A common interstitial lung disease of unknown etiology, usually occurring between 50-70 years of age. Clinically, it is characterized by an insidious onset of breathlessness with exertion and a nonproductive cough, leading to progressive DYSPNEA. Pathological features show scant interstitial inflammation, patchy collagen fibrosis, prominent fibroblast proliferation foci, and microscopic honeycomb change.
A process in which normal lung tissues are progressively replaced by FIBROBLASTS and COLLAGEN causing an irreversible loss of the ability to transfer oxygen into the bloodstream via PULMONARY ALVEOLI. Patients show progressive DYSPNEA finally resulting in death.
A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors.
A diverse group of lung diseases that affect the lung parenchyma. They are characterized by an initial inflammation of PULMONARY ALVEOLI that extends to the interstitium and beyond leading to diffuse PULMONARY FIBROSIS. Interstitial lung diseases are classified by their etiology (known or unknown causes), and radiological-pathological features.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
A common interstitial lung disease caused by hypersensitivity reactions of PULMONARY ALVEOLI after inhalation of and sensitization to environmental antigens of microbial, animal, or chemical sources. The disease is characterized by lymphocytic alveolitis and granulomatous pneumonitis.
A group of interstitial lung diseases with no known etiology. There are several entities with varying patterns of inflammation and fibrosis. They are classified by their distinct clinical-radiological-pathological features and prognosis. They include IDIOPATHIC PULMONARY FIBROSIS; CRYPTOGENIC ORGANIZING PNEUMONIA; and others.
Sarcoidosis affecting predominantly the lungs, the site most frequently involved and most commonly causing morbidity and mortality in sarcoidosis. Pulmonary sarcoidosis is characterized by sharply circumscribed granulomas in the alveolar, bronchial, and vascular walls, composed of tightly packed cells derived from the mononuclear phagocyte system. The clinical symptoms when present are dyspnea upon exertion, nonproductive cough, and wheezing. (Cecil Textbook of Medicine, 19th ed, p431)
Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place.
Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc.
The transference of either one or both of the lungs from one human or animal to another.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Spindle-shaped cells with characteristic CONTRACTILE PROTEINS and structures that contribute to the WOUND HEALING process. They occur in GRANULATION TISSUE and also in pathological processes such as FIBROSIS.
A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation.
Pyridine derivatives with one or more keto groups on the ring.
An interstitial lung disease of unknown etiology, occurring between 21-80 years of age. It is characterized by a dramatic onset of a "pneumonia-like" illness with cough, fever, malaise, fatigue, and weight loss. Pathological features include prominent interstitial inflammation without collagen fibrosis, diffuse fibroblastic foci, and no microscopic honeycomb change. There is excessive proliferation of granulation tissue within small airways and alveolar ducts.
Washing out of the lungs with saline or mucolytic agents for diagnostic or therapeutic purposes. It is very useful in the diagnosis of diffuse pulmonary infiltrates in immunosuppressed patients.
The amount of a gas taken up, by the pulmonary capillary blood from the alveolar gas, per minute per unit of average pressure of the gradient of the gas across the BLOOD-AIR BARRIER.
Epithelial cells that line the PULMONARY ALVEOLI.
A pulmonary surfactant associated protein that plays a role in alveolar stability by lowering the surface tension at the air-liquid interface. It is a membrane-bound protein that constitutes 1-2% of the pulmonary surfactant mass. Pulmonary surfactant-associated protein C is one of the most hydrophobic peptides yet isolated and contains an alpha-helical domain with a central poly-valine segment that binds to phospholipid bilayers.
Drugs used for their effects on the respiratory system.
The volume of air that is exhaled by a maximal expiration following a maximal inspiration.
An idiopathic systemic inflammatory granulomatous disorder comprised of epithelioid and multinucleated giant cells with little necrosis. It usually invades the lungs with fibrosis and may also involve lymph nodes, skin, liver, spleen, eyes, phalangeal bones, and parotid glands.
Historically, a heterogeneous group of acute and chronic diseases, including rheumatoid arthritis, systemic lupus erythematosus, progressive systemic sclerosis, dermatomyositis, etc. This classification was based on the notion that "collagen" was equivalent to "connective tissue", but with the present recognition of the different types of collagen and the aggregates derived from them as distinct entities, the term "collagen diseases" now pertains exclusively to those inherited conditions in which the primary defect is at the gene level and affects collagen biosynthesis, post-translational modification, or extracellular processing directly. (From Cecil Textbook of Medicine, 19th ed, p1494)
Inhaling liquid or solids, such as stomach contents, into the RESPIRATORY TRACT. When this causes severe lung damage, it is called ASPIRATION PNEUMONIA.
A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME.
The volume of air contained in the lungs at the end of a maximal inspiration. It is the equivalent to each of the following sums: VITAL CAPACITY plus RESIDUAL VOLUME; INSPIRATORY CAPACITY plus FUNCTIONAL RESIDUAL CAPACITY; TIDAL VOLUME plus INSPIRATORY RESERVE VOLUME plus functional residual capacity; or tidal volume plus inspiratory reserve volume plus EXPIRATORY RESERVE VOLUME plus residual volume.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
A gel-forming mucin that is predominantly expressed by submucosal glands of airway tissues and the SUBLINGUAL GLAND. It is one of the principal components of high molecular weight salivary mucin.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens, resulting in their opsinization. It also stimulates MACROPHAGES to undergo PHAGOCYTOSIS of microorganisms. Surfactant protein A contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
Pathological processes involving any part of the LUNG.
Difficult or labored breathing.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Enlargement of air spaces distal to the TERMINAL BRONCHIOLES where gas-exchange normally takes place. This is usually due to destruction of the alveolar wall. Pulmonary emphysema can be classified by the location and distribution of the lesions.
Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES.
Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells.
A chronic multi-system disorder of CONNECTIVE TISSUE. It is characterized by SCLEROSIS in the SKIN, the LUNGS, the HEART, the GASTROINTESTINAL TRACT, the KIDNEYS, and the MUSCULOSKELETAL SYSTEM. Other important features include diseased small BLOOD VESSELS and AUTOANTIBODIES. The disorder is named for its most prominent feature (hard skin), and classified into subsets by the extent of skin thickening: LIMITED SCLERODERMA and DIFFUSE SCLERODERMA.
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens and enhances their opsinization and killing by phagocytic cells. Surfactant protein D contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
Damage to any compartment of the lung caused by physical, chemical, or biological agents which characteristically elicit inflammatory reaction. These inflammatory reactions can either be acute and dominated by NEUTROPHILS, or chronic and dominated by LYMPHOCYTES and MACROPHAGES.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A form of ischemia-reperfusion injury occurring in the early period following transplantation. Significant pathophysiological changes in MITOCHONDRIA are the main cause of the dysfunction. It is most often seen in the transplanted lung, liver, or kidney and can lead to GRAFT REJECTION.
Basic glycoprotein members of the SERPIN SUPERFAMILY that function as COLLAGEN-specific MOLECULAR CHAPERONES in the ENDOPLASMIC RETICULUM.
A heterogeneous group of disorders, some hereditary, others acquired, characterized by abnormal structure or function of one or more of the elements of connective tissue, i.e., collagen, elastin, or the mucopolysaccharides.
A glucocorticoid with the general properties of the corticosteroids. It is the drug of choice for all conditions in which routine systemic corticosteroid therapy is indicated, except adrenal deficiency states.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
Methods and procedures for the diagnosis of diseases of the respiratory tract or its organs. It includes RESPIRATORY FUNCTION TESTS.
Removal of toxins or metabolites from the circulation by the passing of blood, within a suitable extracorporeal circuit, over semipermeable microcapsules containing adsorbents (e.g., activated charcoal) or enzymes, other enzyme preparations (e.g., gel-entrapped microsomes, membrane-free enzymes bound to artificial carriers), or other adsorbents (e.g., various resins, albumin-conjugated agarose).
A subspecialty of internal medicine concerned with the study of the RESPIRATORY SYSTEM. It is especially concerned with diagnosis and treatment of diseases and defects of the lungs and bronchial tree.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The washing of a body cavity or surface by flowing water or solution for therapy or diagnosis.
A chloride channel that regulates secretion in many exocrine tissues. Abnormalities in the CFTR gene have been shown to cause cystic fibrosis. (Hum Genet 1994;93(4):364-8)
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Infection of the lung often accompanied by inflammation.
Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition.
Agents that increase mucous excretion. Mucolytic agents, that is drugs that liquefy mucous secretions, are also included here.
The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates.
A condition characterized by the thickening of the ventricular ENDOCARDIUM and subendocardium (MYOCARDIUM), seen mostly in children and young adults in the TROPICAL CLIMATE. The fibrous tissue extends from the apex toward and often involves the HEART VALVES causing restrictive blood flow into the respective ventricles (CARDIOMYOPATHY, RESTRICTIVE).
A pathological accumulation of air in tissues or organs.
The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
An essential ribonucleoprotein reverse transcriptase that adds telomeric DNA to the ends of eukaryotic CHROMOSOMES.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A slowly progressive condition of unknown etiology, characterized by deposition of fibrous tissue in the retroperitoneal space compressing the ureters, great vessels, bile duct, and other structures. When associated with abdominal aortic aneurysm, it may be called chronic periaortitis or inflammatory perianeurysmal fibrosis.
An antineoplastic agent derived from BLEOMYCIN.
The smallest member of the MATRIX METALLOPROTEINASES. It plays a role in tumor progression.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An appreciable lateral deviation in the normally straight vertical line of the spine. (Dorland, 27th ed)
The loss of some TELOMERE sequence during DNA REPLICATION of the first several base pairs of a linear DNA molecule; or from DNA DAMAGE. Cells have various mechanisms to restore length (TELOMERE HOMEOSTASIS.) Telomere shortening is involved in the progression of CELL AGING.
The use of an external beam of PROTONS as radiotherapy.
Disease having a short and relatively severe course.
A ciliary neurotrophic factor receptor subunit. It is anchored to the cell surface via GLYCOSYLPHOSPHATIDYLINOSITOL LINKAGE and has specificity for binding to CILIARY NEUROTROPHIC FACTOR. It lacks signal transducing domains which are found on the other two subunits of the receptor.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
A fibrillar collagen found widely distributed as a minor component in tissues that contain COLLAGEN TYPE I and COLLAGEN TYPE III. It is a heterotrimeric molecule composed of alpha1(V), alpha2(V) and alpha3(V) subunits. Several forms of collagen type V exist depending upon the composition of the subunits that form the trimer.
Substances that reduce or suppress INFLAMMATION.
A CCN protein family member that regulates a variety of extracellular functions including CELL ADHESION; CELL MIGRATION; and EXTRACELLULAR MATRIX synthesis. It is found in hypertrophic CHONDROCYTES where it may play a role in CHONDROGENESIS and endochondral ossification.
Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used.
A predominantly X-linked recessive syndrome characterized by a triad of reticular skin pigmentation, nail dystrophy and leukoplakia of mucous membranes. Oral and dental abnormalities may also be present. Complications are a predisposition to malignancy and bone marrow involvement with pancytopenia. (from Int J Paediatr Dent 2000 Dec;10(4):328-34) The X-linked form is also known as Zinsser-Cole-Engman syndrome and involves the gene which encodes a highly conserved protein called dyskerin.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Arthritis of children, with onset before 16 years of age. The terms juvenile rheumatoid arthritis (JRA) and juvenile idiopathic arthritis (JIA) refer to classification systems for chronic arthritis in children. Only one subtype of juvenile arthritis (polyarticular-onset, rheumatoid factor-positive) clinically resembles adult rheumatoid arthritis and is considered its childhood equivalent.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. Activated Smad3 can bind directly to DNA, and it regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Thrombocytopenia occurring in the absence of toxic exposure or a disease associated with decreased platelets. It is mediated by immune mechanisms, in most cases IMMUNOGLOBULIN G autoantibodies which attach to platelets and subsequently undergo destruction by macrophages. The disease is seen in acute (affecting children) and chronic (adult) forms.
Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules.
Measure of the maximum amount of air that can be expelled in a given number of seconds during a FORCED VITAL CAPACITY determination . It is usually given as FEV followed by a subscript indicating the number of seconds over which the measurement is made, although it is sometimes given as a percentage of forced vital capacity.
Elements of limited time intervals, contributing to particular results or situations.
An activity in which the body advances at a slow to moderate pace by moving the feet in a coordinated fashion. This includes recreational walking, walking for fitness, and competitive race-walking.
A form of alveolitis or pneumonitis due to an acquired hypersensitivity to inhaled avian antigens, usually proteins in the dust of bird feathers and droppings.
Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
An immunosuppressive agent used in combination with cyclophosphamide and hydroxychloroquine in the treatment of rheumatoid arthritis. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance has been listed as a known carcinogen. (Merck Index, 11th ed)
Inhaling and exhaling the smoke of burning TOBACCO.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
A species of non-enveloped DNA virus in the genus ANELLOVIRUS, associated with BLOOD TRANSFUSIONS; and HEPATITIS. However, no etiological role has been found for TTV in hepatitis.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The structural changes in the number, mass, size and/or composition of the airway tissues.
Syndrome characterized by the triad of oculocutaneous albinism (ALBINISM, OCULOCUTANEOUS); PLATELET STORAGE POOL DEFICIENCY; and lysosomal accumulation of ceroid lipofuscin.
DNA virus infections refer to diseases caused by viruses that incorporate double-stranded or single-stranded DNA as their genetic material, replicating within host cell nucleus or cytoplasm, and including various families such as Herpesviridae, Adenoviridae, Papillomaviridae, and Parvoviridae.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Retrograde flow of gastric juice (GASTRIC ACID) and/or duodenal contents (BILE ACIDS; PANCREATIC JUICE) into the distal ESOPHAGUS, commonly due to incompetence of the LOWER ESOPHAGEAL SPHINCTER.
A form of pneumoconiosis caused by inhalation of asbestos fibers which elicit potent inflammatory responses in the parenchyma of the lung. The disease is characterized by interstitial fibrosis of the lung, varying from scattered sites to extensive scarring of the alveolar interstitium.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)

Idiopathic interstitial pneumonias: progress in classification, diagnosis, pathogenesis and management. (1/393)

The idiopathic interstitial pneumonias are a heterogeneous group of poorly understood diseases with often devastating consequences for those afflicted. Subclassification of the idiopathic interstitial pneumonia based on clinical-radiological-pathological criteria has highlighted important pathogenic, therapeutic and prognostic implications. The most critical distinction is the presence of usual interstitial pneumonia, the histopathological pattern seen in idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis has a worse response to therapy and prognosis. New insight into the pathophysiology of usual interstitial pneumonia suggests a distinctly fibroproliferative process, and antifibrotic therapies show promise. While the clinical and radiographic diagnosis of idiopathic interstitial pneumonias can be made confidently in some cases, many patients require surgical lung biopsy to determine their underlying histopathology. A structured, clinical-radiological-pathological approach to the diagnosis of the idiopathic interstitial pneumonias, with particular attention to the identification of idiopathic pulmonary fibrosis, insures proper therapy, enhances prognostication, and allows for further investigation of therapies aimed at distinct pathophysiology.  (+info)

Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. (2/393)

BACKGROUND: Fibrosis, the replacement of functional tissue with excessive fibrous tissue, can occur in all the main tissues and organ systems, resulting in various pathological disorders. Idiopathic Pulmonary Fibrosis is a prototype fibrotic disease involving abnormal wound healing in response to multiple sites of ongoing alveolar epithelial injury. METHODOLOGY/PRINCIPAL FINDINGS: To decipher the role of TNF and TNF-mediated inflammation in the development of fibrosis, we have utilized the bleomycin-induced animal model of Pulmonary Fibrosis and a series of genetically modified mice lacking components of TNF signaling. Transmembrane TNF expression is shown to be sufficient to elicit an inflammatory response, but inadequate for the transition to the fibrotic phase of the disease. Soluble TNF expression is shown to be crucial for lymphocyte recruitment, a prerequisite for TGF-b1 expression and the development of fibrotic lesions. Moreover, through a series of bone marrow transfers, the necessary TNF expression is shown to originate from the non-hematopoietic compartment further localized in apoptosing epithelial cells. CONCLUSIONS: These results suggest a primary detrimental role of soluble TNF in the pathologic cascade, separating it from the beneficial role of transmembrane TNF, and indicate the importance of assessing the efficacy of soluble TNF antagonists in the treatment of Idiopathic Pulmonary Fibrosis.  (+info)

Angiotensinogen gene G-6A polymorphism influences idiopathic pulmonary fibrosis disease progression. (3/393)

 (+info)

Assessment of current practice in the diagnosis and therapy of idiopathic pulmonary fibrosis. (4/393)

 (+info)

Outcome of patients with idiopathic pulmonary fibrosis (IPF) ventilated in intensive care unit. (5/393)

 (+info)

Walking distance on 6-MWT is a prognostic factor in idiopathic pulmonary fibrosis. (6/393)

 (+info)

MMP expression and abnormal lung permeability are important determinants of outcome in IPF. (7/393)

 (+info)

Pulmonary rehabilitation in idiopathic pulmonary fibrosis: a call for continued investigation. (8/393)

 (+info)

Idiopathic Pulmonary Fibrosis (IPF) is a specific type of chronic, progressive, and irreversible fibrotic lung disease of unknown cause, characterized by scarring (fibrosis) in the lungs that thickens and stiffens the lining of the air sacs (alveoli). This makes it increasingly difficult for the lungs to transfer oxygen into the bloodstream, leading to shortness of breath, cough, decreased exercise tolerance, and, eventually, respiratory failure.

