Abnormal balloon- or sac-like dilatation in the wall of any one of the iliac arteries including the common, the internal, or the external ILIAC ARTERY.
Pathological outpouching or sac-like dilatation in the wall of any blood vessel (ARTERIES or VEINS) or the heart (HEART ANEURYSM). It indicates a thin and weakened area in the wall which may later rupture. Aneurysms are classified by location, etiology, or other characteristics.
Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841)
Surgical insertion of BLOOD VESSEL PROSTHESES to repair injured or diseased blood vessels.
Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels.
Aneurysm due to growth of microorganisms in the arterial wall, or infection arising within preexisting arteriosclerotic aneurysms.
Either of two large arteries originating from the abdominal aorta; they supply blood to the pelvis, abdominal wall and legs.
A method of hemostasis utilizing various agents such as Gelfoam, silastic, metal, glass, or plastic pellets, autologous clot, fat, and muscle as emboli. It has been used in the treatment of spinal cord and INTRACRANIAL ARTERIOVENOUS MALFORMATIONS, renal arteriovenous fistulas, gastrointestinal bleeding, epistaxis, hypersplenism, certain highly vascular tumors, traumatic rupture of blood vessels, and control of operative hemorrhage.
Either of two fleshy protuberances at the lower posterior section of the trunk or HIP in humans and primate on which a person or animal sits, consisting of gluteal MUSCLES and fat.
An abnormal balloon- or sac-like dilatation in the wall of AORTA.
Inability to achieve and maintain an erection (ERECTILE DYSFUNCTION) due to defects in the arterial blood flow to the PENIS, defect in venous occlusive function allowing blood drainage (leakage) from the erectile tissue (corpus cavernosum penis), or both.
An abnormal balloon- or sac-like dilatation in the wall of the ABDOMINAL AORTA which gives rise to the visceral, the parietal, and the terminal (iliac) branches below the aortic hiatus at the diaphragm.
The tearing or bursting of the weakened wall of the aneurysmal sac, usually heralded by sudden worsening pain. The great danger of a ruptured aneurysm is the large amount of blood spilling into the surrounding tissues and cavities, causing HEMORRHAGIC SHOCK.
A localized bulging or dilatation in the muscle wall of a heart (MYOCARDIUM), usually in the LEFT VENTRICLE. Blood-filled aneurysms are dangerous because they may burst. Fibrous aneurysms interfere with the heart function through the loss of contractility. True aneurysm is bound by the vessel wall or cardiac wall. False aneurysms are HEMATOMA caused by myocardial rupture.
An abnormal balloon- or sac-like dilatation in the wall of the THORACIC AORTA. This proximal descending portion of aorta gives rise to the visceral and the parietal branches above the aortic hiatus at the diaphragm.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
The space or compartment surrounded by the pelvic girdle (bony pelvis). It is subdivided into the greater pelvis and LESSER PELVIS. The pelvic girdle is formed by the PELVIC BONES and SACRUM.
Devices that provide support for tubular structures that are being anastomosed or for body cavities during skin grafting.
Aneurysm caused by a tear in the TUNICA INTIMA of a blood vessel leading to interstitial HEMORRHAGE, and splitting (dissecting) of the vessel wall, often involving the AORTA. Dissection between the intima and media causes luminal occlusion. Dissection at the media, or between the media and the outer adventitia causes aneurismal dilation.
The plan and delineation of prostheses in general or a specific prosthesis.
Failure of equipment to perform to standard. The failure may be due to defects or improper use.
Abnormal balloon- or sac-like dilatation in the wall of CORONARY VESSELS. Most coronary aneurysms are due to CORONARY ATHEROSCLEROSIS, and the rest are due to inflammatory diseases, such as KAWASAKI DISEASE.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A repeat operation for the same condition in the same patient due to disease progression or recurrence, or as followup to failed previous surgery.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
Radiography of the vascular system of the brain after injection of a contrast medium.
The tearing or bursting of the wall along any portion of the AORTA, such as thoracic or abdominal. It may result from the rupture of an aneurysm or it may be due to TRAUMA.
Not an aneurysm but a well-defined collection of blood and CONNECTIVE TISSUE outside the wall of a blood vessel or the heart. It is the containment of a ruptured blood vessel or heart, such as sealing a rupture of the left ventricle. False aneurysm is formed by organized THROMBUS and HEMATOMA in surrounding tissue.
The aorta from the DIAPHRAGM to the bifurcation into the right and left common iliac arteries.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status.
Minimally invasive procedures, diagnostic or therapeutic, performed within the BLOOD VESSELS. They may be perfomed via ANGIOSCOPY; INTERVENTIONAL MAGNETIC RESONANCE IMAGING; INTERVENTIONAL RADIOGRAPHY; or INTERVENTIONAL ULTRASONOGRAPHY.
A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues.
Radiographic visualization of the aorta and its branches by injection of contrast media, using percutaneous puncture or catheterization procedures.
Operative procedures for the treatment of vascular disorders.
Hand-held tools or implements used by health professionals for the performance of surgical tasks.
Radiography of blood vessels after injection of a contrast medium.
Artery formed by the bifurcation of the internal carotid artery (CAROTID ARTERY, INTERNAL). Branches of the anterior cerebral artery supply the CAUDATE NUCLEUS; INTERNAL CAPSULE; PUTAMEN; SEPTAL NUCLEI; GYRUS CINGULI; and surfaces of the FRONTAL LOBE and PARIETAL LOBE.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
Surgery performed on the nervous system or its parts.
Postoperative hemorrhage from an endovascular AORTIC ANEURYSM repaired with endoluminal placement of stent grafts (BLOOD VESSEL PROSTHESIS IMPLANTATION). It is associated with pressurization, expansion, and eventual rupture of the aneurysm.
Inflammation of the wall of the AORTA.
Platinum. A heavy, soft, whitish metal, resembling tin, atomic number 78, atomic weight 195.09, symbol Pt. (From Dorland, 28th ed) It is used in manufacturing equipment for laboratory and industrial use. It occurs as a black powder (platinum black) and as a spongy substance (spongy platinum) and may have been known in Pliny's time as "alutiae".
Pathological conditions involving the CAROTID ARTERIES, including the common, internal, and external carotid arteries. ATHEROSCLEROSIS and TRAUMA are relatively frequent causes of carotid artery pathology.
Polyester polymers formed from terephthalic acid or its esters and ethylene glycol. They can be formed into tapes, films or pulled into fibers that are pressed into meshes or woven into fabrics.
The largest branch of the celiac trunk with distribution to the spleen, pancreas, stomach and greater omentum.
Reconstruction or repair of a blood vessel, which includes the widening of a pathological narrowing of an artery or vein by the removal of atheromatous plaque material and/or the endothelial lining as well, or by dilatation (BALLOON ANGIOPLASTY) to compress an ATHEROMA. Except for ENDARTERECTOMY, usually these procedures are performed via catheterization as minimally invasive ENDOVASCULAR PROCEDURES.
Use of a balloon CATHETER to block the flow of blood through an artery or vein.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
The dilatation of the aortic wall behind each of the cusps of the aortic valve.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Elements of limited time intervals, contributing to particular results or situations.

Transcatheter arterial embolization for impending rupture of an isolated internal iliac artery aneurysm complicated with disseminated intravascular coagulation. (1/186)

A 90-year-old male, with impending rupture of an isolated internal iliac artery aneurysm (IIAA) complicated with disseminated intravascular coagulation (DIC) was successfully treated with transcatheter arterial embolization (TAE). After TAE, enlargement of the aneurysm was arrested and coagulation-fibrinolytic abnormalities induced by DIC improved without severe complications. Although IIAA is relatively rare, the post-operative mortality of patients with ruptures is reportedly high. We assessed the usefulness of this procedure for impending rupture of IIAA, especially for patients in high risk groups.  (+info)

Surgical transluminal iliac angioplasty with selective stenting: long-term results assessed by means of duplex scanning. (2/186)

