Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY.
A condition of abnormally elevated output of PARATHYROID HORMONE (or PTH) triggering responses that increase blood CALCIUM. It is characterized by HYPERCALCEMIA and BONE RESORPTION, eventually leading to bone diseases. PRIMARY HYPERPARATHYROIDISM is caused by parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. SECONDARY HYPERPARATHYROIDISM is increased PTH secretion in response to HYPOCALCEMIA, usually caused by chronic KIDNEY DISEASES.
A condition of abnormally elevated output of PARATHYROID HORMONE due to parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. It is characterized by the combination of HYPERCALCEMIA, phosphaturia, elevated renal 1,25-DIHYDROXYVITAMIN D3 synthesis, and increased BONE RESORPTION.
Excision of one or more of the parathyroid glands.
Tumors or cancer of the PARATHYROID GLANDS.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
Abnormally high level of calcium in the blood.
A fibrous degeneration, cyst formation, and the presence of fibrous nodules in bone, usually due to HYPERPARATHYROIDISM.
A benign epithelial tumor with a glandular organization.
Small organic molecules that act as allosteric activators of the calcium sensing receptor (CaSR) in the PARATHYROID GLANDS and other tissues. They lower the threshold for CaSR activation by extracellular calcium ions and diminish PARATHYROID HORMONE (PTH) release from parathyroid cells.
Pathological processes of the PARATHYROID GLANDS. They usually manifest as hypersecretion or hyposecretion of PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)
A class of G-protein-coupled receptors that react to varying extracellular CALCIUM levels. Calcium-sensing receptors in the PARATHYROID GLANDS play an important role in the maintenance of calcium HOMEOSTASIS by regulating the release of PARATHYROID HORMONE. They differ from INTRACELLULAR CALCIUM-SENSING PROTEINS which sense intracellular calcium levels.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
Decalcification of bone or abnormal bone development due to chronic KIDNEY DISEASES, in which 1,25-DIHYDROXYVITAMIN D3 synthesis by the kidneys is impaired, leading to reduced negative feedback on PARATHYROID HORMONE. The resulting SECONDARY HYPERPARATHYROIDISM eventually leads to bone disorders.
A form of multiple endocrine neoplasia that is characterized by the combined occurrence of tumors in the PARATHYROID GLANDS, the PITUITARY GLAND, and the PANCREATIC ISLETS. The resulting clinical signs include HYPERPARATHYROIDISM; HYPERCALCEMIA; HYPERPROLACTINEMIA; CUSHING DISEASE; GASTRINOMA; and ZOLLINGER-ELLISON SYNDROME. This disease is due to loss-of-function of the MEN1 gene, a tumor suppressor gene (GENES, TUMOR SUPPRESSOR) on CHROMOSOME 11 (Locus: 11q13).
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A technetium imaging agent used to reveal blood-starved cardiac tissue during a heart attack.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Derivatives of ERGOSTEROL formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. They differ from CHOLECALCIFEROL in having a double bond between C22 and C23 and a methyl group at C24.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
Inorganic salts of phosphoric acid.
A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
A condition caused by a deficiency of PARATHYROID HORMONE (or PTH). It is characterized by HYPOCALCEMIA and hyperphosphatemia. Hypocalcemia leads to TETANY. The acquired form is due to removal or injuries to the PARATHYROID GLANDS. The congenital form is due to mutations of genes, such as TBX1; (see DIGEORGE SYNDROME); CASR encoding CALCIUM-SENSING RECEPTOR; or PTH encoding parathyroid hormone.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
Disorder caused by an interruption of the mineralization of organic bone matrix leading to bone softening, bone pain, and weakness. It is the adult form of rickets resulting from disruption of VITAMIN D; PHOSPHORUS; or CALCIUM homeostasis.
Diseases of BONES.
Decrease, loss, or removal of the mineral constituents of bones. Temporary loss of bone mineral content is especially associated with space flight, weightlessness, and extended immobilization. OSTEOPOROSIS is permanent, includes reduction of total bone mass, and is associated with increased rate of fractures. CALCIFICATION, PHYSIOLOGIC is the process of bone remineralizing. (From Dorland, 27th ed; Stedman, 25th ed; Nicogossian, Space Physiology and Medicine, 2d ed, pp327-33)
A mass of histologically normal tissue present in an abnormal location.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Syndromes resulting from inappropriate production of HORMONES or hormone-like materials by NEOPLASMS in non-endocrine tissues or not by the usual ENDOCRINE GLANDS. Such hormone outputs are called ectopic hormone (HORMONES, ECTOPIC) secretion.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
A condition of abnormally high level of PHOSPHATES in the blood, usually significantly above the normal range of 0.84-1.58 mmol per liter of serum.

