14. Concurrent Therapy with a Low-carbohydrate Diet and Miglitol Remarkably Improved the Postprandial Blood Glucose and Insulin Levels in a Patient with Reactive Hypoglycemia due to Late Dumping Syndrome. (nih.gov)
  • After eating foods that contain carbohydrates , blood glucose (blood sugar) levels rise as we digest the food. (medicalnewstoday.com)
  • This post-meal spike in blood glucose levels is known as the glycemic response. (medicalnewstoday.com)
  • Thus, via PtdIns(3,5)P2 production, PIKfyve participates in several aspects of vesicular dynamics, thereby affecting a number of trafficking pathways that emanate from or traverse the endosomal system en route to the trans-Golgi network or later compartments along the endocytic pathway. (wikipedia.org)
  • This view is plausible, particularly since recent data uncovered potential crosstalk between brown adipose tissue and glucose regulatory pathways,2 but it is important for us to discuss the context of the study. (bmj.com)
  • In both Chinese and Europid adults, higher BMI, waist circumference, and waist-hip ratio were associated with glucose intolerance. (ncl.ac.uk)
  • Studies have shown that eating at night, as many nightshift workers do, impairs the body's ability to process sugar, or glucose. (nih.gov)
  • The glucose tolerance test measures the body's ability to absorb and use glucose (sugar). (medicalnewstoday.com)
  • Nutritional factors influencing the glucose/insulin system: chromium. (nih.gov)
  • Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. (nih.gov)
  • Chromium deficiency may result in glucose intolerance. (cdc.gov)
  • A total of 120 individuals passed the stringent screening test and the researchers randomly assigned them to one of six supplementation groups: aspartame, saccharin, stevia, sucralose, glucose (to control for potential interference from glucose in standard NNS formulations), and no supplement (the second control group). (medicalnewstoday.com)
  • No significant effect on glucose tolerance was observed in the aspartame, stevia, glucose, and the no-supplement groups. (medicalnewstoday.com)
  • The occurrence of glucose tolerance impairments does not depend on the duration of the disease. (qxmd.com)
  • Maternal urinary phthalate metabolites in relation to gestational diabetes and glucose intolerance during pregnancy. (cdc.gov)
  • Background: Phthalates are common plasticizer chemicals that have been linked to glucose intolerance in the general population, but there is only limited research on their association with gestational diabetes (GDM). (cdc.gov)
  • Better alignment between the central and peripheral clocks may explain the beneficial effects of daytime eating on glucose levels during night work. (nih.gov)
  • 16. [Glucose intolerance in gastrointestinal disease]. (nih.gov)
  • Insulin opposition happens when body supplies insufficient insulin for the body glucose to get changed over bringing about the high glucose that remaining parts unconverted in the body. (tsijournals.com)
  • We made a cross-sectional study to analyze glucose intolerance of myotonic dystrophy type 1 (DM1) with several examination including oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and adiponectin. (nih.gov)
  • Simultaneous disruption of both AdipoR1 and R2 abolished adiponectin binding and actions, resulting in increased tissue triglyceride content, inflammation and oxidative stress, and thus leading to insulin resistance and marked glucose intolerance. (nature.com)
  • Figure 5: Targeted disruption of both Adipor1 and Adipor2 results in abrogation of adiponectin binding and adiponectin actions, leading to marked glucose intolerance and insulin resistance. (nature.com)
  • We evaluated the risk of an abnormal oral glucose tolerance test (OGTT) in a population where BMI was measured and selective screening for GDM was practiced. (jri.ir)
  • A link of PIKfyve with type 2 diabetes is inferred by the observations that PIKfyve perturbation inhibits insulin-regulated glucose uptake. (wikipedia.org)
  • Figure 4: Targeted disruption of Adipor1 results in increased glucose production, whereas that of Adipor2 results in decreased glucose uptake. (nature.com)
  • Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. (nih.gov)
  • Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. (nih.gov)