PURPOSE: The safety of iliac angioplasty and selective stenting performed in the operating room by vascular surgeons was evaluated, and the short- and long-term results were assessed by means of serial duplex scanning. METHODS: Between 1989 and 1996, 281 iliac stenotic or occlusive lesions in 235 consecutive patients with chronic limb ischemia were treated by means of percutaneous transluminal angioplasty (PTA) alone (n = 214) or PTA with stent (n = 67, 23.8%). There were 260 primary lesions and 21 restenosis after a first PTA, which were analyzed separately. Stents were implanted in selected cases, either primarily in totally occluded arteries or after suboptimum results of PTA (ie, residual stenosis or a dissection). Data were collected prospectively and analyzed retrospectively. Results were reported in an intention-to-treat basis. Clinical results and patency were evaluated by means of symptom assessment, ankle brachial pressure index, and duplex scanning at discharge and 1, 3, 6, and every 12 months after angioplasty. To identify factors that may affect outcome, 12 clinical and radiological variables, including the four categories of lesions defined by the Standards of Practice Committee of the Society of Cardiovascular and Interventional Radiology, were analyzed separately. The statistical significances of life-table analysis of patency were determined by means of the log-rank test. RESULTS: There were no postoperative deaths or amputations. Local, general, and vascular complications occurred in 2.1%, 1.3% and 4.7% of cases, respectively (total, 8.1%). The mean follow-up period was 29.6 months. The cumulative patency rates +/- SE of the 260 PTAs (including 55 PTAs plus stents) were 92.9% +/- 1.5% at 1 month, 86. 5% +/- 1.7% at 1 year, 81.2% +/- 2.3% at 2 years, 78.8% +/- 2.9% at 3 years, and 75.4% +/- 3.5% at 5 and 6 years. The two-year patency rate of 21 redo PTAs (including 11 PTAs plus stents) was 79.1% +/- 18.2%. Of 12 predictable variables studied in the first PTA group, only the category of the lesion was predictive of long-term patency. The two-year patency rate was 84% +/- 3% for 199 category 1 lesions and 69.7% +/- 6.5% for 61 category 2, 3, and 4 lesions together (P =. 02). There was no difference of patency in the stented and nonstented group. CONCLUSION: Iliac PTA alone or with the use of a stent (in cases of occlusion and/or suboptimal results of PTA) offers an excellent long-term patency rate. Categorization of lesions remains useful in predicting long-term outcome. PTA can be performed safely by vascular surgeons in the operating room and should be considered to be the primary treatment for localized iliac occlusive disease.  (+info)

The value of late computed tomographic scanning in identification of vascular abnormalities after abdominal aortic aneurysm repair. (3/186)

PURPOSE: The purpose of this study was to determine the prevalence of late arterial abnormalities after aortic aneurysm repair and thus to suggest a routine for postoperative radiologic follow-up examination and to establish reference criteria for endovascular repair. METHODS: Computed tomographic (CT) scan follow-up examination was obtained at 8 to 9 years after abdominal aortic aneurysm (AAA) repair on a cohort of patients enrolled in the Canadian Aneurysm Study. The original registry consisted of 680 patients who underwent repair of nonruptured AAA. When the request for CT scan follow-up examination was sent in 1994, 251 patients were alive and potentially available for CT scan follow-up examination and 94 patients agreed to undergo abdominal and thoracic CT scanning procedures. Each scan was interpreted independently by two vascular radiologists. RESULTS: For analysis, the aorta was divided into five defined segments and an aneurysm was defined as a more than 50% enlargement from the expected normal value as defined in the reporting standards for aneurysms. With this strict definition, 64.9% of patients had aneurysmal dilatation and the abnormality was considered as a possible indication for surgical repair in 13.8%. Of the 39 patients who underwent initial repair with a tube graft, 12 (30.8%) were found to have an iliac aneurysm and six of these aneurysms (15.4%) were of possible surgical significance. Graft dilatation was observed from the time of operation (median graft size of 18 mm) to a median size of 22 mm as measured by means of CT scanning at follow-up examination. Fluid or thrombus was seen around the graft in 28% of the cases, and bowel was believed to be intimately associated with the graft in 7%. CONCLUSION: Late follow-up CT scans after AAA repair often show vascular abnormalities. Most of these abnormalities are not clinically significant, but, in 13.8% of patients, the thoracic or abdominal aortic segment was aneurysmal and, in 15.4% of patients who underwent tube graft placement, one of the iliac arteries was significantly abnormal to warrant consideration for surgical repair. On the basis of these findings, a routine CT follow-up examination after 5 years is recommended. This study provides a population-based study for comparison with the results of endovascular repair.  (+info)

Endovascular abdominal aortic aneurysm repair with percutaneous transfemoral prostheses deployment under local anaesthesia. Initial experience with a new, simple-to-use tubular and bifurcated device in the first 27 cases. (4/186)

BACKGROUND: Modification of endografts are required to simplify and improve the safety of the endovascular management of abdominal aortic aneurysms (AAA). OBJECTIVES: The aim of this study is to evaluate the efficacy of a new custom-made, tubular and bifurcated device. MATERIALS AND METHODS: The graft consisted of a continuous, self-expanding, stainless steel, Z-stent structure, covered with a thin wall PTFE tube. Bifurcated grafts were constructed in vivo from three PTFE tubes with a continuous Z-stent structure. Twenty-seven high risk patients with a mean age of 74 (62-86) years and AAA, mean diameter 5.9 cm, were treated in the last 26 months. Tube grafts were deployed in 13 aortic and one iliac cases, bifurcated grafts in nine cases and aorto-uni-iliac grafts with femorofemoral bypass in four cases. Grafts were deployed percutaneously under local anaesthesia. Patients were followed with contrast CT periodically. RESULTS: All grafts were deployed. There were no open conversions or other major complications. There were nine proximal and one distal postoperative endoleak. Four sealed spontaneously, three were treated successfully with endovascular techniques and three are under surveillance. In the 7 (2-23) months follow-up, one patient died due to heart failure 3 months post-procedure. CONCLUSIONS: Local anaesthesia and percutaneous graft introduction simplify and improve the efficacy of the procedure. Continuous aortic graft support provides stability and reduces the risk of migration. PTFE is a flexible, low-profile material for use in endovascular stent-grafts. The bifurcation concept used offers a simple technique for bifurcated grafts.  (+info)

An assessment of the current applicability of the EVT endovascular graft for treatment of patients with an infrarenal abdominal aortic aneurysm. (5/186)

OBJECTIVE: To determine the percentage of elective abdominal aortic aneurysms (AAAs)/aortoiliac aneurysms that currently can be repaired with endovascular grafts (EVGs), the reasons for rejection of EVGs, and the future role of EVG in the treatment of AAA. METHODS: From January 1997 to May 1998, patients at three hospitals (a university hospital, a university-affiliated teaching hospital, and a Veterans Administration hospital with university faculty and residents) were evaluated for EVGs as part of a national clinical trial with grafts manufactured by Endovascular Technologies (EVT, Menlo Park, Calif). All patients at two hospitals and patients treated by the participating surgeons at the third hospital were screened for EVG. Patients with AAAs that were ruptured, symptomatic, or involved renal or mesenteric arteries and patients who declined treatment were excluded from the study. Evaluation included clinical examination, computed tomography scan, and selective arteriography. The decision to proceed with EVG was made by the vascular surgeon, with input and concurrence of medical personnel from a company with extensive experience in endograft repair. The main outcome measures were the determination of the percentage of elective AAAs currently being treated with an EVG and the reasons for exclusion of patients from EVG placement. RESULTS: A total of 162 patients underwent elective treatment of an AAA, 22 (14%) with an EVG (14 bifurcated, eight tube) and 140 (86%) with traditional resection. Indications for not proceeding with an EVG included insufficient proximal cuff in 29 patients (21%), distal common iliac aneurysm or insufficient distal iliac neck in 29 patients (21%), proximal neck too large for an EVG in 24 patients (17%), symptomatic iliac stenosis in 23 patients (16%), iliac stenosis precluding introducer passage in 17 patients (12%), patient preference in 11 patients (8%), and calcification, kink, or extensive thrombus involving the proximal neck precluding safe graft attachment in seven patients (5%). Of the 22 patients treated with an EVG, three were converted to open resection, because of iliac stenosis in two patients and premature stent deployment in one patient (initial technical success rate, 86%). CONCLUSION: Based on currently available technology, 80% of patients were not candidates for an EVG because of proximal calcification, short aortic or distal cuff, coexisting distal iliac aneurysm, and stenotic iliac disease. Even with the use of adjunctive procedures, most patients still require open repair. Significant changes in design will be necessary to apply these devices to most patients with an AAA.  (+info)

Asymptomatic rupture of an aortoiliac aneurysm. (6/186)

The rupture of an abdominal aortic aneurysm is one of the most feared complications confronted by cardiovascular surgeons. Such ruptures are usually catastrophic, but in some instances the rupture is posterior and remains sealed. These chronic ruptures may manifest with any of a variety of clinical presentations. This report describes an uncommon presentation of a chronic rupture of an aortoiliac aneurysm in a patient with generalized aneurysmal disease. The rupture presented as an asymptomatic giant pulsatile mass in the patient's abdomen. The mass had developed over a period of several years. The literature is also reviewed.  (+info)

Midterm experience with the endovascular treatment of isolated iliac aneurysms. (7/186)