22-oxacalcitriol suppresses secondary hyperparathyroidism without inducing low bone turnover in dogs with renal failure. (1/512)

BACKGROUND: Calcitriol therapy suppresses serum levels of parathyroid hormone (PTH) in patients with renal failure but has several drawbacks, including hypercalcemia and/or marked suppression of bone turnover, which may lead to adynamic bone disease. A new vitamin D analogue, 22-oxacalcitriol (OCT), has been shown to have promising characteristics. This study was undertaken to determine the effects of OCT on serum PTH levels and bone turnover in states of normal or impaired renal function. METHODS: Sixty dogs were either nephrectomized (Nx, N = 38) or sham-operated (Sham, N = 22). The animals received supplemental phosphate to enhance PTH secretion. Fourteen weeks after the start of phosphate supplementation, half of the Nx and Sham dogs received doses of OCT (three times per week); the other half were given vehicle for 60 weeks. Thereafter, the treatment modalities for a subset of animals were crossed over for an additional eight months. Biochemical and hormonal indices of calcium and bone metabolism were measured throughout the study, and bone biopsies were done at baseline, 60 weeks after OCT or vehicle treatment, and at the end of the crossover period. RESULTS: In Nx dogs, OCT significantly decreased serum PTH levels soon after the induction of renal insufficiency. In long-standing secondary hyperparathyroidism, OCT (0.03 microg/kg) stabilized serum PTH levels during the first months. Serum PTH levels rose thereafter, but the rise was less pronounced compared with baseline than the rise seen in Nx control. These effects were accompanied by episodes of hypercalcemia and hyperphosphatemia. In animals with normal renal function, OCT induced a transient decrease in serum PTH levels at a dose of 0.1 microg/kg, which was not sustained with lowering of the doses. In Nx dogs, OCT reversed abnormal bone formation, such as woven osteoid and fibrosis, but did not significantly alter the level of bone turnover. In addition, OCT improved mineralization lag time, (that is, the rate at which osteoid mineralizes) in both Nx and Sham dogs. CONCLUSIONS: These results indicate that even though OCT does not completely prevent the occurrence of hypercalcemia in experimental dogs with renal insufficiency, it may be of use in the management of secondary hyperparathyroidism because it does not induce low bone turnover and, therefore, does not increase the risk of adynamic bone disease.  (+info)

Mechanism of parathyroid tumourigenesis in uraemia. (2/512)

Clonal analysis has shown that in renal hyperparathyroidism (2-HPT), parathyroid glands initially grow diffusely and polyclonally after which the foci of nodular hyperplasia are transformed to monoclonal neoplasia. There is a great deal of information about genetic abnormalities contributing to the tumourigenesis of parathyroid neoplasia in primary hyperparathyroidism. It is speculated that allelic loss of the MEN1 suppressor gene and overexpression of cyclin D1 induced by rearrangement of the parathyroid hormone gene may be the major genetic abnormality in sporadic parathyroid adenoma but not in 2-HPT. The pathogenesis of 2-HPT, abnormality of the Ca2+-sensing receptor (CaR) gene and the vitamin D receptor gene may possibly contribute to parathyroid tumourigenesis in 2-HPT. However, this is not yet clear and heterogeneous and multiple genetic abnormalities may be responsible for the progression of secondary parathyroid hyperplasia.  (+info)

Localization of a bone imaging agent in a calcified hematoma. (3/512)

A patient with chronic renal failure and secondary hyperparathyroidism had iliac bone biopsy. The procedure was complicated by a soft-tissue hematoma, which had calcified. A 3-4-cm palpable mass was visible in the lower left abdominal wall. Intense uptake of 99mTc-HMDP corresponded with the location of the calcified hematoma in this patient.  (+info)

Is low plasma 25-(OH)vitamin D a major risk factor for hyperparathyroidism and Looser's zones independent of calcitriol? (4/512)

BACKGROUND: Recent reports suggest that calcitriol might not be the sole active metabolite of vitamin D and that plasma concentrations of 25-(OH)vitamin D (25OHD) are often abnormally low in hemodialysis patients. We have therefore evaluated plasma 25OHD as a risk factor for parathyroid hormone (PTH) hypersecretion and radiological bone disease. We carried out a cross-sectional study during the month of September in an Algerian dialysis center of 113 patients who were not taking supplements of alphacalcidol or calcitriol. METHODS: Plasma 25OHD, calcitriol, PTH, calcium, phosphate, bicarbonate, and aluminum were measured, and x-rays of the hands and pelvis were obtained for evaluation of subperiosteal resorption and Looser's zones. RESULTS: The median plasma 25OHD was 47.5 nmol/liter (range 2.5 to 170.0). Univariate analysis showed that plasma PTH was correlated positively with months on maintenance dialysis and negatively with plasma 25OHD, calcitriol, calcium, bicarbonate and aluminum, but not with that of phosphate. plasma 25OHD was positively correlated with calcium and calcitriol. Using multiple regression analysis, only plasma 25OHD (negative) and the duration on maintenance dialysis (positive) were independently linked to plasma PTH. The prevalence of isolated subperiosteal resorption (ISR) was 34%, and that of the combination of resorption with Looser's zones (CRLZ) was 9%; thus, only 57% of the patients had a normal x-ray appearance. These groups were comparable with regards to age, gender, and duration on dialysis. When the biochemical measurements of the patients with CRLZ were compared with those from patients without radiological lesions, plasma 25OHD was the only parameter to show a statistically significant difference, being significantly lower in the CRLZ group (26 +/- 18 vs. 57 nmol/liter, ANOVA, P < 0.004). Plasma 25OHD was also significantly lower in the ISR group (44, P < 0.05) than in the normal x-ray group, and plasma Ca (P < 0.003) and bicarbonate (P < 0.02) were lower. Logistical analysis showed that the presence of resorption was independently linked only with plasma PTH. Looser's zones and subperiosteal resorption were not seen in patients with plasma 25OHD of more than 40 (Looser's zones) and more than 100 nmol/liter (subperiosteal resorption). The optimal range for intact PTH in hemodialysis patients with mild aluminum overload is 10 to 25 pmol/liter. We found that plasma PTH was inappropriately high only when plasma 25OHD was less than 100 nmol/liter. With a plasma 25OHD of between 100 and 170 nmol/liter, hypercalcemia was present with a plasma PTH of less than 10 pmol/liter in only one case. CONCLUSIONS: This cross sectional study shows that low plasma 25OHD is a major risk factor for hyperparathyroidism and Looser's zones. In dialysis patients, we suggest that the plasma levels of 25OHD are maintained around the upper limit of the reference range of sunny countries.  (+info)

