A plant genus of the family EUPHORBIACEAE, order Euphorbiales, subclass Rosidae. Commercial natural RUBBER is mainly obtained from Hevea brasiliensis but also from some other plants.
A high-molecular-weight polymeric elastomer derived from the milk juice (LATEX) of HEVEA brasiliensis and other trees and plants. It is a substance that can be stretched at room temperature to at least twice its original length and after releasing the stress, retract rapidly, and recover its original dimensions fully.
A milky, product excreted from the latex canals of a variety of plant species that contain cauotchouc. Latex is composed of 25-35% caoutchouc, 60-75% water, 2% protein, 2% resin, 1.5% sugar & 1% ash. RUBBER is made by the removal of water from latex.(From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed). Hevein proteins are responsible for LATEX HYPERSENSITIVITY. Latexes are used as inert vehicles to carry antibodies or antigens in LATEX FIXATION TESTS.
The spurge family of flowering plants, in the order Euphorbiales, contains some 7,500 species in 275 genera. The family consists of annual and perennial herbs and woody shrubs or trees.
Allergic reaction to products containing processed natural rubber latex such as rubber gloves, condoms, catheters, dental dams, balloons, and sporting equipment. Both T-cell mediated (HYPERSENSITIVITY, DELAYED) and IgE antibody-mediated (HYPERSENSITIVITY, IMMEDIATE) allergic responses are possible. Delayed hypersensitivity results from exposure to antioxidants present in the rubber; immediate hypersensitivity results from exposure to a latex protein.
Substances found in PLANTS that have antigenic activity.
Woody, usually tall, perennial higher plants (Angiosperms, Gymnosperms, and some Pterophyta) having usually a main stem and numerous branches.
Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2.
Hydrogen cyanide (HCN); A toxic liquid or colorless gas. It is found in the smoke of various tobacco products and released by combustion of nitrogen-containing organic materials.

Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes. (1/76)

Hydrolytic mechanisms of family 18 chitinases from rice (Oryza sativa L.) and Bacillus circulans WL-12 were comparatively studied by a combination of HPLC analysis of the reaction products and theoretical calculation of reaction time-courses. All of the enzymes tested produced beta-anomers from chitin hexasaccharide [(GlcNAc)(6)], indicating that they catalyze the hydrolysis through a retaining mechanism. The rice chitinases hydrolyzed predominantly the fourth and fifth glycosidic linkages from the nonreducing end of (GlcNAc)(6), whereas B. circulans chitinase A1 hydrolyzed the second linkage from the nonreducing end. In addition, the Bacillus enzyme efficiently catalyzed transglycosylation, producing significant amounts of chitin oligomers larger than the initial substrate, but the rice chitinases did not. The time-courses of (GlcNAc)(6) degradation obtained by HPLC were analyzed by theoretical calculation, and the subsite structures of the rice chitinases were identified to be (-4)(-3)(-2)(-1)(+1)(+2). From the HPLC profile of the reaction products previously reported [Terwisscha van Scheltinga et al. (1995) Biochemistry 34, 15619-15623], family 18 chitinase from rubber tree (Hevea brasiliensis) was estimated to have the same type of subsite structure. Theoretical analysis of the reaction time-course for the Bacillus enzyme revealed that the enzyme has (-2)(-1) (+1)(+2)(+3)(+4)-type subsite structure, which is identical to that of fungal chitinase from Coccidioides immitis [Fukamizo et al. (2001) Biochemistry 40, 2448-2454]. The Bacillus enzyme also resembled the fungal chitinase in its transglycosylation activity. Minor structural differences between plant and microbial enzymes appear to result in such functional variations, even though all of these chitinases are classified into the identical family of glycosyl hydrolases.  (+info)

Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Mull. Arg.). (2/76)