PURPOSE: This report describes our 5-year experience with the endovascular repair of isolated iliac aneurysms and pseudoaneurysms. METHODS: Between June 1993 and July 1998, 40 isolated iliac aneurysms and pseudoaneurysms were treated with endovascular grafts in 39 patients. Thirty-seven aneurysms were treated with endovascular grafts composed of polytetrafluoroethylene grafts and balloon expandable stents, and the other three underwent repair with a polycarbonate urethane endoluminal graft. RESULTS: All the patients underwent initially successful endovascular treatment of isolated iliac aneurysms and pseudoaneurysms and were followed from 1 to 51 months (mean, 18 months). The 4-year primary patency rate was 94.5% +/- 10%. The perioperative complications included one episode of distal embolization, an episode of colonic ischemia, five episodes of kinking or compression of the endovascular graft, and one early postoperative graft thrombosis. There was only one perioperative death in a patient whose aneurysm ruptured in the operating room just before endovascular repair. The median postoperative length of hospital stay was 3.0 +/- 1.3 days in this group of patients at moderate and high risk. The long-term complications included one graft thrombosis and two endoleaks. One small endoleak was followed until the patient died of unrelated causes, and the other one led to aneurysm rupture in the only patient temporarily lost to follow-up examination. This patient successfully underwent treatment in the standard open surgical fashion. To date, all the other aneurysms have remained stable or have decreased in size during the follow-up examinations with duplex or contrast-enhanced computed tomographic scans. CONCLUSION: Endovascular repair of iliac aneurysms and pseudoaneurysms is a safe and effective technique with good midterm results in patients at standard and high risk. These grafts are particularly beneficial for patients with medical, surgical, or anatomic contraindications for open surgical repair.  (+info)

Midterm results of endovascular stented grafts for the treatment of isolated iliac artery aneurysms. (8/186)

PURPOSE: Isolated aneurysms of the iliac arteries are uncommon lesions that require surgical repair to prevent rupture. METHODS: During a 4-year period, we used endovascular stented grafts (EGs) to treat 28 iliac artery aneurysms that were not associated with aortic aneurysms. Twenty-five patients, with a total of 24 common iliac (15 right, nine left) and four internal iliac (two right, two left) artery aneurysms, underwent endovascular grafting. There were 24 men and 1 woman, with a mean age of 74 years (range, 51 to 88 years). Combined common and internal iliac artery aneurysms were present in three patients. Nineteen patients who underwent treatment with EGs were administered epidural anesthesia (22 epidural, two local, one general). Before surgery, one patient had lower extremity embolization and ischemia from the aneurysm, three had abdominal or back pain, and the remaining were asymptomatic. The EGs were constructed of polytetrafluoroethylene grafts and balloon expandable stents. RESULTS: Four procedure-related complications (12%) occurred (distal extremity embolization, n = 1; wound complications, n = 2; colonic mucosal ischemia, n = 1). Only a minimal reduction in the aneurysmal diameter was seen in 90% of the iliac artery aneurysms treated. The remaining lesions showed no change in size, and no aneurysm had an increase in cross-sectional diameter on computed tomographic images enduring a follow-up period up to 4 years (mean, 24 months). One aneurysm ruptured after successful endovascular exclusion, and the patient underwent treatment with open repair. The 3-year primary patency rate of iliac EGs was 86%. CONCLUSION: EGs appear to show satisfactory safety and efficacy for the repair of isolated aneurysms of the iliac arteries.  (+info)

An iliac aneurysm is a localized dilation or bulging of the iliac artery, which are the main blood vessels that supply blood to the lower extremities. The iliac arteries branch off from the abdominal aorta and divide into the internal and external iliac arteries. An aneurysm occurs when the wall of the artery becomes weakened and balloons out, leading to an increased risk of rupture and serious complications such as bleeding and organ damage. Iliac aneurysms are often asymptomatic but can cause symptoms such as abdominal or back pain, leg pain, or a pulsating mass in the abdomen or groin. They are typically diagnosed through imaging tests such as ultrasound, CT scan, or MRI and may require surgical intervention to prevent rupture and other complications.

An aneurysm is a localized, balloon-like bulge in the wall of a blood vessel. It occurs when the pressure inside the vessel causes a weakened area to swell and become enlarged. Aneurysms can develop in any blood vessel, but they are most common in arteries at the base of the brain (cerebral aneurysm) and the main artery carrying blood from the heart to the rest of the body (aortic aneurysm).

Aneurysms can be classified as saccular or fusiform, depending on their shape. A saccular aneurysm is a round or oval bulge that projects from the side of a blood vessel, while a fusiform aneurysm is a dilated segment of a blood vessel that is uniform in width and involves all three layers of the arterial wall.

The size and location of an aneurysm can affect its risk of rupture. Generally, larger aneurysms are more likely to rupture than smaller ones. Aneurysms located in areas with high blood pressure or where the vessel branches are also at higher risk of rupture.

Ruptured aneurysms can cause life-threatening bleeding and require immediate medical attention. Symptoms of a ruptured aneurysm may include sudden severe headache, neck stiffness, nausea, vomiting, blurred vision, or loss of consciousness. Unruptured aneurysms may not cause any symptoms and are often discovered during routine imaging tests for other conditions.

Treatment options for aneurysms depend on their size, location, and risk of rupture. Small, unruptured aneurysms may be monitored with regular imaging tests to check for growth or changes. Larger or symptomatic aneurysms may require surgical intervention, such as clipping or coiling, to prevent rupture and reduce the risk of complications.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

Blood vessel prosthesis implantation is a surgical procedure in which an artificial blood vessel, also known as a vascular graft or prosthetic graft, is inserted into the body to replace a damaged or diseased native blood vessel. The prosthetic graft can be made from various materials such as Dacron (polyester), PTFE (polytetrafluoroethylene), or bovine/human tissue.

The implantation of a blood vessel prosthesis is typically performed to treat conditions that cause narrowing or blockage of the blood vessels, such as atherosclerosis, aneurysms, or traumatic injuries. The procedure may be used to bypass blocked arteries in the legs (peripheral artery disease), heart (coronary artery bypass surgery), or neck (carotid endarterectomy). It can also be used to replace damaged veins for hemodialysis access in patients with kidney failure.

The success of blood vessel prosthesis implantation depends on various factors, including the patient's overall health, the location and extent of the vascular disease, and the type of graft material used. Possible complications include infection, bleeding, graft thrombosis (clotting), and graft failure, which may require further surgical intervention or endovascular treatments.

A blood vessel prosthesis is a medical device that is used as a substitute for a damaged or diseased natural blood vessel. It is typically made of synthetic materials such as polyester, Dacron, or ePTFE (expanded polytetrafluoroethylene) and is designed to mimic the function of a native blood vessel by allowing the flow of blood through it.

Blood vessel prostheses are used in various surgical procedures, including coronary artery bypass grafting, peripheral arterial reconstruction, and the creation of arteriovenous fistulas for dialysis access. The choice of material and size of the prosthesis depends on several factors, such as the location and diameter of the vessel being replaced, the patient's age and overall health status, and the surgeon's preference.

It is important to note that while blood vessel prostheses can be effective in restoring blood flow, they may also carry risks such as infection, thrombosis (blood clot formation), and graft failure over time. Therefore, careful patient selection, surgical technique, and postoperative management are crucial for the success of these procedures.

An infected aneurysm, also known as a mycotic aneurysm, is a localized dilation or bulging of the wall of a blood vessel that has been invaded and damaged by infectious organisms. This type of aneurysm can occur in any blood vessel, but they are most commonly found in the aorta and cerebral arteries.

Infected aneurysms are usually caused by bacterial or fungal infections that spread through the bloodstream from another part of the body, such as endocarditis (infection of the heart valves), pneumonia, or skin infections. The infection weakens the vessel wall, causing it to bulge and potentially rupture, which can lead to serious complications such as hemorrhage, stroke, or even death.

Symptoms of infected aneurysm may include fever, chills, fatigue, weakness, weight loss, and localized pain or tenderness in the area of the aneurysm. Diagnosis is typically made through imaging tests such as CT angiography, MRI, or ultrasound, along with blood cultures to identify the causative organism. Treatment usually involves a combination of antibiotics to eliminate the infection and surgical intervention to repair or remove the aneurysm.

The iliac arteries are major branches of the abdominal aorta, the large artery that carries oxygen-rich blood from the heart to the rest of the body. The iliac arteries divide into two branches, the common iliac arteries, which further bifurcate into the internal and external iliac arteries.

The internal iliac artery supplies blood to the lower abdomen, pelvis, and the reproductive organs, while the external iliac artery provides blood to the lower extremities, including the legs and feet. Together, the iliac arteries play a crucial role in circulating blood throughout the body, ensuring that all tissues and organs receive the oxygen and nutrients they need to function properly.