Parathyroid function as a determinant of the response to calcitriol treatment in the hemodialysis patient. (5/512)

BACKGROUND: Bolus calcitriol (CTR) is used for the treatment of secondary hyperparathyroidism in dialysis patients. Although CTR treatment reduces parathyroid hormone (PTH) levels in many dialysis patients, a significant number fail to respond. METHODS: To learn whether or not an analysis of parathyroid function could further illuminate the response to CTR, a PTH-calcium curve was performed before and after at least two months of CTR treatment in 50 hemodialysis patients with a predialysis intact PTH of greater than 300 pg/ml. RESULTS: For the entire group (N = 50), CTR treatment resulted in a 24% reduction in predialysis (basal) PTH from 773 +/- 54 to 583 +/- 71 pg/ml (P < 0.001), whereas ionized calcium increased from 1.10 +/- 0.02 to 1.22 +/- 0.02 mM (P < 0.001); however, maximal and minimal PTH did not change from pre-CTR values. Based on whether or not the basal PTH decreased by 40% or more during CTR treatment, patients were divided into responders (Rs, N = 25) and nonresponders (NRs, N = 25). Before CTR, the NR group was characterized by a greater basal (959 +/- 80 vs. 586 +/- 51 pg/ml, P < 0.001) and maximal (1899 +/- 170 vs. 1172 +/- 108 pg/ml, P < 0. 001) PTH and serum phosphorus (6.14 +/- 0.25 vs. 5.14 +/- 0.34 mg/dl, P < 0.01). Logistical regression analysis showed that the pre-CTR basal PTH was the most important predictor of the post-CTR basal PTH, and a pre-CTR basal PTH of 750 pg/ml represented a 50% probability of a response. Basal PTH correlated with the ionized calcium in the NR group (r = 0.59, P = 0.002) but not in the R group (r = 0.06, P = NS). In the R group, an inverse correlation was present between ionized calcium and the basal/maximal PTH ratio, an indicator of whether calcium is suppressing basal PTH secretion relative to the maximal secretory capacity (maximal PTH) r = -0.55, P = 0.004; in the NR group, this correlation approached significance but was positive (r = 0.34, P = 0.09). After CTR treatment, serum calcium increased in both groups, and despite marked differences in basal PTH (Rs, 197 +/- 25 vs. NRs, 969 +/- 85 pg/ml), an inverse correlation between ionized calcium and basal/maximal PTH was present in both groups (Rs, r = -0.61, P = 0.001, and NRs, r = -0.60, P = 0.001). CONCLUSIONS: (a) Dynamic testing of parathyroid function provided insights into the pathophysiology of PTH secretion in hemodialysis patients. (b) The magnitude of hyperparathyroidism was the most important predictor of the response to CTR. (c) Before CTR treatment, PTH was sensitive to calcium in Rs, and serum calcium was PTH driven in NRs, and (d) after the CTR-induced increase in serum calcium, calcium suppressed basal PTH relative to maximal PTH in both groups.  (+info)

Reduced parathyroid functional mass after successful kidney transplantation. (6/512)

BACKGROUND: Chronic uremia is responsible for secondary hyperparathyroidism (HPT II). Parathyroid secretion usually tends to normalize after kidney transplantation (KT), but the parameters of the reversibility of HPT II remain poorly defined, particularly the intrinsic mechanisms underlying the improvement of parathyroid function. METHODS: The kinetic functional parameters of the ionized calcium (iCa)/parathormone (PTH) relationship curve were studied in 11 patients with mild to moderate HPT II one and six months after successful KT. Hypercalcemia and hypocalcemia were induced, respectively, by CaCl2 and Na2-ethylenediaminetetraacetic acid (Na2-EDTA) infusions. RESULTS: The mean glomerular filtration rate remained stable during follow-up. Basal PTH decreased from 195 +/- 54 pg/ml before KT to 70 +/- 12 pg/ml six months later (P < 0. 005). During the tests, mean PTH levels decreased significantly between the two measured times for all iCa levels, indicating an improved parathyroid function. An analysis of the kinetic parameters of the curves showed significant decreases of the mean maximal and minimal PTH levels, respectively, from 340 +/- 91 to 220 +/- 30 pg/ml (P = 0.03) and from 25 +/- 6 to 15 +/- 5 pg/ml (P = 0.005). On the other hand, no change was noted in the parathyroid-cell calcium-sensitivity parameters (slope, set point) assessed using two different approaches, either the entire curve or the limited calcium-mediated suppression curve. CONCLUSION: Improvement of the parathyroid function between the first and sixth months post-KT seems mainly attributable to a reduction of the parathyroid functional mass.  (+info)

