A herpesvirus infection of CATTLE characterized by INFLAMMATION and NECROSIS of the mucous membranes of the upper RESPIRATORY TRACT.
A species of VARICELLOVIRUS that causes INFECTIOUS BOVINE RHINOTRACHEITIS and other associated syndromes in CATTLE.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A species of RESPIROVIRUS frequently isolated from small children with pharyngitis, bronchitis, and pneumonia.
Acute disease of cattle caused by the bovine viral diarrhea viruses (DIARRHEA VIRUSES, BOVINE VIRAL). Often mouth ulcerations are the only sign but fever, diarrhea, drop in milk yield, and loss of appetite are also seen. Severity of clinical disease varies and is strain dependent. Outbreaks are characterized by low morbidity and high mortality.
Premature expulsion of the FETUS in animals.
Viruses infecting man and other vertebrates.
A genus of FLAVIVIRIDAE, also known as mucosal disease virus group, which is not arthropod-borne. Transmission is by direct and indirect contact, and by transplacental and congenital transmission. Species include BORDER DISEASE VIRUS, bovine viral diarrhea virus (DIARRHEA VIRUS, BOVINE VIRAL), and CLASSICAL SWINE FEVER VIRUS.
A group of viruses in the genus PESTIVIRUS, causing diarrhea, fever, oral ulcerations, hemorrhagic syndrome, and various necrotic lesions among cattle and other domestic animals. The two species (genotypes), BVDV-1 and BVDV-2 , exhibit antigenic and pathological differences. The historical designation, BVDV, consisted of both (then unrecognized) genotypes.
Infectious diseases of cattle, sheep, and goats, characterized by blepharospasm, lacrimation, conjunctivitis, and varying degrees of corneal opacity and ulceration. In cattle the causative agent is MORAXELLA (MORAXELLA) BOVIS; in sheep, MYCOPLASMA; RICKETTSIA; CHLAMYDIA; or ACHOLEPLASMA; in goats, RICKETTSIA.
A genus of the family PARAMYXOVIRIDAE (subfamily PARAMYXOVIRINAE) where all the virions have both HEMAGGLUTININ and NEURAMINIDASE activities and encode a non-structural C protein. SENDAI VIRUS is the type species.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Infections with viruses of the family PARAMYXOVIRIDAE. This includes MORBILLIVIRUS INFECTIONS; RESPIROVIRUS INFECTIONS; PNEUMOVIRUS INFECTIONS; HENIPAVIRUS INFECTIONS; AVULAVIRUS INFECTIONS; and RUBULAVIRUS INFECTIONS.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
The oldest recognized genus of the family PASTEURELLACEAE. It consists of several species. Its organisms occur most frequently as coccobacillus or rod-shaped and are gram-negative, nonmotile, facultative anaerobes. Species of this genus are found in both animals and humans.
Infections with bacteria of the genus PASTEURELLA.
A genus of gram-negative, aerobic bacteria occurring as rods (subgenus Moraxella) or cocci (subgenus Branhamella). Its organisms are parasitic on the mucous membranes of humans and other warm-blooded animals.
A family of enveloped, linear, double-stranded DNA viruses infecting a wide variety of animals. Subfamilies, based on biological characteristics, include: ALPHAHERPESVIRINAE; BETAHERPESVIRINAE; and GAMMAHERPESVIRINAE.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells.
Process of growing viruses in live animals, plants, or cultured cells.
Diseases of domestic and mountain sheep of the genus Ovis.
A species of gram-negative, aerobic bacteria that is most frequently isolated from bovine eyes in cases of infectious keratoconjunctivitis (KERATOCONJUNCTIVITIS, INFECTIOUS), but also occurs in unaffected eyes and the nasal cavity of cattle.
Simultaneous inflammation of the cornea and conjunctiva.
Virus diseases caused by the HERPESVIRIDAE.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types.
Tracheitis is an inflammation of the trachea, often caused by viral or bacterial infections, characterized by symptoms such as cough, sore throat, and difficulty swallowing.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Infections with bacteria of the family MORAXELLACEAE.
The medical science concerned with the prevention, diagnosis, and treatment of diseases in animals.
Drugs used by veterinarians in the treatment of animal diseases. The veterinarian's pharmacological armamentarium is the counterpart of drugs treating human diseases, with dosage and administration adjusted to the size, weight, disease, and idiosyncrasies of the species. In the United States most drugs are subject to federal regulations with special reference to the safety of drugs and residues in edible animal products.
Use for general articles concerning veterinary medical education.
Suspensions of killed or attenuated microorganisms (bacteria, viruses, fungi, protozoa), antigenic proteins, synthetic constructs, or other bio-molecular derivatives, administered for the prevention, amelioration, or treatment of infectious and other diseases.
A board-certified specialty of VETERINARY MEDICINE, requiring at least four years of special education, training, and practice of veterinary surgery after graduation from veterinary school. In the written, oral, and practical examinations candidates may choose either large or small animal surgery. (From AVMA Directory, 43d ed, p278)
Educational institutions for individuals specializing in the field of veterinary medicine.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.

BHV-1: new molecular approaches to control a common and widespread infection. (1/94)

BACKGROUND: Herpesviruses are widespread viruses, causing severe infections in both humans and animals. Eradication of herpesviruses is extremely difficult because of their ability to establish latent and life-long infections. However, latency is only one tool that has evolved in herpesviruses to successfully infect their hosts; such viruses display a wide (and still incompletely known) panoply of genes and proteins that are able to counteract immune responses of their hosts. Envelope glycoproteins and cytokine inhibitors are two examples of such weapons. All of these factors make it difficult to develop diagnostics and vaccines, unless they are based on molecular techniques. MATERIALS AND METHODS: Animal herpesviruses, because of their striking similarity to human ones, are suitable models to study the molecular biology of herpesviruses and develop strategies aimed at designing neurotropic live vectors for gene therapy as well as engineered attenuated vaccines. RESULTS: BHV-1 is a neurotropic herpesvirus causing infectious rhinotracheitis (IBR) in cattle. It is a major plague in zootechnics and commercial trade, because of its ability to spread through asymptomatic carrier animals, frozen semen, and embryos. Such portals of infections are also important for human herpesviruses, which mainly cause systemic, eye, and genital tract infections, leading even to the development of cancer. CONCLUSIONS: This review covers both the genetics and molecular biology of BHV-1 and its related herpesviruses. Epidemiology and diagnostic approaches to herpesvirus infections are presented. The role of herpesviruses in gene therapy and a broad introduction to classic and engineered vaccines against herpesviruses are also provided. http://link.springer-ny. com/link/service/journals/00020/bibs/5n5p261.html  (+info)