Therapeutic embolization is a medical procedure that involves intentionally blocking or obstructing blood vessels to stop excessive bleeding or block the flow of blood to a tumor or abnormal tissue. This is typically accomplished by injecting small particles, such as microspheres or coils, into the targeted blood vessel through a catheter, which is inserted into a larger blood vessel and guided to the desired location using imaging techniques like X-ray or CT scanning. The goal of therapeutic embolization is to reduce the size of a tumor, control bleeding, or block off abnormal blood vessels that are causing problems.

The buttocks are the rounded part of the lower back, above the hips. They are formed by the masses of muscle tissue (gluteal muscles) and fat that cover the coccyx and sacrum, which are the terminal parts of the vertebral column. The primary function of the gluteal muscles is to provide stability and strength for walking, running, and jumping movements.

In anatomical terms, the buttocks are also known as the natis or nates. Medical professionals may use these terms when discussing conditions or treatments related to this area of the body.

An aortic aneurysm is a medical condition characterized by the abnormal widening or bulging of the wall of the aorta, which is the largest artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. When the aortic wall weakens, it can stretch and balloon out, forming an aneurysm.

Aortic aneurysms can occur anywhere along the aorta but are most commonly found in the abdominal section (abdominal aortic aneurysm) or the chest area (thoracic aortic aneurysm). The size and location of the aneurysm, as well as the patient's overall health, determine the risk of rupture and associated complications.

Aneurysms often do not cause symptoms until they become large or rupture. Symptoms may include:

* Pain in the chest, back, or abdomen
* Pulsating sensation in the abdomen
* Difficulty breathing
* Hoarseness
* Coughing or vomiting

Risk factors for aortic aneurysms include age, smoking, high blood pressure, family history, and certain genetic conditions. Treatment options depend on the size and location of the aneurysm and may include monitoring, medication, or surgical repair.

Vasculogenic impotence, also known as vasculogenic erectile dysfunction (VED), is a specific type of erectile dysfunction that is primarily caused by conditions that affect the blood flow in the penis. This means that the blood vessels that supply the penis with oxygenated blood necessary for an erection are not functioning properly.

The term "vasculogenic" refers to the origin or development of blood vessels, and in this context, it specifically relates to the dysfunction of the blood vessels responsible for erectile function. Common conditions that can lead to vasculogenic impotence include atherosclerosis (hardening of the arteries), hypertension (high blood pressure), diabetes, high cholesterol levels, and smoking.

In vasculogenic impotence, the smooth muscle in the penis does not relax properly, which restricts blood flow into the corpora cavernosa, the sponge-like erectile tissue inside the penis. As a result, an adequate erection cannot be achieved or maintained, leading to difficulty with sexual intercourse and overall sexual satisfaction.

Treatment for vasculogenic impotence typically involves addressing the underlying medical conditions that contribute to poor blood flow in the penis. This may include lifestyle modifications such as quitting smoking, exercising regularly, and adopting a healthy diet. Medications like phosphodiesterase-5 inhibitors (PDE5is) can also be prescribed to improve erectile function by increasing blood flow to the penis. In some cases, more invasive treatments like penile revascularization surgery may be considered for severe cases of vasculogenic impotence that do not respond to other forms of treatment.

An abdominal aortic aneurysm (AAA) is a localized dilatation or bulging of the abdominal aorta, which is the largest artery in the body that supplies oxygenated blood to the trunk and lower extremities. Normally, the diameter of the abdominal aorta measures about 2 centimeters (cm) in adults. However, when the diameter of the aorta exceeds 3 cm, it is considered an aneurysm.

AAA can occur anywhere along the length of the abdominal aorta, but it most commonly occurs below the renal arteries and above the iliac bifurcation. The exact cause of AAA remains unclear, but several risk factors have been identified, including smoking, hypertension, advanced age, male gender, family history, and certain genetic disorders such as Marfan syndrome and Ehlers-Danlos syndrome.

The main concern with AAA is the risk of rupture, which can lead to life-threatening internal bleeding. The larger the aneurysm, the greater the risk of rupture. Symptoms of AAA may include abdominal or back pain, a pulsating mass in the abdomen, or symptoms related to compression of surrounding structures such as the kidneys, ureters, or nerves. However, many AAAs are asymptomatic and are discovered incidentally during imaging studies performed for other reasons.

Diagnosis of AAA typically involves imaging tests such as ultrasound, computed tomography (CT) scan, or magnetic resonance imaging (MRI). Treatment options depend on the size and location of the aneurysm, as well as the patient's overall health status. Small AAAs that are not causing symptoms may be monitored with regular imaging studies to assess for growth. Larger AAAs or those that are growing rapidly may require surgical repair, either through open surgery or endovascular repair using a stent graft.

A ruptured aneurysm is a serious medical condition that occurs when the wall of an artery or a blood vessel weakens and bulges out, forming an aneurysm, which then bursts, causing bleeding into the surrounding tissue. This can lead to internal hemorrhage, organ damage, and even death, depending on the location and severity of the rupture.

Ruptured aneurysms are often caused by factors such as high blood pressure, smoking, aging, and genetic predisposition. They can occur in any part of the body but are most common in the aorta (the largest artery in the body) and the cerebral arteries (in the brain).

Symptoms of a ruptured aneurysm may include sudden and severe pain, weakness or paralysis, difficulty breathing, confusion, loss of consciousness, and shock. Immediate medical attention is required to prevent further complications and increase the chances of survival. Treatment options for a ruptured aneurysm may include surgery, endovascular repair, or medication to manage symptoms and prevent further bleeding.

A heart aneurysm, also known as a ventricular aneurysm, is a localized bulging or ballooning of the heart muscle in the left ventricle, which is the main pumping chamber of the heart. This condition typically occurs following a myocardial infarction (heart attack), where blood flow to a portion of the heart muscle is blocked, leading to tissue death and weakness in the heart wall. As a result, the weakened area may stretch and form a sac-like bulge or aneurysm.

Heart aneurysms can vary in size and may cause complications such as blood clots, arrhythmias (irregular heartbeats), or heart failure. In some cases, they may be asymptomatic and discovered during routine imaging tests. The diagnosis of a heart aneurysm is typically made through echocardiography, cardiac MRI, or cardiac CT scans. Treatment options depend on the size, location, and symptoms of the aneurysm and may include medications, surgical repair, or implantation of a device to support heart function.

A thoracic aortic aneurysm is a localized dilatation or bulging of the thoracic aorta, which is the part of the aorta that runs through the chest cavity. The aorta is the largest artery in the body, and it carries oxygenated blood from the heart to the rest of the body.

Thoracic aortic aneurysms can occur anywhere along the thoracic aorta, but they are most commonly found in the aortic arch or the descending thoracic aorta. These aneurysms can vary in size, and they are considered significant when they are 50% larger than the expected normal diameter of the aorta.

The exact cause of thoracic aortic aneurysms is not fully understood, but several factors can contribute to their development, including:

* Atherosclerosis (hardening and narrowing of the arteries)
* High blood pressure
* Genetic disorders such as Marfan syndrome or Ehlers-Danlos syndrome
* Infections or inflammation of the aorta
* Trauma to the chest

Thoracic aortic aneurysms can be asymptomatic and found incidentally on imaging studies, or they may present with symptoms such as chest pain, cough, difficulty swallowing, or hoarseness. If left untreated, thoracic aortic aneurysms can lead to serious complications, including aortic dissection (tearing of the inner layer of the aorta) or rupture, which can be life-threatening.

Treatment options for thoracic aortic aneurysms include medical management with blood pressure control and cholesterol-lowering medications, as well as surgical repair or endovascular stenting, depending on the size, location, and growth rate of the aneurysm. Regular follow-up imaging is necessary to monitor the size and progression of the aneurysm over time.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

The pelvis is the lower part of the trunk, located between the abdomen and the lower limbs. It is formed by the fusion of several bones: the ilium, ischium, and pubis (which together form the hip bone on each side), and the sacrum and coccyx in the back. The pelvis has several functions including supporting the weight of the upper body when sitting, protecting the lower abdominal organs, and providing attachment for muscles that enable movement of the lower limbs. In addition, it serves as a bony canal through which the reproductive and digestive tracts pass. The pelvic cavity contains several vital organs such as the bladder, parts of the large intestine, and in females, the uterus, ovaries, and fallopian tubes.

A stent is a small mesh tube that's used to treat narrow or weak arteries. Arteries are blood vessels that carry blood away from your heart to other parts of your body. A stent is placed in an artery as part of a procedure called angioplasty. Angioplasty restores blood flow through narrowed or blocked arteries by inflating a tiny balloon inside the blocked artery to widen it.