The term "idiopathic" means that the cause of the disease is unknown. The diagnosis of IPF requires a combination of clinical, radiological, and pathological findings, excluding other known causes of pulmonary fibrosis. It primarily affects middle-aged to older adults, with a higher prevalence in men than women.

The progression of IPF varies from person to person, but the prognosis is generally poor, with a median survival time of 3-5 years after diagnosis. Currently, there are two FDA-approved medications for the treatment of IPF (nintedanib and pirfenidone), which can help slow down disease progression but do not cure the condition. Lung transplantation remains an option for select patients with advanced IPF.

Pulmonary fibrosis is a specific type of lung disease that results from the thickening and scarring of the lung tissues, particularly those in the alveoli (air sacs) and interstitium (the space around the air sacs). This scarring makes it harder for the lungs to properly expand and transfer oxygen into the bloodstream, leading to symptoms such as shortness of breath, coughing, fatigue, and eventually respiratory failure. The exact cause of pulmonary fibrosis can vary, with some cases being idiopathic (without a known cause) or related to environmental factors, medications, medical conditions, or genetic predisposition.

Bleomycin is a type of chemotherapeutic agent used to treat various types of cancer, including squamous cell carcinoma, testicular cancer, and lymphomas. It works by causing DNA damage in rapidly dividing cells, which can inhibit the growth and proliferation of cancer cells.

Bleomycin is an antibiotic derived from Streptomyces verticillus and is often administered intravenously or intramuscularly. While it can be effective in treating certain types of cancer, it can also have serious side effects, including lung toxicity, which can lead to pulmonary fibrosis and respiratory failure. Therefore, bleomycin should only be used under the close supervision of a healthcare professional who is experienced in administering chemotherapy drugs.

Interstitial lung diseases (ILDs) are a group of disorders characterized by inflammation and scarring (fibrosis) in the interstitium, the tissue and space around the air sacs (alveoli) of the lungs. The interstitium is where the blood vessels that deliver oxygen to the lungs are located. ILDs can be caused by a variety of factors, including environmental exposures, medications, connective tissue diseases, and autoimmune disorders.

The scarring and inflammation in ILDs can make it difficult for the lungs to expand and contract normally, leading to symptoms such as shortness of breath, cough, and fatigue. The scarring can also make it harder for oxygen to move from the air sacs into the bloodstream.

There are many different types of ILDs, including:

* Idiopathic pulmonary fibrosis (IPF): a type of ILD that is caused by unknown factors and tends to progress rapidly
* Hypersensitivity pneumonitis: an ILD that is caused by an allergic reaction to inhaled substances, such as mold or bird droppings
* Connective tissue diseases: ILDs can be a complication of conditions such as rheumatoid arthritis and scleroderma
* Sarcoidosis: an inflammatory disorder that can affect multiple organs, including the lungs
* Asbestosis: an ILD caused by exposure to asbestos fibers

Treatment for ILDs depends on the specific type of disease and its underlying cause. Some treatments may include corticosteroids, immunosuppressive medications, and oxygen therapy. In some cases, a lung transplant may be necessary.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Fibrosis is a pathological process characterized by the excessive accumulation and/or altered deposition of extracellular matrix components, particularly collagen, in various tissues and organs. This results in the formation of fibrous scar tissue that can impair organ function and structure. Fibrosis can occur as a result of chronic inflammation, tissue injury, or abnormal repair mechanisms, and it is a common feature of many diseases, including liver cirrhosis, lung fibrosis, heart failure, and kidney disease.

In medical terms, fibrosis is defined as:

"The process of producing scar tissue (consisting of collagen) in response to injury or chronic inflammation in normal connective tissue. This can lead to the thickening and stiffening of affected tissues and organs, impairing their function."

Cystic fibrosis (CF) is a genetic disorder that primarily affects the lungs and digestive system. It is caused by mutations in the CFTR gene, which regulates the movement of salt and water in and out of cells. When this gene is not functioning properly, thick, sticky mucus builds up in various organs, leading to a range of symptoms.

In the lungs, this mucus can clog the airways, making it difficult to breathe and increasing the risk of lung infections. Over time, lung damage can occur, which may lead to respiratory failure. In the digestive system, the thick mucus can prevent the release of digestive enzymes from the pancreas, impairing nutrient absorption and leading to malnutrition. CF can also affect the reproductive system, liver, and other organs.

Symptoms of cystic fibrosis may include persistent coughing, wheezing, lung infections, difficulty gaining weight, greasy stools, and frequent greasy diarrhea. The severity of the disease can vary significantly among individuals, depending on the specific genetic mutations they have inherited.

Currently, there is no cure for cystic fibrosis, but treatments are available to help manage symptoms and slow the progression of the disease. These may include airway clearance techniques, medications to thin mucus, antibiotics to treat infections, enzyme replacement therapy, and a high-calorie, high-fat diet. Lung transplantation is an option for some individuals with advanced lung disease.

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Extrinsic allergic alveolitis is a type of lung inflammation that occurs in response to inhaling organic dusts or mold spores that contain allergens. It is also known as hypersensitivity pneumonitis. This condition typically affects people who have been repeatedly exposed to the allergen over a period of time, such as farmers, bird fanciers, and workers in certain industries.

The symptoms of extrinsic allergic alveolitis can vary but often include cough, shortness of breath, fever, and fatigue. These symptoms may develop gradually or suddenly, depending on the frequency and intensity of exposure to the allergen. In some cases, the condition may progress to cause permanent lung damage if it is not treated promptly.

Diagnosis of extrinsic allergic alveolitis typically involves a combination of medical history, physical examination, imaging studies such as chest X-rays or CT scans, and pulmonary function tests. In some cases, blood tests or bronchoscopy with lavage may also be used to help confirm the diagnosis.

Treatment for extrinsic allergic alveolitis typically involves avoiding further exposure to the allergen, as well as using medications such as corticosteroids to reduce inflammation and relieve symptoms. In severe cases, hospitalization and oxygen therapy may be necessary. With prompt and appropriate treatment, most people with extrinsic allergic alveolitis can recover fully and avoid long-term lung damage.

Idiopathic interstitial pneumonias (IIPs) are a group of rare lung diseases with no known cause, characterized by inflammation and scarring (fibrosis) of the lung tissue. The term "idiopathic" means that the cause is unknown, and "interstitial" refers to the spaces between the air sacs in the lungs where the inflammation and scarring occur.

IIPs are classified into several subtypes based on their clinical, radiological, and pathological features. These include:

1. Idiopathic Pulmonary Fibrosis (IPF): This is the most common and aggressive form of IIP, characterized by progressive scarring of the lung tissue, which leads to difficulty breathing and decreased lung function over time.
2. Nonspecific Interstitial Pneumonia (NSIP): This subtype is characterized by varying degrees of inflammation and fibrosis in the lung tissue. NSIP can be idiopathic or associated with connective tissue diseases.
3. Respiratory Bronchiolitis-Interstitial Lung Disease (RB-ILD): This subtype primarily affects smokers and is characterized by inflammation of the small airways and surrounding lung tissue.
4. Desquamative Interstitial Pneumonia (DIP): This subtype is also more common in smokers and is characterized by accumulation of pigmented macrophages in the lung tissue.
5. Cryptogenic Organizing Pneumonia (COP): This subtype is characterized by the formation of fibrous masses in the small airways and alveoli, leading to cough and shortness of breath.
6. Acute Interstitial Pneumonia (AIP)/Acute Respiratory Distress Syndrome (ARDS): This subtype is a severe form of IIP that can rapidly progress to respiratory failure and requires immediate medical attention.

The diagnosis of IIPs typically involves a combination of clinical evaluation, imaging studies, and lung biopsy. Treatment options may include corticosteroids, immunosuppressive medications, and oxygen therapy, depending on the severity and subtype of the disease.

Sarcoidosis, pulmonary is a specific form of sarcoidosis, which is a multisystem inflammatory disorder characterized by the formation of noncaseating granulomas (small clusters of immune cells) in one or more organs. In pulmonary sarcoidosis, these granulomas primarily affect the lungs, but can also involve the lymph nodes within the chest. The condition is often asymptomatic, but some individuals may experience symptoms such as cough, shortness of breath, chest pain, and fatigue. Pulmonary sarcoidosis can lead to complications like pulmonary fibrosis (scarring of lung tissue) and chronic interstitial lung disease, which can impact lung function and quality of life. The exact cause of sarcoidosis is unknown, but it is believed to involve an abnormal immune response triggered by exposure to certain antigens, such as environmental particles or infectious agents.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

Respiratory Function Tests (RFTs) are a group of medical tests that measure how well your lungs take in and exhale air, and how well they transfer oxygen and carbon dioxide into and out of your blood. They can help diagnose certain lung disorders, measure the severity of lung disease, and monitor response to treatment.

RFTs include several types of tests, such as:

1. Spirometry: This test measures how much air you can exhale and how quickly you can do it. It's often used to diagnose and monitor conditions like asthma, chronic obstructive pulmonary disease (COPD), and other lung diseases.
2. Lung volume testing: This test measures the total amount of air in your lungs. It can help diagnose restrictive lung diseases, such as pulmonary fibrosis or sarcoidosis.
3. Diffusion capacity testing: This test measures how well oxygen moves from your lungs into your bloodstream. It's often used to diagnose and monitor conditions like pulmonary fibrosis, interstitial lung disease, and other lung diseases that affect the ability of the lungs to transfer oxygen to the blood.
4. Bronchoprovocation testing: This test involves inhaling a substance that can cause your airways to narrow, such as methacholine or histamine. It's often used to diagnose and monitor asthma.
5. Exercise stress testing: This test measures how well your lungs and heart work together during exercise. It's often used to diagnose lung or heart disease.

Overall, Respiratory Function Tests are an important tool for diagnosing and managing a wide range of lung conditions.

Lung transplantation is a surgical procedure where one or both diseased lungs are removed and replaced with healthy lungs from a deceased donor. It is typically considered as a treatment option for patients with end-stage lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis, idiopathic pulmonary fibrosis, and alpha-1 antitrypsin deficiency, who have exhausted all other medical treatments and continue to suffer from severe respiratory failure.

The procedure involves several steps, including evaluating the patient's eligibility for transplantation, matching the donor's lung size and blood type with the recipient, and performing the surgery under general anesthesia. After the surgery, patients require close monitoring and lifelong immunosuppressive therapy to prevent rejection of the new lungs.

Lung transplantation can significantly improve the quality of life and survival rates for some patients with end-stage lung disease, but it is not without risks, including infection, bleeding, and rejection. Therefore, careful consideration and thorough evaluation are necessary before pursuing this treatment option.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Myofibroblasts are specialized cells that are present in various tissues throughout the body. They play a crucial role in wound healing and tissue repair, but they can also contribute to the development of fibrosis or scarring when their activation and proliferation persist beyond the normal healing process. Here is a medical definition of myofibroblasts:

Medical Definition of Myofibroblasts:
Myofibroblasts are modified fibroblasts that exhibit features of both smooth muscle cells and fibroblasts, including the expression of alpha-smooth muscle actin stress fibers. They are involved in the contraction of wounds, tissue remodeling, and the production of extracellular matrix components such as collagen, elastin, and fibronectin. Myofibroblasts can differentiate from various cell types, including resident fibroblasts, epithelial cells (epithelial-mesenchymal transition), endothelial cells (endothelial-mesenchymal transition), and circulating fibrocytes. Persistent activation of myofibroblasts can lead to excessive scarring and fibrosis in various organs, such as the lungs, liver, kidneys, and heart.

Hydroxyproline is not a medical term per se, but it is a significant component in the medical field, particularly in the study of connective tissues and collagen. Here's a scientific definition:

Hydroxyproline is a modified amino acid that is formed by the post-translational modification of the amino acid proline in collagen and some other proteins. This process involves the addition of a hydroxyl group (-OH) to the proline residue, which alters its chemical properties and contributes to the stability and structure of collagen fibers. Collagen is the most abundant protein in the human body and is a crucial component of connective tissues such as tendons, ligaments, skin, and bones. The presence and quantity of hydroxyproline can serve as a marker for collagen turnover and degradation, making it relevant to various medical and research contexts, including the study of diseases affecting connective tissues like osteoarthritis, rheumatoid arthritis, and Ehlers-Danlos syndrome.

Pyridones are a class of organic compounds that contain a pyridone ring, which is a heterocyclic ring consisting of a six-membered ring with five carbon atoms and one nitrogen atom, with one oxygen atom attached to the nitrogen atom by a double bond. Pyridones can be found in various natural sources, including plants and microorganisms, and they also have important applications in the pharmaceutical industry as building blocks for drug design and synthesis. Some drugs that contain pyridone rings include antihistamines, anti-inflammatory agents, and antiviral agents.

Cryptogenic organizing pneumonia (COP) is a type of lung disorder that is characterized by the presence of inflammation and scarring in the lungs. The term "cryptogenic" means that the cause of the condition is unknown or unclear.

Organizing pneumonia is a specific pattern of injury to the lungs that can be caused by various factors, including infections, medications, and autoimmune disorders. However, in cases of COP, there is no clear underlying cause that can be identified.

The main symptoms of COP include cough, shortness of breath, fever, and fatigue. The condition can also cause crackles or wheezing sounds when listening to the lungs with a stethoscope. Diagnosis of COP typically involves a combination of imaging studies, such as chest X-rays or CT scans, and lung biopsy.

Treatment for COP usually involves the use of corticosteroids, which can help to reduce inflammation and improve symptoms. In some cases, other medications may also be used to manage the condition. The prognosis for people with COP is generally good, with most individuals responding well to treatment and experiencing improvement in their symptoms over time. However, recurrence of the condition is possible, and long-term monitoring may be necessary.

Bronchoalveolar lavage (BAL) is a medical procedure in which a small amount of fluid is introduced into a segment of the lung and then gently suctioned back out. The fluid contains cells and other materials that can be analyzed to help diagnose various lung conditions, such as inflammation, infection, or cancer.

The procedure is typically performed during bronchoscopy, which involves inserting a thin, flexible tube with a light and camera on the end through the nose or mouth and into the lungs. Once the bronchoscope is in place, a small catheter is passed through the bronchoscope and into the desired lung segment. The fluid is then introduced and suctioned back out, and the sample is sent to a laboratory for analysis.

BAL can be helpful in diagnosing various conditions such as pneumonia, interstitial lung diseases, alveolar proteinosis, and some types of cancer. It can also be used to monitor the effectiveness of treatment for certain lung conditions. However, like any medical procedure, it carries some risks, including bleeding, infection, and respiratory distress. Therefore, it is important that the procedure is performed by a qualified healthcare professional in a controlled setting.

Pulmonary diffusing capacity, also known as pulmonary diffusion capacity, is a measure of the ability of the lungs to transfer gas from the alveoli to the bloodstream. It is often used to assess the severity of lung diseases such as chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis.

The most common measurement of pulmonary diffusing capacity is the diffusing capacity for carbon monoxide (DLCO), which reflects the transfer of carbon monoxide from the alveoli to the red blood cells in the capillaries. The DLCO is measured during a spirometry test, which involves breathing in a small amount of carbon monoxide and then measuring how much of it is exhaled.

A reduced DLCO may indicate a problem with the lung's ability to transfer oxygen to the blood, which can be caused by a variety of factors including damage to the alveoli or capillaries, thickening of the alveolar membrane, or a decrease in the surface area available for gas exchange.