Somatic embryogenesis in Hevea is stimulated when the embryogenesis induction medium contains maltose, rather than glucose, fructose, or sucrose, in equimolarity (Blanc et al., 1999). Kinetic analyses were carried out on various physiological and biochemical indicators over the 8 weeks that the induction phase then expression of somatic embryogenesis can take. Embryogenesis induction in the presence of glucose, fructose or sucrose revealed strong callus growth in the first 3-4 weeks, associated with a high intra- and extracellular hexose content, a high starch content and a substantial decline in protein synthesis. In the presence of maltose, callus growth was slow and only half that seen with sucrose. This morphogenetic behaviour is associated with a drop in endogenous hexose and starch contents, and an increase in protein synthesis in the first three weeks of culture. The induction of embryogenesis in the presence of maltose was uniform and twice as fast as with sucrose supply. At the end of culture, peroxidase activity, antioxidant and membrane protein contents increased in these calluses; these characteristics may be associated with somatic embryo organization and with the maintenance of effective membrane integrity within a nutrient environment that has become limiting. These new results tally with data in the literature on the roles of sugars, and provide some precise information with regard to the 'carbohydrate deficit' hypothesis usually put forward to explain maltose action. An analysis of these results led to the hypothesis that regulation of endogenous hexose contents at a low level, through slow maltose hydrolysis, was a key element of the biochemical signal leading this callus towards somatic embryogenesis.  (+info)

Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis. (3/76)

In the biosynthesis of the antiarrhythmic alkaloid ajmaline, polyneuridine aldehyde esterase (PNAE) catalyses a central reaction by transforming polyneuridine aldehyde into epi-vellosimine, which is the immediate precursor for the synthesis of the ajmalane skeleton. The PNAE cDNA was previously heterologously expressed in E. coli. Sequence alignments indicated that PNAE has a 43% identity to a hydroxynitrile lyase from Hevea brasiliensis, which is a member of the alpha/beta hydrolase superfamily. The catalytic triad, which is typical for this family, is conserved. By site-directed mutagenesis, the members of the catalytic triad were identified. For further detection of the active residues, a model of PNAE was constructed based on the X-ray crystallographic structure of hydroxynitrile lyase. The potential active site residues were selected on this model, and were mutated in order to better understand the relationship of PNAE with the alpha/beta hydrolases, and as well its mechanism of action. The results showed that PNAE is a novel member of the alpha/beta hydrolase enzyme superfamily.  (+info)

Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis. (4/76)

Geranylgeranyl diphosphate (GGPP) synthase catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to give (all-E)-GGPP. GGPP is one of the key precursors in the biosynthesis of biologically significant isoprenoid compounds. In order to examine possible participation of the GGPP synthase in the enzymatic prenyl chain elongation in natural rubber biosynthesis, we cloned, overexpressed and characterized the cDNA clone encoding GGPP synthase from cDNA libraries of leaf and latex of Hevea brasiliensis. The amino acid sequence of the clone contains all conserved regions of trans-prenyl chain elongating enzymes. This cDNA was expressed in Escherichia coli cells as Trx-His-tagged fusion protein, which showed a distinct GGPP synthase activity. The apparent K(m) values for isopentenyl-, farnesyl-, geranyl- and dimethylallyl diphosphates of the GGPP synthase purified with Ni(2+)-affinity column were 24.1, 6.8, 2.3, and 11.5 microM, respectively. The enzyme shows optimum activity at approximately 40 degrees C and pH 8.5. The mRNA expression of the GGPP synthase was detected in all tissues examined, showing higher in flower and leaf than petiole and latex, where a large quantity of natural rubber is produced. On the other hand, expression levels of the Hevea farnesyl diphosphate synthase were significant in latex as well as in flower.  (+info)

The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. (5/76)

