Diseases of the domestic or wild goat of the genus Capra.
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
Diseases of domestic and mountain sheep of the genus Ovis.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), closely related to VISNA-MAEDI VIRUS and causing acute encephalomyelitis; chronic arthritis; PNEUMONIA; MASTITIS; and GLOMERULONEPHRITIS in goats. It is transmitted mainly in the colostrum and milk.
Virus diseases caused by the Lentivirus genus. They are multi-organ diseases characterized by long incubation periods and persistent infection.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), that can cause chronic pneumonia (maedi), mastitis, arthritis, and encephalomyelitis (visna) in sheep. Maedi is a progressive pneumonia of sheep which is similar to but not the same as jaagsiekte (PULMONARY ADENOMATOSIS, OVINE). Visna is a demyelinating leukoencephalomyelitis of sheep which is similar to but not the same as SCRAPIE.
The study of NUTRITION PROCESSES, as well as the components of food, their actions, interaction, and balance in relation to health and disease in animals.
Inflammation of the BRAIN due to infection, autoimmune processes, toxins, and other conditions. Viral infections (see ENCEPHALITIS, VIRAL) are a relatively frequent cause of this condition.

Experimentally induced bovine spongiform encephalopathy did not transmit via goat embryos. (1/588)

Goats are susceptible to experimental challenge with bovine spongiform encephalopathy (BSE). This study set out to investigate whether the transmission of BSE could occur in goats following the transfer of embryos from experimentally infected donor females into uninfected recipient females. The results showed no evidence of transmissible spongiform encephalopathy disease in any of the offspring which developed from embryos from infected donors, nor indeed in any of the recipient females used as surrogate dams. In addition, there was no indication of experimental BSE spreading as either a venereal infection to males used in mating or by maternal transmission to offspring born naturally to experimentally infected donors, although numbers were small.  (+info)

Serotyping of Cryptococcus neoformans isolates from clinical and environmental sources in Spain. (2/588)

We determined biovars and serotypes of 154 isolates of Cryptococcus neoformans from clinical and environmental sources from different areas of Spain. All clinical isolates belonged to C. neoformans var. neoformans. Serotypes showed an irregular distribution. C. neoformans var. gattii serotype B was isolated from necropsy specimens from goats with pulmonary disease.  (+info)

Analysis of ruminant respiratory syncytial virus isolates by RNAse protection of the G glycoprotein transcripts. (3/588)

Two different respiratory syncytial virus (RSV) radiolabeled probes were used to characterize the genetic heterogeneity of 25 ruminant RSV isolates by the ribonuclease protection assay. A 32P-radiolabeled antisense RNA probe was transcribed from cloned ovine and bovine RSV G glycoprotein genes and then hybridized with total RNA isolated from infected cells with various ruminant RSV isolates. The results of this study, along with previously published nucleotide sequence data of the ovine RSV G glycoprotein gene, suggest the presence of at least 2 ruminant RSV subgroups. One subgroup is represented by RSV isolated from respiratory disease outbreaks from calves and goats, and the other is represented by RSV isolated from sheep.  (+info)

A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. (4/588)

A novel plant-induced lysosomal storage disease was observed in goats from a village in Mozambique. Affected animals were ataxic, with head tremors and nystagmus. Because of a lack of suitable feed, the animals consumed an exotic hedge plant growing in the village that was identified as Ipomoea carnea (shrubby morning glory, Convolvulaceae). The toxicosis was reproduced by feeding I. carnea plant material to goats. In acute cases, histologic changes in the brain and spinal cord comprised widespread cytoplasmic vacuolation of neurons and glial cells in association with axonal spheroid formation. Ultrastructurally, cytoplasmic storage vacuoles in neurons were membrane bound and consistent with lysosomes. Cytoplasmic vacuolation was also found in neurons in the submucosal and mesenteric plexuses in the small intestine, in renal tubular epithelial cells, and in macrophage-phagocytic cells in the spleen and lymph nodes in acute cases. Residual alterations in the brain in chronic cases revealed predominantly cerebellar lesions characterized by loss of Purkinje neurons and gliosis of the Purkinje cell layer. Analysis of I. carnea plant material by gas chromatography-mass spectrometry established the presence of the mannosidase inhibitor swainsonine and 2 glycosidase inhibitors, calystegine B2 and calystegine C1, consistent with a plant-induced alpha-mannosidosis in the goats. The described storage disorder is analogous to the lysosomal storage diseases induced by ingestion of locoweeds (Astragalus and Oxytropis) and poison peas (Swainsona).  (+info)