Dynamic tests of parathyroid hormone secretion using hemodialysis and calcium infusion cannot be compared. (7/512)

BACKGROUND: Extracellular Ca++ concentration [Ca++] and parathormone (PTH) are related by a sigmoidal function. The set point of the control system is the [Ca++] that produces a half-maximal inhibition of PTH secretion. Whether or not this set point is abnormal in patients with chronic renal failure (CRF) and secondary hyperparathyroidism (SHP) is controversial. METHODS: We investigated whether the way [Ca++] is varied [hemodialysis (HD) or calcium gluconate/sodium citrate infusions (INF)] and the way the curve is constructed (four-parameter model or adapted four-parameter, created by Felsenfeld) could influence this set point. We performed dynamic tests of PTH secretion in 12 patients with CRF and SHP during either HD or INF. Both the four-parameter model or adapted four-parameter methods were used, creating four combinations: (a) hypocalcemia and hypercalcemia induced during HD, calculated by Brown's formula (HDB); (b) hypocalcemia and hypercalcemia induced during HD, calculated by Felsenfeld's formula (HDF); (c) hypocalcemia and hypercalcemia induced during infusion, calculated by Brown's formula (INFB); and (d) hypocalcemia and hypercalcemia induced during infusion, calculated by Felsenfeld's formula (INFF). RESULTS: The set points obtained with HDB correlated perfectly with those obtained with HDF (R2 = 0.999). A similar relationship was found between INFB and INFF (R2 = 0.9997). In contrast, there was no correlation between either HDB and INFB (R2 = 0.0157) or HDF and INFF (R2 = 0.0204). CONCLUSIONS: These findings indicate that the calculated [Ca++] set point in patients with CRF and SHP is determined by the way [Ca++] is varied, rather than by the mathematical model used to generate the curves. Further studies are needed to determine the differing physiological mechanisms triggered by HD and INF and the way they influence [Ca++] homeostasis in this setting.  (+info)

Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. (8/512)

Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. In this study, the parathyroid response to the correction of acidosis in eight hemodialysis patients was determined by performing dynamic assessment of parathyroid function before and after the correction of acidosis. The parathyroid response to intravenous calcitriol before and after the correction of acidosis was also assessed. After optimal correction of acidosis, there were no significant changes in blood pH, ionized calcium, phosphate, or alkaline phosphatase values, but the level of venous total CO2 increased significantly. Parathyroid hormone/ionized calcium curves were displaced downward after correction of acidosis, but not after the administration of intravenous calcitriol. The correction of metabolic acidosis in hemodialysis patients with secondary hyperparathyroidism can suppress parathyroid hormone secretion by increasing the sensitivity of the parathyroid glands to ionized calcium.  (+info)

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

Hyperparathyroidism is a condition in which the parathyroid glands produce excessive amounts of parathyroid hormone (PTH). There are four small parathyroid glands located in the neck, near or within the thyroid gland. They release PTH into the bloodstream to help regulate the levels of calcium and phosphorus in the body.

In hyperparathyroidism, overproduction of PTH can lead to an imbalance in these minerals, causing high blood calcium levels (hypercalcemia) and low phosphate levels (hypophosphatemia). This can result in various symptoms such as fatigue, weakness, bone pain, kidney stones, and cognitive issues.

There are two types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism occurs when there is a problem with one or more of the parathyroid glands, causing them to become overactive and produce too much PTH. Secondary hyperparathyroidism develops as a response to low calcium levels in the body due to conditions like vitamin D deficiency, chronic kidney disease, or malabsorption syndromes.

Treatment for hyperparathyroidism depends on the underlying cause and severity of symptoms. In primary hyperparathyroidism, surgery to remove the overactive parathyroid gland(s) is often recommended. For secondary hyperparathyroidism, treating the underlying condition and managing calcium levels with medications or dietary changes may be sufficient.

Primary hyperparathyroidism is a medical condition characterized by excessive secretion of parathyroid hormone (PTH) from one or more of the parathyroid glands in the neck. These glands are normally responsible for regulating calcium levels in the body by releasing PTH, which helps to maintain an appropriate balance of calcium and phosphate in the bloodstream.

In primary hyperparathyroidism, the parathyroid gland(s) become overactive and produce too much PTH, leading to elevated calcium levels (hypercalcemia) in the blood. This can result in a variety of symptoms, such as fatigue, weakness, bone pain, kidney stones, and cognitive impairment, although some individuals may not experience any symptoms at all.

The most common cause of primary hyperparathyroidism is a benign tumor called an adenoma that develops in one or more of the parathyroid glands. In rare cases, primary hyperparathyroidism can be caused by cancer of the parathyroid gland(s) or by enlargement of all four glands (four-gland hyperplasia). Treatment typically involves surgical removal of the affected parathyroid gland(s), which is usually curative.

