A clear, homogenous, structureless, eosinophilic substance occurring in pathological degeneration of tissues.
Autosomal recessive disorder characterized by HYALINE deposition in the skin, bone, gastrointestinal tract, muscles and glands; multiple subcutaneous skin nodules; GINGIVAL HYPERTROPHY; and joint CONTRACTURES. Mutations in the capillary morphogenesis protein-2 are associated with the disorder.
Pathological conditions in the INTESTINES that are characterized by the gastrointestinal loss of serum proteins, including SERUM ALBUMIN; IMMUNOGLOBULINS; and at times LYMPHOCYTES. Severe condition can result in HYPOGAMMAGLOBULINEMIA or LYMPHOPENIA. Protein-losing enteropathies are associated with a number of diseases including INTESTINAL LYMPHANGIECTASIS; WHIPPLE'S DISEASE; and NEOPLASMS of the SMALL INTESTINE.
Abnormal enlargement or overgrowth of the gingivae brought about by enlargement of existing cells.
An autosomal recessive disorder characterized by glassy degenerative thickening (hyalinosis) of SKIN; MUCOSA; and certain VISCERA. This disorder is caused by mutation in the extracellular matrix protein 1 gene (ECM1). Clinical features include hoarseness and skin eruption due to widespread deposition of HYALIN.
Non-inflammatory enlargement of the gingivae produced by factors other than local irritation. It is characteristically due to an increase in the number of cells. (From Jablonski's Dictionary of Dentistry, 1992, p400)
A clinicopathological syndrome or diagnostic term for a type of glomerular injury that has multiple causes, primary or secondary. Clinical features include PROTEINURIA, reduced GLOMERULAR FILTRATION RATE, and EDEMA. Kidney biopsy initially indicates focal segmental glomerular consolidation (hyalinosis) or scarring which can progress to globally sclerotic glomeruli leading to eventual KIDNEY FAILURE.
Cell surface receptors that bind peptide messengers with high affinity and regulate intracellular signals which influence the behavior of cells.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
Pathological processes of the KIDNEY or its component tissues.
The transference of a kidney from one human or animal to another.

Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. (1/3)

 (+info)

The dark sides of capillary morphogenesis gene 2. (2/3)

 (+info)

Infantile systemic hyalinosis. (3/3)

Infantile systemic hyalinosis is a rare disorder characterized by widespread deposition of hyaline. They usually present with skin lesions, joint contractures, and intractable diarrhea. We report a 2 year 4 month old boy with growth retardation, typical facial appearance, gingival enlargement, generalized stiff skin, joint contractures, and intermittent diarrhea. Skin biopsy revealed deposition of hyaline.  (+info)

'Hyalin' is not a medical condition or disease, but rather a histological term used to describe a particular type of tissue structure. Hyalin refers to the homogeneous, translucent, and eosinophilic (pink) appearance of a tissue under a microscope due to the accumulation of an amorphous, acellular, and protein-rich matrix.

Hyalinization can occur in various tissues, including blood vessels, cardiac valves, cartilage, and other connective tissues. It is often associated with aging, injury, inflammation, or degenerative changes, such as those seen in hyaline membrane disease (a respiratory disorder in premature infants) or hypertrophic cardiomyopathy (thickening of the heart muscle).

In summary, Hyalin is a histological term used to describe the appearance of tissue under a microscope due to the accumulation of an amorphous, acellular, and protein-rich matrix.

Systemic hyalinosis is a very rare, progressive, and fatal genetic disorder characterized by the accumulation of abnormal protein deposits in various organs and tissues throughout the body. The condition is caused by mutations in the ANTXR2 gene, which provides instructions for making a protein that is involved in the formation and maintenance of blood vessels.

The abnormal protein deposits, known as hyaline, are composed of bundles of collagen fibers that become thickened and twisted due to the accumulation of glycosaminoglycans (GAGs). These protein deposits can affect the function of various organs, including the heart, lungs, kidneys, and gastrointestinal tract.

