The type species of the genus INFLUENZAVIRUS A that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces.
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.
An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia.
Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The vaccine is usually bivalent or trivalent, containing one or two INFLUENZAVIRUS A strains and one INFLUENZAVIRUS B strain.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918.
Infection of domestic and wild fowl and other BIRDS with INFLUENZA A VIRUS. Avian influenza usually does not sicken birds, but can be highly pathogenic and fatal in domestic POULTRY.
Species of the genus INFLUENZAVIRUS B that cause HUMAN INFLUENZA and other diseases primarily in humans. Antigenic variation is less extensive than in type A viruses (INFLUENZA A VIRUS) and consequently there is no basis for distinct subtypes or variants. Epidemics are less likely than with INFLUENZA A VIRUS and there have been no pandemics. Previously only found in humans, Influenza B virus has been isolated from seals which may constitute the animal reservoir from which humans are exposed.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 2. The H3N2 subtype was responsible for the Hong Kong flu pandemic of 1968.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 1. The H5N1 subtype, frequently referred to as the bird flu virus, is endemic in wild birds and very contagious among both domestic (POULTRY) and wild birds. It does not usually infect humans, but some cases have been reported.
Membrane glycoproteins from influenza viruses which are involved in hemagglutination, virus attachment, and envelope fusion. Fourteen distinct subtypes of HA glycoproteins and nine of NA glycoproteins have been identified from INFLUENZA A VIRUS; no subtypes have been identified for Influenza B or Influenza C viruses.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
Virus diseases caused by the ORTHOMYXOVIRIDAE.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 9 and neuraminidase 2. The H9N2 subtype usually infects domestic birds (POULTRY) but there have been some human infections reported.
Epidemics of infectious disease that have spread to many countries, often more than one continent, and usually affecting a large number of people.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 8. The H3N8 subtype has frequently been found in horses.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 2 and neuraminidase 2. The H2N2 subtype was responsible for the Asian flu pandemic of 1957.
An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992)
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 7 and neuraminidase 7. The H7N7 subtype produced an epidemic in 2003 which was highly pathogenic among domestic birds (POULTRY). Some infections in humans were reported.
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 2. The H5N2 subtype has been found to be highly pathogenic in chickens.
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 7 and neuraminidase 9. This avian origin virus was first identified in humans in 2013.
Specific hemagglutinin subtypes encoded by VIRUSES.
An acetamido cyclohexene that is a structural homolog of SIALIC ACID and inhibits NEURAMINIDASE.
Viruses containing two or more pieces of nucleic acid (segmented genome) from different parents. Such viruses are produced in cells coinfected with different strains of a given virus.
Immunoglobulins produced in response to VIRAL ANTIGENS.
"Ducks" is not a recognized medical term or condition in human health; it may refer to various anatomical structures in animals, such as the ducks of the heart valves, but it does not have a standalone medical definition.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 1 and neuraminidase 2. It is endemic in both human and pig populations.
Domesticated birds raised for food. It typically includes CHICKENS; TURKEYS, DUCKS; GEESE; and others.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.
An order of BIRDS comprising the waterfowl, particularly DUCKS; GEESE; swans; and screamers.
Periodic movements of animals in response to seasonal changes or reproductive instinct. Hormonal changes are the trigger in at least some animals. Most migrations are made for reasons of climatic change, feeding, or breeding.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
A guanido-neuraminic acid that is used to inhibit NEURAMINIDASE.
An antiviral that is used in the prophylactic or symptomatic treatment of influenza A. It is also used as an antiparkinsonian agent, to treat extrapyramidal reactions, and for postherpetic neuralgia. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
A widely distributed order of perching BIRDS, including more than half of all bird species.
An epithelial cell line derived from a kidney of a normal adult female dog.
PASSERIFORMES of the suborder, Oscines, in which the flexor tendons of the toes are separate, and the lower syrinx has 4 to 9 pairs of tensor muscles inserted at both ends of the tracheal half rings. They include many commonly recognized birds such as CROWS; FINCHES; robins; SPARROWS; and SWALLOWS.
An order of BIRDS including over 300 species that primarily inhabit coastal waters, beaches, and marshes. They are comprised of shorebirds, gulls, and terns.
Animals considered to be wild or feral or not adapted for domestic use. It does not include wild animals in zoos for which ANIMALS, ZOO is available.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The relationships of groups of organisms as reflected by their genetic makeup.
A genus of the family ORTHOMYXOVIRIDAE comprising viruses similar to types A and B but less common, more stable, more homogeneous, and lacking the neuraminidase protein. They have not been associated with epidemics but may cause mild influenza. Influenza C virus is the type species.
Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell.
An RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza.
Diseases of birds which are raised as a source of meat or eggs for human consumption and are usually found in barnyards, hatcheries, etc. The concept is differentiated from BIRD DISEASES which is for diseases of birds not considered poultry and usually found in zoos, parks, and the wild.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 7 and neuraminidase 3. It was first detected in turkeys in Britain in 1963 and there have been several outbreaks on poultry farms since that time. A couple cases of human infections have been reported.
A dilated cavity extended caudally from the hindgut. In adult birds, reptiles, amphibians, and many fishes but few mammals, cloaca is a common chamber into which the digestive, urinary and reproductive tracts discharge their contents. In most mammals, cloaca gives rise to LARGE INTESTINE; URINARY BLADDER; and GENITALIA.
Monitoring of rate of occurrence of specific conditions to assess the stability or change in health levels of a population. It is also the study of disease rates in a specific cohort such as in a geographic area or population subgroup to estimate trends in a larger population. (From Last, Dictionary of Epidemiology, 2d ed)
Protection conferred on a host by inoculation with one strain or component of a microorganism that prevents infection when later challenged with a similar strain. Most commonly the microorganism is a virus.
I'm sorry for any confusion, but the term "geese" is a common name for certain species of waterfowl and doesn't have a medical definition. It is not related to medical terminology or healthcare.
A genus in the family ORTHOMYXOVIRIDAE causing influenza and other diseases in humans and animals. It contains many strains as well as antigenic subtypes of the integral membrane proteins hemagglutinin (HEMAGGLUTININS) and NEURAMINIDASE. The type species is INFLUENZA A VIRUS.
Inflammation of the lung parenchyma that is caused by a viral infection.
Flat keratinous structures found on the skin surface of birds. Feathers are made partly of a hollow shaft fringed with barbs. They constitute the plumage.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
The expelling of virus particles from the body. Important routes include the respiratory tract, genital tract, and intestinal tract. Virus shedding is an important means of vertical transmission (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
Substances elaborated by viruses that have antigenic activity.
Ribonucleic acid that makes up the genetic material of viruses.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 7 and neuraminidase 1. This subtype has demonstrated the ability to mutate from a low pathogenic form to a highly pathogenic form in birds. It was responsible for a 1999 outbreak in turkeys in Italy.
Proteins found in any species of virus.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc.
Ongoing scrutiny of a population (general population, study population, target population, etc.), generally using methods distinguished by their practicability, uniformity, and frequently their rapidity, rather than by complete accuracy.
Established cell cultures that have the potential to propagate indefinitely.
Proteins conjugated with nucleic acids.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
The use of wings or wing-like appendages to remain aloft and move through the air.
Diseases of non-human animals that may be transmitted to HUMANS or may be transmitted from humans to non-human animals.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
An order of BIRDS comprised of several families and more than 300 species. It includes COCKATOOS; PARROTS; PARAKEETS; macaws; and BUDGERIGARS.
'Pyrans' are heterocyclic organic compounds containing a six-membered ring with one oxygen atom and five carbon atoms, which can be found in various natural substances and synthesized compounds, and may have potential applications in medicinal chemistry.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
An order of diurnal BIRDS of prey, including EAGLES; HAWKS; buzzards; vultures; and falcons.
BIRDS that hunt and kill other animals, especially higher vertebrates, for food. They include the FALCONIFORMES order, or diurnal birds of prey, comprised of EAGLES, falcons, HAWKS, and others, as well as the STRIGIFORMES order, or nocturnal birds of prey, which includes OWLS.
BIRDS of the large family Psittacidae, widely distributed in tropical regions and having a distinctive stout, curved hooked bill. The family includes LOVEBIRDS; AMAZON PARROTS; conures; PARAKEETS; and many other kinds of parrots.
The study of the structure, growth, function, genetics, and reproduction of viruses, and VIRUS DISEASES.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 7 and neuraminidase 2. It has been involved in a number of outbreaks in the 21st century on poultry farms and has been isolated a few times in humans.
An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293)
An order of heavy-bodied, largely terrestrial BIRDS including pheasants, TURKEYS, grouse, QUAIL, and CHICKENS.
Sudden outbreaks of a disease in a country or region not previously recognized in that area, or a rapid increase in the number of new cases of a previous existing endemic disease. Epidemics can also refer to outbreaks of disease in animal or plant populations.
Delivery of medications through the nasal mucosa.
Sorbitan mono-9-octadecanoate poly(oxy-1,2-ethanediyl) derivatives; complex mixtures of polyoxyethylene ethers used as emulsifiers or dispersing agents in pharmaceuticals.
Diseases of domestic swine and of the wild boar of the genus Sus.
Elements of limited time intervals, contributing to particular results or situations.
The top portion of the pharynx situated posterior to the nose and superior to the SOFT PALATE. The nasopharynx is the posterior extension of the nasal cavities and has a respiratory function.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID.
Administration of a vaccine to large populations in order to elicit IMMUNITY.
Process of growing viruses in live animals, plants, or cultured cells.
Agglutination of ERYTHROCYTES by a virus.
The term "United States" in a medical context often refers to the country where a patient or study participant resides, and is not a medical term per se, but relevant for epidemiological studies, healthcare policies, and understanding differences in disease prevalence, treatment patterns, and health outcomes across various geographic locations.
The ability of viruses to resist or to become tolerant to chemotherapeutic agents or antiviral agents. This resistance is acquired through gene mutation.
Animal behavior associated with the nest; includes construction, effects of size and material; behavior of the adult during the nesting period and the effect of the nest on the behavior of the young.