Parathyroidectomy is a surgical procedure for the removal of one or more of the parathyroid glands. These glands are located in the neck and are responsible for producing parathyroid hormone (PTH), which helps regulate the levels of calcium and phosphorus in the body.

Parathyroidectomy is typically performed to treat conditions such as hyperparathyroidism, where one or more of the parathyroid glands become overactive and produce too much PTH. This can lead to high levels of calcium in the blood, which can cause symptoms such as weakness, fatigue, bone pain, kidney stones, and mental confusion.

There are different types of parathyroidectomy procedures, including:

* Partial parathyroidectomy: removal of one or more, but not all, of the parathyroid glands.
* Total parathyroidectomy: removal of all four parathyroid glands.
* Subtotal parathyroidectomy: removal of three and a half of the four parathyroid glands, leaving a small portion of one gland to prevent hypoparathyroidism (a condition where the body produces too little PTH).

The choice of procedure depends on the underlying condition and its severity. After the surgery, patients may need to have their calcium levels monitored and may require calcium and vitamin D supplements to maintain normal calcium levels in the blood.

Parathyroid neoplasms refer to abnormal growths in the parathyroid glands, which are small endocrine glands located in the neck, near or within the thyroid gland. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign parathyroid neoplasms are typically called parathyroid adenomas and are the most common type of parathyroid disorder. They result in overproduction of parathyroid hormone (PTH), leading to a condition known as primary hyperparathyroidism. Symptoms may include kidney stones, osteoporosis, fatigue, depression, and abdominal pain.

Malignant parathyroid neoplasms are called parathyroid carcinomas. They are rare but more aggressive than adenomas, with a higher risk of recurrence and metastasis. Symptoms are similar to those of benign neoplasms but may also include hoarseness, difficulty swallowing, and enlarged lymph nodes in the neck.

It is important to note that parathyroid neoplasms can only be definitively diagnosed through biopsy or surgical removal and subsequent histopathological examination.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Osteitis fibrosa cystica is a medical condition that refers to the abnormal bone remodeling process characterized by increased bone resorption and formation, leading to bone thickening and weakening. It is also known as "von Recklinghausen's disease of bone" or "monostotic fibrous dysplasia."

This condition is typically caused by excessive production of parathyroid hormone (PTH) due to a benign or malignant tumor of the parathyroid gland, known as hyperparathyroidism. The overproduction of PTH leads to an imbalance in calcium and phosphorus metabolism, resulting in increased bone resorption and fibrous tissue deposition within the bone marrow.

The clinical features of osteitis fibrosa cystica include bone pain, fractures, bone deformities, and elevated levels of calcium and alkaline phosphatase in the blood. Radiographic findings may show characteristic "rugger jersey" or "salt and pepper" patterns of alternating areas of increased and decreased bone density.

Treatment typically involves surgical removal of the abnormal parathyroid gland tissue, followed by medical management to prevent further bone loss and promote healing.

An adenoma is a benign (noncancerous) tumor that develops from glandular epithelial cells. These types of cells are responsible for producing and releasing fluids, such as hormones or digestive enzymes, into the surrounding tissues. Adenomas can occur in various organs and glands throughout the body, including the thyroid, pituitary, adrenal, and digestive systems.

Depending on their location, adenomas may cause different symptoms or remain asymptomatic. Some common examples of adenomas include:

1. Colorectal adenoma (also known as a polyp): These growths occur in the lining of the colon or rectum and can develop into colorectal cancer if left untreated. Regular screenings, such as colonoscopies, are essential for early detection and removal of these polyps.
2. Thyroid adenoma: This type of adenoma affects the thyroid gland and may result in an overproduction or underproduction of hormones, leading to conditions like hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid).
3. Pituitary adenoma: These growths occur in the pituitary gland, which is located at the base of the brain and controls various hormonal functions. Depending on their size and location, pituitary adenomas can cause vision problems, headaches, or hormonal imbalances that affect growth, reproduction, and metabolism.
4. Liver adenoma: These rare benign tumors develop in the liver and may not cause any symptoms unless they become large enough to press on surrounding organs or structures. In some cases, liver adenomas can rupture and cause internal bleeding.
5. Adrenal adenoma: These growths occur in the adrenal glands, which are located above the kidneys and produce hormones that regulate stress responses, metabolism, and blood pressure. Most adrenal adenomas are nonfunctioning, meaning they do not secrete excess hormones. However, functioning adrenal adenomas can lead to conditions like Cushing's syndrome or Conn's syndrome, depending on the type of hormone being overproduced.

It is essential to monitor and manage benign tumors like adenomas to prevent potential complications, such as rupture, bleeding, or hormonal imbalances. Treatment options may include surveillance with imaging studies, medication to manage hormonal issues, or surgical removal of the tumor in certain cases.

Calcimimetic agents are a type of medication that mimic the action of calcium on the calcium-sensing receptor (CaSR) in the parathyroid gland. These agents enhance the sensitivity of the CaSR to extracellular calcium, which leads to a decrease in parathyroid hormone (PTH) secretion.