Analysis by enzyme-linked immunosorbent assay and 2-dimensional electrophoresis of haptoglobin in the high-density lipoprotein fraction in cows. (2/94)

Haptoglobin (Hp) is a hemoglobin (Hb)-binding acute-phase protein. Besides its relevance in inflammation, Hp is involved in the regulation of lipid metabolism. In cattle, in addition to the lipoprotein-deficient fraction, Hp is distributed in high-density lipoprotein (HDL) and very high-density lipoprotein (VHDL) fractions. The purpose of this study was to determine Hp concentrations in the lipoprotein fractions using an enzyme-linked immunosorbent assay (ELISA) based on the affinity with Hb, and also to detect structural differences of HDL Hp from that in the lipoprotein-deficient fraction using 2-dimensional electrophoresis. When purified Hp was used as the antigen for the ELISA, the detection limit was 7.4 ng/ml and linearity was obtained from 14.8 to 475 ng/ml. The correlation coefficient between the ELISA and single radial immunodiffusion was 0.884. The ELISA was shown to be applicable to evaluate Hp concentrations in the lipoprotein fractions. Hp concentrations in the lipoprotein fractions were in the range of 0.94 to 8.77 microg of Hp/ml (n = 4), and concentration ratios were 0.2 to 0.3% of whole serum Hp. Of the lipoprotein fractions, Hp was most abundant in HDL, moderate in VHDL and faint in chylomicrons, the very low-density lipoprotein fraction and low-density lipoprotein fraction. By 2-dimensional electrophoresis, alpha- and beta-chains of serum Hp were each separated into 5 spots, and their isoelectric point (pI) values were from 5.05 to 6.28 in the alpha-chain and from 5.92 to 6.95 in the beta-chain. The pI values of HDL Hp were indistinguishable from those of serum Hp. These results indicate that the ELISA based on the affinity with Hb is useful for evaluating Hp concentrations in lipoprotein fractions, and also suggest that HDL Hp is structurally similar to that in the lipoprotein-deficient fraction.  (+info)

Identification of a mutant bovine herpesvirus-1 (BHV-1) in post-arrival outbreaks of IBR in feedlot calves and protection with conventional vaccination. (3/94)

Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  (+info)

Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. (4/94)

Synchronous reactivation of bovine herpesvirus type 1 in all latently infected rabbits was achieved following a single intravenous dose of dexamethasone. Reactivated latent virus was first present in ocular secretions between 48 and 72 h post-dexamethasone treatment (PT). Cell-free infectious virus, viral-antigen-containing neurons, and pathologic changes were detectable in trigeminal ganglia (TG) by 48 h PT. A shift from the viral transcriptional pattern characteristic of the latent state (latency-related RNA [LR RNA]) to one typical of that seen during acute infection was detected in a small number of neurons in latently infected TG between 15 and 18 h PT, with viral DNA first detectable by in situ hybridization at 18 to 21 h PT. The number of LR RNA-containing neurons in latently infected TG decreased significantly at 24 and 48 h PT but returned to near-normal levels by 72 h PT. Correlation of this decrease with viral reactivation suggests that altered regulation of LR RNA transcription is a significant event in the process of viral reactivation.  (+info)

Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3' coterminal and encode a putative zinc finger transactivator protein. (5/94)

Bovine herpesvirus 1 (BHV-1) contains three major immediate-early (IE) genes involved in regulation of the productive cycle of replication. Two spliced IE RNAs, IER4.2 (4.2 kb) and IER2.9 (2.9 kb), are under the control of a single promoter; IER1.7 (1.7 kb) is transcribed from a different promoter in the opposite direction. Examining the kinetics of transcription, we found that the IER4.2/2.9 promoter was turned off at the end of the IE period. An alternative promoter became active, directing synthesis of an unspliced early RNA, ER2.6 (2.6 kb), which was colinear with the second exon of IER2.9 except for its 5' end in the intron about 10 bases upstream of the splice site. Sequence analysis revealed a single open reading frame common to IER2.9 and ER2.6 with a coding potential of 676 amino acids. The putative protein, named p135, contained a cysteine-rich zinc finger domain near the N terminus with homology to ICP0 of herpes simplex virus type 1, to protein 61 of varicella-zoster virus, to early protein 0 of pseudorabies virus, and to other viral and cellular proteins. The remaining parts of p135 exhibited only limited homology, mainly with pseudorabies virus protein 0, but the entire sequence was highly conserved between two strains of BHV-1 (K22 and Jura). The latency-related antisense transcript covered a large portion of ER2.6 excluding the zinc finger coding region. In transient expression assays, p135 activated a variety of promoters, including that for ER2.6, but repressed the IER1.7 promoter. Thus, p135 combines functional characteristics of ICP0, a strong transactivator, and of protein 61, a repressor. BHV-1 seems to have evolved a subtle mechanism to ensure the continued synthesis of p135 while turning off IER4.2, which encodes p180, the herpes simplex virus type 1 ICP4 homolog.  (+info)

Viral agents and associated lesions detected in a 10-year study of bovine abortions and stillbirths. (6/94)

In a 10-year survey started in 1980, specimens from 8,995 bovine abortions and stillbirths were submitted to the South Dakota Animal Disease Research and Diagnostic Laboratory. Of these, 8,962 were suitable for some type of examination. Viruses were associated with 948 (10.58%). Bovine herpesvirus-1 (IBR) was detected in 485 (5.41%), and bovine viral diarrhea virus (BVDV) was detected in 407 (4.54%). In 1 year of the survey, BVDV was detected in 8/32 fetuses that had lesions of passive congestion. Bovine herpesvirus-4 was isolated from 47 specimens (0.52%), parvovirus and enterovirus were each isolated from 2, and adenovirus, parainfluenza virus, and pseudorabies virus were each isolated from 1. Malignant lymphoid neoplasia was present in 2 fetuses, and their abortion was assumed to have been caused by the bovine leukosis virus.  (+info)

Design-based analysis of surveys: a bovine herpesvirus 1 case study. (7/94)

This paper critically assesses the design implications for the analysis of surveys of infections. It indicates the danger of not accounting for the study design in the statistical investigation of risk factors. A stratified design often implies an increased precision while clustering of infection results in a decreased precision. Through pseudo-likelihood estimation and linearisation of the variance estimator, the design effects can be taken into account in the analysis. The intra-cluster-correlation can be investigated through a logistic random effect model and a generalised estimating equation (GEE), allowing the investigation of the extent of spread of infections in a herd (cluster). The advantage of using adaptive Gaussian quadrature in a logistic random effect model is discussed. Applicable software is briefly reviewed. The methods are illustrated with data from a bovine herpesvirus 1 (BHV-1) serosurvey of Belgian cattle.  (+info)