It is important to note that other factors such as hemoglobin concentration, carboxyhemoglobin level, and lung volume can also affect the DLCO value, so these should be taken into account when interpreting the results of a diffusing capacity test.

Pneumocytes are specialized epithelial cells that line the alveoli, which are the tiny air sacs in the lungs where gas exchange occurs. There are two main types of pneumocytes: type I and type II.

Type I pneumocytes are flat, thin cells that cover about 95% of the alveolar surface area. They play a crucial role in facilitating the diffusion of oxygen and carbon dioxide between the alveoli and the bloodstream. Type I pneumocytes also contribute to maintaining the structural integrity of the alveoli.

Type II pneumocytes are smaller, more cuboidal cells that produce and secrete surfactant, a substance composed of proteins and lipids that reduces surface tension within the alveoli, preventing their collapse and facilitating breathing. Type II pneumocytes can also function as progenitor cells, capable of differentiating into type I pneumocytes to help repair damaged lung tissue.

In summary, pneumocytes are essential for maintaining proper gas exchange in the lungs and contributing to the overall health and functioning of the respiratory system.

Pulmonary surfactant-associated protein C (SP-C) is a small hydrophobic protein that is a component of pulmonary surfactant. Surfactant is a complex mixture of lipids and proteins that reduces surface tension in the alveoli of the lungs, preventing collapse during expiration and facilitating lung expansion during inspiration. SP-C plays a crucial role in maintaining the structural integrity and stability of the surfactant film at the air-liquid interface of the alveoli.

Deficiency or dysfunction of SP-C has been associated with several pulmonary diseases, including respiratory distress syndrome (RDS) in premature infants, interstitial lung diseases (ILDs), and pulmonary fibrosis. Mutations in the gene encoding SP-C (SFTPC) can lead to abnormal protein processing and accumulation, resulting in lung injury and inflammation, ultimately contributing to the development of these conditions.

Respiratory system agents are substances that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These agents can be classified into different categories based on their effects:

1. Respiratory Stimulants: Agents that increase respiratory rate or depth by acting on the respiratory center in the brainstem.
2. Respiratory Depressants: Agents that decrease respiratory rate or depth, often as a side effect of their sedative or analgesic effects. Examples include opioids, benzodiazepines, and barbiturates.
3. Bronchodilators: Agents that widen the airways (bronchioles) in the lungs by relaxing the smooth muscle around them. They are used to treat asthma, chronic obstructive pulmonary disease (COPD), and other respiratory conditions. Examples include albuterol, ipratropium, and theophylline.
4. Anti-inflammatory Agents: Agents that reduce inflammation in the airways, which can help relieve symptoms of asthma, COPD, and other respiratory conditions. Examples include corticosteroids, leukotriene modifiers, and mast cell stabilizers.
5. Antitussives: Agents that suppress coughing, often by numbing the throat or acting on the cough center in the brainstem. Examples include dextromethorphan and codeine.
6. Expectorants: Agents that help thin and loosen mucus in the airways, making it easier to cough up and clear. Examples include guaifenesin and iodinated glycerol.
7. Decongestants: Agents that narrow blood vessels in the nose and throat, which can help relieve nasal congestion and sinus pressure. Examples include pseudoephedrine and phenylephrine.
8. Antimicrobial Agents: Agents that kill or inhibit the growth of microorganisms such as bacteria, viruses, and fungi that can cause respiratory infections. Examples include antibiotics, antiviral drugs, and antifungal agents.

Vital capacity (VC) is a term used in pulmonary function tests to describe the maximum volume of air that can be exhaled after taking a deep breath. It is the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume. In other words, it's the total amount of air you can forcibly exhale after inhaling as deeply as possible. Vital capacity is an important measurement in assessing lung function and can be reduced in conditions such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders.

Sarcoidosis is a multi-system disorder characterized by the formation of granulomas (small clumps of inflammatory cells) in various organs, most commonly the lungs and lymphatic system. These granulomas can impair the function of the affected organ(s), leading to a variety of symptoms. The exact cause of sarcoidosis is unknown, but it's thought to be an overactive immune response to an unknown antigen, possibly triggered by an infection, chemical exposure, or another environmental factor.

The diagnosis of sarcoidosis typically involves a combination of clinical evaluation, imaging studies (such as chest X-rays and CT scans), and laboratory tests (including blood tests and biopsies). While there is no cure for sarcoidosis, treatment may be necessary to manage symptoms and prevent complications. Corticosteroids are often used to suppress the immune system and reduce inflammation, while other medications may be prescribed to treat specific organ involvement or symptoms. In some cases, sarcoidosis may resolve on its own without any treatment.

Collagen diseases, also known as collagen disorders or connective tissue diseases, refer to a group of medical conditions that affect the body's connective tissues. These tissues provide support and structure for various organs and systems in the body, including the skin, joints, muscles, and blood vessels.

Collagen is a major component of connective tissues, and it plays a crucial role in maintaining their strength and elasticity. In collagen diseases, the body's immune system mistakenly attacks healthy collagen, leading to inflammation, pain, and damage to the affected tissues.

There are several types of collagen diseases, including:

1. Systemic Lupus Erythematosus (SLE): This is a chronic autoimmune disease that can affect various organs and systems in the body, including the skin, joints, kidneys, heart, and lungs.
2. Rheumatoid Arthritis (RA): This is a chronic inflammatory disease that primarily affects the joints, causing pain, swelling, and stiffness.
3. Scleroderma: This is a rare autoimmune disorder that causes thickening and hardening of the skin and connective tissues, leading to restricted movement and organ damage.
4. Dermatomyositis: This is an inflammatory muscle disease that can also affect the skin, causing rashes and weakness.
5. Mixed Connective Tissue Disease (MCTD): This is a rare autoimmune disorder that combines symptoms of several collagen diseases, including SLE, RA, scleroderma, and dermatomyositis.

The exact cause of collagen diseases is not fully understood, but they are believed to be related to genetic, environmental, and hormonal factors. Treatment typically involves a combination of medications, lifestyle changes, and physical therapy to manage symptoms and prevent complications.

Respiratory aspiration is defined as the entry of foreign materials (such as food, liquids, or vomit) into the lower respiratory tract during swallowing, which includes the trachea and lungs. This can lead to respiratory complications such as pneumonia, bronchitis, or lung abscesses. Aspiration can occur in individuals with impaired swallowing function due to various conditions like neurological disorders, stroke, or anesthesia.

Transforming Growth Factor-beta 1 (TGF-β1) is a cytokine that belongs to the TGF-β superfamily. It is a multifunctional protein involved in various cellular processes, including cell growth, differentiation, apoptosis, and extracellular matrix production. TGF-β1 plays crucial roles in embryonic development, tissue homeostasis, and repair, as well as in pathological conditions such as fibrosis and cancer. It signals through a heteromeric complex of type I and type II serine/threonine kinase receptors, leading to the activation of intracellular signaling pathways, primarily the Smad-dependent pathway. TGF-β1 has context-dependent functions, acting as a tumor suppressor in normal and early-stage cancer cells but promoting tumor progression and metastasis in advanced cancers.

Total Lung Capacity (TLC) is the maximum volume of air that can be contained within the lungs at the end of a maximal inspiration. It includes all of the following lung volumes: tidal volume, inspiratory reserve volume, expiratory reserve volume, and residual volume. TLC can be measured directly using gas dilution techniques or indirectly by adding residual volume to vital capacity. Factors that affect TLC include age, sex, height, and lung health status.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Mucin-5B, also known as MUC5B, is a type of mucin protein that is heavily glycosylated and found in the respiratory tract. It is one of the major components of airway mucus, which helps to trap and remove inhaled particles and microorganisms from the lungs.

Mucin-5B is a large molecular weight gel-forming mucin that is produced by goblet cells and submucosal glands in the respiratory epithelium. It has a complex structure, consisting of a protein backbone with numerous oligosaccharide side chains that give it its gel-like properties.

Mutations in the MUC5B gene have been associated with several lung diseases, including chronic obstructive pulmonary disease (COPD), bronchiectasis, and idiopathic pulmonary fibrosis (IPF). In particular, a common genetic variant in the MUC5B promoter region has been identified as a significant risk factor for developing IPF.

Pulmonary Surfactant-Associated Protein A (SP-A) is a protein that is a major component of pulmonary surfactant, which is a complex mixture of lipids and proteins found in the alveoli of the lungs. SP-A is produced by specialized cells called type II alveolar epithelial cells and has several important functions in the lung.

SP-A plays a role in innate immunity by binding to pathogens, such as bacteria and viruses, and facilitating their clearance from the lungs. It also helps to regulate surfactant homeostasis by participating in the reuptake and recycling of surfactant components. Additionally, SP-A has been shown to have anti-inflammatory effects and may help to modulate the immune response in the lung.

Deficiencies or mutations in SP-A have been associated with various respiratory diseases, including acute respiratory distress syndrome (ARDS), pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Lung diseases refer to a broad category of disorders that affect the lungs and other structures within the respiratory system. These diseases can impair lung function, leading to symptoms such as coughing, shortness of breath, chest pain, and wheezing. They can be categorized into several types based on the underlying cause and nature of the disease process. Some common examples include:

1. Obstructive lung diseases: These are characterized by narrowing or blockage of the airways, making it difficult to breathe out. Examples include chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis, and cystic fibrosis.
2. Restrictive lung diseases: These involve stiffening or scarring of the lungs, which reduces their ability to expand and take in air. Examples include idiopathic pulmonary fibrosis, sarcoidosis, and asbestosis.
3. Infectious lung diseases: These are caused by bacteria, viruses, fungi, or parasites that infect the lungs. Examples include pneumonia, tuberculosis, and influenza.
4. Vascular lung diseases: These affect the blood vessels in the lungs, impairing oxygen exchange. Examples include pulmonary embolism, pulmonary hypertension, and chronic thromboembolic pulmonary hypertension (CTEPH).
5. Neoplastic lung diseases: These involve abnormal growth of cells within the lungs, leading to cancer. Examples include small cell lung cancer, non-small cell lung cancer, and mesothelioma.
6. Other lung diseases: These include interstitial lung diseases, pleural effusions, and rare disorders such as pulmonary alveolar proteinosis and lymphangioleiomyomatosis (LAM).

It is important to note that this list is not exhaustive, and there are many other conditions that can affect the lungs. Proper diagnosis and treatment of lung diseases require consultation with a healthcare professional, such as a pulmonologist or respiratory therapist.

Dyspnea is defined as difficulty or discomfort in breathing, often described as shortness of breath. It can range from mild to severe, and may occur during rest, exercise, or at any time. Dyspnea can be caused by various medical conditions, including heart and lung diseases, anemia, and neuromuscular disorders. It is important to seek medical attention if experiencing dyspnea, as it can be a sign of a serious underlying condition.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Pulmonary emphysema is a chronic respiratory disease characterized by abnormal, permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of their walls and without obvious fibrosis. This results in loss of elastic recoil, which leads to trappling of air within the lungs and difficulty exhaling. It is often caused by cigarette smoking or long-term exposure to harmful pollutants. The disease is part of a group of conditions known as chronic obstructive pulmonary disease (COPD), which also includes chronic bronchitis.

Pulmonary hypertension is a medical condition characterized by increased blood pressure in the pulmonary arteries, which are the blood vessels that carry blood from the right side of the heart to the lungs. This results in higher than normal pressures in the pulmonary circulation and can lead to various symptoms and complications.

Pulmonary hypertension is typically defined as a mean pulmonary artery pressure (mPAP) greater than or equal to 25 mmHg at rest, as measured by right heart catheterization. The World Health Organization (WHO) classifies pulmonary hypertension into five groups based on the underlying cause:

1. Pulmonary arterial hypertension (PAH): This group includes idiopathic PAH, heritable PAH, drug-induced PAH, and associated PAH due to conditions such as connective tissue diseases, HIV infection, portal hypertension, congenital heart disease, and schistosomiasis.
2. Pulmonary hypertension due to left heart disease: This group includes conditions that cause elevated left atrial pressure, such as left ventricular systolic or diastolic dysfunction, valvular heart disease, and congenital cardiovascular shunts.
3. Pulmonary hypertension due to lung diseases and/or hypoxia: This group includes chronic obstructive pulmonary disease (COPD), interstitial lung disease, sleep-disordered breathing, alveolar hypoventilation disorders, and high altitude exposure.
4. Chronic thromboembolic pulmonary hypertension (CTEPH): This group includes persistent obstruction of the pulmonary arteries due to organized thrombi or emboli.
5. Pulmonary hypertension with unclear and/or multifactorial mechanisms: This group includes hematologic disorders, systemic disorders, metabolic disorders, and other conditions that can cause pulmonary hypertension but do not fit into the previous groups.

Symptoms of pulmonary hypertension may include shortness of breath, fatigue, chest pain, lightheadedness, and syncope (fainting). Diagnosis typically involves a combination of medical history, physical examination, imaging studies, and invasive testing such as right heart catheterization. Treatment depends on the underlying cause but may include medications, oxygen therapy, pulmonary rehabilitation, and, in some cases, surgical intervention.

Alveolar macrophages are a type of macrophage (a large phagocytic cell) that are found in the alveoli of the lungs. They play a crucial role in the immune defense system of the lungs by engulfing and destroying any foreign particles, such as dust, microorganisms, and pathogens, that enter the lungs through the process of inhalation. Alveolar macrophages also produce cytokines, which are signaling molecules that help to coordinate the immune response. They are important for maintaining the health and function of the lungs by removing debris and preventing infection.

Systemic Scleroderma, also known as Systemic Sclerosis (SSc), is a rare, chronic autoimmune disease that involves the abnormal growth and accumulation of collagen in various connective tissues, blood vessels, and organs throughout the body. This excessive collagen production leads to fibrosis or scarring, which can cause thickening, hardening, and tightening of the skin and damage to internal organs such as the heart, lungs, kidneys, and gastrointestinal tract.

Systemic Scleroderma is characterized by two main features: small blood vessel abnormalities (Raynaud's phenomenon) and fibrosis. The disease can be further classified into two subsets based on the extent of skin involvement: limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc).

Limited cutaneous systemic sclerosis affects the skin distally, typically involving fingers, hands, forearms, feet, lower legs, and face. It is often associated with Raynaud's phenomenon, calcinosis, telangiectasias, and pulmonary arterial hypertension.

Diffuse cutaneous systemic sclerosis involves more extensive skin thickening and fibrosis that spreads proximally to affect the trunk, upper arms, thighs, and face. It is commonly associated with internal organ involvement, such as interstitial lung disease, heart disease, and kidney problems.

The exact cause of Systemic Scleroderma remains unknown; however, it is believed that genetic, environmental, and immunological factors contribute to its development. There is currently no cure for Systemic Scleroderma, but various treatments can help manage symptoms, slow disease progression, and improve quality of life.

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Antibiotics are a type of medication used to treat infections caused by bacteria. They work by either killing the bacteria or inhibiting their growth.

Antineoplastics, also known as chemotherapeutic agents, are a class of drugs used to treat cancer. These medications target and destroy rapidly dividing cells, such as cancer cells, although they can also affect other quickly dividing cells in the body, such as those in the hair follicles or digestive tract, which can lead to side effects.

Antibiotics and antineoplastics are two different classes of drugs with distinct mechanisms of action and uses. It is important to use them appropriately and under the guidance of a healthcare professional.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Pulmonary Surfactant-Associated Protein D, also known as SP-D or surfactant protein D, is a protein that belongs to the collectin family. It is produced by specialized cells called type II alveolar epithelial cells and is found in the lungs, where it plays an important role in maintaining lung homeostasis and host defense.

SP-D has several functions in the lungs, including:

1. Reducing surface tension: SP-D helps to reduce surface tension in the alveoli, which facilitates breathing by preventing the collapse of the lungs during expiration.
2. Host defense: SP-D plays a crucial role in innate immunity by recognizing and binding to pathogens such as bacteria, viruses, and fungi. This helps to neutralize and clear these microorganisms from the lungs.
3. Inflammation regulation: SP-D has anti-inflammatory properties and can help to regulate the immune response in the lungs. It does this by modulating the activation of immune cells such as macrophages and neutrophils.
4. Tissue repair: SP-D may also play a role in tissue repair and remodeling in the lungs, although its exact mechanisms are not fully understood.

Abnormalities in SP-D have been implicated in several lung diseases, including respiratory distress syndrome, asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung diseases.