Calcimimetics are primarily used in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease (CKD) on dialysis. By decreasing PTH levels, calcimimetics can help to prevent the development of bone disease, reduce the risk of cardiovascular calcification, and improve overall clinical outcomes in these patients.

The most commonly prescribed calcimimetic agent is cinacalcet (Sensipar/Mimpara), which has been shown to effectively lower PTH levels, as well as serum calcium and phosphorus levels, in patients with CKD on dialysis. Other calcimimetic agents include etelcalcetide (Parsabiv) and evocalcet (Rocaltrol).

It is important to note that calcimimetics should be used with caution in patients with hypocalcemia, as they can further lower serum calcium levels. Close monitoring of calcium, phosphorus, and PTH levels is necessary during treatment with these agents.

Parathyroid diseases refer to conditions that affect the parathyroid glands, which are small endocrine glands located in the neck, near or attached to the back surface of the thyroid gland. The primary function of the parathyroid glands is to produce and secrete parathyroid hormone (PTH), a crucial hormone that helps regulate calcium and phosphorus levels in the blood and bones.

There are four parathyroid glands, and they can develop various diseases, including:

1. Hyperparathyroidism: A condition where one or more parathyroid glands produce excessive amounts of PTH. This can lead to an imbalance in calcium and phosphorus levels, resulting in symptoms such as fatigue, weakness, bone pain, kidney stones, and increased risk of osteoporosis. Hyperparathyroidism can be primary (caused by a benign or malignant tumor in the parathyroid gland), secondary (due to chronic kidney disease or vitamin D deficiency), or tertiary (when secondary hyperparathyroidism becomes autonomous and continues even after correcting the underlying cause).
2. Hypoparathyroidism: A condition where the parathyroid glands do not produce enough PTH, leading to low calcium levels in the blood (hypocalcemia) and high phosphorus levels (hyperphosphatemia). Symptoms of hypoparathyroidism may include muscle spasms, tingling sensations in the fingers, toes, or lips, anxiety, cataracts, and seizures. Hypoparathyroidism can be caused by surgical removal of the parathyroid glands, autoimmune disorders, radiation therapy, or genetic conditions.
3. Parathyroid tumors: Abnormal growths in the parathyroid glands can lead to hyperparathyroidism. Benign tumors (adenomas) are the most common cause of primary hyperparathyroidism. Malignant tumors (carcinomas) are rare but can also occur, leading to more severe symptoms and a worse prognosis.
4. Parathyroid dysfunction in genetic disorders: Some genetic syndromes, such as multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and hyperparathyroidism-jaw tumor syndrome (HPT-JT), can involve parathyroid gland abnormalities, leading to hyperparathyroidism or other related conditions.

Proper diagnosis and management of parathyroid disorders are crucial for maintaining optimal calcium homeostasis and preventing complications associated with hypocalcemia or hypercalcemia. Treatment options may include surgery, medication, dietary modifications, and monitoring hormone levels.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

Calcium-sensing receptors (CaSR) are a type of G protein-coupled receptor that play a crucial role in the regulation of extracellular calcium homeostasis. They are widely expressed in various tissues, including the parathyroid gland, kidney, and bone.

The primary function of CaSR is to detect changes in extracellular calcium concentrations and transmit signals to regulate the release of parathyroid hormone (PTH) from the parathyroid gland. When the concentration of extracellular calcium increases, CaSR is activated, which leads to a decrease in PTH secretion, thereby preventing further elevation of calcium levels. Conversely, when calcium levels decrease, CaSR is inhibited, leading to an increase in PTH release and restoration of normal calcium levels.

In addition to regulating calcium homeostasis, CaSR also plays a role in other physiological processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of CaSR has been implicated in various diseases, such as hyperparathyroidism, hypoparathyroidism, and cancer. Therefore, understanding the function and regulation of CaSR is essential for developing new therapeutic strategies to treat these conditions.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Renal osteodystrophy is a bone disease that occurs in individuals with chronic kidney disease (CKD). It is characterized by abnormalities in the bones' structure and mineral composition due to disturbances in the metabolism of calcium, phosphorus, and vitamin D. These metabolic disturbances result from the kidneys' decreased ability to maintain balance in the levels of these minerals and hormones.

Renal osteodystrophy can manifest as several bone disorders, including:

1. Osteitis fibrosa cystica: Increased bone turnover due to excessive parathyroid hormone (PTH) production, leading to high levels of alkaline phosphatase and increased resorption of bones.
2. Adynamic bone disease: Decreased bone turnover due to reduced PTH levels, resulting in low bone formation rates and increased fracture risk.
3. Mixed uremic osteodystrophy: A combination of high and low bone turnover, with varying degrees of mineralization defects.
4. Osteomalacia: Defective mineralization of bones due to vitamin D deficiency or resistance, leading to soft and weak bones.

Symptoms of renal osteodystrophy may include bone pain, muscle weakness, fractures, deformities, and growth retardation in children. Diagnosis typically involves laboratory tests, imaging studies, and sometimes bone biopsies. Treatment focuses on correcting the metabolic imbalances through dietary modifications, medications (such as phosphate binders, vitamin D analogs, and calcimimetics), and addressing any secondary hyperparathyroidism if present.