Cell-mediated cytotoxic responses in lungs following a primary bovine herpes virus type 1 infection. (8/94)

Non-major histocompatibility complex (MHC) restricted cytotoxicity is an important part of the immune reaction mounted in response to bovine herpes virus type 1 (BHV-1) infection. In this study, we evaluated the effect of BHV-1 infection on the ability of lung parenchyma leucocytes (LPL), cranial tracheobronchial lymph node cells (BLNC) and peripheral blood mononuclear leucocytes (PBML) to mediate this function. While LPL from non-infected calves mediated cytotoxicity against BHV-1-infected cells, a similar activity could not be detected in PBML or BLNC. In contrast, both LPL and PBML from naive calves could mediate cytotoxicity against K562 target cells but only after activation with interleukin-2 (IL-2). BLNC were unable to kill K562 cells. Infection of calves with BHV-1 enhanced the ability of LPL and PBML to kill BHV-1-infected cells. This enhancement was detected as early as Day 1 after infection in LPL whereas it could only be detected in PBML 8 days after infection. The results demonstrate that the leucocyte population present at the site of infection was able to mediate a potentially important antiviral function and that this function was enhanced rapidly in response to infection. Thus LPL-mediated cytotoxicity may be an important mechanism for the recovery from BHV-1 infection.  (+info)

Infectious Bovine Rhinotracheitis (IBR) is a viral disease in cattle, also known as Red Nose or Cattle Distemper. It is caused by the bovine herpesvirus type 1 (BoHV-1). The virus primarily affects the upper respiratory tract, leading to symptoms such as nasal discharge, sneezing, coughing, and fever. In severe cases, it can also cause ulcers in the mouth and cornea, abortions in pregnant cows, and inflammation of the genital organs (infectious pustular vulvovaginitis or balanoposthitis).

IBR is highly contagious and can be spread through direct contact with infected animals, contaminated feed and water, and aerosols from respiratory secretions. The virus can establish latency in the nervous system of recovered animals, which can lead to recurrent outbreaks in a herd. IBR is a significant disease in the cattle industry due to its economic impact, including decreased milk production, weight loss, reduced fertility, and increased mortality rates. Vaccination is available to control the spread of the disease and reduce its clinical signs.

Bovine Herpesvirus 1 (BoHV-1) is a species-specific virus that belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, and genus Varicellovirus. This virus is the causative agent of Infectious Bovine Rhinotracheitis (IBR), which is a significant respiratory disease in cattle. The infection can also lead to reproductive issues, including abortions, stillbirths, and inflammation of the genital tract (infectious pustular vulvovaginitis) in cows and infertility in bulls.

The virus is primarily transmitted through direct contact with infected animals, their respiratory secretions, or contaminated objects. Once an animal is infected, BoHV-1 establishes a lifelong latency in the nervous system, from where it can periodically reactivate and shed the virus, even without showing any clinical signs. This makes eradication of the virus challenging in cattle populations.

Vaccines are available to control IBR, but they may not prevent infection or shedding entirely. Therefore, ongoing management practices, such as biosecurity measures and surveillance programs, are essential to minimize the impact of this disease on cattle health and productivity.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Parainfluenza Virus 3, Human (HPIV-3) is an enveloped, single-stranded RNA virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory tract infections in infants, young children, and immunocompromised individuals.

HPIV-3 primarily infects the upper and lower respiratory tract, causing a wide range of clinical manifestations, from mild to severe respiratory illnesses. The incubation period for HPIV-3 infection is typically 3-7 days. In infants and young children, HPIV-3 can cause croup (laryngotracheobronchitis), bronchiolitis, and pneumonia, while in adults, it usually results in mild upper respiratory tract infections, such as the common cold.

The virus is transmitted through direct contact with infected respiratory secretions or contaminated surfaces, and infection can occur throughout the year but tends to peak during fall and winter months. Currently, there are no approved vaccines for HPIV-3; treatment is primarily supportive and focuses on managing symptoms and complications.

Bovine Virus Diarrhea-Mucosal Disease (BVD-MD) is a complex of diseases caused by the Bovine Virus Diarrhea virus (BVDV) and is a significant problem in the global cattle industry. The disease can manifest in various forms, from mild respiratory or reproductive issues to severe, life-threatening conditions such as mucosal disease.

Mucosal disease is the most acute form of BVD-MD and occurs when an animal that has been persistently infected (PI) with a specific strain of BVDV develops a secondary infection with a cytopathic biotype of the virus. PI animals are those that were infected in utero with BVDV before they developed immune competence, resulting in them shedding large amounts of the virus throughout their lives.

The secondary infection with the cytopathic biotype of BVDV causes extensive damage to the animal's lymphoid tissues and gastrointestinal tract, leading to severe clinical signs such as:

1. Profuse diarrhea
2. High fever (up to 41°C or 105.8°F)
3. Ulcerative lesions in the mouth, esophagus, and intestines
4. Severe dehydration
5. Depression and loss of appetite
6. Weight loss
7. Weakness
8. Increased respiratory rate
9. Swelling of the head, neck, and brisket
10. Death within 2-3 weeks after the onset of clinical signs

Morbidity and mortality rates in BVD-MD outbreaks can be high, causing significant economic losses for farmers due to decreased production, increased veterinary costs, and animal deaths. Prevention strategies include vaccination programs, biosecurity measures, and testing for PI animals to remove them from the herd.

I. Definition:

An abortion in a veterinary context refers to the intentional or unintentional termination of pregnancy in a non-human animal before the fetus is capable of surviving outside of the uterus. This can occur spontaneously (known as a miscarriage) or be induced through medical intervention (induced abortion).

II. Common Causes:

Spontaneous abortions may result from genetic defects, hormonal imbalances, infections, exposure to toxins, trauma, or other maternal health issues. Induced abortions are typically performed for population control, humane reasons (such as preventing the birth of a severely deformed or non-viable fetus), or when the pregnancy poses a risk to the mother's health.

III. Methods:

Veterinarians may use various methods to induce abortion depending on the species, stage of gestation, and reason for the procedure. These can include administering drugs that stimulate uterine contractions (such as prostaglandins), physically removing the fetus through surgery (dilation and curettage or hysterectomy), or using techniques specific to certain animal species (e.g., intrauterine infusion of hypertonic saline in equids).