The stent is then inserted into the widened artery to keep it open. The stent is usually made of metal, but some are coated with medication that is slowly and continuously released to help prevent the formation of scar tissue in the artery. This can reduce the chance of the artery narrowing again.

Stents are also used in other parts of the body, such as the neck (carotid artery) and kidneys (renal artery), to help maintain blood flow and prevent blockages. They can also be used in the urinary system to treat conditions like ureteropelvic junction obstruction or narrowing of the urethra.

A dissecting aneurysm is a serious and potentially life-threatening condition that occurs when there is a tear in the inner layer of the artery wall, allowing blood to flow between the layers of the artery wall. This can cause the artery to bulge or balloon out, leading to a dissection aneurysm.

Dissecting aneurysms can occur in any artery, but they are most commonly found in the aorta, which is the largest artery in the body. When a dissecting aneurysm occurs in the aorta, it is often referred to as a "dissecting aortic aneurysm."

Dissecting aneurysms can be caused by various factors, including high blood pressure, atherosclerosis (hardening and narrowing of the arteries), genetic disorders that affect the connective tissue, trauma, or illegal drug use (such as cocaine).

Symptoms of a dissecting aneurysm may include sudden severe chest or back pain, which can feel like ripping or tearing, shortness of breath, sweating, lightheadedness, or loss of consciousness. If left untreated, a dissecting aneurysm can lead to serious complications, such as rupture of the artery, stroke, or even death.

Treatment for a dissecting aneurysm typically involves surgery or endovascular repair to prevent further damage and reduce the risk of rupture. The specific treatment approach will depend on various factors, including the location and size of the aneurysm, the patient's overall health, and their medical history.

Prosthesis design is a specialized field in medical device technology that involves creating and developing artificial substitutes to replace a missing body part, such as a limb, tooth, eye, or internal organ. The design process typically includes several stages: assessment of the patient's needs, selection of appropriate materials, creation of a prototype, testing and refinement, and final fabrication and fitting of the prosthesis.

The goal of prosthesis design is to create a device that functions as closely as possible to the natural body part it replaces, while also being comfortable, durable, and aesthetically pleasing for the patient. The design process may involve collaboration between medical professionals, engineers, and designers, and may take into account factors such as the patient's age, lifestyle, occupation, and overall health.

Prosthesis design can be highly complex, particularly for advanced devices such as robotic limbs or implantable organs. These devices often require sophisticated sensors, actuators, and control systems to mimic the natural functions of the body part they replace. As a result, prosthesis design is an active area of research and development in the medical field, with ongoing efforts to improve the functionality, comfort, and affordability of these devices for patients.

Equipment failure is a term used in the medical field to describe the malfunction or breakdown of medical equipment, devices, or systems that are essential for patient care. This can include simple devices like syringes and thermometers, as well as complex machines such as ventilators, infusion pumps, and imaging equipment.

Equipment failure can have serious consequences for patients, including delayed or inappropriate treatment, injury, or even death. It is therefore essential that medical equipment is properly maintained, tested, and repaired to ensure its safe and effective operation.

There are many potential causes of equipment failure, including:

* Wear and tear from frequent use
* Inadequate cleaning or disinfection
* Improper handling or storage
* Power supply issues
* Software glitches or bugs
* Mechanical failures or defects
* Human error or misuse

To prevent equipment failure, healthcare facilities should have established policies and procedures for the acquisition, maintenance, and disposal of medical equipment. Staff should be trained in the proper use and handling of equipment, and regular inspections and testing should be performed to identify and address any potential issues before they lead to failure.

A coronary aneurysm is a localized dilation or bulging of a portion of the wall of a coronary artery, which supplies blood to the muscle tissue of the heart. It's similar to a bubble or balloon-like structure that forms within the artery wall due to weakness in the arterial wall, leading to abnormal enlargement or widening.

Coronary aneurysms can vary in size and may be classified as true or false aneurysms based on their structure. True aneurysms involve all three layers of the artery wall, while false aneurysms (also known as pseudoaneurysms) only have one or two layers involved, with the remaining layer disrupted.

These aneurysms can lead to complications such as blood clots forming inside the aneurysm sac, which can then dislodge and cause blockages in smaller coronary arteries (embolism). Additionally, coronary aneurysms may rupture, leading to severe internal bleeding and potentially life-threatening situations.

Coronary aneurysms are often asymptomatic but can present with symptoms such as chest pain, shortness of breath, or palpitations, especially if the aneurysm causes a significant narrowing (stenosis) in the affected artery. They can be diagnosed through imaging techniques like coronary angiography, computed tomography (CT), or magnetic resonance imaging (MRI). Treatment options include medications to manage symptoms and prevent complications, as well as surgical interventions such as stenting or bypass grafting to repair or reroute the affected artery.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

A reoperation is a surgical procedure that is performed again on a patient who has already undergone a previous operation for the same or related condition. Reoperations may be required due to various reasons, such as inadequate initial treatment, disease recurrence, infection, or complications from the first surgery. The nature and complexity of a reoperation can vary widely depending on the specific circumstances, but it often carries higher risks and potential complications compared to the original operation.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Cerebral angiography is a medical procedure that involves taking X-ray images of the blood vessels in the brain after injecting a contrast dye into them. This procedure helps doctors to diagnose and treat various conditions affecting the blood vessels in the brain, such as aneurysms, arteriovenous malformations, and stenosis (narrowing of the blood vessels).

During the procedure, a catheter is inserted into an artery in the leg and threaded through the body to the blood vessels in the neck or brain. The contrast dye is then injected through the catheter, and X-ray images are taken to visualize the blood flow through the brain's blood vessels.

Cerebral angiography provides detailed images of the blood vessels in the brain, allowing doctors to identify any abnormalities or blockages that may be causing symptoms or increasing the risk of stroke. Based on the results of the cerebral angiography, doctors can develop a treatment plan to address these issues and prevent further complications.

Aortic rupture is a medical emergency that refers to the tearing or splitting of the aorta, which is the largest and main artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. An aortic rupture can lead to life-threatening internal bleeding and requires immediate medical attention.

There are two types of aortic ruptures:

1. Aortic dissection: This occurs when there is a tear in the inner lining of the aorta, allowing blood to flow between the layers of the aortic wall. This can cause the aorta to bulge or split, leading to a rupture.
2. Thoracic aortic aneurysm rupture: An aneurysm is a weakened and bulging area in the aortic wall. When an aneurysm in the thoracic aorta (the part of the aorta that runs through the chest) ruptures, it can cause severe bleeding and other complications.

Risk factors for aortic rupture include high blood pressure, smoking, aging, family history of aortic disease, and certain genetic conditions such as Marfan syndrome or Ehlers-Danlos syndrome. Symptoms of an aortic rupture may include sudden severe chest or back pain, difficulty breathing, weakness, sweating, and loss of consciousness. Treatment typically involves emergency surgery to repair the aorta and control bleeding.

A false aneurysm, also known as a pseudoaneurysm, is a type of aneurysm that occurs when there is a leakage or rupture of blood from a blood vessel into the surrounding tissues, creating a pulsating hematoma or collection of blood. Unlike true aneurysms, which involve a localized dilation or bulging of the blood vessel wall, false aneurysms do not have a complete covering of all three layers of the arterial wall (intima, media, and adventitia). Instead, they are typically covered by only one or two layers, such as the intima and adventitia, or by surrounding tissues like connective tissue or fascia.

False aneurysms can result from various factors, including trauma, infection, iatrogenic causes (such as medical procedures), or degenerative changes in the blood vessel wall. They are more common in arteries than veins and can occur in any part of the body. If left untreated, false aneurysms can lead to serious complications such as rupture, thrombosis, distal embolization, or infection. Treatment options for false aneurysms include surgical repair, endovascular procedures, or observation with regular follow-up imaging.

The abdominal aorta is the portion of the aorta, which is the largest artery in the body, that runs through the abdomen. It originates from the thoracic aorta at the level of the diaphragm and descends through the abdomen, where it branches off into several smaller arteries that supply blood to the pelvis, legs, and various abdominal organs. The abdominal aorta is typically divided into four segments: the suprarenal, infrarenal, visceral, and parietal portions. Disorders of the abdominal aorta can include aneurysms, atherosclerosis, and dissections, which can have serious consequences if left untreated.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

A subarachnoid hemorrhage is a type of stroke that results from bleeding into the space surrounding the brain, specifically within the subarachnoid space which contains cerebrospinal fluid (CSF). This space is located between the arachnoid membrane and the pia mater, two of the three layers that make up the meninges, the protective covering of the brain and spinal cord.