Organized services to administer immunization procedures in the prevention of various diseases. The programs are made available over a wide range of sites: schools, hospitals, public health agencies, voluntary health agencies, etc. They are administered to an equally wide range of population groups or on various administrative levels: community, municipal, state, national, international.
The confinement of a patient in a hospital.
The former British crown colony located off the southeast coast of China, comprised of Hong Kong Island, Kowloon Peninsula, and New Territories. The three sites were ceded to the British by the Chinese respectively in 1841, 1860, and 1898. Hong Kong reverted to China in July 1997. The name represents the Cantonese pronunciation of the Chinese xianggang, fragrant port, from xiang, perfume and gang, port or harbor, with reference to its currents sweetened by fresh water from a river west of it.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues.
'Squalene' is a biologically occurring triterpene compound, naturally produced in humans, animals, and plants, that forms an essential part of the lipid-rich membranes in various tissues, including the skin surface and the liver, and has been studied for its potential benefits in skincare, dietary supplements, and vaccine adjuvant systems.
Sounds used in animal communication.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The family Passeridae comprised of small, mainly brown and grey seed-eating birds with conical bills.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Common name for small PASSERIFORMES in the family Fringillidae. They have a short stout bill (BEAK) adapted for crushing SEEDS. Some species of Old World finches are called CANARIES.
The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about.
Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable.
In some animals, the jaws together with their horny covering. The beak usually refers to the bill of birds in which the whole varies greatly in form according of the food and habits of the bird. While the beak refers most commonly to birds, the anatomical counterpart is found also in the turtle, squid, and octopus. (From Webster, 3d ed & Storer, et al., General Zoology, 6th ed, p491, 755)
Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed)
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Restriction of freedom of movement of individuals who have been exposed to infectious or communicable disease in order to prevent its spread; a period of detention of vessels, vehicles, or travelers coming from infected or suspected places; and detention or isolation on account of suspected contagion. It includes government regulations on the detention of animals at frontiers or ports of entrance for the prevention of infectious disease, through a period of isolation before being allowed to enter a country. (From Dorland, 28th ed & Black's Veterinary Dictionary, 17th ed)
A genus of the family ORTHOMYXOVIRUS causing HUMAN INFLUENZA and other diseases primarily in humans. In contrast to INFLUENZAVIRUS A, no distinct antigenic subtypes of hemagglutinin (HEMAGGLUTININS) and NEURAMINIDASE are recognized.
The science dealing with the earth and its life, especially the description of land, sea, and air and the distribution of plant and animal life, including humanity and human industries with reference to the mutual relations of these elements. (From Webster, 3d ed)
The use of techniques that produce a functional MUTATION or an effect on GENE EXPRESSION of a specific gene of interest in order to identify the role or activity of the gene product of that gene.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.
Vaccines using VIROSOMES as the antigen delivery system that stimulates the desired immune response.
The interactions between a host and a pathogen, usually resulting in disease.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The functional hereditary units of VIRUSES.
A country spanning from central Asia to the Pacific Ocean.
Infectious diseases that are novel in their outbreak ranges (geographic and host) or transmission mode.
Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity.
Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)
The transmission of infectious disease or pathogens. When transmission is within the same species, the mode can be horizontal or vertical (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
A form of alveolitis or pneumonitis due to an acquired hypersensitivity to inhaled avian antigens, usually proteins in the dust of bird feathers and droppings.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
The properties of a pathogen that makes it capable of infecting one or more specific hosts. The pathogen can include PARASITES as well as VIRUSES; BACTERIA; FUNGI; or PLANTS.
The ongoing, systematic collection, analysis, and interpretation of health-related data with the purpose of preventing or controlling disease or injury, or of identifying unusual events of public health importance, followed by the dissemination and use of information for public health action. (From Am J Prev Med 2011;41(6):636)
Animate or inanimate sources which normally harbor disease-causing organisms and thus serve as potential sources of disease outbreaks. Reservoirs are distinguished from vectors (DISEASE VECTORS) and carriers, which are agents of disease transmission rather than continuing sources of potential disease outbreaks.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
An N-acyl derivative of neuraminic acid. N-acetylneuraminic acid occurs in many polysaccharides, glycoproteins, and glycolipids in animals and bacteria. (From Dorland, 28th ed, p1518)
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Time period from 1901 through 2000 of the common era.
A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
Infection of the lung often accompanied by inflammation.
Interferon-induced DYNAMIN-like GTP-binding proteins localized in the cytoplasm, nuclear pore complex and nucleus. They play a role in antiviral defense and immunity.
Programs of surveillance designed to prevent the transmission of disease by any means from person to person or from animal to man.
Common name for the largest birds in the order PASSERIFORMES, family Corvidae. These omnivorous black birds comprise most of the species in the genus Corvus, along with ravens and jackdaws (which are often also referred to as crows).
An infant during the first month after birth.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
Inactivation of viruses by non-immune related techniques. They include extremes of pH, HEAT treatment, ultraviolet radiation, IONIZING RADIATION; DESICCATION; ANTISEPTICS; DISINFECTANTS; organic solvents, and DETERGENTS.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 10 and neuraminidase 7. It has been isolated from a variety of wild and domestic animals including ducks, emu, and mink. It was found for the first time in humans in 2004.
Diseases of birds not considered poultry, therefore usually found in zoos, parks, and the wild. The concept is differentiated from POULTRY DISEASES which is for birds raised as a source of meat or eggs for human consumption, and usually found in barnyards, hatcheries, etc.
Antibody-mediated immune response. Humoral immunity is brought about by ANTIBODY FORMATION, resulting from TH2 CELLS activating B-LYMPHOCYTES, followed by COMPLEMENT ACTIVATION.
While there isn't a specific medical definition for "North America," I can provide a geographical definition that is often used in public health and medical contexts: North America is the third largest continent by area, encompassing 23 independent states, including the United States, Canada, and Mexico, which are home to diverse populations, cultures, and ecosystems, and share common health-related challenges such as obesity, diabetes, and healthcare access disparities.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Minute infectious agents whose genomes are composed of DNA or RNA, but not both. They are characterized by a lack of independent metabolism and the inability to replicate outside living host cells.
The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells.
Procedures outlined for the care of casualties and the maintenance of services in disasters.
The sole family in the order Sphenisciformes, comprised of 17 species of penguins in six genera. They are flightless seabirds of the Southern Hemisphere, highly adapted for marine life.
Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it.
Men and women working in the provision of health services, whether as individual practitioners or employees of health institutions and programs, whether or not professionally trained, and whether or not subject to public regulation. (From A Discursive Dictionary of Health Care, 1976)
The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population.
Cold-blooded, air-breathing VERTEBRATES belonging to the class Reptilia, usually covered with external scales or bony plates.
A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL.
'Zoo animals' are various species of captive wild animals, housed and displayed in a facility for the purpose of public education, conservation, research, and recreation.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
An order of heteroxenous protozoa in which the macrogamete and microgamont develop independently. A conoid is usually absent.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
A phenomenon manifested by an agent or substance adhering to or being adsorbed on the surface of a red blood cell, as tuberculin can be adsorbed on red blood cells under certain conditions. (Stedman, 25th ed)
A general term for diseases produced by viruses.
Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
I'm sorry for any confusion, but 'Europe' is a geographical continent and not a medical term; therefore, it doesn't have a medical definition.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals.
A superorder of large, mostly flightless birds, named for their distinctive PALATE morphology. It includes the orders Apterygiformes, Casuriiformes, Dinornithiformes, RHEIFORMES; STRUTHIONIFORMES and Tinamiformes.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Sites on an antigen that interact with specific antibodies.
A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
## I'm sorry for any confusion, but "Japan" is not a medical term or concept. It is a country located in Asia, known as Nihon-koku or Nippon-koku in Japanese, and is renowned for its unique culture, advanced technology, and rich history. If you have any questions related to medical topics, I would be happy to help answer them!
Diseases of domestic and wild horses of the species Equus caballus.
The concept pertaining to the health status of inhabitants of the world.
A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES.
A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx).
The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL).
A tricyclo bridged hydrocarbon.
Formerly known as Siam, this is a Southeast Asian nation at the center of the Indochina peninsula. Bangkok is the capital city.
Genotypic differences observed among individuals in a population.
A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.
Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction.
The forcing into the skin of liquid medication, nutrient, or other fluid through a hollow needle, piercing the top skin layer.
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
The quantity of measurable virus in a body fluid. Change in viral load, measured in plasma, is sometimes used as a SURROGATE MARKER in disease progression.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young.
The most well known avian paramyxovirus in the genus AVULAVIRUS and the cause of a highly infectious pneumoencephalitis in fowl. It is also reported to cause CONJUNCTIVITIS in humans. Transmission is by droplet inhalation or ingestion of contaminated water or food.
An acute febrile, contagious, viral disease of birds caused by an AVULAVIRUS called NEWCASTLE DISEASE VIRUS. It is characterized by respiratory and nervous symptoms in fowl and is transmissible to man causing a severe, but transient conjunctivitis.
General name for two extinct orders of reptiles from the Mesozoic era: Saurischia and Ornithischia.
Simultaneous infection of a host organism by two or more pathogens. In virology, coinfection commonly refers to simultaneous infection of a single cell by two or more different viruses.
The expected number of new cases of an infection caused by an infected individual, in a population consisting of susceptible contacts only.

Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong. (1/1236)

The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.  (+info)

Phylogenetic analysis of H7 avian influenza viruses isolated from the live bird markets of the Northeast United States. (2/1236)

The presence of low-pathogenic H7 avian influenza virus (AIV), which is associated with live-bird markets (LBM) in the Northeast United States, was first detected in 1994 and, despite efforts to eradicate the virus, surveillance of these markets has resulted in numerous isolations of H7 AIVs from several states from 1994 through 1998. The hemagglutinin, nonstructural, and matrix genes from representative H7 isolates from the LBM and elsewhere were sequenced, and the sequences were compared phylogenetically. The hemagglutinin gene of most LBM isolates examined appeared to have been the result of a single introduction of the hemagglutinin gene. Evidence for evolutionary changes were observed with three definable steps. The first isolate from 1994 had the amino acid threonine at the -2 position of the hemagglutinin cleavage site, which is the most commonly observed amino acid at this site for North American H7 AIVs. In January 1995 a new genotype with a proline at the -2 position was detected, and this genotype eventually became the predominant virus isolate. A third viral genotype, detected in November 1996, had an eight-amino-acid deletion within the putative receptor binding site. This viral genotype appeared to be the predominant isolate, although isolates with proline at the -2 position without the deletion were still observed in viruses from the last sampling date. Evidence for reassortment of multiple viral genes was evident. The combination of possible adaptive evolution of the virus and reassortment with different influenza virus genes makes it difficult to determine the risk of pathogenesis of this group of H7 AIVs.  (+info)

Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. (3/1236)

Analysis of the sequences of all eight RNA segments of the influenza A/G oose/Guangdong/1/96 (H5N1) virus, isolated from a sick goose during an outbreak in Guangdong province, China, in 1996, revealed that the hemagglutinin (HA) gene of the virus was genetically similar to those of the H5N1 viruses isolated in Hong Kong in 1997. However, the remaining genes showed greater similarity to other avian influenza viruses. Notably, the neuraminidase gene did no have the 19-amino-acid deletion in the stalk region seen in the H5N1 Hong Kong viruses and the NS gene belonged to allele B, while that of the H5N1 Hong Kong viruses belonged to allele A. These data suggest that the H5N1 viruses isolated from the Hong Kong outbreaks derived their HA genes from a virus similar to the A/Goose/Guangdong/1/96 virus or shared a progenitor with this goose pathogen.  (+info)

Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. (4/1236)

Influenza A virus of the H2 subtype caused a serious pandemic in 1957 and may cause similar outbreaks in the future. To assess the evolution and the antigenic relationships of avian influenza H2 viruses, we sequenced the haemagglutinin (HA) genes of H2 isolates from shorebirds, ducks and poultry in North America and derived a phylogenetic tree to establish their interrelationships. This analysis confirmed the divergence of H2 HA into two geographical lineages, American and Eurasian. One group of viruses isolated from shorebirds in North America had HA belonging to the Eurasian lineage, indicating an interregional transmission of the H2 gene. Characterization of HA with a monoclonal antibody panel revealed that the antigenicity of the Delaware strains differed from the other avian strains analysed. The data emphasizes the importance of avian influenza surveillance.  (+info)

Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? (5/1236)

In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.  (+info)

Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. (6/1236)

Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor beta levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.  (+info)

The susceptibility of culture cells to avian influenza viruses. (7/1236)

The susceptibilities of culture cells to twelve avian influenza virus strains were determined with ten established cell lines including MDCK and ESK cells and three primary culture cells. The established cell lines derived from embryonic swine kidney (ESK) and chicken kidney (CK) primary culture cells were more sensitive to the avian influenza viruses than the other eleven cells. The ESK cell had a particularly higher infective titer than the MDCK cell with and without trypsin supplement in culture medium, and dispersion of the infective titers was narrower than that of the MDCK cell. The ESK cell is a suitable candidate for routine work on avian influenza viruses in laboratories.  (+info)

Production and evaluation criteria of specific monoclonal antibodies to the hemagglutinin of the H7N2 subtype of avian influenza virus. (8/1236)

To enhance the rapidity in diagnosing the spread of avian influenza virus (AIV) in chicken layer flocks, studies were initiated to develop more sensitive and specific immunological and molecular methods for the detection of AIV. In this study, the purification of the hemagglutinin protein (H) from field isolates of H7N2, the production of monoclonal antibodies (MAbs), and their evaluation as diagnostic reagents are reported. Hybridomas were generated by fusion of SP2/0-Ag14 myelomas and spleen cells from immunized mice. Hybridomas secreting antibodies specific for the H protein were assayed by an ELISA and cloned using limiting dilution. The MAbs produced were characterized by hemagglutination inhibition (HI), immunohistochemistry (IHC), indirect fluorescent antibody assay (IFA), Western blots, and IFA flow cytometry using various AIV subtypes (i.e., H4N2, H5N3, H7N2). Of the various MAbs assayed, 6 had consistent and reproducible results in each of the assays used. The results obtained in this investigation enhanced the usage of the MAbs to viral H protein in the surveillance of AIV in chickens.  (+info)

Influenza A virus is defined as a negative-sense, single-stranded, segmented RNA virus belonging to the family Orthomyxoviridae. It is responsible for causing epidemic and pandemic influenza in humans and is also known to infect various animal species, such as birds, pigs, horses, and seals. The viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), are the primary targets for antiviral drugs and vaccines. There are 18 different HA subtypes and 11 known NA subtypes, which contribute to the diversity and antigenic drift of Influenza A viruses. The zoonotic nature of this virus allows for genetic reassortment between human and animal strains, leading to the emergence of novel variants with pandemic potential.

I am not aware of a medical definition for the term "birds." Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, and lightweight but strong skeletons. Some birds, such as pigeons and chickens, have been used in medical research, but the term "birds" itself does not have a specific medical definition.

Influenza, also known as the flu, is a highly contagious viral infection that attacks the respiratory system of humans. It is caused by influenza viruses A, B, or C and is characterized by the sudden onset of fever, chills, headache, muscle pain, sore throat, cough, runny nose, and fatigue. Influenza can lead to complications such as pneumonia, bronchitis, and ear infections, and can be particularly dangerous for young children, older adults, pregnant women, and people with weakened immune systems or chronic medical conditions. The virus is spread through respiratory droplets produced when an infected person coughs, sneezes, or talks, and can also survive on surfaces for a period of time. Influenza viruses are constantly changing, which makes it necessary to get vaccinated annually to protect against the most recent and prevalent strains.

Influenza vaccines, also known as flu shots, are vaccines that protect against the influenza virus. Influenza is a highly contagious respiratory illness that can cause severe symptoms and complications, particularly in young children, older adults, pregnant women, and people with certain underlying health conditions.

Influenza vaccines contain inactivated or weakened viruses or pieces of the virus, which stimulate the immune system to produce antibodies that recognize and fight off the virus. The vaccine is typically given as an injection into the muscle, usually in the upper arm.

There are several different types of influenza vaccines available, including:

* Trivalent vaccines, which protect against three strains of the virus (two A strains and one B strain)
* Quadrivalent vaccines, which protect against four strains of the virus (two A strains and two B strains)
* High-dose vaccines, which contain a higher amount of antigen and are recommended for people aged 65 and older
* Adjuvanted vaccines, which contain an additional ingredient to boost the immune response and are also recommended for people aged 65 and older
* Cell-based vaccines, which are produced using cultured cells rather than eggs and may be recommended for people with egg allergies

It's important to note that influenza viruses are constantly changing, so the vaccine is updated each year to match the circulating strains. It's recommended that most people get vaccinated against influenza every year to stay protected.

'Influenza A Virus, H1N1 Subtype' is a specific subtype of the influenza A virus that causes flu in humans and animals. It contains certain proteins called hemagglutinin (H) and neuraminidase (N) on its surface, with this subtype specifically having H1 and N1 antigens. The H1N1 strain is well-known for causing the 2009 swine flu pandemic, which was a global outbreak of flu that resulted in significant morbidity and mortality. This subtype can also cause seasonal flu, although the severity and symptoms may vary. It is important to note that influenza viruses are constantly changing, and new strains or subtypes can emerge over time, requiring regular updates to vaccines to protect against them.

'Avian influenza' refers to the infection caused by avian (bird) influenza A viruses. These viruses occur naturally among wild aquatic birds worldwide and can infect domestic poultry and other bird and animal species. Avian influenza viruses do not normally infect humans, but rare cases of human infection have occurred mainly after close contact with infected birds or heavily contaminated environments.

There are many different subtypes of avian influenza viruses based on two proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). There are 16 known HA subtypes and 9 known NA subtypes, creating a vast number of possible combinations. Some of these combinations cause severe disease and death in birds (e.g., H5N1, H7N9), while others only cause mild illness (e.g., H9N2).

Most avian influenza viruses do not infect humans. However, some forms are zoonotic, meaning they can infect animals and humans. The risk to human health is generally low. When human infections with avian influenza viruses have occurred, most have resulted from direct contact with infected poultry or surfaces contaminated by their feces.