IV. Ethical Considerations:

The ethics surrounding veterinary abortions are complex and multifaceted, often involving considerations related to animal welfare, conservation, population management, and human-animal relationships. Veterinarians must weigh these factors carefully when deciding whether to perform an abortion and which method to use. In some cases, legal regulations may also influence the decision-making process.

V. Conclusion:

Abortion in veterinary medicine is a medical intervention that can be used to address various clinical scenarios, ranging from unintentional pregnancy loss to deliberate termination of pregnancy for humane or population control reasons. Ethical considerations play a significant role in the decision-making process surrounding veterinary abortions, and veterinarians must carefully evaluate each situation on a case-by-case basis.

Vertebrate viruses are a type of virus that primarily infect and replicate in vertebrates, which include animals such as mammals, birds, fish, reptiles, and amphibians. These viruses can cause a wide range of diseases, from mild symptoms to severe or even life-threatening conditions.

Vertebrate viruses are highly diverse and can be classified into different families based on their genetic material (DNA or RNA), structure, and replication strategy. Some examples of vertebrate viruses include influenza virus, human immunodeficiency virus (HIV), herpes simplex virus, rabies virus, and Zika virus.

Vertebrate viruses can enter the host cell through various mechanisms, such as binding to specific receptors on the cell surface or using cellular machinery to gain entry. Once inside the host cell, the virus takes over the cell's machinery to produce new viral particles, which can then infect other cells and spread throughout the body.

Vertebrate viruses have evolved complex mechanisms to evade the host immune system, such as suppressing the immune response or altering the expression of host genes. Understanding how vertebrate viruses interact with their hosts is crucial for developing effective antiviral therapies and vaccines.

Pestivirus is a genus of viruses in the family Flaviviridae, which are enveloped, single-stranded, positive-sense RNA viruses. There are several species within this genus that can cause disease in animals, including bovine viral diarrhea virus (BVDV) in cattle, border disease virus (BDV) in sheep, and classical swine fever virus (CSFV) in pigs. These viruses can cause a range of clinical signs, including respiratory and enteric diseases, reproductive failures, and immunosuppression. They are primarily spread through direct contact with infected animals or their bodily fluids, and can also be transmitted through contaminated fomites and semen. Prevention and control measures include vaccination, biosecurity practices, and testing and culling of infected animals.

Bovine viral diarrhea (BVD) is a viral disease that primarily affects cattle, but can also infect other ruminants such as sheep and goats. The disease is caused by the bovine viral diarrhea virus (BVDV), which belongs to the family Flaviviridae and genus Pestivirus.

There are two biotypes of BVDV, type 1 and type 2, which can be further divided into various subtypes based on their genetic makeup. The virus can cause a range of clinical signs in infected animals, depending on the age and immune status of the animal, as well as the strain of the virus.

Acute infection with BVDV can cause fever, lethargy, loss of appetite, nasal discharge, and diarrhea, which can be severe and life-threatening in young calves. In addition, BVDV can cause reproductive problems such as abortion, stillbirth, and the birth of persistently infected (PI) calves. PI animals are those that were infected with BVDV in utero and have the virus continuously present in their bloodstream and other tissues throughout their lives. These animals serve as a source of infection for other cattle and can spread the virus to naive herds.

BVDV is transmitted through direct contact with infected animals or their bodily fluids, such as saliva, nasal secretions, and feces. The virus can also be spread indirectly through contaminated feed, water, and equipment. Prevention and control measures for BVDV include biosecurity practices, vaccination, and testing to identify and remove PI animals from herds.

Infectious keratoconjunctivitis (IKC) is a medical condition that refers to an inflammation of both the cornea (kerato-) and the conjunctiva (-conjunctivitis), which are the transparent membranes that cover the front part of the eye. IKC is caused by an infection, most commonly due to viral or bacterial pathogens.

The viral form of IKC is often caused by adenoviruses and can be highly contagious, spreading through respiratory droplets, contaminated surfaces, or direct contact with the infected person's eyes. The symptoms may include redness, watery eyes, sensitivity to light, a gritty or burning sensation in the eyes, and discharge. In some cases, there might be swollen lymph nodes near the ear or neck.

Bacterial IKC can result from various bacterial species, such as Staphylococcus aureus, Streptococcus pneumoniae, or Haemophilus influenzae. The symptoms of bacterial IKC are similar to those of viral IKC but may also include more purulent discharge and potential complications like corneal ulcers or abscesses.

Treatment for infectious keratoconjunctivitis depends on the underlying cause. Viral IKC typically resolves within 1-3 weeks without specific treatment, although cool compresses and artificial tears may help alleviate symptoms. Bacterial IKC may require antibiotic eye drops or ointments to clear the infection and prevent complications. In both cases, good hygiene practices are essential to prevent spreading the infection to others.

Respirovirus is not typically used as a formal medical term in modern taxonomy. However, historically, it was used to refer to a genus of viruses within the family Paramyxoviridae, order Mononegavirales. This genus included several important human and animal pathogens that cause respiratory infections.

Human respiroviruses include:
1. Human parainfluenza virus (HPIV) types 1, 2, and 3: These viruses are a common cause of upper and lower respiratory tract infections, such as croup, bronchitis, and pneumonia, particularly in young children.
2. Sendai virus (also known as murine respirovirus): This virus primarily infects rodents but can occasionally cause mild respiratory illness in humans, especially those who work closely with these animals.

The term "respirovirus" is not officially recognized by the International Committee on Taxonomy of Viruses (ICTV) anymore, and these viruses are now classified under different genera within the subfamily Pneumovirinae: Human parainfluenza viruses 1 and 3 belong to the genus Orthorubulavirus, while Human parainfluenza virus 2 is placed in the genus Metapneumovirus.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Paramyxoviridae is a family of viruses that includes several important pathogens causing respiratory infections in humans and animals. According to the medical perspective, Paramyxoviridae infections refer to the diseases caused by these viruses.