Systemic hyalinosis is typically diagnosed in infancy or early childhood and is characterized by a range of symptoms, including:

* Skin abnormalities, such as thickened, tight, and shiny skin that may be prone to tearing or blistering
* Difficulty feeding and swallowing due to thickening of the lining of the mouth and throat
* Respiratory problems, such as recurrent pneumonia and chronic cough
* Cardiovascular abnormalities, such as high blood pressure and heart failure
* Gastrointestinal issues, such as vomiting, diarrhea, and malabsorption
* Renal failure due to the accumulation of hyaline in the kidneys

There is no cure for systemic hyalinosis, and treatment is focused on managing symptoms and improving quality of life. The prognosis for individuals with this condition is poor, with most dying before the age of 10.

Protein-losing enteropathies (PLE) refer to a group of conditions characterized by excessive loss of proteins from the gastrointestinal tract into the intestinal lumen and ultimately into the stool. This results in hypoproteinemia, which is a decrease in the concentration of proteins in the bloodstream, particularly albumin.

The protein loss can occur due to various reasons such as increased permeability of the intestinal mucosa, lymphatic obstruction, or inflammatory processes affecting the gastrointestinal tract. Common causes of PLE include conditions such as inflammatory bowel disease, intestinal lymphangiectasia, celiac disease, Whipple's disease, and menetrier's disease.

Symptoms of PLE may include edema, ascites, weight loss, diarrhea, and fatigue. The diagnosis of PLE typically involves measuring the concentration of proteins in the stool, as well as other diagnostic tests to determine the underlying cause. Treatment of PLE depends on the underlying cause and may involve dietary modifications, medications, or surgical interventions.

Gingival hypertrophy is a condition characterized by an abnormal enlargement or overgrowth of the gingiva (gum tissue). This can be caused due to various reasons such as inflammation from poor oral hygiene, certain medications like phenytoin and cyclosporine, or systemic conditions such as pregnancy, leukemia, and vitamin C deficiency.

The enlarged gums may appear swollen, red, and bleed easily. They can also cover the teeth, making cleaning difficult, which can further worsen the inflammation. Depending on the cause, treatment options may include improving oral hygiene, changing medications, or undergoing surgical procedures to remove the excess tissue.

Lipoid proteinosis of Urbach and Wiethe is a rare genetic disorder characterized by the accumulation of abnormal protein and lipid (fat) deposits in various tissues throughout the body, particularly in the skin, mucous membranes, and central nervous system. The condition is caused by mutations in the ECM1 gene, which provides instructions for making a protein that is essential for the normal development and maintenance of several types of tissue.

The signs and symptoms of lipoid proteinosis can vary widely among affected individuals, but they typically include:

* Hoarseness or husky voice due to deposition of material in the vocal cords
* Skin abnormalities such as thickened skin, yellowish bumps (xanthomas), and scarring from minor injuries
* Eye problems such as corneal opacities, dry eyes, and increased sensitivity to light
* Central nervous system involvement, including seizures, behavioral abnormalities, and intellectual disability

The accumulation of abnormal protein and lipid deposits in the brain can also lead to an increased risk of developing amyloidosis, a condition in which abnormal proteins called amyloids build up in various organs and interfere with their normal function.

There is no cure for lipoid proteinosis, but treatment is focused on managing the symptoms and complications of the disease. This may include speech therapy for hoarseness, skin care to prevent scarring, and medications to control seizures or other neurological symptoms.

Gingival hyperplasia is a condition characterized by an abnormal growth or enlargement of the gingiva (gum tissue). This condition can be caused by various factors, including bacterial infection, certain medications (such as phenytoin, cyclosporine, and nifedipine), systemic diseases (such as leukemia, vitamin C deficiency, and Crohn's disease), and genetic disorders.

The enlarged gum tissue can be uncomfortable, irritated, and prone to bleeding, especially during brushing or flossing. It may also make it difficult to maintain good oral hygiene, which can increase the risk of dental caries and periodontal disease. Treatment for gingival hyperplasia typically involves improving oral hygiene, controlling any underlying causes, and in some cases, surgical removal of the excess tissue.