Avian influenza viruses have caused several pandemics in the past, including the 1918 Spanish flu (H1N1), which was an H1N1 virus containing genes of avian origin. The concern is that a highly pathogenic avian influenza virus could mutate to become easily transmissible from human to human, leading to another pandemic. This is one of the reasons why avian influenza viruses are closely monitored by public health authorities worldwide.

Influenza B virus is one of the primary types of influenza viruses that cause seasonal flu in humans. It's an enveloped, negative-sense, single-stranded RNA virus belonging to the family Orthomyxoviridae.

Influenza B viruses are typically found only in humans and circulate widely during the annual flu season. They mutate at a slower rate than Influenza A viruses, which means that immunity developed against one strain tends to provide protection against similar strains in subsequent seasons. However, they can still cause significant illness, especially among young children, older adults, and people with certain chronic medical conditions.

Influenza B viruses are divided into two lineages: Victoria and Yamagata. Vaccines are developed each year to target the most likely strains of Influenza A and B viruses that will circulate in the upcoming flu season.

"Influenza A Virus, H3N2 Subtype" is a specific subtype of the influenza A virus that causes respiratory illness and is known to circulate in humans and animals, including birds and pigs. The "H3N2" refers to the two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H protein is of the H3 variety and the N protein is of the N2 variety. This subtype has been responsible for several influenza epidemics and pandemics in humans, including the 1968 Hong Kong flu pandemic. It is one of the influenza viruses that are monitored closely by public health authorities due to its potential to cause significant illness and death, particularly in high-risk populations such as older adults, young children, and people with certain underlying medical conditions.

"Influenza A Virus, H5N1 Subtype" is a specific subtype of the Influenza A virus that is often found in avian species (birds) and can occasionally infect humans. The "H5N1" refers to the specific proteins (hemagglutinin and neuraminidase) found on the surface of the virus. This subtype has caused serious infections in humans, with high mortality rates, especially in cases where people have had close contact with infected birds. It does not commonly spread from person to person, but there is concern that it could mutate and adapt to efficiently transmit between humans, which would potentially cause a pandemic.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

'Influenza A Virus, H9N2 Subtype' is a type of influenza virus that causes respiratory illness in birds and occasionally in humans. It has been found to infect various animal species, including pigs, dogs, and horses. The H9N2 subtype has eight negative-sense RNA segments, encoding several proteins, such as hemagglutinin (H), neuraminidase (N), matrix protein (M), nucleoprotein (NP), nonstructural protein (NS), and three polymerase proteins (PA, PB1, and PB2).

The H9 hemagglutinin and N2 neuraminidase surface glycoproteins define the subtype of this influenza virus. The H9N2 viruses are known to have low pathogenicity in birds but can cause mild to moderate respiratory symptoms in humans, particularly those with occupational exposure to poultry or live bird markets.

H9N2 viruses have sporadically infected humans since their first identification in the 1960s and pose a pandemic threat due to their ability to reassort genetic material with other influenza A viruses, potentially creating new strains with increased transmissibility and pathogenicity for humans.

A pandemic is a global outbreak of a disease that spreads easily from person to person across a large region, such as multiple continents or worldwide. It is declared by the World Health Organization (WHO) when the spread of a disease poses a significant threat to the global population due to its severity and transmissibility.

Pandemics typically occur when a new strain of virus emerges that has not been previously seen in humans, for which there is little or no pre-existing immunity. This makes it difficult to control the spread of the disease, as people do not have natural protection against it. Examples of pandemics include the 1918 Spanish flu pandemic and the more recent COVID-19 pandemic caused by the SARS-CoV-2 virus.

During a pandemic, healthcare systems can become overwhelmed, and there may be significant social and economic disruption as governments take measures to slow the spread of the disease, such as travel restrictions, quarantines, and lockdowns. Effective vaccines and treatments are critical in controlling the spread of pandemics and reducing their impact on public health.

'Influenza A Virus, H3N8 Subtype' is a type of influenza virus that causes respiratory illness in animals, particularly horses and dogs. It is one of the many subtypes of Influenza A viruses, which are classified based on two proteins found on the surface of the virus: hemagglutinin (H) and neuraminidase (N). The H3N8 subtype has hemagglutinin protein type 3 and neuraminidase protein type 8.

While H3N8 is not typically known to cause illness in humans, it can occasionally infect people who have close contact with infected animals. However, human-to-human transmission of this subtype is rare. It's important to note that influenza viruses are constantly changing and evolving, so the potential for new strains to emerge and pose a threat to human health cannot be ruled out.

Regular surveillance and monitoring of animal populations for influenza viruses, as well as ongoing research into their transmission dynamics and genetic changes, are crucial for early detection and response to potential pandemic threats.

'Influenza A Virus, H2N2 Subtype' is a type of influenza virus that causes flu in humans and animals. It has the surface proteins hemagglutinin 2 (H) and neuraminidase 2 (N). This subtype was responsible for the Asian Flu pandemic in 1957-1958, which is estimated to have caused 1 to 4 million deaths worldwide. Since then, this specific H2N2 subtype has not circulated widely among humans. However, it still exists in animals such as birds and pigs, and there is a risk that it could evolve and infect humans again, which is why it is closely monitored by public health authorities.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

"Influenza A Virus, H7N7 Subtype" is a type of influenza virus that causes respiratory illness in humans and animals. The "H" and "N" in the name refer to two proteins on the surface of the virus, hemagglutinin (H) and neuraminidase (N), respectively. In this subtype, the H7 protein is combined with the N7 protein.

H7N7 viruses are primarily avian influenza viruses, meaning they naturally infect birds. However, they can occasionally infect other animals, including humans, and have caused sporadic human infections and outbreaks, mainly in people who have close contact with infected birds or their droppings.

H7N7 infections in humans can range from mild to severe respiratory illness, and some cases have resulted in death. However, human-to-human transmission of H7N7 viruses is rare. Public health authorities closely monitor H7N7 and other avian influenza viruses due to their potential to cause a pandemic if they acquire the ability to transmit efficiently between humans.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

'Influenza A Virus, H5N2 Subtype' is a type of influenza virus that primarily infects birds, but has caused sporadic infections in humans who have had close contact with infected poultry or contaminated environments. The 'H5N2' refers to the specific subtype of the hemagglutinin (H) and neuraminidase (N) proteins found on the surface of the virus.

The H5N2 subtype has caused significant outbreaks in poultry populations, leading to substantial economic losses for the farming industry. While human infections with this subtype are rare, they can cause severe respiratory illness and have the potential to cause a pandemic if the virus were to acquire the ability to transmit efficiently from person to person.

It is important to note that seasonal influenza vaccines do not provide protection against H5N2 or other non-seasonal influenza viruses, highlighting the need for ongoing surveillance and research into new vaccine candidates.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

'Influenza A Virus, H7N9 Subtype' is a specific subtype of Influenza A virus that is known to primarily infect birds, but has also caused sporadic human infections in China since 2013. The 'H' and 'N' in the name refer to the proteins hemagglutinin (H) and neuraminidase (N), respectively, on the surface of the virus. In this subtype, the H7 and N9 proteins are found.

The H7N9 virus has caused serious illness in humans, with high fever, cough, and severe pneumonia being common symptoms. Some cases have resulted in death, particularly among those with underlying health conditions or weakened immune systems. The virus is not currently known to transmit efficiently from person to person, but there is concern that it could mutate and acquire the ability to spread more easily between humans, which could potentially lead to a pandemic.