Lung injury, also known as pulmonary injury, refers to damage or harm caused to the lung tissue, blood vessels, or air sacs (alveoli) in the lungs. This can result from various causes such as infection, trauma, exposure to harmful substances, or systemic diseases. Common types of lung injuries include acute respiratory distress syndrome (ARDS), pneumonia, and chemical pneumonitis. Symptoms may include difficulty breathing, cough, chest pain, and decreased oxygen levels in the blood. Treatment depends on the underlying cause and may include medications, oxygen therapy, or mechanical ventilation.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Primary graft dysfunction (PGD) is a severe complication that can occur after an organ transplant, such as a lung or heart transplant. It refers to the early functional impairment of the grafted organ that is not due to surgical complications, rejection, or recurrence of the original disease.

In the case of lung transplants, PGD is defined as the evidence of poor oxygenation and stiffness in the lungs within the first 72 hours after the transplant. It is typically caused by inflammation, injury to the blood vessels, or other damage to the lung tissue during the transplant procedure or due to pre-existing conditions in the donor organ.

PGD can lead to serious complications, including respiratory failure, and is associated with increased morbidity and mortality after transplantation. Treatment may include supportive care, such as mechanical ventilation and medications to support lung function, as well as strategies to reduce inflammation and prevent further damage to the grafted organ.

HSP47 (Heat Shock Protein 47) is a type of molecular chaperone that assists in the proper folding and assembly of collagen molecules within the endoplasmic reticulum (ER) of eukaryotic cells. It is also known as SERPINH1, which stands for serine protease inhibitor, clade H (heat shock protein 47).

HSP47 binds to procollagen molecules in a highly specific manner and helps facilitate their correct folding and assembly into higher-order structures. Once the collagen molecules are properly assembled, HSP47 dissociates from them and allows for their transport out of the ER and further processing in the Golgi apparatus.

HSP47 is upregulated under conditions of cellular stress, such as heat shock or oxidative stress, which can lead to an accumulation of misfolded proteins within the ER. This upregulation helps to enhance the protein folding capacity of the ER and prevent the aggregation of misfolded proteins, thereby maintaining cellular homeostasis.

Defects in HSP47 function have been implicated in various connective tissue disorders, such as osteogenesis imperfecta and Ehlers-Danlos syndrome, which are characterized by abnormal collagen structure and function.

Connective tissue diseases (CTDs) are a group of disorders that involve the abnormal production and accumulation of abnormal connective tissues in various parts of the body. Connective tissues are the structural materials that support and bind other tissues and organs together. They include tendons, ligaments, cartilage, fat, and the material that fills the spaces between cells, called the extracellular matrix.

Connective tissue diseases can affect many different systems in the body, including the skin, joints, muscles, lungs, kidneys, gastrointestinal tract, and blood vessels. Some CTDs are autoimmune disorders, meaning that the immune system mistakenly attacks healthy connective tissues. Others may be caused by genetic mutations or environmental factors.

Some examples of connective tissue diseases include:

* Systemic lupus erythematosus (SLE)
* Rheumatoid arthritis (RA)
* Scleroderma
* Dermatomyositis/Polymyositis
* Mixed Connective Tissue Disease (MCTD)
* Sjogren's syndrome
* Ehlers-Danlos syndrome
* Marfan syndrome
* Osteogenesis imperfecta

The specific symptoms and treatment of connective tissue diseases vary depending on the type and severity of the condition. Treatment may include medications to reduce inflammation, suppress the immune system, or manage pain. In some cases, surgery may be necessary to repair or replace damaged tissues or organs.

Prednisolone is a synthetic glucocorticoid drug, which is a class of steroid hormones. It is commonly used in the treatment of various inflammatory and autoimmune conditions due to its potent anti-inflammatory and immunosuppressive effects. Prednisolone works by binding to specific receptors in cells, leading to changes in gene expression that reduce the production of substances involved in inflammation, such as cytokines and prostaglandins.

Prednisolone is available in various forms, including tablets, syrups, and injectable solutions. It can be used to treat a wide range of medical conditions, including asthma, rheumatoid arthritis, inflammatory bowel disease, allergies, skin conditions, and certain types of cancer.

Like other steroid medications, prednisolone can have significant side effects if used in high doses or for long periods of time. These may include weight gain, mood changes, increased risk of infections, osteoporosis, diabetes, and adrenal suppression. As a result, the use of prednisolone should be closely monitored by a healthcare professional to ensure that its benefits outweigh its risks.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Collagen Type I is the most abundant form of collagen in the human body, found in various connective tissues such as tendons, ligaments, skin, and bones. It is a structural protein that provides strength and integrity to these tissues. Collagen Type I is composed of three alpha chains, two alpha-1(I) chains, and one alpha-2(I) chain, arranged in a triple helix structure. This type of collagen is often used in medical research and clinical applications, such as tissue engineering and regenerative medicine, due to its excellent mechanical properties and biocompatibility.

Diagnostic techniques for the respiratory system are methods used to identify and diagnose various diseases and conditions affecting the lungs and breathing. Here are some commonly used diagnostic techniques:

1. Physical Examination: A healthcare provider will listen to your chest with a stethoscope to check for abnormal breath sounds, such as wheezing or crackles. They may also observe your respiratory rate and effort.
2. Chest X-ray: This imaging test can help identify abnormalities in the lungs, such as tumors, fluid accumulation, or collapsed lung sections.
3. Computed Tomography (CT) Scan: A CT scan uses X-rays to create detailed cross-sectional images of the lungs and surrounding structures. It can help detect nodules, cysts, or other abnormalities that may not be visible on a chest X-ray.
4. Pulmonary Function Tests (PFTs): These tests measure how well your lungs are working by assessing your ability to inhale and exhale air. Common PFTs include spirometry, lung volume measurement, and diffusing capacity testing.
5. Bronchoscopy: A thin, flexible tube with a camera and light is inserted through the nose or mouth into the airways to examine the lungs' interior and obtain tissue samples for biopsy.
6. Bronchoalveolar Lavage (BAL): During a bronchoscopy, fluid is introduced into a specific area of the lung and then suctioned out to collect cells and other materials for analysis.
7. Sleep Studies: These tests monitor your breathing patterns during sleep to diagnose conditions like sleep apnea or other sleep-related breathing disorders.
8. Sputum Analysis: A sample of coughed-up mucus is examined under a microscope to identify any abnormal cells, bacteria, or other organisms that may be causing respiratory issues.
9. Blood Tests: Blood tests can help diagnose various respiratory conditions by measuring oxygen and carbon dioxide levels, identifying specific antibodies or antigens, or detecting genetic markers associated with certain diseases.
10. Positron Emission Tomography (PET) Scan: A PET scan uses a small amount of radioactive material to create detailed images of the body's internal structures and functions, helping identify areas of abnormal cell growth or metabolic activity in the lungs.

Hemoperfusion is a medical procedure that involves passing a patient's blood through an external device to remove toxic substances or excess therapeutic drugs. In this process, the patient's blood is circulated outside the body, where it passes through a cartridge containing adsorbent material (such as activated charcoal or synthetic resins). These materials bind to and eliminate harmful molecules from the blood, which are then discarded.

Hemoperfusion can be used in various clinical situations, such as:

1. Drug overdoses: To remove toxic levels of drugs that cannot be effectively eliminated by conventional methods like dialysis.
2. Poisoning: To eliminate harmful toxins from the bloodstream in cases of acute poisoning or envenomation.
3. Liver failure: In patients with liver dysfunction, hemoperfusion can help remove waste products and toxins that the damaged liver cannot process effectively.
4. Septicemia: To eliminate bacterial toxins from the bloodstream in severe cases of sepsis or septic shock.

It is important to note that hemoperfusion is not a common procedure and is typically reserved for specific, life-threatening situations where other treatment options have been exhausted. The use of this technique requires specialized equipment, trained medical personnel, and close monitoring of the patient's clinical status during and after the procedure.

Pulmonary medicine is a medical specialty that deals with the diagnosis, treatment, and prevention of diseases and conditions affecting the respiratory system, including the lungs, trachea, bronchi, bronchioles, and alveoli. Pulmonologists are specialists who treat a wide range of respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, bronchitis, pneumonia, lung cancer, sleep-disordered breathing, tuberculosis, and interstitial lung diseases. They use various diagnostic techniques including chest X-rays, CT scans, pulmonary function tests, bronchoscopy, and sleep studies to evaluate and manage respiratory disorders. Pulmonologists also provide care for patients who require long-term mechanical ventilation or oxygen therapy.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Therapeutic irrigation, also known as lavage, is a medical procedure that involves the introduction of fluids or other agents into a body cavity or natural passageway for therapeutic purposes. This technique is used to cleanse, flush out, or introduce medication into various parts of the body, such as the bladder, lungs, stomach, or colon.

The fluid used in therapeutic irrigation can be sterile saline solution, distilled water, or a medicated solution, depending on the specific purpose of the procedure. The flow and pressure of the fluid are carefully controlled to ensure that it reaches the desired area without causing damage to surrounding tissues.

Therapeutic irrigation is used to treat a variety of medical conditions, including infections, inflammation, obstructions, and toxic exposures. It can also be used as a diagnostic tool to help identify abnormalities or lesions within body cavities.

Overall, therapeutic irrigation is a valuable technique in modern medicine that allows healthcare providers to deliver targeted treatment directly to specific areas of the body, improving patient outcomes and quality of life.

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a protein that functions as a chloride channel in the membranes of various cells, including those in the lungs and pancreas. Mutations in the gene encoding CFTR can lead to Cystic Fibrosis, a genetic disorder characterized by thick, sticky mucus in the lungs and other organs, leading to severe respiratory and digestive problems.

CFTR is normally activated by cyclic AMP-dependent protein kinase (PKA) and regulates the movement of chloride ions across cell membranes. In Cystic Fibrosis, mutations in CFTR can result in impaired channel function or reduced amounts of functional CFTR at the cell surface, leading to an imbalance in ion transport and fluid homeostasis. This can cause the production of thick, sticky mucus that clogs the airways and leads to chronic lung infections, as well as other symptoms associated with Cystic Fibrosis.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Epithelial-mesenchymal transition (EMT) is a biological process that involves the transformation of epithelial cells into mesenchymal cells. This process is characterized by distinct changes in cell shape, behavior, and molecular markers.

Epithelial cells are typically tightly packed together and have a polarized structure with distinct apical and basal surfaces. In contrast, mesenchymal cells are elongated, spindle-shaped cells that can migrate and invade surrounding tissues.

During EMT, epithelial cells lose their polarity and cell-to-cell adhesion molecules, such as E-cadherin, and acquire mesenchymal markers, such as vimentin and N-cadherin. This transition enables the cells to become more motile and invasive, which is critical for embryonic development, wound healing, and cancer metastasis.

EMT is a complex process that involves various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog, among others. Dysregulation of EMT has been implicated in several diseases, particularly cancer, where it contributes to tumor progression, metastasis, and drug resistance.

Expectorants are a type of medication that help to thin and loosen mucus in the airways, making it easier to cough up and clear the airways. They work by increasing the production of fluid in the respiratory tract, which helps to moisten and soften thick or sticky mucus. This makes it easier for the cilia (tiny hair-like structures that line the airways) to move the mucus out of the lungs and into the throat, where it can be swallowed or spit out.

Expectorants are often used to treat respiratory conditions such as bronchitis, pneumonia, and chronic obstructive pulmonary disease (COPD), which can cause excessive mucus production and difficulty breathing. Some common expectorants include guaifenesin, iodinated glycerol, and potassium iodide.

It is important to follow the dosage instructions carefully when taking expectorants, as taking too much can lead to side effects such as nausea, vomiting, and diarrhea. It is also important to drink plenty of fluids while taking expectorants, as this can help to thin the mucus and make it easier to cough up.

Acetylcysteine is a medication that is used for its antioxidant effects and to help loosen thick mucus in the lungs. It is commonly used to treat conditions such as chronic bronchitis, emphysema, and cystic fibrosis. Acetylcysteine is also known by the brand names Mucomyst and Accolate. It works by thinning and breaking down mucus in the airways, making it easier to cough up and clear the airways. Additionally, acetylcysteine is an antioxidant that helps to protect cells from damage caused by free radicals. It is available as a oral tablet, liquid, or inhaled medication.

Endomyocardial fibrosis is a rare heart condition characterized by the thickening and scarring (fibrosis) of the inner layer of the heart muscle (endocardium) and the muscular walls of the lower chambers of the heart (ventricles). This process can restrict the heart's ability to fill properly with blood, leading to symptoms such as shortness of breath, fatigue, and fluid retention. The exact cause of endomyocardial fibrosis is not fully understood, but it is believed to involve an abnormal immune response or inflammation. It is more commonly found in tropical regions of Africa and Asia. Treatment typically involves medications to manage symptoms and improve heart function, as well as potentially surgical interventions to remove the scar tissue and restore normal heart function.

Emphysema is a chronic respiratory disease characterized by abnormal, permanent enlargement of the airspaces called alveoli in the lungs, accompanied by destruction of their walls. This results in loss of elasticity and decreased gas exchange efficiency, causing shortness of breath and coughing. It is often caused by smoking or exposure to harmful pollutants. The damage to the lungs is irreversible, but quitting smoking and using medications can help alleviate symptoms and slow disease progression.

Pulmonary gas exchange is the process by which oxygen (O2) from inhaled air is transferred to the blood, and carbon dioxide (CO2), a waste product of metabolism, is removed from the blood and exhaled. This process occurs in the lungs, primarily in the alveoli, where the thin walls of the alveoli and capillaries allow for the rapid diffusion of gases between them. The partial pressure gradient between the alveolar air and the blood in the pulmonary capillaries drives this diffusion process. Oxygen-rich blood is then transported to the body's tissues, while CO2-rich blood returns to the lungs to be exhaled.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Telomerase is an enzyme that adds repetitive DNA sequences (telomeres) to the ends of chromosomes, which are lost during each cell division due to the incomplete replication of the ends of linear chromosomes. Telomerase is not actively present in most somatic cells, but it is highly expressed in germ cells and stem cells, allowing them to divide indefinitely. However, in many types of cancer cells, telomerase is abnormally activated, which leads to the maintenance or lengthening of telomeres, contributing to their unlimited replicative potential and tumorigenesis.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Retroperitoneal fibrosis (RPF) is a rare and progressive condition characterized by the abnormal growth of fibrous tissue in the retroperitoneal space, which is the area behind the peritoneum (the lining that covers the abdominal cavity). This fibrous tissue can encase and compress vital structures such as the ureters, blood vessels, and nerves, leading to various symptoms.

RPF can be idiopathic (without a known cause) or secondary to other conditions like infections, malignancies, autoimmune diseases, or medications. The exact pathogenesis of RPF is not fully understood, but it's believed that an abnormal immune response and inflammation play significant roles in its development.

Symptoms of RPF may include:

1. Flank pain or back pain
2. Renal insufficiency or kidney failure due to ureteral compression
3. Hydronephrosis (dilatation of the renal pelvis and calyces)
4. Deep vein thrombosis (DVT) or pulmonary embolism (PE) due to vascular compression
5. Neurological symptoms due to nerve compression
6. Weight loss, fatigue, and fever (in some cases)

Diagnosis of RPF typically involves imaging studies such as computed tomography (CT) scans or magnetic resonance imaging (MRI), along with laboratory tests and sometimes biopsy for confirmation. Treatment options depend on the underlying cause but generally involve immunosuppressive medications, corticosteroids, and surgical intervention in severe cases.

I'm sorry for any confusion, but "Peplomycin" is not a widely recognized or established medical term. It appears that it might be a term related to a specific type of antibiotic drug called "Pleuromutilin." Pleuromutilins are a class of antibiotics derived from certain types of fungi. Peplomycin could potentially be a specific formulation, brand name, or experimental version of a pleuromutilin antibiotic, but without more context, it is difficult to provide a precise definition. I would recommend consulting the original source or seeking additional information for clarification.

Matrix metalloproteinase 7 (MMP-7), also known as matrilysin, is a type of enzyme that belongs to the matrix metalloproteinase family. These enzymes are capable of degrading various components of the extracellular matrix, which is the structural framework of tissues in the body. MMP-7 has a broad range of substrates and can break down proteins such as collagens, gelatins, and caseins, as well as other matrix proteins. It plays important roles in tissue remodeling, wound healing, and cell migration, among other processes.

MMP-7 is synthesized and secreted by various cells, including epithelial cells, fibroblasts, and immune cells. It is a small enzyme with a molecular weight of around 28 kDa and is secreted in an active form, unlike many other MMPs that are secreted as inactive proenzymes and require activation by other proteases.