Some notable human paramyxovirus infections include:

1. Respiratory Syncytial Virus (RSV) Infection: RSV is a common cause of respiratory tract infections, particularly in young children and older adults. It can lead to bronchiolitis and pneumonia, especially in infants and patients with compromised immune systems.
2. Measles (Rubeola): Measles is a highly contagious viral disease characterized by fever, cough, coryza (runny nose), conjunctivitis, and a maculopapular rash. It can lead to severe complications such as pneumonia, encephalitis, and even death, particularly in malnourished children and individuals with weakened immune systems.
3. Parainfluenza Virus Infection: Parainfluenza viruses are responsible for upper and lower respiratory tract infections, including croup, bronchitis, and pneumonia. They mainly affect young children but can also infect adults, causing mild to severe illnesses.
4. Mumps: Mumps is a contagious viral infection that primarily affects the salivary glands, causing painful swelling. It can lead to complications such as meningitis, encephalitis, deafness, and orchitis (inflammation of the testicles) in rare cases.
5. Human Metapneumovirus (HMPV) Infection: HMPV is a respiratory virus that can cause upper and lower respiratory tract infections, similar to RSV and parainfluenza viruses. It mainly affects young children and older adults, leading to bronchitis, pneumonia, and exacerbations of chronic lung diseases.

Prevention strategies for Paramyxoviridae infections include vaccination programs, practicing good personal hygiene, and implementing infection control measures in healthcare settings.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

"Pasteurella" is a genus of Gram-negative, facultatively anaerobic coccobacilli that are part of the family Pasteurellaceae. These bacteria are commonly found as normal flora in the upper respiratory tracts of animals, including cats, dogs, and livestock. They can cause a variety of infections in humans, such as wound infections, pneumonia, and septicemia, often following animal bites or scratches. Two notable species are Pasteurella multocida and Pasteurella canis. Proper identification and antibiotic susceptibility testing are essential for appropriate treatment.

Pasteurella infections are diseases caused by bacteria belonging to the genus Pasteurella, with P. multocida being the most common species responsible for infections in humans. These bacteria are commonly found in the upper respiratory tract and gastrointestinal tracts of animals, particularly domestic pets such as cats and dogs.

Humans can acquire Pasteurella infections through animal bites, scratches, or contact with contaminated animal secretions like saliva. The infection can manifest in various forms, including:

1. Skin and soft tissue infections: These are the most common types of Pasteurella infections, often presenting as cellulitis, abscesses, or wound infections after an animal bite or scratch.
2. Respiratory tract infections: Pasteurella bacteria can cause pneumonia, bronchitis, and other respiratory tract infections, especially in individuals with underlying lung diseases or weakened immune systems.
3. Ocular infections: Pasteurella bacteria can infect the eye, causing conditions like conjunctivitis, keratitis, or endophthalmitis, particularly after an animal scratch to the eye or face.
4. Septicemia: In rare cases, Pasteurella bacteria can enter the bloodstream and cause septicemia, a severe and potentially life-threatening condition.
5. Other infections: Pasteurella bacteria have also been known to cause joint infections (septic arthritis), bone infections (osteomyelitis), and central nervous system infections (meningitis or brain abscesses) in some cases.

Prompt diagnosis and appropriate antibiotic treatment are crucial for managing Pasteurella infections, as they can progress rapidly and lead to severe complications, particularly in individuals with compromised immune systems.

"Moraxella" is a genus of gram-negative, aerobic bacteria that are commonly found on the mucous membranes of humans and animals. They are non-motile and catalase-positive. Some species of Moraxella can cause infections in humans, such as M. catarrhalis, which is a common cause of respiratory tract infections like bronchitis and otitis media (middle ear infection) in children. Another species, M. nonliquefaciens, can be found on the skin and mucous membranes of humans and animals, but it's not considered to be pathogenic.

It is worth noting that Moraxella genus was previously classified under the name Neisseria, but based on genetic and biochemical evidence, they are now considered separate genera.

Herpesviridae is a family of large, double-stranded DNA viruses that includes several important pathogens affecting humans and animals. The herpesviruses are characterized by their ability to establish latency in infected host cells, allowing them to persist for the lifetime of the host and leading to recurrent episodes of disease.

The family Herpesviridae is divided into three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. Each subfamily includes several genera and species that infect various hosts, including humans, primates, rodents, birds, and reptiles.

Human herpesviruses include:

* Alphaherpesvirinae: Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), and Varicella-zoster virus (VZV)
* Betaherpesvirinae: Human cytomegalovirus (HCMV), Human herpesvirus 6A (HHV-6A), Human herpesvirus 6B (HHV-6B), and Human herpesvirus 7 (HHV-7)
* Gammaherpesvirinae: Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, also known as HHV-8)

These viruses are responsible for a wide range of clinical manifestations, from mild skin lesions to life-threatening diseases. Primary infections usually occur during childhood or adolescence and can be followed by recurrent episodes due to virus reactivation from latency.

Maternally-acquired immunity (MAI) refers to the passive immunity that is transferred from a mother to her offspring, typically through the placenta during pregnancy or through breast milk after birth. This immunity is temporary and provides protection to the newborn or young infant against infectious agents, such as bacteria and viruses, based on the mother's own immune experiences and responses.

In humans, maternally-acquired immunity is primarily mediated by the transfer of antibodies called immunoglobulins (IgG) across the placenta to the fetus during pregnancy. This process begins around the 20th week of gestation and continues until birth, providing the newborn with a range of protective antibodies against various pathogens. After birth, additional protection is provided through breast milk, which contains secretory immunoglobulin A (IgA) that helps to prevent infections in the infant's gastrointestinal and respiratory tracts.

Maternally-acquired immunity is an essential mechanism for protecting newborns and young infants, who have not yet developed their own active immune responses. However, it is important to note that maternally-acquired antibodies can also interfere with the infant's response to certain vaccines, as they may neutralize the vaccine antigens before the infant's immune system has a chance to mount its own response. This is one reason why some vaccines are not recommended for young infants and why the timing of vaccinations may be adjusted in cases where maternally-acquired immunity is present.

Nasal mucosa refers to the mucous membrane that lines the nasal cavity. It is a delicate, moist, and specialized tissue that contains various types of cells including epithelial cells, goblet cells, and glands. The primary function of the nasal mucosa is to warm, humidify, and filter incoming air before it reaches the lungs.

The nasal mucosa produces mucus, which traps dust, allergens, and microorganisms, preventing them from entering the respiratory system. The cilia, tiny hair-like structures on the surface of the epithelial cells, help move the mucus towards the back of the throat, where it can be swallowed or expelled.