It's important to note that seasonal flu vaccines do not provide protection against H7N9 virus, as it is antigenically distinct from seasonal influenza viruses. However, research and development efforts are ongoing to create a vaccine specifically for this subtype.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

Oseltamivir is an antiviral medication used to treat and prevent influenza A and B infections. It works by inhibiting the neuraminidase enzyme, which plays a crucial role in the replication of the influenza virus. By blocking this enzyme, oseltamivir prevents the virus from spreading within the body, thereby reducing the severity and duration of flu symptoms.

Oseltamivir is available as a phosphate salt, known as oseltamivir phosphate, which is converted into its active form, oseltamivir carboxylate, after oral administration. It is typically administered orally in the form of capsules or a powder for suspension.

It's important to note that oseltamivir is most effective when started within 48 hours of symptom onset. While it can reduce the duration of flu symptoms by about one to two days, it does not cure the infection and may not prevent serious complications in high-risk individuals, such as those with underlying medical conditions or weakened immune systems.

Common side effects of oseltamivir include nausea, vomiting, diarrhea, and headache. Serious side effects are rare but can include allergic reactions, skin rashes, and neuropsychiatric events like confusion, hallucinations, and abnormal behavior. Consult a healthcare professional for more detailed information about oseltamivir and its potential uses, benefits, and risks.

Reassortant viruses are formed when two or more different strains of a virus infect the same cell and exchange genetic material, creating a new strain. This phenomenon is most commonly observed in segmented RNA viruses, such as influenza A and B viruses, where each strain may have a different combination of gene segments. When these reassortant viruses emerge, they can sometimes have altered properties, such as increased transmissibility or virulence, which can pose significant public health concerns. For example, pandemic influenza viruses often arise through the process of reassortment between human and animal strains.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

"Ducks" is not a medical term. It is a common name used to refer to a group of birds that belong to the family Anatidae, which also includes swans and geese. Some ducks are hunted for their meat, feathers, or down, but they do not have any specific medical relevance. If you have any questions about a specific medical term or concept, I would be happy to help if you could provide more information!

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

'Influenza A Virus, H1N2 Subtype' is a type of influenza virus that causes respiratory illness in humans and animals. The 'H' and 'N' in the name refer to two proteins on the surface of the virus, hemagglutinin (H) and neuraminidase (N), respectively. In this subtype, the specific forms are H1 and N2.

Influenza A viruses are divided into subtypes based on these surface proteins, and H1N2 is one of several subtypes that can infect humans. The H1N2 virus is known to have circulated in human populations since at least 2001, and it is thought to arise through the reassortment of genes from other influenza A viruses.

Like other influenza viruses, H1N2 can cause a range of symptoms including fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue. In some cases, it can lead to more severe illnesses such as pneumonia and bronchitis, particularly in people with weakened immune systems, chronic medical conditions, or the elderly.

It is important to note that influenza viruses are constantly changing, and new subtypes and strains can emerge over time. This is why annual flu vaccinations are recommended to help protect against the most common circulating strains of the virus.

I'm sorry for any confusion, but "poultry" is not a medical term. It is a agricultural and culinary term that refers to domestic birds (such as chickens, ducks, geese, and turkeys) that are kept for their eggs, meat, or feathers. The study and care of these birds would fall under the field of veterinary medicine, but "poultry" itself is not a medical term.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

Anseriformes is a taxonomic order that includes approximately 150 species of waterfowl, such as ducks, geese, and swans. These birds are characterized by their short, stout bills, which often have serrated edges or a nail-like structure at the tip, and are adapted for filter-feeding or grazing on aquatic vegetation. Anseriformes species are found worldwide, with the exception of Antarctica, and they inhabit a wide range of wetland habitats, including freshwater lakes, rivers, marshes, and coastal estuaries. Many Anseriformes species are migratory and travel long distances between their breeding and wintering grounds. The order is divided into two families: Anatidae, which includes ducks, geese, and swans, and Anhimidae, which includes screamers, a group of large, terrestrial birds found in South America.

Animal migration is a seasonal movement of animals from one place to another, typically over long distances, to find food, reproduce, or escape harsh conditions. This phenomenon is observed in various species, including birds, mammals, fish, and insects. The routes and destinations of these migrations are often genetically programmed and can be quite complex. Animal migration has important ecological consequences and is influenced by factors such as climate change, habitat loss, and human activities.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Zanamivir is an antiviral medication used to treat and prevent influenza A and B infections. It works by blocking the action of influenza viral neuraminidase, which helps the virus to spread and infect other cells. By inhibiting this enzyme, zanamivir prevents the virus from replicating and thus reduces the severity and duration of flu symptoms.

Zanamivir is available as an inhalation powder and is usually administered using a device called a diskhaler. It is important to note that zanamivir is not effective against other viral or bacterial infections, and it should be used as soon as possible after the onset of flu symptoms for the best results.

As with any medication, zanamivir can have side effects, including respiratory problems such as bronchospasm, cough, and shortness of breath. It may also cause nausea, vomiting, and headaches. People with a history of respiratory disorders, such as asthma or chronic obstructive pulmonary disease (COPD), should use zanamivir with caution, as it may exacerbate these conditions.

Zanamivir is not recommended for people with severe allergies to any ingredient in the medication, and it should be used with caution in pregnant or breastfeeding women, children under seven years of age, and people with kidney or liver disease. It is important to consult a healthcare provider before taking zanamivir or any other medication.

Amantadine is an antiviral medication that is primarily used to prevent and treat certain types of influenza (flu). It works by stopping the virus from multiplying in your body. In addition to its antiviral properties, amantadine also has central nervous system (CNS) stimulant and dopaminergic effects, which make it useful in the treatment of Parkinson's disease and various movement disorders.

The medical definition of Amantadine is:

A synthetic symmetrical tricyclic amine used as an antiviral agent to treat and prevent influenza A infection and as an anti-parkinsonian drug to control extrapyramidal symptoms caused by neuroleptic agents. The antiviral effect may be due to interference with viral uncoating or replication. The anti-parkinsonian effect may be due to a combination of dopamine agonist and NMDA receptor antagonist properties. (Stedman's Medical Dictionary, 28th edition)

Please note that the use of Amantadine for various medical conditions should always be under the supervision of a healthcare professional, as they will consider potential benefits and risks and provide appropriate guidance.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

I'm sorry for any confusion, but "Passeriformes" is not a medical term. It is a taxonomic category in biology, specifically an order of birds that includes over half of all bird species. Passeriformes are often referred to as perching birds or songbirds because many of them have specialized feet for perching on branches and a wide variety of vocalization capabilities. Examples of Passeriformes include sparrows, finches, robins, and crows.

Madin-Darby Canine Kidney (MDCK) cells are a type of cell line that is derived from the kidney of a normal, healthy female cocker spaniel. They were first established in 1958 by researchers Madin and Darby. These cells are epithelial in origin and have the ability to form tight junctions, which makes them a popular choice for studying the transport of molecules across biological barriers.