Tick-borne rickettiosis in Guadeloupe, the French West Indies: isolation of Rickettsia africae from Amblyomma variegatum ticks and serosurvey in humans, cattle, and goats. (5/588)

Twenty-seven rickettsiae were isolated and/or detected from 100 Amblyomma variegatum ticks collected on Guadeloupe in the French West Indies. In this study, the polymerase chain reaction procedure appeared to be more sensitive in detecting rickettsiae in ticks than the shell-vial technique. Sequencing a portion of the outer membrane protein A-encoding gene showed that these rickettsiae appeared to be identical to Rickettsia africae, a member of the spotted fever group rickettsiae recently described as an agent of African tick-bite fever occurring in sub-Sahelian Africa. A high seroprevalence of antibodies to R. africae was demonstrated among mammals, particularly humans, cattle, and goats. These results and a recently reported case of an infection due to R. africae on Guadeloupe demonstrate that R. africae is present on this island. Although this disease has been underdiagnosed there, it may be frequent and may exist on other Caribbean islands where A. variegatum has propagated dramatically over recent years.  (+info)

Inducible nitric oxide synthase is expressed in joints of goats in the late stage of infection with caprine arthritis encephalitis virus. (6/588)

We have studied the expression of the inducible form of nitric oxide synthase (iNOS) in joints of goats infected with the caprine arthritis encephalitis virus (CAEV). Nitric oxide generated by iNOS is thought to play an important role in the pathogenesis of various types of arthritis, especially rheumatoid arthritis (RA) in humans. Surprisingly, iNOS immunoreactivity was found only in joints of long-term infected goats with severe clinical arthritis, whereas-despite the presence of high numbers of inflammatory cells in the synovial tissue-no iNOS immunoreactivity was detected in mildly arthritic and in short-term experimentally infected goats. Most iNOS-positive cells expressed neither MHC class II nor CD68, which suggests that they were fibroblast-like synoviocytes. In situ hybridization studies showed that there was no correlation between iNOS immunoreactivity and detectable virus expression in the joint. In addition, infection of macrophages in vitro-the major host cells of CAEV in vivo-did not lead to increased iNOS mRNA expression. In response to stimulation, similar levels of iNOS expression were observed in infected and in uninfected macrophages. These findings suggest that the expression of iNOS is a feature of late-stage chronic arthritis and is not involved in the development of the inflammatory lesions. Both the lack of co-localization of iNOS protein and viral transcripts in the joint and the finding that CAEV does not stimulate the expression of iNOS in vitro further suggest that iNOS is not directly induced by the virus or the anti-viral immune response in the joint, that it may well, however, be involved in tissue remodelling or scar formation.  (+info)

Disseminated Rhodococcus equi infection in two goats. (7/588)

Rhodococcus equi infection was diagnosed in two goats from the same herd. At necropsy, numerous caseating granulomas were disseminated throughout the liver, lungs, abdominal lymph nodes, medulla of right humerus, and the right fifth rib of goat No. 1, and the liver of goat No. 2. Histopathologic examination confirmed the presence of multiple caseating granulomas in these organs. Numerous gram-positive and Giemsa-positive coccobacilli were identified within the cytoplasm of macrophages. Aerobic bacterial cultures of the liver and lung from both goats yielded a pure growth of R. equi. R. equi antigens were immunohistochemically identified in caseating granulomas from both goats. However, the 15- to 17-kd virulence antigens of R. equi were not detected, suggesting possible infection by an avirulent strain of this organism.  (+info)

Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. (8/588)

Isolates from the Mycobacterium tuberculosis complex cultured from caprine pathological tissue samples were biochemically and genetically characterized. The isolates were negative for nitrate reduction and niacin accumulation, they weakly hydrolysed Tween 80, were sensitive to pyrazinamide (50 micrograms ml-1) and were resistant to 1 and 2 micrograms tiophene-2-carboxylic acid hydrazide ml-1 but not to 5 or 10 micrograms tiophene-2-carboxylic acid hydrazide ml-1. Sequencing of the pncA gene revealed a polymorphism characteristic of M. tuberculosis, whereas oxyR, katG and gyrA sequences were characteristic of Mycobacterium bovis. The fingerprinting patterns obtained with IS6110, direct repeats and polymorphic G+C-rich sequence-associated RFLP and direct variable repeat-spacer oligonucelotide typing (spoligotyping) segregated these isolates from the other members of the complex. The results of this testing, together with the repeated association of this micro-organism with goats, suggest that a new member of this taxonomic complex not matching any of the classical species had been identified. This unusual mycobacterium may play a role in the epidemiology of animal and human tuberculosis in Spain. The name Mycobacterium tuberculosis subsp. caprae subsp. nov. is proposed for these isolates. The type strain of Mycobacterium tuberculosis subsp. caprae subsp. nov. is gM-1T (= CIP 105776T).  (+info)

I believe there may be a misunderstanding in your question. "Goat diseases" refers to illnesses that affect goats specifically. It does not mean diseases that are caused by goats or related to them in some way. Here are some examples of goat diseases:

1. Caprine Arthritis Encephalitis (CAE): A viral disease that affects goats, causing arthritis, pneumonia, and sometimes encephalitis.
2. Caseous Lymphadenitis (CL): A bacterial disease that causes abscesses in the lymph nodes of goats.
3. Contagious Caprine Pleuropneumonia (CCPP): A contagious respiratory disease caused by mycoplasma bacteria.
4. Johne's Disease: A chronic wasting disease caused by a type of bacterium called Mycobacterium avium subspecies paratuberculosis.
5. Pasteurellosis: A bacterial disease that can cause pneumonia, septicemia, and other infections in goats.
6. Salmonellosis: A bacterial disease caused by Salmonella bacteria, which can cause diarrhea, fever, and septicemia in goats.
7. Soremouth (Orf): A viral disease that causes sores and scabs around the mouth and nose of goats.

These are just a few examples of diseases that can affect goats. If you have any specific questions about goat health or diseases, I would recommend consulting with a veterinarian who specializes in small ruminants.

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

I'm happy to help, but I want to clarify that the term "sheep diseases" refers to a wide range of health issues that can affect sheep populations. It's not a single medical condition with a specific definition. Here are some examples of common diseases that can affect sheep:

1. Ovine Johne's Disease (OJD): A chronic, infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It affects the intestines and can cause weight loss, diarrhea, and death.
2. Footrot: A highly contagious bacterial infection that affects the feet of sheep, causing lameness, swelling, and pain. It's caused by the bacteria Dichelobacter nodosus.
3. Caseous Lymphadenitis (CL): A chronic infectious disease caused by the bacterium Corynebacterium pseudotuberculosis. It affects the lymph nodes and can cause abscesses, weight loss, and death.
4. Contagious Ecthyma (Orf): A highly contagious viral infection that affects the skin and mucous membranes of sheep, causing sores and lesions.
5. Mastitis: An inflammation of the mammary gland in sheep, usually caused by a bacterial infection. It can cause decreased milk production, fever, and loss of appetite.
6. Pneumonia: A respiratory infection that can affect sheep, causing coughing, difficulty breathing, and fever. It can be caused by various bacteria or viruses.
7. Enterotoxemia: A potentially fatal disease caused by the overproduction of toxins in the intestines of sheep, usually due to a bacterial infection with Clostridium perfringens.
8. Polioencephalomalacia (PEM): A neurological disorder that affects the brain of sheep, causing symptoms such as blindness, circling, and seizures. It's often caused by a thiamine deficiency or excessive sulfur intake.
9. Toxoplasmosis: A parasitic infection that can affect sheep, causing abortion, stillbirth, and neurological symptoms.
10. Blue tongue: A viral disease that affects sheep, causing fever, respiratory distress, and mouth ulcers. It's transmitted by insect vectors and is often associated with climate change.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