Increased expression of MMP-7 has been implicated in several pathological conditions, including cancer, where it can contribute to tumor invasion and metastasis by degrading the extracellular matrix and releasing growth factors. It has also been associated with inflammatory diseases such as rheumatoid arthritis and periodontitis.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Scoliosis is a medical condition characterized by an abnormal lateral curvature of the spine, which most often occurs in the thoracic or lumbar regions. The curvature can be "C" or "S" shaped and may also include rotation of the vertebrae. Mild scoliosis doesn't typically cause problems, but severe cases can interfere with breathing and other bodily functions.

The exact cause of most scoliosis is unknown, but it may be related to genetic factors. It often develops in the pre-teen or teenage years, particularly in girls, and is more commonly found in individuals with certain neuromuscular disorders such as cerebral palsy and muscular dystrophy.

Treatment for scoliosis depends on the severity of the curve, its location, and the age and expected growth of the individual. Mild cases may only require regular monitoring to ensure the curve doesn't worsen. More severe cases may require bracing or surgery to correct the curvature and prevent it from getting worse.

Telomere shortening is the gradual loss of repetitive DNA sequences and associated proteins from the ends of chromosomes that occurs naturally as cells divide. Telomeres are protective caps at the ends of chromosomes, which prevent the loss of genetic information during cell division. However, each time a cell divides, its telomeres become slightly shorter. When telomeres reach a critically short length, the cell can no longer divide and becomes senescent or dies. This process is thought to contribute to aging and age-related diseases, as well as to the development of cancer.

Proton therapy, also known as proton beam therapy, is a type of radiation therapy used in the treatment of various types of cancer. It uses a focused beam of high-energy protons instead of X-rays (photons) to deliver radiation directly to the tumor site, minimizing exposure to healthy tissues surrounding the tumor.

The main advantage of proton therapy is its ability to precisely target the tumor while sparing nearby organs and critical structures, potentially reducing side effects and complications associated with conventional radiation therapy. Proton therapy is particularly beneficial for treating tumors located close to sensitive tissues, such as those found in the brain, base of the skull, spine, eye, or prostate gland.

During proton therapy, a cyclotron or synchrotron accelerates protons to nearly the speed of light, creating a high-energy proton beam. The proton beam is then carefully aimed and directed at the tumor using advanced imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) scans.

The depth of penetration and energy deposition of protons within tissue are controlled by adjusting the beam's intensity and energy. This allows for a highly conformal dose distribution, where most of the radiation is deposited directly within the tumor while minimizing exposure to healthy tissues beyond it. The Bragg peak, a characteristic feature of proton therapy, describes this distinct energy deposition pattern, where the majority of the radiation energy is released at a specific depth, just prior to stopping inside the tumor.

Proton therapy has been shown to be effective in treating various types of cancer, including brain tumors, head and neck cancers, base-of-skull tumors, spinal cord tumors, prostate cancer, lung cancer, liver cancer, and pediatric cancers. While it offers several advantages over conventional radiation therapy, proton therapy is generally more expensive and less widely available. However, its unique properties make it an increasingly popular treatment option for patients with specific types of cancer who may benefit from reduced side effects and improved quality of life during and after treatment.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Ciliary Neurotrophic Factor Receptor alpha Subunit (CNTFRα) is a protein that forms part of the Ciliary Neurotrophic Factor (CNTF) receptor complex. CNTF is a neurotrophin, which is a type of signaling molecule that supports the survival and differentiation of neurons. The CNTF receptor complex consists of three subunits: CNTFRα, LIFRβ, and gp130.

CNTFRα is a transmembrane protein that is primarily expressed in cells of the nervous system, including neurons and glial cells. It serves as the primary binding site for CNTF, allowing the neurotrophin to initiate signaling pathways within the cell. The interaction between CNTF and CNTFRα leads to the recruitment of LIFRβ and gp130, which form a functional receptor complex that activates various intracellular signaling cascades, including the JAK-STAT and MAPK pathways.

CNTF and its receptor complex play critical roles in the development and maintenance of the nervous system, particularly in the survival and differentiation of motor neurons. Mutations in the genes encoding CNTFRα or other components of the CNTF receptor complex have been associated with various neurodevelopmental disorders, including hereditary sensory neuropathies and forms of spinal muscular atrophy.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Collagen Type V is a specific type of collagen, which is a protein that provides structure and strength to connective tissues in the body. Collagen Type V is found in various tissues, including the cornea, blood vessels, and hair. It plays a crucial role in the formation of collagen fibers and helps regulate the diameter of collagen fibrils. Mutations in the genes that encode for Collagen Type V can lead to various connective tissue disorders, such as Ehlers-Danlos syndrome and osteogenesis imperfecta.

Anti-inflammatory agents are a class of drugs or substances that reduce inflammation in the body. They work by inhibiting the production of inflammatory mediators, such as prostaglandins and leukotrienes, which are released during an immune response and contribute to symptoms like pain, swelling, redness, and warmth.

There are two main types of anti-inflammatory agents: steroidal and nonsteroidal. Steroidal anti-inflammatory drugs (SAIDs) include corticosteroids, which mimic the effects of hormones produced by the adrenal gland. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a larger group that includes both prescription and over-the-counter medications, such as aspirin, ibuprofen, naproxen, and celecoxib.

While both types of anti-inflammatory agents can be effective in reducing inflammation and relieving symptoms, they differ in their mechanisms of action, side effects, and potential risks. Long-term use of NSAIDs, for example, can increase the risk of gastrointestinal bleeding, kidney damage, and cardiovascular events. Corticosteroids can have significant side effects as well, particularly with long-term use, including weight gain, mood changes, and increased susceptibility to infections.

It's important to use anti-inflammatory agents only as directed by a healthcare provider, and to be aware of potential risks and interactions with other medications or health conditions.

Connective Tissue Growth Factor (CTGF) is a cysteine-rich peptide growth factor that belongs to the CCN family of proteins. It plays an important role in various biological processes, including cell adhesion, migration, proliferation, and extracellular matrix production. CTGF is involved in wound healing, tissue repair, and fibrosis, as well as in the pathogenesis of several diseases such as cancer, diabetic nephropathy, and systemic sclerosis. It is expressed in response to various stimuli, including growth factors, cytokines, and mechanical stress. CTGF interacts with a variety of signaling molecules and integrins to regulate cellular responses and tissue homeostasis.

An exercise test, also known as a stress test or an exercise stress test, is a medical procedure used to evaluate the heart's function and response to physical exertion. It typically involves walking on a treadmill or pedaling a stationary bike while being monitored for changes in heart rate, blood pressure, electrocardiogram (ECG), and sometimes other variables such as oxygen consumption or gas exchange.

During the test, the patient's symptoms, such as chest pain or shortness of breath, are also closely monitored. The exercise test can help diagnose coronary artery disease, assess the severity of heart-related symptoms, and evaluate the effectiveness of treatments for heart conditions. It may also be used to determine a person's safe level of physical activity and fitness.

There are different types of exercise tests, including treadmill stress testing, stationary bike stress testing, nuclear stress testing, and stress echocardiography. The specific type of test used depends on the patient's medical history, symptoms, and overall health status.

Dyskeratosis congenita is a rare genetic disorder that affects the bone marrow's ability to produce blood cells and can also affect other parts of the body, such as the skin, nails, and mucous membranes. It is characterized by the triad of abnormal skin pigmentation, nail dystrophy, and leukoplakia (white patches) in the mouth. People with dyskeratosis congenita are also at an increased risk of developing bone marrow failure, cancer, and pulmonary fibrosis. The disorder is caused by mutations in genes involved in the maintenance of telomeres, which are the protective caps on the ends of chromosomes that shorten as cells divide. These mutations can lead to premature shortening of telomeres and cellular aging, resulting in the symptoms of dyskeratosis congenita.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Juvenile arthritis (JA) is a term used to describe a group of autoimmune and inflammatory disorders that can affect children aged 16 or younger. In JA, the immune system mistakenly attacks the body's own tissues, causing inflammation in the joints, which can lead to pain, swelling, stiffness, and damage over time.

There are several types of juvenile arthritis, including:

1. Juvenile Idiopathic Arthritis (JIA): This is the most common form of JA, and it includes several subtypes that are classified based on the number of joints affected and the presence or absence of certain symptoms.
2. Juvenile Systemic Lupus Erythematosus (JSLE): This is a type of lupus that affects children, and it can cause inflammation in various parts of the body, including the joints, skin, kidneys, and lungs.
3. Juvenile Dermatomyositis (JDM): This is a rare autoimmune disorder that causes inflammation of the blood vessels, leading to muscle weakness, skin rashes, and joint pain.
4. Juvenile Scleroderma: This is a group of disorders that cause hardening and tightening of the skin and connective tissues, which can also affect the joints.
5. Juvenile Psoriatic Arthritis (JPsA): This is a type of arthritis that affects children who have psoriasis, a chronic skin condition. JPsA can cause inflammation in the joints and skin.

The causes of juvenile arthritis are not fully understood, but it is believed to involve a combination of genetic and environmental factors. There is no cure for JA, but treatments such as medication, physical therapy, and lifestyle changes can help manage the symptoms and prevent long-term complications.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

The extracellular matrix (ECM) is a complex network of biomolecules that provides structural and biochemical support to cells in tissues and organs. It is composed of various proteins, glycoproteins, and polysaccharides, such as collagens, elastin, fibronectin, laminin, and proteoglycans. The ECM plays crucial roles in maintaining tissue architecture, regulating cell behavior, and facilitating communication between cells. It provides a scaffold for cell attachment, migration, and differentiation, and helps to maintain the structural integrity of tissues by resisting mechanical stresses. Additionally, the ECM contains various growth factors, cytokines, and chemokines that can influence cellular processes such as proliferation, survival, and differentiation. Overall, the extracellular matrix is essential for the normal functioning of tissues and organs, and its dysregulation can contribute to various pathological conditions, including fibrosis, cancer, and degenerative diseases.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Smad3 protein is a transcription factor that plays a crucial role in the TGF-β (transforming growth factor-beta) signaling pathway. When TGF-β binds to its receptor, it activates Smad3 through phosphorylation. Activated Smad3 then forms a complex with other Smad proteins and translocates into the nucleus where it regulates the transcription of target genes involved in various cellular processes such as proliferation, differentiation, apoptosis, and migration.

Mutations in the SMAD3 gene or dysregulation of the TGF-β/Smad3 signaling pathway have been implicated in several human diseases, including fibrotic disorders, cancer, and Marfan syndrome. Therefore, Smad3 protein is an important target for therapeutic interventions in these conditions.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Idiopathic Thrombocytopenic Purpura (ITP) is a medical condition characterized by a low platelet count (thrombocytopenia) in the blood without an identifiable cause. Platelets are small blood cells that help your body form clots to stop bleeding. When you don't have enough platelets, you may bleed excessively or spontaneously, causing purpura, which refers to purple-colored spots on the skin that result from bleeding under the skin.

In ITP, the immune system mistakenly attacks and destroys platelets, leading to their decreased levels in the blood. This condition can occur at any age but is more common in children following a viral infection, and in adults after the age of 30-40 years. Symptoms may include easy or excessive bruising, prolonged bleeding from cuts, spontaneous bleeding from the gums or nose, blood blisters, and small red or purple spots on the skin (petechiae).

Depending on the severity of thrombocytopenia and the presence of bleeding symptoms, ITP treatment may include observation, corticosteroids, intravenous immunoglobulin (IVIG), or other medications that modify the immune system's response. In severe cases or when other treatments are ineffective, surgical removal of the spleen (splenectomy) might be considered.

Liver cirrhosis is a chronic, progressive disease characterized by the replacement of normal liver tissue with scarred (fibrotic) tissue, leading to loss of function. The scarring is caused by long-term damage from various sources such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, and other causes. As the disease advances, it can lead to complications like portal hypertension, fluid accumulation in the abdomen (ascites), impaired brain function (hepatic encephalopathy), and increased risk of liver cancer. It is generally irreversible, but early detection and treatment of underlying causes may help slow down its progression.

Forced Expiratory Volume (FEV) is a medical term used to describe the volume of air that can be forcefully exhaled from the lungs in one second. It is often measured during pulmonary function testing to assess lung function and diagnose conditions such as chronic obstructive pulmonary disease (COPD) or asthma.

FEV is typically expressed as a percentage of the Forced Vital Capacity (FVC), which is the total volume of air that can be exhaled from the lungs after taking a deep breath in. The ratio of FEV to FVC is used to determine whether there is obstruction in the airways, with a lower ratio indicating more severe obstruction.

There are different types of FEV measurements, including FEV1 (the volume of air exhaled in one second), FEV25-75 (the average volume of air exhaled during the middle 50% of the FVC maneuver), and FEV0.5 (the volume of air exhaled in half a second). These measurements can provide additional information about lung function and help guide treatment decisions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Medical science often defines and describes "walking" as a form of locomotion or mobility where an individual repeatedly lifts and sets down each foot to move forward, usually bearing weight on both legs. It is a complex motor activity that requires the integration and coordination of various systems in the human body, including the musculoskeletal, neurological, and cardiovascular systems.

Walking involves several components such as balance, coordination, strength, and endurance. The ability to walk independently is often used as a measure of functional mobility and overall health status. However, it's important to note that the specific definition of walking may vary depending on the context and the medical or scientific field in question.

"Bird Fancier's Lung" is a type of hypersensitivity pneumonitis, which is a lung disease that results from an immune system reaction to inhaled dust particles. In the case of Bird Fancier's Lung, the dust particles come from bird droppings or feathers and are inhaled by people who keep birds as pets or work with them in aviaries or breeding facilities.

The immune system of susceptible individuals mounts an inflammatory response to the inhaled antigens, leading to symptoms such as cough, shortness of breath, fever, and fatigue. Over time, repeated exposure can lead to scarring and thickening of the lung tissue, which can impair lung function and cause irreversible damage.

The medical definition of Bird Fancier's Lung is: "A hypersensitivity pneumonitis caused by inhalation of antigens derived from avian proteins, most commonly found in people who keep birds as pets or work with them in aviaries or breeding facilities."

Lung volume measurements are clinical tests that determine the amount of air inhaled, exhaled, and present in the lungs at different times during the breathing cycle. These measurements include:

1. Tidal Volume (TV): The amount of air inhaled or exhaled during normal breathing, usually around 500 mL in resting adults.
2. Inspiratory Reserve Volume (IRV): The additional air that can be inhaled after a normal inspiration, approximately 3,000 mL in adults.
3. Expiratory Reserve Volume (ERV): The extra air that can be exhaled after a normal expiration, about 1,000-1,200 mL in adults.
4. Residual Volume (RV): The air remaining in the lungs after a maximal exhalation, approximately 1,100-1,500 mL in adults.
5. Total Lung Capacity (TLC): The total amount of air the lungs can hold at full inflation, calculated as TV + IRV + ERV + RV, around 6,000 mL in adults.
6. Functional Residual Capacity (FRC): The volume of air remaining in the lungs after a normal expiration, equal to ERV + RV, about 2,100-2,700 mL in adults.
7. Inspiratory Capacity (IC): The maximum amount of air that can be inhaled after a normal expiration, equal to TV + IRV, around 3,500 mL in adults.
8. Vital Capacity (VC): The total volume of air that can be exhaled after a maximal inspiration, calculated as IC + ERV, approximately 4,200-5,600 mL in adults.

These measurements help assess lung function and identify various respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Azathioprine is an immunosuppressive medication that is used to prevent the rejection of transplanted organs and to treat autoimmune diseases such as rheumatoid arthritis, lupus, and inflammatory bowel disease. It works by suppressing the activity of the immune system, which helps to reduce inflammation and prevent the body from attacking its own tissues.

Azathioprine is a prodrug that is converted into its active form, 6-mercaptopurine, in the body. This medication can have significant side effects, including decreased white blood cell count, increased risk of infection, and liver damage. It may also increase the risk of certain types of cancer, particularly skin cancer and lymphoma.

Healthcare professionals must carefully monitor patients taking azathioprine for these potential side effects. They may need to adjust the dosage or stop the medication altogether if serious side effects occur. Patients should also take steps to reduce their risk of infection and skin cancer, such as practicing good hygiene, avoiding sun exposure, and using sunscreen.