The bleeding typically originates from a ruptured aneurysm, a weakened area in the wall of a cerebral artery, or less commonly from arteriovenous malformations (AVMs) or head trauma. The sudden influx of blood into the CSF-filled space can cause increased intracranial pressure, irritation to the brain, and vasospasms, leading to further ischemia and potential additional neurological damage.

Symptoms of a subarachnoid hemorrhage may include sudden onset of severe headache (often described as "the worst headache of my life"), neck stiffness, altered mental status, nausea, vomiting, photophobia, and focal neurological deficits. Rapid diagnosis and treatment are crucial to prevent further complications and improve the chances of recovery.

Endovascular procedures are minimally invasive medical treatments that involve accessing and repairing blood vessels or other interior parts of the body through small incisions or punctures. These procedures typically use specialized catheters, wires, and other tools that are inserted into the body through an artery or vein, usually in the leg or arm.

Endovascular procedures can be used to treat a wide range of conditions, including aneurysms, atherosclerosis, peripheral artery disease, carotid artery stenosis, and other vascular disorders. Some common endovascular procedures include angioplasty, stenting, embolization, and thrombectomy.

The benefits of endovascular procedures over traditional open surgery include smaller incisions, reduced trauma to surrounding tissues, faster recovery times, and lower risks of complications such as infection and bleeding. However, endovascular procedures may not be appropriate for all patients or conditions, and careful evaluation and consideration are necessary to determine the best treatment approach.

Digital subtraction angiography (DSA) is a medical imaging technique used to visualize the blood vessels and blood flow within the body. It combines the use of X-ray technology with digital image processing to produce detailed images of the vascular system.

In DSA, a contrast agent is injected into the patient's bloodstream through a catheter, which is typically inserted into an artery in the leg and guided to the area of interest using fluoroscopy. As the contrast agent flows through the blood vessels, X-ray images are taken at multiple time points.

The digital subtraction process involves taking a baseline image without contrast and then subtracting it from subsequent images taken with contrast. This allows for the removal of background structures and noise, resulting in clearer images of the blood vessels. DSA can be used to diagnose and evaluate various vascular conditions, such as aneurysms, stenosis, and tumors, and can also guide interventional procedures such as angioplasty and stenting.

Aortography is a medical procedure that involves taking X-ray images of the aorta, which is the largest blood vessel in the body. The procedure is usually performed to diagnose or assess various conditions related to the aorta, such as aneurysms, dissections, or blockages.

To perform an aortography, a contrast dye is injected into the aorta through a catheter that is inserted into an artery, typically in the leg or arm. The contrast dye makes the aorta visible on X-ray images, allowing doctors to see its structure and any abnormalities that may be present.

The procedure is usually performed in a hospital or outpatient setting and may require sedation or anesthesia. While aortography can provide valuable diagnostic information, it also carries some risks, such as allergic reactions to the contrast dye, damage to blood vessels, or infection. Therefore, it is typically reserved for situations where other diagnostic tests have been inconclusive or where more invasive treatment may be required.

Vascular surgical procedures are operations that are performed to treat conditions and diseases related to the vascular system, which includes the arteries, veins, and capillaries. These procedures can be invasive or minimally invasive and are often used to treat conditions such as peripheral artery disease, carotid artery stenosis, aortic aneurysms, and venous insufficiency.

Some examples of vascular surgical procedures include:

* Endarterectomy: a procedure to remove plaque buildup from the inside of an artery
* Bypass surgery: creating a new path for blood to flow around a blocked or narrowed artery
* Angioplasty and stenting: using a balloon to open a narrowed artery and placing a stent to keep it open
* Aneurysm repair: surgically repairing an aneurysm, a weakened area in the wall of an artery that has bulged out and filled with blood
* Embolectomy: removing a blood clot from a blood vessel
* Thrombectomy: removing a blood clot from a vein

These procedures are typically performed by vascular surgeons, who are trained in the diagnosis and treatment of vascular diseases.

Surgical instruments are specialized tools or devices that are used by medical professionals during surgical procedures to assist in various tasks such as cutting, dissecting, grasping, holding, retracting, clamping, and suturing body tissues. These instruments are designed to be safe, precise, and effective, with a variety of shapes, sizes, and materials used depending on the specific surgical application. Some common examples of surgical instruments include scalpels, forceps, scissors, hemostats, retractors, and needle holders. Proper sterilization and maintenance of these instruments are crucial to ensure patient safety and prevent infection.

Angiography is a medical procedure in which an x-ray image is taken to visualize the internal structure of blood vessels, arteries, or veins. This is done by injecting a radiopaque contrast agent (dye) into the blood vessel using a thin, flexible catheter. The dye makes the blood vessels visible on an x-ray image, allowing doctors to diagnose and treat various medical conditions such as blockages, narrowing, or malformations of the blood vessels.

There are several types of angiography, including:

* Cardiac angiography (also called coronary angiography) - used to examine the blood vessels of the heart
* Cerebral angiography - used to examine the blood vessels of the brain
* Peripheral angiography - used to examine the blood vessels in the limbs or other parts of the body.

Angiography is typically performed by a radiologist, cardiologist, or vascular surgeon in a hospital setting. It can help diagnose conditions such as coronary artery disease, aneurysms, and peripheral arterial disease, among others.

The Anterior Cerebral Artery (ACA) is a paired set of arteries that originate from the internal carotid artery or its branch, the posterior communicating artery. They supply oxygenated blood to the frontal lobes and parts of the parietal lobes of the brain.

The ACA runs along the medial side of each hemisphere, anterior to the corpus callosum, which is the largest bundle of nerve fibers connecting the two hemispheres of the brain. It gives off branches that supply the motor and sensory areas of the lower extremities, as well as the areas responsible for higher cognitive functions such as language, memory, and emotion.

The ACA is divided into several segments: A1, A2, A3, and A4. The A1 segment runs from its origin at the internal carotid artery to the anterior communicating artery, which connects the two ACAs. The A2 segment extends from the anterior communicating artery to the bifurcation of the ACA into its terminal branches. The A3 and A4 segments are the distal branches that supply the frontal and parietal lobes.

Interruptions or blockages in the flow of blood through the ACA can lead to various neurological deficits, including weakness or paralysis of the lower extremities, language impairment, and changes in cognitive function.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

Neurosurgical procedures are operations that are performed on the brain, spinal cord, and peripheral nerves. These procedures are typically carried out by neurosurgeons, who are medical doctors with specialized training in the diagnosis and treatment of disorders of the nervous system. Neurosurgical procedures can be used to treat a wide range of conditions, including traumatic injuries, tumors, aneurysms, vascular malformations, infections, degenerative diseases, and congenital abnormalities.

Some common types of neurosurgical procedures include:

* Craniotomy: A procedure in which a bone flap is temporarily removed from the skull to gain access to the brain. This type of procedure may be performed to remove a tumor, repair a blood vessel, or relieve pressure on the brain.
* Spinal fusion: A procedure in which two or more vertebrae in the spine are fused together using bone grafts and metal hardware. This is often done to stabilize the spine and alleviate pain caused by degenerative conditions or spinal deformities.
* Microvascular decompression: A procedure in which a blood vessel that is causing pressure on a nerve is repositioned or removed. This type of procedure is often used to treat trigeminal neuralgia, a condition that causes severe facial pain.
* Deep brain stimulation: A procedure in which electrodes are implanted in specific areas of the brain and connected to a battery-operated device called a neurostimulator. The neurostimulator sends electrical impulses to the brain to help alleviate symptoms of movement disorders such as Parkinson's disease or dystonia.
* Stereotactic radiosurgery: A non-invasive procedure that uses focused beams of radiation to treat tumors, vascular malformations, and other abnormalities in the brain or spine. This type of procedure is often used for patients who are not good candidates for traditional surgery due to age, health status, or location of the lesion.

Neurosurgical procedures can be complex and require a high degree of skill and expertise. Patients considering neurosurgical treatment should consult with a qualified neurosurgeon to discuss their options and determine the best course of action for their individual situation.