Multiple Endocrine Neoplasia Type 1 (MEN1) is a rare inherited disorder characterized by the development of tumors in various endocrine glands. These tumors can be benign or malignant and may lead to overproduction of hormones, causing a variety of symptoms. The three main endocrine glands affected in MEN1 are:

1. Parathyroid glands: Over 90% of individuals with MEN1 develop multiple parathyroid tumors (parathyroid hyperplasia), leading to primary hyperparathyroidism, which results in high levels of calcium in the blood.
2. Pancreas: Up to 80% of individuals with MEN1 develop pancreatic neuroendocrine tumors (PNETs). These tumors can produce and release various hormones, such as gastrin, insulin, glucagon, and vasoactive intestinal peptide (VIP), leading to specific clinical syndromes like Zollinger-Ellison syndrome, hypoglycemia, or watery diarrhea.
3. Pituitary gland: Approximately 30-40% of individuals with MEN1 develop pituitary tumors, most commonly prolactinomas, which can cause menstrual irregularities, galactorrhea (milk production), and visual field defects.

MEN1 is caused by mutations in the MEN1 gene, located on chromosome 11, and it is inherited in an autosomal dominant manner. This means that a person has a 50% chance of inheriting the disease-causing mutation from an affected parent. The diagnosis of MEN1 typically requires meeting specific clinical criteria or having a positive genetic test for a pathogenic MEN1 gene variant. Regular monitoring and early intervention are crucial in managing this condition to prevent complications and improve outcomes.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Technetium Tc 99m Sestamibi is a radiopharmaceutical compound used in medical imaging, specifically in myocardial perfusion scintigraphy. It is a technetium-labeled isonitrile chelate that is taken up by mitochondria in cells with high metabolic activity, such as cardiomyocytes (heart muscle cells).

Once injected into the patient's body, Technetium Tc 99m Sestamibi emits gamma rays, which can be detected by a gamma camera. This allows for the creation of images that reflect the distribution and function of the radiopharmaceutical within the heart muscle. The images can help identify areas of reduced blood flow or ischemia, which may indicate coronary artery disease.

The uptake of Technetium Tc 99m Sestamibi in other organs, such as the breast and thyroid, can also be used for imaging purposes, although its primary use remains in cardiac imaging.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Ergocalciferols are a form of vitamin D, specifically vitamin D2, that is found in some plants. They are not produced by the human body and must be obtained through diet or supplementation. Ergocalciferols can be converted into an active form of vitamin D in the body, which is important for maintaining healthy bones and calcium levels. However, vitamin D3 (cholecalciferol), which is produced by the body in response to sunlight exposure, is generally considered to be more effective at raising and maintaining vitamin D levels in the body than ergocalciferols.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Uremia is not a disease itself, but rather it's a condition that results from the buildup of waste products in the blood due to kidney failure. The term "uremia" comes from the word "urea," which is one of the waste products that accumulate when the kidneys are not functioning properly.

In uremia, the kidneys are unable to effectively filter waste and excess fluids from the blood, leading to a variety of symptoms such as nausea, vomiting, fatigue, itching, mental confusion, and ultimately, if left untreated, can lead to coma and death. It is a serious condition that requires immediate medical attention, often involving dialysis or a kidney transplant to manage the underlying kidney dysfunction.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

Hypoparathyroidism is a medical condition characterized by decreased levels or insufficient function of parathyroid hormone (PTH), which is produced and released by the parathyroid glands. These glands are located in the neck, near the thyroid gland, and play a crucial role in regulating calcium and phosphorus levels in the body.

In hypoparathyroidism, low PTH levels result in decreased absorption of calcium from the gut, increased excretion of calcium through the kidneys, and impaired regulation of bone metabolism. This leads to low serum calcium levels (hypocalcemia) and high serum phosphorus levels (hyperphosphatemia).

Symptoms of hypoparathyroidism can include muscle cramps, spasms, or tetany (involuntary muscle contractions), numbness or tingling sensations in the fingers, toes, and around the mouth, fatigue, weakness, anxiety, cognitive impairment, and in severe cases, seizures. Hypoparathyroidism can be caused by various factors, including surgical removal or damage to the parathyroid glands, autoimmune disorders, radiation therapy, genetic defects, or low magnesium levels. Treatment typically involves calcium and vitamin D supplementation to maintain normal serum calcium levels and alleviate symptoms. In some cases, recombinant PTH (Natpara) may be prescribed as well.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Osteomalacia is a medical condition characterized by the softening of bones due to defective bone mineralization, resulting from inadequate vitamin D, phosphate, or calcium. It mainly affects adults and is different from rickets, which occurs in children. The primary symptom is bone pain, but muscle weakness can also occur. Prolonged osteomalacia may lead to skeletal deformities and an increased risk of fractures. Treatment typically involves supplementation with vitamin D, calcium, and sometimes phosphate.

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

Pathologic bone demineralization is a condition characterized by the loss of minerals, such as calcium and phosphate, from the bones. This process makes the bones more porous, weaker, and more susceptible to fractures. It can occur due to various medical conditions, including osteoporosis, hyperparathyroidism, Paget's disease of bone, and cancer that has spread to the bones (metastatic cancer).