The nasal mucosa also contains a rich supply of blood vessels and immune cells that help protect against infections and inflammation. It plays an essential role in the body's defense system by producing antibodies, secreting antimicrobial substances, and initiating local immune responses.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

I'm happy to help, but I want to clarify that the term "sheep diseases" refers to a wide range of health issues that can affect sheep populations. It's not a single medical condition with a specific definition. Here are some examples of common diseases that can affect sheep:

1. Ovine Johne's Disease (OJD): A chronic, infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It affects the intestines and can cause weight loss, diarrhea, and death.
2. Footrot: A highly contagious bacterial infection that affects the feet of sheep, causing lameness, swelling, and pain. It's caused by the bacteria Dichelobacter nodosus.
3. Caseous Lymphadenitis (CL): A chronic infectious disease caused by the bacterium Corynebacterium pseudotuberculosis. It affects the lymph nodes and can cause abscesses, weight loss, and death.
4. Contagious Ecthyma (Orf): A highly contagious viral infection that affects the skin and mucous membranes of sheep, causing sores and lesions.
5. Mastitis: An inflammation of the mammary gland in sheep, usually caused by a bacterial infection. It can cause decreased milk production, fever, and loss of appetite.
6. Pneumonia: A respiratory infection that can affect sheep, causing coughing, difficulty breathing, and fever. It can be caused by various bacteria or viruses.
7. Enterotoxemia: A potentially fatal disease caused by the overproduction of toxins in the intestines of sheep, usually due to a bacterial infection with Clostridium perfringens.
8. Polioencephalomalacia (PEM): A neurological disorder that affects the brain of sheep, causing symptoms such as blindness, circling, and seizures. It's often caused by a thiamine deficiency or excessive sulfur intake.
9. Toxoplasmosis: A parasitic infection that can affect sheep, causing abortion, stillbirth, and neurological symptoms.
10. Blue tongue: A viral disease that affects sheep, causing fever, respiratory distress, and mouth ulcers. It's transmitted by insect vectors and is often associated with climate change.

Keratoconjunctivitis is a medical term that refers to the inflammation of both the cornea (the clear, outer layer at the front of the eye) and the conjunctiva (the mucous membrane that covers the inner surface of the eyelids and the white part of the eye).

The condition can cause symptoms such as redness, pain, sensitivity to light, watery eyes, and a gritty or burning sensation in the eyes. Keratoconjunctivitis can be caused by various factors, including viral or bacterial infections, allergies, or environmental irritants like dust, smoke, or chemical fumes.

Treatment for keratoconjunctivitis depends on the underlying cause of the condition and may include medications such as antibiotics, antivirals, or anti-inflammatory agents to reduce inflammation and relieve symptoms. In some cases, artificial tears or lubricants may also be recommended to help keep the eyes moist and comfortable.

Herpesviridae infections refer to diseases caused by the Herpesviridae family of double-stranded DNA viruses, which include herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), human herpesvirus 7 (HHV-7), and human herpesvirus 8 (HHV-8). These viruses can cause a variety of clinical manifestations, ranging from mild skin lesions to severe systemic diseases.

After the initial infection, these viruses typically become latent in various tissues and may reactivate later in life, causing recurrent symptoms. The clinical presentation of Herpesviridae infections depends on the specific virus and the immune status of the host. Common manifestations include oral or genital ulcers (HSV-1 and HSV-2), chickenpox and shingles (VZV), mononucleosis (CMV), roseola (HHV-6), and Kaposi's sarcoma (HHV-8).

Preventive measures include avoiding close contact with infected individuals during the active phase of the infection, practicing safe sex, and avoiding sharing personal items that may come into contact with infectious lesions. Antiviral medications are available to treat Herpesviridae infections and reduce the severity and duration of symptoms.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

Tracheitis is a medical condition that involves inflammation of the trachea, or windpipe. It can cause symptoms such as cough, sore throat, difficulty swallowing, and fever. Tracheitis can be caused by viral or bacterial infections, and it may also occur as a complication of other respiratory conditions. In some cases, tracheitis may require medical treatment, including antibiotics for bacterial infections or corticosteroids to reduce inflammation. It is important to seek medical attention if you experience symptoms of tracheitis, especially if they are severe or persistent.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Moraxellaceae is a family of Gram-negative, aerobic or facultatively anaerobic bacteria that are commonly found in the environment and on the mucosal surfaces of humans and animals. Infections caused by Moraxellaceae are relatively rare but can occur, particularly in individuals with weakened immune systems.

Two genera within this family, Moraxella and Acinetobacter, are most commonly associated with human infections. Moraxella catarrhalis is a leading cause of respiratory tract infections such as bronchitis, otitis media (middle ear infection), and sinusitis, particularly in children and the elderly. It can also cause conjunctivitis (pink eye) and pneumonia.

Acinetobacter species, on the other hand, are often found in soil and water and can colonize the skin and mucous membranes of humans without causing harm. However, they can become opportunistic pathogens in hospital settings, causing a range of infections such as pneumonia, bloodstream infections, wound infections, and meningitis, particularly in critically ill or immunocompromised patients.

Infections caused by Moraxellaceae can be treated with antibiotics, but the increasing prevalence of antibiotic-resistant strains is a growing concern. Proper infection control measures, such as hand hygiene and environmental cleaning, are essential to prevent the spread of these infections in healthcare settings.

Veterinary medicine is the branch of medical science that deals with the prevention, diagnosis, and treatment of diseases, disorders, and injuries in non-human animals. The profession of veterinary medicine is dedicated to the care, health, and welfare of animals, as well as to the promotion of human health through animal research and public health advancements. Veterinarians employ a variety of diagnostic methods including clinical examination, radiography, laboratory testing, and ultrasound imaging. They use a range of treatments, including medication, surgery, and dietary management. In addition, veterinarians may also advise on preventative healthcare measures such as vaccination schedules and parasite control programs.

Veterinary drugs, also known as veterinary medicines, are substances or combinations of substances used to treat, prevent, or diagnose diseases in animals, including food-producing species and pets. These drugs can be administered to animals through various routes such as oral, topical, injectable, or inhalation. They contain active ingredients that interact with the animal's biological system to produce a therapeutic effect. Veterinary drugs are subject to regulatory control and must be prescribed or recommended by a licensed veterinarian in many countries to ensure their safe and effective use.

Veterinary education is a postsecondary educational process and training that prepares students to become licensed veterinarians. The curriculum typically includes courses in biochemistry, anatomy, physiology, pharmacology, pathology, microbiology, immunology, toxicology, animal nutrition, parasitology, and veterinary clinical practice.

In addition to classroom instruction, veterinary education also involves hands-on training through clinical rotations in veterinary hospitals, clinics, and research laboratories. Students learn how to diagnose and treat diseases and injuries in a variety of animals, including domestic pets, livestock, and wildlife.

Veterinary education typically takes four years to complete and is offered by colleges or schools of veterinary medicine that are accredited by the American Veterinary Medical Association (AVMA) Council on Education. After completing their education, graduates must pass a licensing exam in order to practice veterinary medicine. Continuing education is also required throughout their careers to maintain their license and stay up-to-date with advances in the field.