MDCK cells are widely used in scientific research, particularly in the fields of cell biology, virology, and toxicology. They can be used to study various aspects of cell behavior, including cell adhesion, migration, differentiation, and polarization. Additionally, MDCK cells are susceptible to a variety of viruses, making them useful for studying viral replication and host-virus interactions.

In recent years, MDCK cells have also become an important tool in the development and production of vaccines. They can be used to produce large quantities of virus particles that can then be purified and used as vaccine antigens. Overall, Madin-Darby Canine Kidney cells are a valuable resource for researchers studying a wide range of biological phenomena.

I believe there may be some confusion in your question as "Songbirds" is a common name given to a group of birds known for their vocal abilities, rather than a term used in medical definitions. Songbirds, also known as passerines, are a diverse group of more than 5,000 species of small to medium-sized birds. They belong to the order Passeriformes and include familiar birds such as sparrows, finches, robins, and warblers.

If you have any questions related to medical terminology or healthcare topics, please let me know and I would be happy to help!

Charadriiformes is an order of birds that includes a diverse group of species, such as plovers, sandpipers, curlews, snipes, stilts, avocets, and gulls. These birds are characterized by their long, slender bills, which they use to probe the ground or water for food. They are often found in wetland environments, such as marshes, beaches, and mudflats, although some species can also be found in terrestrial habitats. Charadriiformes have a cosmopolitan distribution, with representatives on every continent except Antarctica.

Wild animals are those species of animals that are not domesticated or tamed by humans and live in their natural habitats without regular human intervention. They can include a wide variety of species, ranging from mammals, birds, reptiles, amphibians, fish, to insects and other invertebrates.

Wild animals are adapted to survive in specific environments and have behaviors, physical traits, and social structures that enable them to find food, shelter, and mates. They can be found in various habitats such as forests, grasslands, deserts, oceans, rivers, and mountains. Some wild animals may come into contact with human populations, particularly in urban areas where their natural habitats have been destroyed or fragmented.

It is important to note that the term "wild" does not necessarily mean that an animal is aggressive or dangerous. While some wild animals can be potentially harmful to humans if provoked or threatened, many are generally peaceful and prefer to avoid contact with people. However, it is essential to respect their natural behaviors and habitats and maintain a safe distance from them to prevent any potential conflicts or harm to either party.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Influenza Virus C is a type of influenza virus that causes respiratory illness in humans. It is one of the three types of influenza viruses, along with Influenza A and Influenza B, that are known to infect humans. However, Influenza Virus C is much less common than Influenza A and B and typically causes milder symptoms.

Influenza Virus C is an enveloped, negative-sense, single-stranded RNA virus that belongs to the family Orthomyxoviridae. It has a distinct antigenic structure from Influenza A and B viruses and is not typically associated with large outbreaks or epidemics.

Infection with Influenza Virus C can cause respiratory symptoms such as cough, sore throat, and fever. However, it is not known to cause severe illness or death in otherwise healthy individuals. Antiviral medications are generally not recommended for treatment of Influenza Virus C infections, but supportive care such as rest, hydration, and fever reduction can help alleviate symptoms.

It's worth noting that most people develop immunity to Influenza Virus C after infection, which provides protection against future infections with the same strain. However, new strains of Influenza Virus C can emerge over time, which may require updated vaccines to provide adequate protection.

Viral matrix proteins are structural proteins that play a crucial role in the morphogenesis and life cycle of many viruses. They are often located between the viral envelope and the viral genome, serving as a scaffold for virus assembly and budding. These proteins also interact with other viral components, such as the viral genome, capsid proteins, and envelope proteins, to form an infectious virion. Additionally, matrix proteins can have regulatory functions, influencing viral transcription, replication, and host cell responses. The specific functions of viral matrix proteins vary among different virus families.

Rimantadine is an antiviral medication that belongs to the class of adamantanes. It is primarily used for preventing and treating influenza A virus infections. Rimantadine works by blocking the viral neuraminidase enzyme, which prevents the virus from spreading within the body.

The medical definition of Rimantadine is:

Rimantadine hydrochloride is a synthetic antiviral agent, chemically designated as 1-[(1R,2S)-2-ethyl-3-adamantanemethyl]-1H-imidazole monohydrochloride. It is a white crystalline powder, freely soluble in water, and soluble in alcohol and chloroform.

Rimantadine is available as an oral medication and is typically prescribed to be taken twice daily. It is most effective when started within 48 hours of the onset of flu symptoms. Common side effects of Rimantadine include gastrointestinal disturbances, nervousness, dizziness, and skin rashes.

It's important to note that Rimantadine is not effective against influenza B virus infections, and its use may be limited due to the emergence of resistant strains of the influenza A virus. Additionally, it should only be used under the guidance of a healthcare professional, as with any medication.

Poultry diseases refer to a wide range of infectious and non-infectious disorders that affect domesticated birds, particularly those raised for meat, egg, or feather production. These diseases can be caused by various factors including viruses, bacteria, fungi, parasites, genetic predisposition, environmental conditions, and management practices.

Infectious poultry diseases are often highly contagious and can lead to significant economic losses in the poultry industry due to decreased production, increased mortality, and reduced quality of products. Some examples of infectious poultry diseases include avian influenza, Newcastle disease, salmonellosis, colibacillosis, mycoplasmosis, aspergillosis, and coccidiosis.

Non-infectious poultry diseases can be caused by factors such as poor nutrition, environmental stressors, and management issues. Examples of non-infectious poultry diseases include ascites, fatty liver syndrome, sudden death syndrome, and various nutritional deficiencies.

Prevention and control of poultry diseases typically involve a combination of biosecurity measures, vaccination programs, proper nutrition, good management practices, and monitoring for early detection and intervention. Rapid and accurate diagnosis of poultry diseases is crucial to implementing effective treatment and prevention strategies, and can help minimize the impact of disease outbreaks on both individual flocks and the broader poultry industry.

'Influenza A Virus, H7N3 Subtype' is a specific subtype of the Influenza A virus that is characterized by hemagglutinin protein 7 (H7) and neuraminidase protein 3 (N3) on its surface. This subtype has been known to cause outbreaks in poultry populations, and can occasionally infect humans who have close contact with infected birds. It has the potential to cause serious illness or even death, particularly in individuals with weakened immune systems. However, it is important to note that H7N3 influenza viruses are not currently circulating in humans and are not a direct threat to public health at this time.

A cloaca is a common cavity or channel in some animals, including many birds and reptiles, that serves as the combined endpoint for the digestive, urinary, and reproductive systems. Feces, urine, and in some cases, eggs are all expelled through this single opening. In humans and other mammals, these systems have separate openings. Anatomical anomalies can result in a human born with a cloaca, which is very rare and typically requires surgical correction.

Sentinel surveillance is a type of public health surveillance that is used to monitor the occurrence and spread of specific diseases or health events in a defined population. It is called "sentinel" because it relies on a network of carefully selected healthcare providers, hospitals, or laboratories to report cases of the disease or event of interest.

The main goal of sentinel surveillance is to provide timely and accurate information about the incidence and trends of a particular health problem in order to inform public health action. This type of surveillance is often used when it is not feasible or practical to monitor an entire population, such as in the case of rare diseases or emerging infectious diseases.