Rubber biosynthesis takes place on the surface of rubber particles. These particles are surrounded by a monolayer membrane in which the rubber transferase is anchored. In order to gain better insight into whether rubber particles from different plant species share common structural characteristics, the micromorphology of rubber particles from Ficus carica, Ficus benghalensis, and Hevea brasiliensis was examined by electron microscopy. Rubber particles of all three species were spherical in shape, and the size of rubber particles of H. brasiliensis was much smaller than those of F. carica and F. benghalensis. In addition, investigations were undertaken to compare the cross-reactivity of the antibody raised against either the H. brasiliensis small rubber particle protein (SRPP) which is suggested to be involved in rubber biosynthesis, or the cis-prenyltransferase (CPT) which has an activity similar to rubber transferase. Both western analysis and TEM-immunogold labelling studies showed that rubber particles of F. carica and F. benghalensis do not contain the SRPP. None of the rubber particles in F. carica, F. benghalensis and H. brasiliensis contained the CPT, suggesting that the CPT itself could not catalyse the formation of high molecular weight rubber. These results indicate that rubber particles in the three different plant species investigated share some degree of similarity in architecture, and that the SRPP and CPT themselves are not the core proteins necessary for rubber biosynthesis.  (+info)

Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase. (6/76)

Rubber transferase, a cis-prenyltransferase, catalyzes the addition of thousands of isopentenyl diphosphate (IPP) molecules to an allylic diphosphate initiator, such as farnesyl diphosphate (FPP, 1), in the presence of a divalent metal cofactor. In an effort to characterize the catalytic site of rubber transferase, the effects of two types of protein farnesyltransferase inhibitors, several chaetomellic acid A analogs (2, 4-7) and alpha-hydroxyfarnesylphosphonic acid (3), on the ability of rubber transferase to add IPP to the allylic diphosphate initiator were determined. Both types of compounds inhibited the activity of rubber transferases from Hevea brasiliensis and Parthenium argentatum, but there were species-specific differences in the inhibition of rubber transferases by these compounds. Several shorter analogs of chaetomellic acid A did not inhibit rubber transferase activity, even though the analogs contained chemical features that are present in an elongating rubber molecule. These results indicate that the initiator-binding site in rubber transferase shares similar features to FPP binding sites in other enzymes.  (+info)

Observation of a short, strong hydrogen bond in the active site of hydroxynitrile lyase from Hevea brasiliensis explains a large pKa shift of the catalytic base induced by the reaction intermediate. (7/76)

The hydroxynitrile lyase from Hevea brasiliensis (HbHNL) uses a catalytic triad consisting of Ser(80)-His(235)-Asp(207) to enhance the basicity of Ser(80)-O gamma for abstracting a proton from the OH group of the substrate cyanohydrin. Following the observation of a relatively short distance between a carboxyl oxygen of Asp(207) and the N delta(1)(His(235)) in a 1.1 A crystal structure of HbHNL, we here show by (1)H and (15)N-NMR spectroscopy that a short, strong hydrogen bond (SSHB) is formed between the two residues upon binding of the competitive inhibitor thiocyanate to HbHNL: the proton resonance of H-N delta 1(His(235)) moves from 15.41 ppm in the free enzyme to 19.35 ppm in the complex, the largest downfield shift observed so far upon inhibitor binding. Simultaneously, the D/H fractionation factor decreases from 0.98 to 0.35. In the observable pH range, i.e. between pH 4 and 10, no significant changes in chemical shifts (and therefore hydrogen bond strength) were observed for free HbHNL. For the complex with thiocyanate, the 19.35 ppm signal returned to 15.41 ppm at approximately pH 8, which indicates a pK(a) near this value for the H-N epsilon(2)(His(235)). These NMR results were analyzed on the basis of finite difference Poisson-Boltzmann calculations, which yielded the relative free energies of four protonation states of the His(235)-Asp(207) pair in solution as well as in the protein environment with and without bound inhibitor. The calculations explain all the NMR features, i.e. they suggest why a short, strong hydrogen bond is formed upon inhibitor binding and why this short, strong hydrogen bond reverts back to a normal one at approximately pH 8. Importantly, the computations also yield a shift of the free energy of the anionic state relative to the zwitterionic reference state by about 10.6 kcal/mol, equivalent to a shift in the apparent pK(a) of His(235) from 2.5 to 10. This huge inhibitor-induced increase in basicity is a prerequisite for His(235) to act as general base in the HbHNL-catalyzed cyanohydrin reaction.  (+info)

Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. (8/76)

Natural rubber from Hevea brasiliensis is a high molecular mass polymer of isoprene units with cis-configuration. The enzyme responsible for the cis-1,4-polymerization of isoprene units has been idengified as a particle-bound rubber transferase, but no gene encoding this enzyme has been cloned from rubber-producing plants. By using sequence information from the conserved regions of cis-prenyl chain elongating enzymes that were cloned recently, we have isolated and characterized cDNAs from H. brasiliensis for a functional factor participating in natural rubber biosynthesis. Sequence analysis revealed that all of the five highly conserved regions among cis-prenyl chain elongating enzymes were found in the protein sequences of the Hevea cis-prenyltransferase. Northern blot analysis indicated that the transcript(s) of the Hevea cis-prenyltransferase were expressed predominantly in the latex as compared with other Hevea tissues examined. In vitro rubber transferase assays using the recombinant gene product overexpressed in Escherichia coli revealed that the enzyme catalyzed the formation of long chain polyprenyl products with approximate sizes of 2 x 103-1 x 104 Da. Moreover, in the presence of washed bottom fraction particles from latex, the rubber transferase activity producing rubber product of high molecular size was increased. These results suggest that the Hevea cis-prenyltransferase might require certain activation factors in the washed bottom fraction particles for the production of high molecular mass rubber.  (+info)

"Hevea" is the genus name for the rubber tree, specifically *Hevea brasiliensis*, which is the primary source of natural rubber. The sap from this tree, known as latex, is collected and processed to produce raw rubber. This material can then be used in a wide variety of applications, including medical devices, tires, and various other products.

It's worth noting that some people may have allergic reactions to proteins found in natural rubber latex, which can cause symptoms ranging from mild skin irritation to severe respiratory problems. As such, it's important for healthcare providers and others who work with medical equipment to be aware of the potential risks associated with Hevea-derived products.

I believe there may be some confusion in your question. "Rubber" is not a medical term, but rather a common term used to describe a type of material that is elastic and can be stretched or deformed and then return to its original shape when the force is removed. It is often made from the sap of rubber trees or synthetically.

However, in a medical context, "rubber" might refer to certain medical devices or supplies made from rubber materials, such as rubber gloves used for medical examinations or procedures, or rubber stoppers used in laboratory equipment. But there is no medical definition specifically associated with the term 'Rubber' itself.

In a medical context, "latex" refers to the natural rubber milk-like substance that is tapped from the incisions made in the bark of the rubber tree (Hevea brasiliensis). This sap is then processed to create various products such as gloves, catheters, and balloons. It's important to note that some people may have a latex allergy, which can cause mild to severe reactions when they come into contact with latex products.

Euphorbiaceae is not a medical term, but a taxonomic category in botany. It refers to the spurge family, which is a large family of flowering plants that includes around 300 genera and 7,500 species. Some members of this family have medicinal uses, but others are toxic or invasive. Therefore, it is important to use caution when handling or consuming any plant material from this family.

Latex hypersensitivity is an immune-mediated reaction to proteins found in natural rubber latex, which can cause allergic symptoms ranging from mild skin irritation to life-threatening anaphylaxis. It is a form of type I (immediate) hypersensitivity, mediated by IgE antibodies that bind to mast cells and basophils, leading to the release of histamine and other mediators of inflammation upon re-exposure to latex proteins.