A vaccine is a biological preparation that provides active acquired immunity to a particular infectious disease. It typically contains an agent that resembles the disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and "remember" it, so that the immune system can more easily recognize and destroy any of these microorganisms that it encounters in the future.

Vaccines can be prophylactic (to prevent or ameliorate the effects of a future infection by a natural or "wild" pathogen), or therapeutic (to fight disease that is already present). The administration of vaccines is called vaccination. Vaccinations are generally administered through needle injections, but can also be administered by mouth or sprayed into the nose.

The term "vaccine" comes from Edward Jenner's 1796 use of cowpox to create immunity to smallpox. The first successful vaccine was developed in 1796 by Edward Jenner, who showed that milkmaids who had contracted cowpox did not get smallpox. He reasoned that exposure to cowpox protected against smallpox and tested his theory by injecting a boy with pus from a cowpox sore and then exposing him to smallpox, which the boy did not contract. The word "vaccine" is derived from Variolae vaccinae (smallpox of the cow), the term devised by Jenner to denote cowpox. He used it in 1798 during a conversation with a fellow physician and later in the title of his 1801 Inquiry.

Veterinary surgery refers to the surgical procedures performed on animals by trained veterinarians or veterinary surgeons. It involves the use of various surgical techniques and tools to diagnose, treat, or prevent diseases and injuries in animals. This can include soft tissue surgeries such as abdominal or thoracic surgeries, orthopedic surgeries for bone and joint issues, neurological surgeries, oncological surgeries for the removal of tumors, and reconstructive surgeries. Veterinary surgeons must complete extensive education and training in order to provide safe and effective surgical care for animals.

I'm not a medical professional, but I can try to help you with that. "Schools, veterinary" is not a medical condition or term related to human health. Instead, it refers to educational institutions that offer programs and training for individuals who wish to become veterinarians or work in animal care.

Veterinary schools provide advanced education and training in animal medicine, surgery, and healthcare. Students typically complete a Doctor of Veterinary Medicine (DVM) degree program, which includes classroom instruction, laboratory work, and clinical experience. Upon graduation, they are eligible to take licensing exams and practice veterinary medicine.

Therefore, "schools, veterinary" is not a medical definition related to human health but rather a term used to describe educational institutions that specialize in training professionals in animal healthcare.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