Smoking is not a medical condition, but it's a significant health risk behavior. Here is the definition from a public health perspective:

Smoking is the act of inhaling and exhaling the smoke of burning tobacco that is commonly consumed through cigarettes, pipes, and cigars. The smoke contains over 7,000 chemicals, including nicotine, tar, carbon monoxide, and numerous toxic and carcinogenic substances. These toxins contribute to a wide range of diseases and health conditions, such as lung cancer, heart disease, stroke, chronic obstructive pulmonary disease (COPD), and various other cancers, as well as adverse reproductive outcomes and negative impacts on the developing fetus during pregnancy. Smoking is highly addictive due to the nicotine content, which makes quitting smoking a significant challenge for many individuals.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Torque teno virus (TTV) is a single-stranded DNA virus that belongs to the family Anelloviridae. It was first identified in 1997 and has since been found to be present in the majority of human populations worldwide. The virus is classified into several genotypes and subtypes, with TTV being the prototype member of the genus Alphainellovirus.

TTV is a small virus, measuring only about 30-40 nanometers in diameter. It has a circular genome that ranges in size from 2.8 to 3.9 kilobases and encodes for several non-structural proteins involved in viral replication. The virus does not appear to cause any specific disease symptoms, but it has been associated with various clinical conditions such as liver disease, respiratory tract infections, and cancer.

TTV is primarily transmitted through the fecal-oral route, although other modes of transmission have also been suggested, including saliva, blood, and vertical transmission from mother to child during pregnancy or delivery. The virus has been detected in various body fluids, tissues, and organs, including blood, stool, respiratory secretions, and the liver.

The clinical significance of TTV infection remains unclear, as it is frequently found in both healthy individuals and those with various diseases. However, some studies have suggested that TTV viral load or genotype may be associated with certain clinical conditions, such as liver disease, transplant rejection, and cancer. Further research is needed to better understand the role of TTV in human health and disease.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Airway remodeling is a term used to describe the structural changes that occur in the airways as a result of chronic inflammation in respiratory diseases such as asthma. These changes include thickening of the airway wall, increased smooth muscle mass, and abnormal deposition of extracellular matrix components. These alterations can lead to narrowing of the airways, decreased lung function, and increased severity of symptoms. Airway remodeling is thought to be a major contributor to the persistent airflow obstruction that is characteristic of severe asthma.

Hermanski-Pudlak Syndrome (HPS) is a rare genetic disorder characterized by the triad of albinism, bleeding disorders, and lysosomal storage disease. It is caused by mutations in any one of several genes involved in biogenesis of lysosome-related organelles (LROs), such as melanosomes in melanocytes, platelet dense granules, and lung lamellar bodies.

The albinism in HPS results from abnormal melanosome biogenesis, leading to decreased pigmentation in the skin, hair, and eyes. The bleeding disorder is due to defective platelet dense granules, which are necessary for normal clotting function. This can result in prolonged bleeding times and easy bruising.

The lysosomal storage disease component of HPS is characterized by the accumulation of ceroid lipofuscin within LROs, leading to progressive damage to affected tissues. The most common form of HPS (HPS-1) also involves pulmonary fibrosis, which can lead to respiratory failure and death in the third or fourth decade of life.

There are currently seven known subtypes of HPS, each caused by mutations in different genes involved in LRO biogenesis. The clinical features and severity of HPS can vary widely between subtypes and even within families with the same genetic mutation.

DNA virus infections refer to diseases or conditions caused by the invasion and replication of DNA viruses in a host organism. DNA viruses are a type of virus that uses DNA as their genetic material. They can cause a variety of diseases, ranging from relatively mild illnesses to severe or life-threatening conditions.

Some examples of DNA viruses include herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), hepatitis B virus (HBV), and adenoviruses. These viruses can cause a range of diseases, including cold sores, genital herpes, chickenpox, shingles, cervical cancer, liver cancer, and respiratory infections.

DNA virus infections typically occur when the virus enters the body through a break in the skin or mucous membranes, such as those found in the eyes, nose, mouth, or genitals. Once inside the body, the virus infects cells and uses their machinery to replicate itself, often causing damage to the host cells in the process.

The symptoms of DNA virus infections can vary widely depending on the specific virus and the severity of the infection. Treatment may include antiviral medications, which can help to reduce the severity and duration of symptoms, as well as prevent the spread of the virus to others. In some cases, vaccines may be available to prevent DNA virus infections.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Gastroesophageal reflux (GER) is the retrograde movement of stomach contents into the esophagus, which can cause discomfort and symptoms. It occurs when the lower esophageal sphincter (a ring of muscle between the esophagus and stomach) relaxes inappropriately, allowing the acidic or non-acidic gastric contents to flow back into the esophagus.

Gastroesophageal reflux becomes gastroesophageal reflux disease (GERD) when it is more severe, persistent, and/or results in complications such as esophagitis, strictures, or Barrett's esophagus. Common symptoms of GERD include heartburn, regurgitation, chest pain, difficulty swallowing, and chronic cough or hoarseness.