I apologize, but there is no medical definition for "Arthritis-Encephalitis Virus, Caprine." The term "Caprine" refers to something related to or derived from goats. Arthritis-Encephalitis Viruses (AEV) are a group of viruses that can affect various animal species and cause joint inflammation (arthritis) and brain inflammation (encephalitis). However, I couldn't find any specific virus named "Arthritis-Encephalitis Virus, Caprine" in the medical literature.

There are several viruses that can affect goats and cause arthritis and encephalitis, such as CAEV (Caprine Arthritis-Encephalitis Virus) or PPRV (Peste des Petits Ruminants Virus). If you have any specific concerns about a particular virus affecting goats, please provide more context so I can give you a more accurate and helpful response.

Lentivirus infections refer to the infectious disease caused by lentiviruses, a genus of retroviruses. These viruses are characterized by their ability to cause persistent and long-term infections, often leading to chronic diseases. They primarily target cells of the immune system, such as T-cells and macrophages, and can cause significant immunosuppression.

Lentiviruses have a slow replication cycle and can remain dormant in the host for extended periods. This makes them particularly effective at evading the host's immune response and can result in progressive damage to infected tissues over time.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS). HIV infects and destroys CD4+ T-cells, leading to a weakened immune system and increased susceptibility to opportunistic infections.

Other examples of lentiviruses include simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV). While these viruses primarily infect non-human animals, they are closely related to HIV and serve as important models for studying lentivirus infections and developing potential therapies.

Visna-maedi virus (VMV) is an retrovirus that belongs to the genus Lentivirus, which is part of the family Retroviridae. This virus is the causative agent of a slowly progressive, fatal disease in sheep known as maedi-visna. The term "visna" refers to a inflammatory disease of the central nervous system (CNS) and "maedi" refers to a progressive interstitial pneumonia.

The Visna-Maedi virus is closely related to the human immunodeficiency virus (HIV), which causes AIDS, as well as to other lentiviruses that affect animals such as caprine arthritis encephalitis virus (CAEV) and equine infectious anemia virus (EIAV).

Visna-maedi virus primarily targets the immune system cells, specifically monocytes/macrophages, leading to a weakened immune response in infected animals. This makes them more susceptible to other infections and diseases. The virus is transmitted through the respiratory route and infection can occur through inhalation of infectious aerosols or by ingestion of contaminated milk or colostrum from infected ewes.

There is no effective treatment or vaccine available for Visna-maedi virus infection, and control measures are focused on identifying and isolating infected animals to prevent the spread of the disease within sheep flocks.

Animal nutrition sciences is a field of study that focuses on the nutritional requirements, metabolism, and digestive processes of non-human animals. It involves the application of basic scientific principles to the practice of feeding animals in order to optimize their health, growth, reproduction, and performance. This may include the study of various nutrients such as proteins, carbohydrates, fats, vitamins, and minerals, as well as how they are absorbed, utilized, and excreted by different animal species. The field also encompasses the development and evaluation of animal feeds and feeding strategies, taking into account factors such as animal age, sex, weight, production stage, and environmental conditions. Overall, the goal of animal nutrition sciences is to promote sustainable and efficient animal agriculture while ensuring the health and well-being of animals.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

No FAQ available that match "goat diseases"

No images available that match "goat diseases"