In a healthy individual, the body constantly remodels the bones by removing old bone tissue (resorption) and replacing it with new tissue. This process is regulated by two types of cells: osteoclasts, which are responsible for bone resorption, and osteoblasts, which produce new bone tissue. In pathologic bone demineralization, there is an imbalance between the activity of these two cell types, with excessive resorption and inadequate formation of new bone tissue.

Pathologic bone demineralization can lead to a range of symptoms, including bone pain, fractures, loss of height, and a decreased ability to perform daily activities. Treatment for this condition depends on the underlying cause but may include medications that slow down bone resorption or promote bone formation, as well as lifestyle changes such as exercise and dietary modifications.

A choristoma is a type of growth that occurs when normally functioning tissue is found in an abnormal location within the body. It is not cancerous or harmful, but it can cause problems if it presses on surrounding structures or causes symptoms. Choristomas are typically congenital, meaning they are present at birth, and are thought to occur due to developmental errors during embryonic growth. They can be found in various organs and tissues throughout the body, including the brain, eye, skin, and gastrointestinal tract.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Paraneoplastic endocrine syndromes refer to a group of hormonal and related disorders that occur as remote effects of cancer. They are caused by substances (like hormones, peptides, or antibodies) produced by the tumor, which may be benign or malignant, and can affect various organs and systems in the body. These syndromes can occur before the cancer is diagnosed, making them an important consideration for early detection and treatment of the underlying malignancy.

Examples of paraneoplastic endocrine syndromes include:

1. Syndrome of Inappropriate Antidiuretic Hormone (SIADH): This occurs when a tumor, often small cell lung cancer, produces antidiuretic hormone (ADH), leading to excessive water retention and low sodium levels in the blood.
2. Cushing's Syndrome: Excessive production of adrenocorticotropic hormone (ACTH) by a tumor, often a small cell lung cancer or pancreatic neuroendocrine tumor, can lead to increased cortisol levels and symptoms such as weight gain, muscle weakness, and mood changes.
3. Ectopic Production of Parathyroid Hormone-Related Peptide (PTHrP): This occurs when a tumor, often a squamous cell carcinoma, produces PTHrP, leading to increased calcium levels in the blood and symptoms such as bone pain, kidney stones, and confusion.
4. Hypercalcemia of Malignancy: Excessive production of calcitriol (active vitamin D) by a tumor, often a lymphoma or myeloma, can lead to increased calcium levels in the blood and symptoms such as bone pain, kidney stones, and confusion.
5. Carcinoid Syndrome: This occurs when a neuroendocrine tumor, often in the gastrointestinal tract, produces serotonin and other substances, leading to symptoms such as flushing, diarrhea, and heart problems.

It is important to note that these syndromes can also be caused by non-cancerous conditions, so a thorough evaluation is necessary to make an accurate diagnosis.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Hyperphosphatemia is a medical condition characterized by an excessively high level of phosphate (a form of the chemical element phosphorus) in the blood. Phosphate is an important component of various biological molecules, such as DNA, RNA, and ATP, and it plays a crucial role in many cellular processes, including energy metabolism and signal transduction.

In healthy individuals, the concentration of phosphate in the blood is tightly regulated within a narrow range to maintain normal physiological functions. However, when the phosphate level rises above this range (typically defined as a serum phosphate level greater than 4.5 mg/dL or 1.46 mmol/L), it can lead to hyperphosphatemia.

Hyperphosphatemia can result from various underlying medical conditions, including:

* Kidney dysfunction: The kidneys are responsible for filtering excess phosphate out of the blood and excreting it in the urine. When the kidneys fail to function properly, they may be unable to remove enough phosphate, leading to its accumulation in the blood.
* Hypoparathyroidism: The parathyroid glands produce a hormone called parathyroid hormone (PTH), which helps regulate calcium and phosphate levels in the body. In hypoparathyroidism, the production of PTH is insufficient, leading to an increase in phosphate levels.
* Hyperparathyroidism: In contrast, excessive production of PTH can also lead to hyperphosphatemia by increasing the release of phosphate from bones and decreasing its reabsorption in the kidneys.
* Excessive intake of phosphate-rich foods or supplements: Consuming large amounts of phosphate-rich foods, such as dairy products, nuts, and legumes, or taking phosphate supplements can raise blood phosphate levels.
* Tumor lysis syndrome: This is a complication that can occur after the treatment of certain types of cancer, particularly hematological malignancies. The rapid destruction of cancer cells releases large amounts of intracellular contents, including phosphate, into the bloodstream, leading to hyperphosphatemia.
* Rhabdomyolysis: This is a condition in which muscle tissue breaks down, releasing its contents, including phosphate, into the bloodstream. It can be caused by various factors, such as trauma, infection, or drug toxicity.

Hyperphosphatemia can have several adverse effects on the body, including calcification of soft tissues, kidney damage, and metabolic disturbances. Therefore, it is essential to diagnose and manage hyperphosphatemia promptly to prevent complications. Treatment options may include dietary modifications, medications that bind phosphate in the gastrointestinal tract, and dialysis in severe cases.

No FAQ available that match "hyperparathyroidism secondary"

No images available that match "hyperparathyroidism secondary"