Asbestosis is a chronic lung disease that is caused by the inhalation of asbestos fibers. It is characterized by scarring (fibrosis) of the lung tissue, which can lead to symptoms such as shortness of breath, coughing, and chest pain. The severity of the disease can range from mild to severe, and it is often progressive, meaning that it tends to worsen over time. Asbestosis is not a malignant condition, but it can increase the risk of developing lung cancer or mesothelioma, which are forms of cancer that are associated with asbestos exposure. The disease is typically diagnosed through a combination of medical history, physical examination, and imaging tests such as chest X-rays or CT scans. There is no cure for asbestosis, but treatment can help to manage the symptoms and slow the progression of the disease.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Wikimedia Commons has media related to Idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis at Curlie (All articles ... "Idiopathic Pulmonary Fibrosis". NHLBI, NIH. Retrieved 5 December 2020. Meltzer EB, Noble PW (2008). "Idiopathic pulmonary ... December 2011). "Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis". Respiratory ... "Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical ...
Mutations in TERC have been associated with dyskeratosis congenita, idiopathic pulmonary fibrosis, aplastic anemia, and ... Idiopathic pulmonary fibrosis. St. Louis. ISBN 978-0-323-54432-0. OCLC 1053744041.{{cite book}}: CS1 maint: location missing ... GeneReviews/NCBI/NIH/UW entry on Dyskeratosis Congenita GeneReviews/NCBI/NIH/UW entry on Pulmonary Fibrosis, Familial ...
... pulmonary hypertension and idiopathic pulmonary fibrosis. Methods for the preservation of donor lungs are imperative in order ... Idiopathic pulmonary fibrosis causes the lungs to become scarred which results in a difficulty in breathing. The causes are of ... "Idiopathic pulmonary fibrosis". nhs.uk. 2017-10-23. Retrieved 2023-03-28. 3 Minute Papers: Lobectomy vs Segmentectomy for Lung ... "Chronic Obstructive Pulmonary Disease (COPD) , CDC". www.cdc.gov. 2023-03-20. Retrieved 2023-03-28. "Cystic fibrosis". nhs.uk. ...
King TE, Pardo A, Selman M (December 2011). "Idiopathic pulmonary fibrosis". Lancet. 378 (9807): 1949-61. doi:10.1016/S0140- ... Chronic activation of fibroblasts can result in diseases such as pulmonary fibrosis, where the hardening and thickening of the ... April 2016). "Reduced Ets Domain-containing Protein Elk1 Promotes Pulmonary Fibrosis via Increased Integrin αvβ6 Expression". ... High αvβ6 expression in fibrosis and cancer is usually associated with a poorer prognosis. Fibrosis occurs in response to ...
Lung sound in idiopathic pulmonary fibrosis velcro crackles on auscultation in a person with idiopathic pulmonary fibrosis ... In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as idiopathic pulmonary fibrosis. This is a ... "Pulmonary Fibrosis". MedicineNet, Inc. Archived from the original on 19 July 2014. Retrieved 26 July 2014. "Pulmonary fibrosis ... Misdiagnosis is common because, while overall pulmonary fibrosis is not rare, each individual type of pulmonary fibrosis is ...
"Pulmonary fibrosis". Cleveland Clinic. Cleveland Clinic. 2021. Retrieved 2 May 2022. "Idiopathic pulmonary fibrosis". AMBOSS. ... Hematic biometry Imaging tests such as X-rays or tomography Pulmonary function tests Biopsy Pulmonary fibrosis is not currently ... "Síndrome de fibrosis por radiación". OncoLink. Trustees of the University of Pennsylvania. Retrieved 2 May 2022. "Fibrosis ... Radiation fibrosis syndrome is a human illness. It occurs as a result of cell death, and can be caused by radiotherapy. It is ...
... idiopathic pulmonary fibrosis; 14% cystic fibrosis; 12% idiopathic (formerly known as "primary") pulmonary hypertension; 5% ... Bruce Reitz of Stanford University in 1981 on a woman who had idiopathic pulmonary hypertension. 1983: First successful long- ... Pulmonary Hypertension: A Patient's Survival Guide 3rd ed. p.134. Pulmonary Hypertension: A Patient's Survival Guide 3rd ed. p ... Lung transplantation, or pulmonary transplantation, is a surgical procedure in which one or both lungs are replaced by lungs ...
Oh, CK; Murray, LA; Molfino, NL (February 2012). "Smoking and Idiopathic Pulmonary Fibrosis". Pulmonary Medicine. Hindawi ... chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), emphysema, and various types and subtypes of ... Patel, Mit P.; Khangoora, Vikramjit S.; Marik, Paul E. (October 2019). "A Review of the Pulmonary and Health Impacts of Hookah ... Laniado-Laborín, Rafael (January 2009). "Smoking and Chronic Obstructive Pulmonary Disease (COPD). Parallel Epidemics of the ...
Oh CK, Murray LA, Molfino NA (February 2012). "Smoking and idiopathic pulmonary fibrosis". Pulmonary Medicine. Hindawi ... chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), emphysema, and various types and subtypes of ... A study from Erasmus University Rotterdam limited to people with chronic obstructive pulmonary disease found that the cost- ... Laniado-Laborín R (January 2009). "Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 ...
Pneumoconiosis Silicosis Asbestosis Idiopathic pulmonary fibrosis Pulmonary fibrosis Emphysema Travis WD, King TE, Bateman ED, ... "idiopathic", the clinical term for UIP of unknown cause is idiopathic pulmonary fibrosis (IPF). Examples of known causes of UIP ... In case of idiopathic pulmonary fibrosis, certain medications like nintedanib and pirfenidone can help slow the progression. ... "Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline". American Journal of ...
Esbriet (pirfenidone), for idiopathic pulmonary fibrosis. Fansidar (sulfadoxine/pyrimethamine), for malaria and toxoplasmosis. ... In November, Roche acquired Promedior and its lead treatment - PRM-151 - for the treatment of idiopathic pulmonary fibrosis, ... Pulmozyme (dornase alfa), for the improvement of pulmonary function in cystic fibrosis. Raptiva (efalizumab), for psoriasis, ... "Roche to Acquire Fibrosis-Focused Promedior for up to $1.4 Billion". "Promedior Enters into Definitive Merger Agreement to be ...
June 2017). "Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis". American Journal of Respiratory and Critical Care ... pulmonary fibrosis, asthma, chronic kidney disease, rheumatoid arthritis, gingival inflammation, osteoarthritis, cardiovascular ... October 2020). "Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis". Journal of ...
Woodward suffered from idiopathic pulmonary fibrosis (IPF). He died in 2023. "Richard B. Woodward (1953-2023)". Wall Street ...
Such examples include cancer development and progression, Dyskeratosis Congenita (DC), Idiopathic Pulmonary Fibrosis (IPF), ... Armanios M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res 2012; 730:52-8; PMID 22079513; http://dx.doi.org/10.1016/j. ...
... is used for the treatment of idiopathic pulmonary fibrosis. It has been shown to slow down decrease in forced vital ... Nintedanib was granted orphan drug designation in the US by the FDA for the treatment of idiopathic pulmonary fibrosis in June ... It received U.S. Food and Drug Administration (FDA) approval for use for idiopathic pulmonary fibrosis in 2014 - one of only ... "Nintedanib for treating idiopathic pulmonary fibrosis" (PDF). National Institute for Health and Care Excellence (NICE). 27 ...
"Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis". American Journal of Respiratory and Critical Care Medicine. 195 ... pulmonary fibrosis, asthma, chronic kidney disease, rheumatoid arthritis, gingival inflammation, osteoarthritis, cardiovascular ... "Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis". Journal of Periodontology. 91 ( ...
He was 84, and had idiopathic pulmonary fibrosis. "Tucson's longest serving official leaves office". Associated Press via The ... Deaths from pulmonary fibrosis, Iowa State University alumni, Mayors of Tucson, Arizona, Military personnel from Iowa, ...
... is a humanized monoclonal antibody designed for the treatment of idiopathic pulmonary fibrosis and pancreatic cancer. It binds ... "Pamrevlumab for the treatment of idiopathic pulmonary fibrosis". Expert Opinion on Investigational Drugs. 29 (8): 771-777. doi: ...
Katzenstein AL, Myers JL (1998). "Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification". Am. J. ... October 2004). "Idiopathic interstitial pneumonia: what is the effect of a multidisciplinary approach to diagnosis?". Am. J. ... Idiopathic interstitial pneumonia (IIP), or noninfectious pneumonia are a class of diffuse lung diseases. These diseases ... Idiopathic interstitial pneumonia can be subclassified based on histologic appearance into the following patterns: Usual ...
Lurtsema died in 2000 from idiopathic pulmonary fibrosis. Betsy Northrup, his romantic partner of ten years, survived him. He ... Deaths from pulmonary fibrosis, Radio personalities from Boston). ...
John Hinrichs, 78, American welding engineer, idiopathic pulmonary fibrosis. David Hodgson, 73, Australian judge. Caroline John ... Ivan Lessa, 77, Brazilian journalist, pulmonary emphysema. Pat Mahoney, 83, Canadian businessman, politician, and judge, MP for ...
"Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis". The American Review of Respiratory Disease. 143 (2): ... An example of these diseases is pulmonary fibrosis, where even at rest a fifth of the hypoxemia is due to diffusion limitations ... The highest concentration of blood in the pulmonary circulation occurs in the bases of the pulmonary tree compared to the ... These diseases can be acute in onset (such as obstruction by inhaling something or a pulmonary embolus) or chronic (such as ...
Ted Kirkpatrick, 62, American musician (Tourniquet), idiopathic pulmonary fibrosis. Per Knutsen, 71, Norwegian writer. Mildred ...
In 2013 he was diagnosed with Idiopathic Pulmonary Fibrosis; he retired from active pastoral ministry and politics. Hickey ...
July 2009). "Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis". American Journal of Respiratory ...
In March 2014, Miles was diagnosed with idiopathic pulmonary fibrosis. which has no treatment other than a lung transplant. He ...
"Inhibition and role of let-7d in idiopathic pulmonary fibrosis". Am. J. Respir. Crit. Care Med. 182 (2): 220-9. doi:10.1164/ ... For example, antagomirs against miR-21 have been successfully used to inhibit fibrosis of heart and lung. The primary method ... "Role of miR-21 in the pathogenesis of atrial fibrosis". Basic Res. Cardiol. 107 (5): 278. doi:10.1007/s00395-012-0278-0. PMID ...
Joseph Fire Crow, 58, American Cheyenne flutist, idiopathic pulmonary fibrosis. Jeremy Dale Roberts, 83, English composer, ... Aleshia Brevard, 79, American transgender actress and author, pulmonary fibrosis. Norman Dorsen, 86, American civil rights ... pulmonary disease. Werner Kirsch, 79, German Olympic boxer. Redha Malek, 85, Algerian politician and diplomat, Prime Minister ( ...
Richard B. Woodward, 70, American arts critic, idiopathic pulmonary fibrosis. Ralph Boston, 83, American long jumper, Olympic ... pulmonary fibrosis. Adam Brace, 43, British playwright and director. S. S. Chakravarthy, 55, Indian film producer (Raasi, ...
Cohen died in Boca Raton, Florida, of idiopathic pulmonary fibrosis. Services were held at the Park Avenue Synagogue in ...
Wikimedia Commons has media related to Idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis at Curlie (All articles ... "Idiopathic Pulmonary Fibrosis". NHLBI, NIH. Retrieved 5 December 2020. Meltzer EB, Noble PW (2008). "Idiopathic pulmonary ... December 2011). "Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis". Respiratory ... "Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical ...
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of ... Where Is Idiopathic Pulmonary Fibrosis Treatment Going? * The Relationship Between Lung Fibrosis and Idiopathic Pulmonary ... encoded search term (Idiopathic Pulmonary Fibrosis (IPF)) and Idiopathic Pulmonary Fibrosis (IPF) What to Read Next on Medscape ... Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest. 2007 Sep. 132(3):998-1006. [QxMD MEDLINE Link]. ...
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia. Idiopathic pulmonary fibrosis ... Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing lung disease. ... Idiopathic pulmonary fibrosis (IPF) is the ... Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia. Idiopathic … ... and treatment options available for patients with idiopathic pulmonary … Idiopathic pulmonary fibrosis is a prototype of ...
... discuss fibrosing interstitial lung disease and treatment challenges for individuals with idiopathic pulmonary fibrosis. ... Idiopathic Pulmonary Fibrosis (An Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical ... Jeffrey J. Swigris, DO: Welcome to Medscape InDiscussion on idiopathic pulmonary fibrosis, or IPF. Im Dr Jeff Swigris. Today ... Idiopathic Pulmonary Fibrosis: Who Gets an Antifibrotic?. Jeffrey J. Swigris, DO; Ayodeji Adegunsoye, MD ...
Idiopathic pulmonary fibrosis causes scarring in your lungs. Learn how to manage this condition to improve your quality of life ... You may need lifestyle changes and pulmonary rehabilitation to help you manage the disease. ... Your doctor may ask you to make these lifestyle changes as part of a pulmonary rehabilitation program. ...
Idiopathic pulmonary fibrosis, or IPF, is a condition that causes progressive scarring of the lungs. Fibrous scar tissue builds ... Idiopathic pulmonary fibrosis, or IPF, is a condition that causes progressive scarring of the lungs. Fibrous scar tissue builds ... Our approach to idiopathic pulmonary fibrosis. UCSF offers specialized care for all types of interstitial lung disease, ... Diagnosing idiopathic pulmonary fibrosis requires input from pulmonologists, radiologists and, in many cases, pathologists ...
Introduction: Idiopathic pulmonary fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias. It is a serious ... How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respir Med. 2014 Apr;108(4):647-53. doi: 10.1016/j. ... Hypertension, Pulmonary / epidemiology * Idiopathic Pulmonary Fibrosis / drug therapy * Idiopathic Pulmonary Fibrosis / ... Details on diagnostic examinations, pulmonary function, medication and comorbidities were registered based on medical records. ...
Learn about the condition idiopathic pulmonary fibrosis, treatment programs, our doctors, clinical trials, tests we offer & ... Idiopathic Pulmonary Fibrosis (IPF) & GERD The purpose of this study is to measure and accurately identify the presence and ... Idiopathic pulmonary fibrosis (IPF) is one of more than 130 types of interstitial lung disease (ILD). It is described by ... View all (9) doctors specializing in Idiopathic Pulmonary Fibrosis (IPF) Find a Doctor ...
Idiopathic Pulmonary Fibrosis. Exciting line-up and speakers for the 7th IPF Annual Summit in Boston next month 30-Aug-2023. By ...
Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005;353:2229-2242. ...
Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Pirfenidone in idiopathic pulmonary fibrosis. H. Taniguchi, M. Ebina, Y. Kondoh, T. Ogura, A. Azuma, M. Suga, Y. Taguchi, H. ... Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005;353:2229-2242. ...
Watch these videos to learn more about living with Idiopathic Pulmonary Fibrosis (IPF) ... Living with Idiopathic Pulmonary Fibrosis (IPF). Make an Appointment *Ask a Question ... Watch these videos to learn more about living with Idiopathic Pulmonary Fibrosis (IPF). ... Idiopathic Pulmonary Fibrosis (IPF) Testing * Idiopathic Pulmonary Fibrosis (IPF) Management * The Interstitial Lung Disease ( ...
You need to be signed in to access email alerts. If you have an account log in with your user name and password. If you dont have an account you can just enter your email address in the email box below ...
American Roentgen Ray Society Images of Idiopathic pulmonary fibrosis electrocardiogram All Images. X-rays. Echo & Ultrasound. ... Retrieved from "https://www.wikidoc.org/index.php?title=Idiopathic_pulmonary_fibrosis_electrocardiogram&oldid=756537" ...
Idiopathic Pulmonary Fibrosis - Philadelphia PA. ClinicalConnection helps connect participants with clinical trials in their ... A clinical research study for people with idiopathic pulmonary fibrosis, or IPF. The purpose of this study is to evaluate the ...
Are you up-to-date on the management and treatment options available to patients at different stages of idiopathic pulmonary ... Where Is Idiopathic Pulmonary Fibrosis Treatment Going? * The Relationship Between Lung Fibrosis and Idiopathic Pulmonary ... Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology, characterized by progressive ... Fast Five Quiz: Idiopathic Pulmonary Fibrosis: Management and Treatment - Medscape - Oct 17, 2023. ...
As an illustrative example, the diagnosis of idiopathic pulmonary fibrosis (IPF) among interstitial lung disease (ILD) patients ... Domain Knowledge-Assisted Automatic Diagnosis of Idiopathic Pulmonary Fibrosis (IPF) Using High Resolution Computed Tomography ... Domain Knowledge-Assisted Automatic Diagnosis of Idiopathic Pulmonary Fibrosis (IPF) Using High Resolution Computed Tomography ... Domain Knowledge-Assisted Automatic Diagnosis of Idiopathic Pulmonary Fibrosis (IPF) Using High Resolution Computed Tomography ...
Role of Genetics in Idiopathic Pulmonary Fibrosis (IPF) ... Role of Genetics in Idiopathic Pulmonary Fibrosis (IPF). ... The Pulmonary Fibrosis Foundation rates among top charities in the U.S. The PFF has a four-star rating from Charity Navigator ...
2 Canadian Pulmonary Fibrosis Foundation. Idiopathic Pulmonary Fibrosis Patient Information Guide. What is Pulmonary Fibrosis? ... 6 Canadian Pulmonary Fibrosis Foundation. Idiopathic Pulmonary Fibrosis Patient Information Guide. What You Can Do. Accessed ... 7 Canadian Pulmonary Fibrosis Foundation. Idiopathic Pulmonary Fibrosis Patient Information Guide. How Many People Have It? ... 8 Canadian Pulmonary Fibrosis Foundation. Idiopathic Pulmonary Fibrosis Patient Information Guide. What Are The Symptoms? ...
Where Is Idiopathic Pulmonary Fibrosis Treatment Going? * The Relationship Between Lung Fibrosis and Idiopathic Pulmonary ... Director, Division of Pulmonary and Critical Care Medicine; Director, Womens Guild Lung Institute; Executive Vice Chair, ... TNF-alpha inhibitors were previously investigated as a method for decreasing the progression of fibrosis in patients with IPF. ... Idiopathic Pulmonary Fibrosis (IPF) * Idiopathic Pulmonary Fibrosis Imaging * Idiopathic Pulmonary Fibrosis * ...
Idiopathic pulmonary fibrosis along with other interstitial and age-related lung diseases. Major Proposed Activities. * ... Screening of a Rubedo Life Science library of senolytic small molecules prodrug on Idiopathic pulmonary fibrosis primary cells ... Pharmacological regenerative treatment of idiopathic pulmonary fibrosis targeting the senescent niche of lung progenitor cells. ... Pharmacological regenerative treatment of idiopathic pulmonary fibrosis targeting the senescent niche of lung progenitor cells. ...
Pulmonary function in idiopathic pulmonary fibrosis and referral for lung transplantation. Am J Respir Crit Care Med. 2001;164: ... 18F-fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: ... Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT. J ... Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med. 2001;164 ...
The accuracy of Japanese administrative data in identifying acute exacerbation of idiopathic pulmonary fibrosis. Keisuke Anan, ... The accuracy of Japanese administrative data in identifying acute exacerbation of idiopathic pulmonary fibrosis ... The accuracy of Japanese administrative data in identifying acute exacerbation of idiopathic pulmonary fibrosis ... The accuracy of Japanese administrative data in identifying acute exacerbation of idiopathic pulmonary fibrosis ...
Idiopathic Pulmonary Fibrosis is a relatively rare, but progressive and incapacitating disease, frequently leading to end-stage ... We further emphasize that any patient with idiopathic pulmonary fibrosis, whether pre- or post-transplant, should undergo ... A Novel Treatment for Idiopathic Pulmonary Fibrosis. Kalman P Bencsath, MD, Roberto Ramirez, MD, Philip Schauer, MD, Stacy ... We present the case of MP, a 53 year old morbidly obese female with a four year history of progressive pulmonary fibrosis and a ...
About Idiopathic Pulmonary Fibrosis. Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease marked by ... Idiopathic Pulmonary Fibrosis (IPF) is the newest clinical program in the pipeline for Cumberlands first new chemical entity: ... Cumberland Pharmaceuticals Announces FDA Clearance Of IND For New Treatment Of Idiopathic Pulmonary Fibrosis. ... for a Phase II study in patients with Idiopathic Pulmonary Fibrosis, the most common form of progressive fibrosing interstitial ...
Europe Idiopathic Pulmonary Fibrosis Market Size, Share & Industry Trends Analysis Report By Drug Type, By Distribution Channel ... Chapter 4. Europe Idiopathic Pulmonary Fibrosis Market by Drug Type Chapter 5. Europe Idiopathic Pulmonary Fibrosis Market by ... The Europe Idiopathic Pulmonary Fibrosis Market is expected to witness market growth of 6.1% CAGR during the forecast period ( ... Europe Idiopathic Pulmonary Fibrosis Market Report 2022: Shifting Lifestyle Patterns, Rising Nicotine Product Usage, and ...
Objective Idiopathic pulmonary fibrosis (IFF) is a slowly progressive disease with a poor prognosis. Acute exacerbation is the ...
This is a well recognised complication of idiopathic pulmonary fibrosis.4 Idiopathic pulmonary fibrosis appears to have a ... pulmonary fibrosis. Pulmonary interstitial fibrosis in children is a heterogeneous group of progressive lung disorders ... 1986) Familial idiopathic pulmonary fibrosis: evidence of lung inflammation in unaffected family members. N Engl J Med 314:1343 ... We report our experience over the past 12 years treating 11 infants with the diagnosis of idiopathic pulmonary fibrosis, all of ...
Study to Test the Validity of the Treatment of Idiopathic Pulmonary Fibrosis With Cotrimoxazole ... First study to test the validity of the treatment of idiopathic pulmonary fibrosis, which causes inflammation and fibrosis ( ... Condition(s) targeted: Idiopathic Pulmonary Fibrosis. Intervention: Cotrimoxazole (Drug); Placebo (Drug). Phase: Phase 3. ... Study to Test the Validity of the Treatment of Idiopathic Pulmonary Fibrosis With Cotrimoxazole. Information source: Fundaci n ...
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the ... Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the ... Biomarkers, Extracellular matrix, Fibroblast, Idiopathic pulmonary fibrosis. in International Journal of Molecular Sciences. ... article{6d4eb194-b010-4a77-acf7-1c1404a54769, abstract = {{,p,Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic ...
  • Background: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a severe complication associated with a high mortality. (unict.it)
  • A clinical research study for people with idiopathic pulmonary fibrosis, or IPF. (clinicalconnection.com)
  • In Australia, little is known about delivery of care for people with idiopathic pulmonary fibrosis (IPF). (asthmafoundation.org.nz)
  • It aims to improve the quality of life for people with idiopathic pulmonary fibrosis by helping healthcare professionals to diagnose the condition and provide effective symptom management. (bvsalud.org)