Abstract Objective-To evaluate the endocrine and immune responses of steers challenged with infectious bovine rhinotracheitis ... and phosphorus concentrations of calves stressed by bovine respiratory disease and infectious bovine rhinotracheitis. J Anim ... and phosphorus concentrations of calves stressed by bovine respiratory disease and infectious bovine rhinotracheitis. J Anim ... and phosphorus concentrations of calves stressed by bovine respiratory disease and infectious bovine rhinotracheitis. J Anim ...
... virus was grown in the presence of 5-3H-uridine in a continuous line of bovine kidney cells. 5-3H-uridine was found to be ... Infectious bovine rhinotracheitis (IBR) virus was grown in the presence of 5-3H-uridine in a continuous line of bovine kidney ... Ribonucleotides in Infectious Bovine Rhinotracheitis Virus DNA * L. A. Babiuk1, B. T. Rouse1 ... ROUSE B. T., BABIUK L. A. 1974; Defense mechanisms against infectious bovine rhinotracheitis virus: inhibition of virus ...
Bovine Herpes virus 1 Infectious Bovine Rhinotracheitis (IBR) is a viral respiratory disease caused by bovine herpes virus 1 ( ... Infectious Bovine Rhinotracheitis. Also known as: IBR, Bovine Herpes virus 1. Infectious Bovine Rhinotracheitis (IBR) is a ... Treating Infectious Bovine Rhinotracheitis. There is no specific treatment for IBR. During an outbreak, the use of broad- ... Infectious Bovine Rhinotracheitis and Welfare. Affected animals should be isolated and treated to protect them from secondary ...
IBR/PI3 Infectious Bovine Rhinotracheitis and Parainfluenza III vaccination Intranasal MLV used in calves less than 4-6 months ... BVDV Bovine Virus Diarrhea Virus vaccination MLV can be used in minimally stressed calves that are well separated from pregnant ... BRSV Bovine Respiratory Syncytial Virus vaccination MLV or killed vaccines available. Two initial doses (2 weeks apart) are ... Single use needles are highly recommended for to prevent spread of blood born infections such as bovine leukosis virus, and ...
WOAH reported infectious bovine rhinotracheitis (IBR) on two cattle farms in Qyzylorda. ... WOAH reported infectious bovine rhinotracheitis (IBR) on two cattle farms in Qyzylorda. ... WOAH reported infectious bovine rhinotracheitis (IBR) on two cattle farms in Qyzylorda. ...
Viral Causes: BVD, Border disease, Infectious Bovine Rhinotracheitis, Rift Valley Fever. Bovine Viral Diarrhoea (BVD). This ... Infectious Bovine Rhinotracheitis. (For more information please see also under Respiratory diseases) ... It is caused by a virus related to the one that causes Bovine Viral Diarrhea disease in cattle. (For more information please ... Humans are usually infected by inhaling infectious droplets when handling infected animals or tissues (meat!) or abortion ...
"Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis" (PDF). Vet. Res. 38 (2): 181-209. doi:10.1051/vetres: ... "A gE deleted infectious bovine rhinotracheitis marker vaccine for use in improved bovine herpesvirus 1 control programs". Vet. ... The respiratory disease caused by BoHV-1 is commonly known as infectious bovine rhinotracheitis. This disease affects the upper ... The genital disease causes infectious pustular vulvovaginitis in cows and infectious balanoposthitis in bulls. Symptoms include ...
Infectious Bovine Rhinotracheitis. Transmissible Gastroenteritis (TGE). Other. COVID-19. Aspergillus niger. Trichophyton ... Infectious Bronchitis Virus. Rabies Virus. Feline. Feline Calicivirus. Feline Calicivirus (surrogate for Norwalk/Norovirus). ... Feline Infectious Peritonitis. Feline leukemia virus. Feline Panleukopenia. Feline Picornavirus. Feline Rhinotrachetis. Avian. ... Avian Influenza A H9N2 / Turkey / Wisconsin Virus Infectious. Avian Laryngotracheitis. Avian Influenza A H5N1 Virus. Avian ...
Categories: Infectious Bovine Rhinotracheitis Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
Further investigations are needed to monitor pathogen activity and quantify possible future infectious disease impacts of wild ... epizootic hemorrhagic disease virus and bovine ephemeral fever virus. Our findings demonstrated a very low seroprevalence (3%) ... eastern Australia were tested by ELISA to detect antigens and antibodies against Pestivirus and antibodies against bovine ... Gu, X.; Kirkland, P.D. Infectious Bovine Rhinotracheitis. In Australian and New Zealand Standard Diagnostic Procedures; The ...
Field Evaluation of Commercial Vaccines against Infectious Bovine Rhinotracheitis (Ibr) Virus Using Different Immunization ...
Bovine Viral Diarrhoea. Fasciolosis Cryptosporidia Infectious Bovine Rhinotracheitis Annual Mastitis Summary Scanning ... Bovine Lymphotropic Herpes Virus isolated for the first time in GB *No improvement in the national mastitis situation over the ...
Bovine herpesvirus 1 (BHV-1), the causative agent of infectious bovine rhinotracheitis (IBR), is considered to be the most ... Evidences of Serological Studies for The Presence of Infectious Bovine Rhinotracheitis IBR, In Albania. *Article ... For the first time in Albania, this study was conducted to know the status of bovine herpesvirus-1 (BHV-1) antibodies in the ... results of this study clearly established for the first time that BHV-1 is subclinical prevalent virus in bovine in Albania. ...
Diseases of Animals (Infectious Bovine Rhinotracheitis) (Jersey) Order 2012. Chapter 02.400.21 ...
The herpes virus of cattle is called infectious bovine rhinotracheitis virus (IBR). Rhinotracheitis refers to inflammation of ...
Supplemental selenium source in Holstein steers challenged with intranasal bovine infectious rhinotracheitis virus and in newly ... Endogenous Cortisol: Acute Modulation of Cytokine Gene Expression in Bovine PBMCs (Abstract Only) (5-Nov-09) ...
Infectious Bovine Rhinotracheitis (IBR)(external link opens in a new window / tab). Cattle. Present. ... Bovine Tuberculosis (Myobacterium Bovis). Cattle and many other species. Present. Brucellosis (Brucella Abortus). Cattle. 2012 ... Numerous, eg bovine, ovine, caprine, feline, ervine and deer. Present. Transmissible Gastro-Enteritis(external link opens in a ... Bovine Genital Campylobacteriosis. Cattle. Never. Contagious Epididymitis (Brucella Ovis)(external link opens in a new window ...
Recombinant Infectious Bovine Rhinotracheitis (IBR or BHV-1/BoHV-1) gB protein control for western blot. ... Recombinant Infectious Bovine Rhinotracheitis (IBR or BHV-1/BoHV-1) gB recombinant protein. ...
Yates, W. D. G. (1982). A review of infectious bovine rhinotracheitis, shipping fever pneumonia, and viral-bacterial synergism ... Use disinfectants on dehorning instruments to prevent wound infections and the spread of infectious diseases. Dehorn outside of ... feedlots with at least a 1,000-animal capacity found 14.4 percent of cattle were affected with bovine respiratory disease. The ...
UK - MSD Animal Health has launched an inactivated marker vaccine for use in the control of Infectious Bovine Rhinotracheitis ( ... UK - MSD Animal Health has launched an inactivated marker vaccine for use in the control of Infectious Bovine Rhinotracheitis ( ...
Keywords: infectious rhinotracheitis, bovine viral diarrhea-mucosal disease, pasteurellosis, cattle, virological methods. ... bovine respiratory diseases may be caused by infecting susceptible animals with a combination of infectious rhinotracheitis and ... The results of studying the spread of bovine respiratory syncytial virus infection in some regions of the former USSR and of ... bovine viral diarrhea-mucosal disease viruses as well as of bacterium Mannheimia (Pasteurella) haemolytica.. ...
A practitioners guide to infectious bovine rhinotracheitis. 3 September 2020 2020 OV Conference goes digital. ...
infectious bovine rhinotracheitis virus, bovine viral diarrhea virus Bovine Viral Diarrhea Virus Bovine herpesvirus 1 ... cattle against infectious bovine rhinotracheitis Viral Infections Associated with Bovine Respiratory Disease Complex in Cattle ... poultry against infectious bronchitis Infectious Bronchitis in Poultry Infectious bronchitis is an acute, highly contagious ... For example, for bovine respiratory disease complex Overview of Bovine Respiratory Disease Complex Bovine respiratory disease ( ...
1 week of age or older against infectious bovine rhinotracheitis (IBR) virus, bovine respiratory syncytial virus (BRSV) and ... Efficacy of the Infectious Bovine Rhinotracheitis Virus Fraction Results of this study demonstrate protective efficacy for the ... Duration of Immunity of the Infectious Bovine Rhinotracheitis Virus Fraction Results of this study demonstrate the duration of ... and Serum Antibody Titers Following Administration of a Commercial Intranasal Modified-Live Infectious Bovine Rhinotracheitis- ...
... infectious bovine rhinotracheitis, rabies, herpes, pseudorabies, respiratory syncytia, streptococcus - even canine influenza ... Disposal of Infectious Materials: Blood/body fluids should be autoclaved and disposed of according to federal, state, and local ... regulations for infectious waste disposal.. *Storage and Disposal: Keep product under locked storage, inaccessible to small ...
Czechia and the approval of the eradication programme in several regions of France regarding infectious bovine rhinotracheitis ... and infectious haematopoetic necrosis (IHN), of Croatia for koi herpes virus (KHV) disease and of certain areas in the United ... des Seuchenfreiheitsstatus Tschechiens und der Genehmigung des Tilgungsprogramms in Bezug auf die infektiöse bovine... ...
Bovine Papular Stomatitis and Infectious Bovine Rhinotracheitis. Regulatory officials should be notified if an outbreak in ... Bluetongue Virus: Review of Regulations and Diagnostic Tests Pertinent to the International Exchange of Bovine Semen. ... Differentials for BTV in cattle include Bovine Viral Diarrhea virus, Malignant Catarrhal Fever, vesicular diseases, Rinderpest ...
IBR - Infectious Bovine Rhinotracheitis, Bovine Herpesvirus 1 (abortion, respiratory disease, conjunctivitis). BRSV - Bovine ... "Bovine respiratory disease is the most common - and costly - ailment in all stages of beef production," said Tarpoff. "Feedlot ... Bovine Respiratory Disease costs the beef industry millions of dollars each year. Ranchers can aid in preventing illness by ... BVD Type 1 & 2 - Bovine Viral Diarrhea (abortion, respiratory disease, diarrhea). Bangs - Brucellosis or Bangs disease ( ...

No FAQ available that match "infectious bovine rhinotracheitis"