The symptoms of latex hypersensitivity can include skin rashes, hives, itching, nasal congestion, sneezing, wheezing, shortness of breath, coughing, and in severe cases, anaphylaxis characterized by a rapid heartbeat, low blood pressure, loss of consciousness, and even death.

Healthcare workers, patients with spina bifida, and those who have undergone multiple surgeries are at increased risk for developing latex hypersensitivity due to repeated exposure to latex products. Prevention measures include using non-latex medical supplies and devices, wearing non-powdered latex gloves, and implementing strict hand hygiene practices.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In plants, antigens are typically found on the surface of plant cells and may be derived from various sources such as:

1. Pathogens: Plant pathogens like bacteria, viruses, fungi, and oomycetes have unique molecules on their surfaces that can serve as antigens for the plant's immune system. These antigens are recognized by plant pattern recognition receptors (PRRs) and trigger an immune response.
2. Endogenous proteins: Some plant proteins, when expressed in abnormal locations or quantities, can be recognized as foreign by the plant's immune system and elicit an immune response. These proteins may serve as antigens and are involved in self/non-self recognition.
3. Glycoproteins: Plant cell surface glycoproteins, which contain carbohydrate moieties, can also act as antigens. They play a role in plant-microbe interactions and may be recognized by both the plant's immune system and pathogens.
4. Allergens: Certain plant proteins can cause allergic reactions in humans and animals when ingested or inhaled. These proteins, known as allergens, can also serve as antigens for the human immune system, leading to the production of IgE antibodies and triggering an allergic response.
5. Transgenic proteins: In genetically modified plants, new proteins introduced through genetic engineering may be recognized as foreign by the plant's immune system or even by the human immune system in some cases. These transgenic proteins can serve as antigens and have been a subject of concern in relation to food safety and potential allergies.

Understanding plant antigens is crucial for developing effective strategies for plant disease management, vaccine development, and improving food safety and allergy prevention.

I'm sorry for any confusion, but "trees" is not a medical term. It is a common term used in various fields, including biology, ecology, and dendrology, to refer to a woody perennial plant with a single stem or trunk that supports branches and leaves in most species.

If you have any questions related to medical terminology or health-related topics, please provide more context so I can offer an accurate and helpful response.

Aldehyde-lyases are a class of enzymes that catalyze the breakdown or synthesis of molecules involving an aldehyde group through a reaction known as lyase cleavage. This type of reaction results in the removal of a molecule, typically water or carbon dioxide, from the substrate.

In the case of aldehyde-lyases, these enzymes specifically catalyze reactions that involve the conversion of an aldehyde into a carboxylic acid or vice versa. These enzymes are important in various metabolic pathways and play a crucial role in the biosynthesis and degradation of several biomolecules, including carbohydrates, amino acids, and lipids.

The systematic name for this class of enzymes is "ald(e)hyde-lyases." They are classified under EC number 4.3.1 in the Enzyme Commission (EC) system.

Hydrogen Cyanide (HCN) is a chemical compound with the formula H-C≡N. It is a colorless, extremely poisonous and flammable liquid that has a bitter almond-like odor in its pure form. However, not everyone can detect its odor, as some people lack the ability to smell it, which makes it even more dangerous. It is soluble in water and alcohol, and its aqueous solution is called hydrocyanic acid or prussic acid.

Hydrogen Cyanide is rapidly absorbed by inhalation, ingestion, or skin contact, and it inhibits the enzyme cytochrome c oxidase, which is essential for cellular respiration. This leads to rapid death due to hypoxia (lack of oxygen) at the cellular level. It is used industrially in large quantities as a pesticide, fumigant, and chemical intermediate, but it also has significant potential for use as a chemical weapon.

In the medical field, Hydrogen Cyanide poisoning can be treated with high-concentration oxygen, sodium nitrite, and sodium thiosulfate, which help to restore the function of cytochrome c oxidase and enhance the elimination of cyanide from the body.

No FAQ available that match "hevea"

No images available that match "hevea"