  • Additional phthalate metabolites were also found to be linked to glucose intolerance, with possible stronger associations in certain racial/ethnic subgroups. (cdc.gov)
  • Therefore, the objective of our analysis was to determine whether using the fasting glucose and HbA 1c together could improve the classification of individuals with impaired glucose tolerance and diabetes in a multiethnic cohort randomly assembled in Canada. (diabetesjournals.org)
  • Fasting glucose and HbA 1c may be used together to improve the identification of individuals who have diabetes, allowing clinicians to streamline the use of the oral glucose tolerance test. (diabetesjournals.org)
  • Individuals with diabetes or glucose intolerance should be closely monitored. (bigislandvideonews.com)
  • 3. [Studies on the relation between late dumping syndrome and glucagon responses to glucose]. (nih.gov)
  • In contrast, those who ate during the daytime showed no significant increases in glucose. (nih.gov)
  • Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load. (greenmedinfo.com)
  • We now report on the 5-year follow-up of that study to examine the long-term impact of the reduced-fat-diet program on body weight, glucose tolerance, and conversion to type 2 diabetes. (medscape.com)
  • There are also wide variations nationally and internationally about the criteria for selective screening, the type of glucose load testing, the criteria for the diagnosis of GDM and the timing of the glucose load testing. (jri.ir)
  • Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. (nih.gov)
  • There was no significant difference in the ratio of glucose metabolized to the total insulin response, a measure of tissue sensitivity to insulin, between the two groups. (jci.org)
  • The glucose metabolized to total insulin response ratio in NPX (5.12 +/- 0.76 mg/kg X min per microU/ml) and NPX-PTX (5.18 +/- 0.57 mg/kg X min per microU/ml) dogs was not different but significantly (P less than 0.01) lower than in normal animals (9.98 +/- 1.26 mg/kg X min per microU/ml). (jci.org)
  • There was observed during this glucose infusion a borderline normal insulin response with a fall in plasma free fatty acids and in plasma leucine. (nih.gov)
  • It is suggested that an increase in mean BMI to the levels in the Europid population will be associated with a substantial increase in glucose intolerance in Chinese people. (ncl.ac.uk)
  • They found that nighttime eating boosted glucose levels, which is a risk factor for diabetes. (nih.gov)
  • Average glucose levels for those who ate at night increased by 6.4% during the simulated night work. (nih.gov)
  • Body weight and glucose tolerance were measured in 136 participants at baseline, 6 months, and 1 year (end of intervention), with follow-up at 2 years ( n = 104), 3 years ( n = 99), and 5 years ( n = 103). (medscape.com)
  • Participants with impaired glucose tolerance could not be identified reliably using the fasting glucose or HbA 1c alone or in combination. (diabetesjournals.org)
  • Over the next 5 months insulin was not needed and glucose intake had to be reduced substantially to avoid overweight. (nih.gov)
  • HF diet intake in DEHP-exposed males further increased male energy intake and body weight and led to glucose intolerance. (johnshopkins.edu)
  • All the sweeteners were given as commercially available sachets, containing a mixture of glucose and in doses lower than the FDA-recommended acceptable daily intake. (medicalnewstoday.com)
  • We should pay attention to glucose intolerance of DM1 patients earlier than that of the general population. (nih.gov)
  • We therefore studied the cross-sectional association of cognitive function with hyperinsulinaemia, impaired glucose tolerance and diabetes mellitus in a population-based cohort of 462 men aged 69 to 89 years. (eur.nl)
  • The aim of this study was to determine the risk of glucose intolerance and GDM by both BMI categories and BMI centiles in a population where BMI was measured accurately and selective screening for GDM was practiced. (jri.ir)
  • Each subject had a standard WHO oral glucose tolerance test. (ncl.ac.uk)
  • Oral glucose tolerance test was performed after 7 to 11 days. (ac.ir)
  • You would have to have a glucose test carried out to find out. (medhelp.org)