An endoleak is a complication that can occur following minimally invasive endovascular aortic repair (EVAR) for abdominal aortic aneurysms. It refers to the persistence or recurrence of blood flow outside the lumen of the endograft but within the aneurysm sac. Endoleaks are classified into different types based on their source and can be categorized as follows:

1. Type I endoleak: This type of endoleak occurs due to inadequate sealing at the attachment sites between the endograft and the aortic wall. It can further be divided into two subtypes - Type Ia (proximal) and Type Ib (distal).
2. Type II endoleak: This type of endoleak results from retrograde flow from branch vessels that enter the aneurysm sac, such as lumbar arteries or inferior mesenteric artery. Type II endoleaks are often asymptomatic and may not require immediate treatment.
3. Type III endoleak: This type of endoleak occurs due to a defect in the structural integrity of the endograft itself, leading to communication between different components of the graft or between the graft and another vessel.
4. Type IV endoleak: This type of endoleak is caused by porosity in the graft material, allowing for leakage through the graft wall itself. It typically resolves on its own within 30 days post-procedure.
5. Type V endoleak (also known as endotension): This type of endoleak is characterized by an increase in sac size without a demonstrable endoleak on imaging. The exact cause remains unclear, but it may be related to continued pressurization of the aneurysm sac due to transmission of systemic pressure through the graft fabric.

Endoleaks can lead to persistent enlargement of the aneurysm sac and potential rupture if not addressed promptly. Therefore, regular follow-up imaging is essential after EVAR to monitor for endoleak development and address any issues that arise.

Aortitis is a medical condition characterized by inflammation of the aorta, which is the largest artery in the body that carries oxygenated blood from the heart to the rest of the body. The inflammation can cause damage to the aortic wall, leading to weakening, bulging (aneurysm), or tearing (dissection) of the aorta. Aortitis can be caused by various conditions, including infections, autoimmune diseases, and certain medications. It is essential to diagnose and treat aortitis promptly to prevent serious complications.

I'm sorry for any confusion, but "Platinum" is not a medical term. Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal.

However, in the field of oncology, platinum-based compounds are used as chemotherapeutic drugs. These include:

1. Cisplatin: This is a platinum-containing drug that is used to treat various types of cancers such as testicular cancer, ovarian cancer, bladder cancer, and others. It works by forming crosslinks with the DNA of cancer cells, which disrupts their function and leads to cell death.

2. Carboplatin: This is another platinum-based chemotherapy drug that is used to treat various types of cancers such as ovarian cancer, lung cancer, and others. It is less toxic than cisplatin but has similar mechanisms of action.

3. Oxaliplatin: This is a third platinum-based chemotherapy drug that is used to treat colon cancer and rectal cancer. Like the other two drugs, it forms crosslinks with DNA and disrupts cell function leading to cell death.

These drugs are not made of pure platinum but contain platinum compounds that have been synthesized for medical use.

Carotid artery diseases refer to conditions that affect the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the head and neck. The most common type of carotid artery disease is atherosclerosis, which occurs when fatty deposits called plaques build up in the inner lining of the arteries.

These plaques can cause the arteries to narrow or become blocked, reducing blood flow to the brain and increasing the risk of stroke. Other carotid artery diseases include carotid artery dissection, which occurs when there is a tear in the inner lining of the artery, and fibromuscular dysplasia, which is a condition that affects the muscle and tissue in the walls of the artery.

Symptoms of carotid artery disease may include neck pain or pulsations, transient ischemic attacks (TIAs) or "mini-strokes," and strokes. Treatment options for carotid artery disease depend on the severity and type of the condition but may include lifestyle changes, medications, endarterectomy (a surgical procedure to remove plaque from the artery), or angioplasty and stenting (procedures to open blocked arteries using a balloon and stent).

I'm sorry for any confusion, but "Polyethylene Terephthalates" is not a medical term. It is a type of polymer used in the manufacturing of various products, such as plastic bottles and textile fibers. Medically, you might encounter the abbreviation "PET" or "PET scan," which stands for "Positron Emission Tomography." A PET scan is a type of medical imaging that provides detailed pictures of the body's interior. If you have any medical terms you would like defined, I'd be happy to help!

The splenic artery is the largest branch of the celiac trunk, which arises from the abdominal aorta. It supplies blood to the spleen and several other organs in the upper left part of the abdomen. The splenic artery divides into several branches that ultimately form a network of capillaries within the spleen. These capillaries converge to form the main venous outflow, the splenic vein, which drains into the hepatic portal vein.

The splenic artery is a vital structure in the human body, and any damage or blockage can lead to serious complications, including splenic infarction (reduced blood flow to the spleen) or splenic rupture (a surgical emergency that can be life-threatening).

Angioplasty is a medical procedure used to open narrowed or blocked blood vessels, often referred to as coronary angioplasty when it involves the heart's blood vessels (coronary arteries). The term "angio" refers to an angiogram, which is a type of X-ray image that reveals the inside of blood vessels.

The procedure typically involves the following steps:

1. A thin, flexible catheter (tube) is inserted into a blood vessel, usually through a small incision in the groin or arm.
2. The catheter is guided to the narrowed or blocked area using real-time X-ray imaging.
3. Once in place, a tiny balloon attached to the tip of the catheter is inflated to widen the blood vessel and compress any plaque buildup against the artery walls.
4. A stent (a small mesh tube) may be inserted to help keep the blood vessel open and prevent it from narrowing again.
5. The balloon is deflated, and the catheter is removed.

Angioplasty helps improve blood flow, reduce symptoms such as chest pain or shortness of breath, and lower the risk of heart attack in patients with blocked arteries. It's important to note that angioplasty is not a permanent solution for coronary artery disease, and lifestyle changes, medications, and follow-up care are necessary to maintain long-term cardiovascular health.

Balloon occlusion is a medical procedure that involves the use of a small, deflated balloon at the end of a catheter, which can be inserted into a blood vessel or other tubular structure in the body. Once the balloon is in position, it is inflated with a fluid or gas to create a blockage or obstruction in the vessel. This can be used for various medical purposes, such as:

1. Controlling bleeding: By inflating the balloon in a blood vessel, doctors can temporarily stop the flow of blood to a specific area, allowing them to treat injuries or abnormalities that are causing excessive bleeding.
2. Vessel narrowing or blockage assessment: Balloon occlusion can be used to assess the severity of narrowing or blockages in blood vessels. By inflating the balloon and measuring the pressure differences upstream and downstream, doctors can determine the extent of the obstruction and plan appropriate treatment.
3. Embolization therapy: In some cases, balloon occlusion is used to deliver embolic agents (such as coils, particles, or glue) that block off blood flow to specific areas. This can be useful in treating conditions like tumors, arteriovenous malformations, or aneurysms.
4. Temporary vessel occlusion during surgery: During certain surgical procedures, it may be necessary to temporarily stop the flow of blood to a specific area. Balloon occlusion can be used to achieve this quickly and safely.
5. Assisting in the placement of stents or other devices: Balloon occlusion can help position and deploy stents or other medical devices by providing temporary support or blocking off blood flow during the procedure.

It is important to note that balloon occlusion procedures carry potential risks, such as vessel injury, infection, or embolism (the blockage of a blood vessel by a clot or foreign material). These risks should be carefully weighed against the benefits when considering this type of treatment.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

The Sinus of Valsalva are three pouch-like dilations or outpouchings located at the upper part (root) of the aorta, just above the aortic valve. They are named after Antonio Maria Valsalva, an Italian anatomist and physician. These sinuses are divided into three parts:

1. Right Sinus of Valsalva: It is located to the right of the ascending aorta and usually gives rise to the right coronary artery.
2. Left Sinus of Valsalva: It is situated to the left of the ascending aorta and typically gives rise to the left coronary artery.
3. Non-coronary Sinus of Valsalva: This sinus is located in between the right and left coronary sinuses, and it does not give rise to any coronary arteries.

These sinuses play a crucial role during the cardiac cycle, particularly during ventricular contraction (systole). The pressure difference between the aorta and the ventricles causes the aortic valve cusps to be pushed into these sinuses, preventing the backflow of blood from the aorta into the ventricles.