  • Idiopathic pulmonary fibrosis/usual interstitial pneumonia: imaging diagnosis, spectrum of abnormalities, and temporal progression. (medscape.com)
  • Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and fatal disorder characterized by high-resolution computed tomography (HRCT) and histologic features of usual interstitial pneumonia (UIP) in adults over 50 years of age with exertional dyspnea, abnormal pulmonary function tests (PFTs), and ineffective therapy ( 1 , 2 ). (atsjournals.org)
  • Giménez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. (medscape.com)
  • Diagnosing idiopathic pulmonary fibrosis requires input from pulmonologists, radiologists and, in many cases, pathologists experienced in evaluating patients with interstitial lung disease. (ucsfhealth.org)
  • As an illustrative example, the diagnosis of idiopathic pulmonary fibrosis (IPF) among interstitial lung disease (ILD) patients is used for this work. (aaai.org)
  • 6-minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. (newswire.ca)
  • TNF-alpha inhibitors were previously investigated as a method for decreasing the progression of fibrosis in patients with IPF. (medscape.com)
  • The aim of this prospective study was to clarify whether dual-time-point 18 F-FDG PET imaging results are useful to predict long-term survival of idiopathic pulmonary fibrosis (IPF) patients. (snmjournals.org)
  • Our results demonstrate that positive RI-SUV is strongly predictive of earlier deterioration of pulmonary function and higher mortality in patients with IPF. (snmjournals.org)
  • Patients with idiopathic pulmonary fibrosis (IPF) experience progressive respiratory failure and have a median survival of less than 3 y after diagnosis ( 1 ). (snmjournals.org)
  • however, the risk of mortality while waiting for that procedure is significantly greater for patients with IPF than for those with cystic fibrosis or emphysema ( 6 , 7 ). (snmjournals.org)
  • Several physiologic and radiologic parameters that predict poor survival in patients with IPF have been identified, including lower forced vital capacity (FVC), diffusion capacity for carbon monoxide (DL CO ), and extent of fibrosis shown by high-resolution CT (HRCT) ( 8 - 10 ). (snmjournals.org)
  • Also, pulmonary 18 F-FDG uptake was recently reported to be a predictor of global health score and lung physiology in patients with IPF ( 11 ). (snmjournals.org)
  • CPIX ) today announced that the U.S. Food and Drug Administration (FDA) has cleared the Investigational New Drug Application (IND) for a Phase II study in patients with Idiopathic Pulmonary Fibrosis, the most common form of progressive fibrosing interstitial lung disease. (drugdiscoveryonline.com)
  • As a result, Cumberland will launch its FIGHTING FIBROSIS trial designed to enroll 128 patients in over 20 medical centers of excellence across the U.S. (drugdiscoveryonline.com)
  • Given the exciting preclinical data demonstrating ifetroban can prevent lung fibrosis, we are very excited to advance directly to a Phase II study for IPF patients. (drugdiscoveryonline.com)
  • The FIGHTING FIBROSISâ„¢ clinical trial is a multicenter, double-blind, placebo-controlled Phase II study in patients with IPF. (drugdiscoveryonline.com)
  • According to the European Pulmonary Fibrosis Patient Charter, around 80,000 to 111,000 persons in Europe suffer from IPF, with 30,000 to 35,000 patients diagnosed each year. (pharmiweb.com)
  • For example, connective tissue diseases-associated lung fibrosis is very common and sometimes leads the prognosis, such as in patients with systemic sclerosis or rheumatoid arthritis [ 13 ]. (ersjournals.com)
  • Diagnosis of idiopathic pulmonary fibrosis is suspected in patients with subacute dyspnea, nonproductive cough, and Velcro crackles on chest examination. (msdmanuals.com)
  • The aim of the current article was to describe the exposure-response relationship of GLPG1690 and further develop a rational basis to support dose selection for clinical trials in patients with idiopathic pulmonary fibrosis. (simulations-plus.com)
  • A third trial was conducted in patients with idiopathic pulmonary fibrosis administered 600 mg of GLPG1690 once daily for 12 weeks. (simulations-plus.com)
  • Recent animal research suggests that azithromycin , a therapy that has shown benefit for acute exacerbations of chronic obstructive pulmonary disease (COPD) in humans, may also be beneficial in patients with acute exacerbations of IPF. (medscape.com)
  • Background: We hypothesise, based upon the findings from our previous trial, that the addition of co-trimoxazole to standard therapy is beneficial to patients with moderate to severe idiopathic pulmonary fibrosis (IPF). (uea.ac.uk)
  • Une étude rétrospective a été menée à Riyad (Arabie saoudite) pour connaître l'impact de la rééducation pulmonaire d'une part sur les paramètres respiratoires d'un groupe de patients en consultation externe pour des affections pulmonaires chroniques autres que la bronchopneumopathie chronique obstructive (BPCO) et d'autre part sur leur utilisation des soins de santé. (who.int)
  • DUBLIN--(BUSINESS WIRE)--The "Europe Idiopathic Pulmonary Fibrosis Market Size, Share & Industry Trends Analysis Report By Drug Type, By Distribution Channel (Retail Pharmacies, Hospital Pharmacies, and Online Providers, By Country and Growth Forecast, 2021-2027" report has been added to ResearchAndMarkets.com's offering. (pharmiweb.com)
  • The Europe Idiopathic Pulmonary Fibrosis Market is expected to witness market growth of 6.1% CAGR during the forecast period (2021-2027). (pharmiweb.com)
  • Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027, finds that the global idiopathic pulmonary fibrosis treatment market reached a value of US 3,278 Million in 2021. (powershow.com)
  • Complications may include pulmonary hypertension, heart failure, pneumonia or pulmonary embolism. (wikipedia.org)
  • Pulmonary hypertension in idiopathic pulmonary fibrosis. (medscape.com)
  • Pulmonary Hypertension Pulmonary hypertension is increased pressure in the pulmonary circulation. (msdmanuals.com)
  • In pulmonary hypertension, pulmonary vessels may become constricted. (msdmanuals.com)
  • Cor Pulmonale Cor pulmonale is right ventricular (RV) enlargement secondary to a lung disorder that causes pulmonary artery hypertension. (msdmanuals.com)
  • Reduced survival time has been associated with various factors such as advanced age, severe physiological impairment, low body-mass index, radiological extent and severity of fibrosis determined by chest high-resolution computed tomography (HRCT), presence of comorbidities including pulmonary hypertension (PH), emphysema and bronchogenic cancer. (unicatt.it)
  • The key histologic findings of idiopathic pulmonary fibrosis are subpleural fibrosis with sites of fibroblast proliferation (fibroblast foci) and dense scarring, alternating with areas of normal lung tissue (heterogeneity). (msdmanuals.com)
  • There is some evidence that viral infections may be associated with idiopathic pulmonary fibrosis and other fibrotic lung diseases. (wikipedia.org)
  • Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive fibrotic lung disease with a median survival of 3-5 yrs without proven effective therapy 1 , 2 . (ersjournals.com)
  • Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. (lu.se)
  • Idiopathic fibrotic nonspecific interstitial pneumonia is also a progressive fibrotic lung disease with a significant mortality, although it has a better prognosis than IPF [ 16 ]. (ersjournals.com)
  • They include idiopathic fibrotic diseases, connective-tissue diseases, drug-induced lung disease, environmental exposures (inorganic and organic dusts), and primary diseases of the lungs (including sarcoidosis). (medscape.com)
  • Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. (rarediseases.co.za)
  • Grace Hyun J. Kim Domain Knowledge-Assisted Automatic Diagnosis of Idiopathic Pulmonary Fibrosis (IPF) Using High Resolution Computed Tomography (HRCT) (Student Abstract) Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020) 13979-13980. (aaai.org)
  • To set out a severity classification for idiopathic pulmonary fibrosis (IPF) based on the interaction of pulmonary function parameters with high resolution computed tomography (CT) findings. (bvsalud.org)
  • HRCT of advanced stage of pulmonary fibrosis demonstrating reticular opacities with honeycombing, with predominant subpleural distribution. (medscape.com)
  • Objective Idiopathic pulmonary fibrosis (IFF) is a slowly progressive disease with a poor prognosis. (go.jp)
  • BACKGROUND Pulmonary interstitial fibrosis in children is a disease of unknown aetiology, usually associated with a poor prognosis. (bmj.com)
  • The Igenomix Idiopathic Pulmonary Fibrosis Precision Panel can be used as a diagnostic tool ultimately leading to a better management and prognosis of the disease. (igenomix.net)
  • People often benefit from pulmonary rehabilitation and supplemental oxygen. (wikipedia.org)
  • You may need lifestyle changes and pulmonary rehabilitation to help you manage the disease. (nih.gov)
  • Your doctor may ask you to make these lifestyle changes as part of a pulmonary rehabilitation program. (nih.gov)
  • Lung transplants, mechanical ventilation, oxygen therapy, and pulmonary rehabilitation are the most common non-pharmacological treatments. (pharmiweb.com)
  • More than 90% of institutions had access to oxygen therapy, pulmonary rehabilitation and advanced care planning, but access to psychological support and clinical trials was limited (53% and 58%, respectively). (asthmafoundation.org.nz)
  • At NYU Langone Pulmonary and Critical Care Associates , our pulmonologists, who specialize in lung conditions, and pulmonary rehabilitation experts collaborate to help you manage this condition. (nyulangone.org)
  • Treatment may include medication, as well as oxygen therapy and pulmonary rehabilitation. (nyulangone.org)
  • ABSTRACT Pulmonary rehabilitation is a tool that is receiving more acceptance in chronic lung diseases. (who.int)
  • A retrospective study was made in Riyadh, Saudi Arabia, on the impact of pulmonary rehabilitation on respiratory parameters and health care utilization in a group of outpatients with chronic lung diseases other than chronic obstructive pulmonary disease. (who.int)
  • Initial number of emergency department visits and hospital admissions and use of prednisone and antibiotics were significantly associated with adherence to the pulmonary rehabilitation programme. (who.int)
  • BOSTON, Aug. 15, 2023 (GLOBE NEWSWIRE) - Galecto, Inc. (NASDAQ: GLTO), a clinical-stage biotechnology company and world leader in galectin biology, focused on the development of novel treatments for fibrosis and cancer, today announced topline results from its Phase 2b GALACTIC-1 trial evaluating the safety and efficacy of inhaled GB0139 for the treatment of idiopathic pulmonary fibrosis (IPF). (itbusinessnet.com)
  • Recent studies have shown ifetroban can both prevent and enhance resolution of lung fibrosis in multiple preclinical models. (drugdiscoveryonline.com)
  • Ifetroban also displays anti-platelet, antivasospastic, antifibrotic, and antibronchospastic activities and is effective in certain preclinical models of vasospasm, thrombosis, reperfusion injury, cardiac fibrosis, lung fibrosis and endothelial dysfunction, including models that are insensitive to aspirin. (drugdiscoveryonline.com)
  • 1 In a minority of cases interstitial lung fibrosis develops as a result of a known insult to the lung such as infections, drugs, environmental inhalants, and autoimmune diseases. (bmj.com)
  • Idiopathic pulmonary fibrosis, or IPF, is a condition that causes progressive scarring of the lungs. (ucsfhealth.org)
  • It is described by scarring (fibrosis) of the lungs. (nationaljewish.org)
  • Pulmonary fibrosis causes irreversible and worsening scarring of the lungs which deprives the body of oxygen 2 , eventually making everyday tasks impossible. (newswire.ca)
  • Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease marked by inflammation and fibrosis of the lungs, resulting in rapidly declining lung function and reduced survival within 5 years of diagnosis. (drugdiscoveryonline.com)
  • Pulmonary function tests, including diffusing capacity of the lungs for carbon monoxide and forced vital capacity, were performed at each examination. (whiterose.ac.uk)
  • Conclusion Helium 3 diffusion-weighted MRI-derived mean diffusive length scale demonstrates longitudinal changes in lungs affected by idiopathic pulmonary fibrosis. (whiterose.ac.uk)
  • Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease that causes scarring of the lungs, reducing their oxygen delivering capacity. (powershow.com)
  • Idiopathic pulmonary fibrosis is a rare and serious condition that causes scar tissue to develop in the lungs, which leads to difficulty breathing. (nyulangone.org)
  • The changing treatment landscape in idiopathic pulmonary fibrosis. (newswire.ca)
  • Idiopathic Pulmonary Fibrosis - Treatment. (newswire.ca)
  • Available at http://www.lung.ca/lung-health/lung-disease/idiopathic-pulmonary-fibrosis/treatment . (newswire.ca)
  • Pharmacological regenerative treatment of idiopathic pulmonary fibrosis targeting the senescent niche of lung progenitor cells. (ca.gov)
  • First study to test the validity of the treatment of idiopathic pulmonary fibrosis, which causes inflammation and fibrosis (scarring) of the lung tissue, with cotrimoxazole. (druglib.com)
  • Looking forward, the idiopathic pulmonary fibrosis treatment market value is projected to reach a strong growth during the forecast period (2022-2027). (powershow.com)
  • PASADENA, CA, USA I August 17, 2022 I Arrowhead Pharmaceuticals Inc. (NASDAQ: ARWR) today announced that it has filed an application for clearance to initiate a Phase 1/2a clinical trial of ARO-MMP7, the company's investigational RNA interference (RNAi) therapeutic designed to reduce expression of matrix metalloproteinase 7 (MMP7) as a potential treatment for idiopathic pulmonary fibrosis (IPF). (pipelinereview.com)
  • GLPG1690 is an autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis. (simulations-plus.com)
  • Azithromycin: A New Treatment Hope for Idiopathic Pulmonary Fibrosis? (medscape.com)
  • Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. (igenomix.net)
  • Researchers have shown that the medication saracatinib shows promise as a treatment for idiopathic pulmonary fibrosis (IPF). (rarediseases.co.za)
  • Idiopathic pulmonary fibrosis (IPF), or (formerly) fibrosing alveolitis, is a rare, progressive illness of the respiratory system, characterized by the thickening and stiffening of lung tissue, associated with the formation of scar tissue. (wikipedia.org)
  • American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. (medscape.com)
  • The diagnosis of IPF was in accordance with the American Thoracic Society (ATS)/European Respiratory Society (ERS) Consensus statement 16 and the fourth version of the clinical diagnostic criteria guidelines for idiopathic interstitial pneumonia in Japan 17 . (ersjournals.com)
  • Moreover, progressive fibrosis with loss of normal lung tissue results in restricted gas exchange, decreased ventilation, respiratory discomfort and exercise limitation, poor quality of life, and eventually death. (pharmiweb.com)
  • Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. (medscape.com)
  • How does comorbidity influence survival in idiopathic pulmonary fibrosis? (nih.gov)
  • A multivariate Cox proportional hazards model showed higher RI-SUV and higher extent of fibrosis score as independent predictors of shorter progression-free survival. (snmjournals.org)
  • Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease affecting 50 to 300 individuals per million with a median survival time of ∼3 yrs [ 1 ]. (ersjournals.com)
  • Welcome to Medscape InDiscussion on idiopathic pulmonary fibrosis , or IPF. (medscape.com)
  • Some of these features are due to chronic hypoxemia (oxygen deficiency in the blood), are not specific for IPF, and can occur in other pulmonary disorders. (wikipedia.org)
  • Pulmonary interstitial fibrosis in children is a heterogeneous group of progressive lung disorders characterised by a pattern of inflammation and subsequent interstitial fibrosis that predominantly affects the alveolar walls and perialveolar structures. (bmj.com)
  • Arterial hypoxemia in disorders of pulmonary parenchyma is primarily caused by ventilation-perfusion mismatching, with further contribution from an intrapulmonary shunt. (medscape.com)
  • Recent studies have suggested that IPF develops from chronic epithelial cell injury and aberrant activation of progressive fibrosis 3 , 4 . (ersjournals.com)
  • Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology, characterized by progressive lung scarring. (medscape.com)
  • Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that is clinically manifested by the appearance of effort dyspnea and impaired lung function. (druglib.com)
  • Unlike obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), which show a normal or increased total lung capacity (TLC), restrictive disease are associated with a decreased TLC. (medscape.com)
  • Idiopathic pulmonary fibrosis: pathogenesis and management. (igenomix.net)
  • Overview of Idiopathic Interstitial Pneumonias Idiopathic interstitial pneumonias (IIPs) are interstitial lung diseases of unknown etiology that share similar clinical and radiologic features and are distinguished primarily by the histopathologic. (msdmanuals.com)
  • Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder of unknown etiology for which there is no effective therapy. (medscape.com)
  • The pulmonologist diagnoses asbestosis on the basis of the patient's exposure history, latency of symptoms (occurring 45 years after first exposure), chest radiograph findings, and pulmonary function results. (cdc.gov)
  • Specifically, there were some recommendations by an expert panel, that we no longer use antacid therapy or proton pump inhibitors that target slowing the progression of pulmonary fibrosis. (medscape.com)
  • The diagnosis of IPF is made on the basis of the patient's history, clinical findings, pulmonary physiology, and imaging results. (medscape.com)
  • An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. (medscape.com)
  • The fibrosis in IPF has been linked to cigarette smoking, environmental factors (e.g. occupational exposure to gases, smoke, chemicals or dusts), other medical conditions including gastroesophageal reflux disease (GERD), or to genetic predisposition (familial IPF). (wikipedia.org)
  • Is idiopathic pulmonary fibrosis genetic? (nebula.org)
  • UCSF offers specialized care for all types of interstitial lung disease, including idiopathic pulmonary fibrosis. (ucsfhealth.org)
  • Idiopathic pulmonary fibrosis (IPF) is one of more than 130 types of interstitial lung disease (ILD). (nationaljewish.org)
  • Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease without proven effective therapy. (ersjournals.com)
  • Progressive pulmonary fibrosis is an age-related degenerative interstitial lung disease that affects an increasing number of population in California and worldwide. (ca.gov)
  • Cotrimoxazole may improve the clinical course of the disease through eradication of Pneumocystis jiroveci colonization and other mechanisms as inhibiting the activation of alveolar macrophages and producing alterations in the surfactant system which favours the persistent activation of the inflammatory response and the development of pulmonary fibrosis. (druglib.com)
  • Purpose To investigate whether microstructural imaging metrics from in-vivo hyperpolarized 3He DW MRI are sensitive to longitudinal changes in a cohort of participants with idiopathic pulmonary fibrosis (IPF) and to evaluate the reproducibility of these metrics and their correlation with existing clinical measures of IPF disease severity. (whiterose.ac.uk)
  • Pirfenisu 200 Mg is used to treat a certain lung disease called idiopathic pulmonary fibrosis (IPF). (thechemist247.com)
  • Evaluate the efficacy of oral cotrimoxazole versus placebo in idiopathic pulmonary fibrosis (IPF). (druglib.com)
  • Quantitative Systems Pharmacology (QSP) software providing the ability to predict the efficacy of drugs being developed to treat idiopathic pulmonary fibrosis (IPF. (simulations-plus.com)
  • MARNAC, Dallas, TX, USA) 7 - 9 is a promising agent with therapeutic potential for IPF that has combined anti-inflammatory, antioxidant and antifibrotic effects in experimental models of pulmonary fibrosis 10 - 14 . (ersjournals.com)
  • All of this causes repetitive micro-injury to the lung tissue and vasculature, triggering and inflammatory response and ultimately fibrosis. (igenomix.net)
  • IPF is believed to be the result of an aberrant wound healing process including/involving abnormal and excessive deposition of collagen (fibrosis) in the pulmonary interstitium with minimal associated inflammation. (wikipedia.org)
  • Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? (nih.gov)
  • IPF can be diagnosed through chest imaging studies, lung biopsies, pulmonary function tests, and antibody tests. (powershow.com)
  • In addition to taking a detailed exposure history, it is prudent to order a chest radiograph and pulmonary function tests. (cdc.gov)
  • Clubbing of the digits, a disfigurement of the finger tips or toes (see image) Abnormal pulmonary function test results, with evidence of restriction and impaired gas exchange. (wikipedia.org)
  • Martinez FJ, Flaherty K. Pulmonary function testing in idiopathic interstitial pneumonias. (medscape.com)
  • Pulmonary function test (PFT). (ucsfhealth.org)
  • Details on diagnostic examinations, pulmonary function, medication and comorbidities were registered based on medical records. (nih.gov)
  • The apparent diffusion coefficient (ADC) and stretched exponential model-derived mean diffusive length scale (LmD) from DW MRI was compared with baseline CT fibrosis scores and pulmonary function tests by using Spearman rank correlation coefficient. (whiterose.ac.uk)
  • Longitudinal changes in DW MRI and pulmonary function test measurements were assessed with Friedman tests and post hoc Dunn test. (whiterose.ac.uk)
  • and physiologic evidence of restriction and impaired gas exchange on pulmonary function testing. (medscape.com)
  • The pulmonary function tests reveal a mostly restrictive pattern of deficits, with decreased carbon monoxide diffusing capacity (DLco). (cdc.gov)
  • Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. (igenomix.net)
  • Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition. (medscape.com)
  • The authors discuss evidence suggesting that embryonic signaling pathways involved in epithelium/mesenchymal communication and epithelial cell plasticity may be aberrantly switched on in idiopathic pulmonary fibrosis. (nih.gov)
  • Kim DS, Collard HR, King TE Jr. Classification and natural history of the idiopathic interstitial pneumonias. (medscape.com)
  • Severity classification for idiopathic pulmonary fibrosis by using fuzzy logic. (bvsalud.org)
  • Dose, formulation, rifampin co-administration, health status (healthy volunteer vs. patient with idiopathic pulmonary fibrosis), and baseline lysophosphatidic acid C18:2 were identified as covariates in the model. (simulations-plus.com)
  • Episode 2: Idiopathic Pulmonary Fibrosis: Who Gets an Antifibrotic? (medscape.com)