Focal segmental glomerulosclerosis (FSGS) is a pattern of kidney injury that involves scarring or sclerosis in some (segmental) areas of some (focal) glomeruli. Glomeruli are the tiny blood vessel clusters within the kidneys that filter waste and excess fluids from the blood.

In FSGS, the scarring occurs due to damage to the glomerular basement membrane, which can be caused by various factors such as genetic mutations, viral infections, or immune system disorders. The damage leads to the accumulation of extracellular matrix proteins and the formation of scar tissue, impairing the kidney's ability to filter blood effectively.

FSGS is characterized by proteinuria (protein in the urine), hematuria (blood in the urine), hypertension (high blood pressure), and declining kidney function, which can lead to end-stage renal disease if left untreated. The focal and segmental nature of the scarring means that not all glomeruli are affected, and only some areas of each affected glomerulus are damaged, making FSGS a highly variable condition with different clinical presentations and outcomes.

Peptide receptors are a type of cell surface receptor that bind to peptide hormones and neurotransmitters. These receptors play crucial roles in various physiological processes, including regulation of appetite, pain perception, immune function, and cardiovascular homeostasis. Peptide receptors belong to the G protein-coupled receptor (GPCR) superfamily or the tyrosine kinase receptor family. Upon binding of a peptide ligand, these receptors activate intracellular signaling cascades that ultimately lead to changes in cell behavior and communication with other cells.

Peptide receptors can be classified into two main categories: metabotropic and ionotropic. Metabotropic peptide receptors are GPCRs, which activate intracellular signaling pathways through coupling with heterotrimeric G proteins. These receptors typically have seven transmembrane domains and undergo conformational changes upon ligand binding, leading to the activation of downstream effectors such as adenylyl cyclase, phospholipase C, or ion channels.

Ionotropic peptide receptors are ligand-gated ion channels that directly modulate ion fluxes across the cell membrane upon ligand binding. These receptors contain four or five subunits arranged around a central pore and undergo conformational changes to allow ion flow through the channel.

Examples of peptide receptors include:

1. Opioid receptors (μ, δ, κ) - bind endogenous opioid peptides such as enkephalins, endorphins, and dynorphins to modulate pain perception and reward processing.
2. Somatostatin receptors (SSTR1-5) - bind somatostatin and cortistatin to regulate hormone secretion, cell proliferation, and angiogenesis.
3. Neuropeptide Y receptors (Y1-Y5) - bind neuropeptide Y to modulate feeding behavior, energy metabolism, and cardiovascular function.
4. Calcitonin gene-related peptide receptor (CGRP-R) - binds calcitonin gene-related peptide to mediate vasodilation and neurogenic inflammation.
5. Bradykinin B2 receptor (B2R) - binds bradykinin to induce pain, inflammation, and vasodilation.
6. Vasoactive intestinal polypeptide receptors (VPAC1, VPAC2) - bind vasoactive intestinal peptide to regulate neurotransmission, hormone secretion, and smooth muscle contraction.
7. Oxytocin receptor (OXTR) - binds oxytocin to mediate social bonding, maternal behavior, and uterine contractions during childbirth.
8. Angiotensin II type 1 receptor (AT1R) - binds angiotensin II to regulate blood pressure, fluid balance, and cell growth.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Kidney transplantation is a surgical procedure where a healthy kidney from a deceased or living donor is implanted into a patient with end-stage renal disease (ESRD) or permanent kidney failure. The new kidney takes over the functions of filtering waste and excess fluids from the blood, producing urine, and maintaining the body's electrolyte balance.

The transplanted kidney is typically placed in the lower abdomen, with its blood vessels connected to the recipient's iliac artery and vein. The ureter of the new kidney is then attached to the recipient's bladder to ensure proper urine flow. Following the surgery, the patient will require lifelong immunosuppressive therapy to prevent rejection of the transplanted organ by their immune system.

No FAQ available that match "hyalinosis systemic"

No images available that match "hyalinosis systemic"