Anatomical variations in the size and shape of the Sinuses of Valsalva can occur, and certain conditions like congenital heart diseases (e.g., aortic valve stenosis or bicuspid aortic valve) may affect their structure and function. Additionally, aneurysms or ruptures of the sinuses can lead to severe complications, such as cardiac tamponade, endocarditis, or stroke.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Learn about Iliac Aneurysm at online-medical-dictionary.org ... Iliac Aneurysm. Synonyms. Aneurysm, Iliac. Aneurysms, Iliac. ... Abnormal balloon- or sac-like dilatation in the wall of any one of the iliac arteries including the common, the internal, or ...
Iliac Branch Devices in the Repair of Ruptured Aorto-iliac Aneurysms : A Multicenter Study. *Mark ... PURPOSE: To evaluate the outcomes of preserving the internal iliac artery (IIA) with iliac branched devices (IBDs) during acute ... PURPOSE: To evaluate the outcomes of preserving the internal iliac artery (IIA) with iliac branched devices (IBDs) during acute ... with iliac branched devices (IBDs) during acute endovascular repair of ruptured aortoiliac aneurysms.,/p,,p,MATERIAL AND ...
Gore Iliac Branch Endoprosthesis for treatment of bilateral common iliac artery aneurysms. J Vasc Surg. 2018 07; 68(1):100-108. ... Gore Iliac Branch Endoprosthesis for treatment of bilateral common iliac artery aneurysms. ... Gore Iliac Branch Endoprosthesis for treatment of bilateral common iliac artery aneurysms. ...
Iliac Aneurysm -- surgery. Ligation -- methods 4. Ligation of right-external iliac artery for traumatic aneurism of femoral ... Iliac Aneurysm -- surgery. Rupture, Spontaneous -- surgery 3. Inguinal aneurism: successful ligation of external iliac artery ... Start Over You searched for: Subjects Iliac Aneurysm -- surgery ✖Remove constraint Subjects: Iliac Aneurysm -- surgery ... Iliac Aneurysm -- surgery. Iliac Artery -- surgery. Ligation 2. Laparotomy in the treatment of spontaneous gluteal and sciatic ...
The common iliac artery is classified as: Aneurysm presentation may range from life-threatening complications of hypovolemic ... The heart, including coronary artery aneurysms, ventricular aneurysms, aneurysm of sinus of Valsalva, and aneurysms following ... Without treatment, these aneurysms will ultimately progress and rupture. Infection. A mycotic aneurysm is an aneurysm that ... Wikimedia Commons has media related to Aneurysms. Look up aneurysm in Wiktionary, the free dictionary. Brain aneurysm and ...
Right common iliac. Negative. Unknown. DM. Y graft (negative). 6 mo. Survival at 3 y. ... Determining Infected Aortic Aneurysm Treatment Using Focused Detection of Helicobacter cinaedi Saito Jien. , Rimbara Emiko, ... Y graft replacement for abdominal aortic aneurysm. §Tissue culture results for all patients returned in 1 d; patient 5 had an ... Bacteriological examination, method of treatment, and outcomes for 10 patients with infected aortic aneurysms with or without ...
Ruptured iliac aneurysm presenting as lumbosacral plexopathy. Diagn Interv Radiol. 2008 Mar. 14(1):26-8. [QxMD MEDLINE Link]. [ ... Lower limb paralysis from ischaemic neuropathy of the lumbosacral plexus following aorto-iliac procedures. Interact Cardiovasc ...
Adverse consequences of internal iliac artery occlusion during endovascular repair of abdominal aortic aneurysms. ... Adverse consequences of internal iliac artery occlusion during endovascular repair of abdominal aortic aneurysms. Together ...
Iliac Aneurysm ... View other providers who treat Peripheral Arterial Aneurysm and ...
Iliac Aneurysm * Intravascular Ultrasound * Ischemic Cardiomyopathy * Laser Angioplasty * Laser Atherectomy * Lower Extremity ...
Customized endovascular repair of common iliac artery aneurysms. Hoo AS, Ryan L, Neville R, Mukherjee D. Hoo AS, et al. J Vasc ...
Aorto-iliac bypass: 4 Units. *Infra-renal aortic aneurysm (elective): 4 Units ...
Other source sites include abscess, fluid, iliac aneurysm, rectal swab, synovial fluid, tissue, or wound.. ¶ Resistance was ...
Infective internal iliac artery aneurysm caused by Campylobacter fetus. Intern. Med. 54, 2021-2024. doi: 10.2169/ ...
Obstruction of iliac vessels results in ischemia of the lower extremities (claudication). Atherosclerotic aneurysms show a ... Aortic aneurysms may rupture and cause death by hemorrhage into the retroperitoneal space or pleural cavities, depending on the ...
Lumbosacral plexopathy due to common iliac artery aneurysm misdiagnosed as intervertebral disc herniation. J Emerg Med. 2008 ... Internal iliac artery pseudoaneurysm: an unusual cause of sciatica and lumbosacral plexopathy. Am J Phys Med Rehabil. 2008 Aug ... Ischaemic lumbosacral plexopathy following aorto-iliac bypass graft: case report and review of literature. Ann R Coll Surg Engl ... Lower limb paralysis from ischaemic neuropathy of the lumbosacral plexus following aorto-iliac procedures. Interact Cardiovasc ...
Endovascular aneurysm repair (EVAR). *Angioplasty and stenting. *Iliac branch stent-graft. *Open abdominal aortic surgery ...
Adequate iliac/femoral access compatible with the required introduction systems,. * Non-aneurysmal aortic segments (fixation ... for descending thoracic aneurysms and ulcers," is on sale, and has been successfully implanted in the first patient in the US. ... Graft with the H&L-B One-Shot Introduction System is indicated for the endovascular treatment of patients with aneurysms or ... sites) proximal and distal to the aneurysm or ulcer: * with a length of at least 25 mm, and ...
All missed aneurysms were in patients with multiple aneurysms in whom the ruptured aneurysm was correctly identified by both ... Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology 2000;215:670-76. ... All missed aneurysms in our series were small unruptured aneurysms, which were found in patients with multiple aneurysms in ... The N/D ratios of aneurysm were, therefore, measurable in 91 aneurysms. Although the N/D ratio of aneurysm at MDCTA was ...
Parikh RS, Li S, Shackles C, Khaddash T.: Successful endovascular stenting of a bleeding external iliac vein mycotic aneurysm ...
Endovascular repair of abdominal aortic aneurysms with concomitant common iliac artery aneurysm: outcome analysis of the ... Internal iliac artery revascularisation versus internal iliac artery occlusion for endovascular treatment of aorto-iliac ... abdominal aortic aneurysms - EVAR - type II endoleak - preventive embolization - internal iliac arteries - endovascular repair ... Amplatzer plug to occlude the internal iliac artery during endovascular aortic aneurysm repair: a large multicenter study. Eur ...
Abdominal aortic & Iliac artery aneurysm repair (open and endovascular techniques). *Abdominal aortic & iliac artery stenosis ... For some individuals, this buildup restricts the blood flow, leading to vascular diseases and conditions such as aneurysms, ... from deep vein thrombosis to atherosclerosis and aneurysm. Our vascular medicine team provides diagnostic services, risk factor ...
Isolated right common iliac artery aneurysm and right common iliac artery-left common iliac vein fistula. Case report in the ...
Internal iliac artery aneurysm exclusion using new Amplatzer Vascular Plugs IV. Garriboli L., Jannello A. M. ... Endovascular treatment of ruptured thoracic aortic aneurysms. Coppi G., Gennai S., Silingardi R., Saitta G., Trevisi Borsari G ... Treatment of para- or juxtarenal or hostile neck abdominal aortic aneurysms using the retroperitoneal approach: personal ... Role of statins, smoking cessation, blood pressure control and life style in abdominal aortic aneurysms ...
By Application: Abdominal Aortic Aneurysm (AAA), Thoracic Aortic Aneurysm (TAA). By Type: Aorta-uni-iliac (AUI) Stent Grafts, ... The primary use of stent grafts is in the treatment of aortic aneurysms, which are bulges or ballooning of the aorta, the main ... Stent grafts offer a less invasive alternative to open surgical repair, as they can be delivered to the site of the aneurysm ... Stent grafts can also be used in other vascular conditions, such as thoracic aneurysms and aortic dissections, as well as in ...
This is the case of a 76-year-old man with ascending aorta aneurysm and aortic valve cusp calcification. The composite conduit ... Endovascular Interventions on the Iliac Artery January 18, 2011 Patient Selection Indications for endovascular repair of the ...
Iliac Aneurysm * Iliac Artery Endofibrosis * Iliac Artery Stenosis * Intestinal Artery Disease * IVC Occlusion ...
... iliac artery and renal artery. I also provide treatment for failed endovascular aneurysm repair, infected arterial grafts, ... aneurysms repair • Minimally invasive carotid artery surgery (transcarotid artery stenting). • Developing new vascular ... PEAK) WALL STRESS AS AN INDICATOR of ABDOMINAL AORTIC ANEURYSM SEVERITY. Jalalahmadi, Golnaz; Helguera, Maria; Mix, Doran S.; ... As a vascular surgeon, I am skilled in treating aneurysms, including aortic, abdominal aortic, thoracic aortic, visceral artery ...
2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur J Vasc Endovasc Surg (2018) ... prophylactic mesh placement reduces the rate of incisional hernia in high-risk groups with morbid obesity or aortic aneurysm, ... Clinical Practice Guidelines on the Managment of Abdominal Aortoiliac Artery Aneurysms8. Anders Wanhaineny, et al., Department ... The incidence of incisional hernias (IHs) after open repair of an abdominal aortic aneurysm (AAA) is high. Several randomized ...

No FAQ available that match "iliac aneurysm"

No images available that match "iliac aneurysm"