Sentinel surveillance systems typically require well-defined criteria for case identification and reporting, as well as standardized data collection and analysis methods. They may also involve active monitoring and follow-up of cases to better understand the epidemiology of the disease or event. Overall, sentinel surveillance is an important tool for detecting and responding to public health threats in a timely and effective manner.

Cross-protection is a term used in immunology and vaccinology that refers to the ability of a vaccine or natural infection with one strain of a microorganism (such as a virus or bacteria) to provide protection against other, related strains. This occurs because the immune response elicited by the initial exposure also recognizes and targets certain common features present in the related strains.

In the context of vaccines, cross-protection can be an important factor in designing broadly protective vaccines that can cover multiple strains or serotypes of a pathogen, thus reducing the need for individual vaccines against each strain. However, the degree of cross-protection can vary depending on the specific microorganisms and antigens involved.

It's important to note that cross-protection is not always complete or long-lasting, and additional research may be needed to fully understand its mechanisms and limitations.

I'm sorry for any confusion, but "geese" is not a medical term. It refers to various waterbirds constituting the family Anatidae and the genus Branta, characterized by a long neck, wide wings, and a honking call. They are not related to human health or medicine. If you have any medical concerns or questions, I'd be happy to help you with those!

Influenza A Virus: According to the World Health Organization (WHO), Influenza A virus is an orthomyxovirus that causes respiratory illness in humans and many other animal species. It can be found in birds, pigs, horses, and humans. The viral genome consists of eight single-stranded RNA segments enclosed within a lipid membrane derived from the host cell. Two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), are used to classify Influenza A virus into subtypes based on antigenic properties. There are 18 different HA subtypes and 11 NA subtypes, but only H1N1, H2N2, and H3N2 have caused widespread human disease since the 1900s.

Influenza A viruses can be further divided into strains based on differences in their internal proteins. The most common cause of seasonal flu epidemics in humans is Influenza A (H3N2) and Influenza A (H1N1) pdm09, the latter of which caused the 2009 pandemic. Wild aquatic birds are the natural hosts for a large variety of influenza A viruses, and they are also responsible for the emergence of new subtypes.

These viruses can occasionally cause outbreaks in domestic poultry and, more rarely, in humans. Avian influenza A (H5N1), avian influenza A (H7N9), and avian influenza A (H1N1) are some examples of zoonotic influenza viruses that have caused severe disease and death in humans. However, sustained human-to-human transmission has not been observed with these subtypes, except for the 2009 H1N1 pandemic strain, which was a reassortant virus containing genes from both avian and swine influenza A viruses.

Viral pneumonia is a type of pneumonia caused by viral infection. It primarily affects the upper and lower respiratory tract, leading to inflammation of the alveoli (air sacs) in the lungs. This results in symptoms such as cough, difficulty breathing, fever, fatigue, and chest pain. Common viruses that can cause pneumonia include influenza virus, respiratory syncytial virus (RSV), and adenovirus. Viral pneumonia is often milder than bacterial pneumonia but can still be serious, especially in young children, older adults, and people with weakened immune systems. Treatment typically involves supportive care, such as rest, hydration, and fever reduction, while the body fights off the virus. In some cases, antiviral medications may be used to help manage symptoms and prevent complications.

Feathers are not a medical term, but they are a feature found in birds and some extinct theropod dinosaurs. Feathers are keratinous structures that grow from the skin and are used for various functions such as insulation, flight, waterproofing, and display. They have a complex structure consisting of a central shaft with barbs branching off on either side, which further divide into smaller barbules. The arrangement and modification of these feather structures vary widely among bird species to serve different purposes.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Virus shedding refers to the release of virus particles by an infected individual, who can then transmit the virus to others through various means such as respiratory droplets, fecal matter, or bodily fluids. This occurs when the virus replicates inside the host's cells and is released into the surrounding environment, where it can infect other individuals. The duration of virus shedding varies depending on the specific virus and the individual's immune response. It's important to note that some individuals may shed viruses even before they show symptoms, making infection control measures such as hand hygiene, mask-wearing, and social distancing crucial in preventing the spread of infectious diseases.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

'Influenza A Virus, H7N1 Subtype' is a type of influenza virus that causes flu infections in animals and occasionally in humans. The H and N in the name refer to two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H7 protein binds to host cells and the N1 protein helps the virus to evade the immune system.

The H7N1 subtype is primarily a bird flu virus, but it has caused sporadic human infections, mainly in people who have had close contact with infected birds. Human-to-human transmission of this subtype is rare and not well understood. Infection with H7N1 can cause severe respiratory illness in humans, particularly in those with underlying health conditions.

It's important to note that influenza viruses are constantly changing and new strains can emerge through a process called antigenic shift or drift. Therefore, it is essential to monitor and study these viruses to better understand their potential impact on public health and to develop effective vaccines and treatments.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

Hemagglutinins are proteins found on the surface of some viruses, including influenza viruses. They have the ability to bind to specific receptors on the surface of red blood cells, causing them to clump together (a process known as hemagglutination). This property is what allows certain viruses to infect host cells and cause disease. Hemagglutinins play a crucial role in the infection process of influenza viruses, as they facilitate the virus's entry into host cells by binding to sialic acid receptors on the surface of respiratory epithelial cells. There are 18 different subtypes of hemagglutinin (H1-H18) found in various influenza A viruses, and they are a major target of the immune response to influenza infection. Vaccines against influenza contain hemagglutinins from the specific strains of virus that are predicted to be most prevalent in a given season, and induce immunity by stimulating the production of antibodies that can neutralize the virus.

Population surveillance in a public health and medical context refers to the ongoing, systematic collection, analysis, interpretation, and dissemination of health-related data for a defined population over time. It aims to monitor the health status, identify emerging health threats or trends, and evaluate the impact of interventions within that population. This information is used to inform public health policy, prioritize healthcare resources, and guide disease prevention and control efforts. Population surveillance can involve various data sources, such as vital records, disease registries, surveys, and electronic health records.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Nucleoproteins are complexes formed by the association of proteins with nucleic acids (DNA or RNA). These complexes play crucial roles in various biological processes, such as packaging and protecting genetic material, regulating gene expression, and replication and repair of DNA. In these complexes, proteins interact with nucleic acids through electrostatic, hydrogen bonding, and other non-covalent interactions, leading to the formation of stable structures that help maintain the integrity and function of the genetic material. Some well-known examples of nucleoproteins include histones, which are involved in DNA packaging in eukaryotic cells, and reverse transcriptase, an enzyme found in retroviruses that transcribes RNA into DNA.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

"Animal Flight" is not a medical term per se, but it is a concept that is studied in the field of comparative physiology and biomechanics, which are disciplines related to medicine. Animal flight refers to the ability of certain animal species to move through the air by flapping their wings or other appendages. This mode of locomotion is most commonly associated with birds, bats, and insects, but some mammals such as flying squirrels and sugar gliders are also capable of gliding through the air.

The study of animal flight involves understanding the biomechanics of how animals generate lift and propulsion, as well as the physiological adaptations that allow them to sustain flight. For example, birds have lightweight skeletons and powerful chest muscles that enable them to flap their wings rapidly and generate lift. Bats, on the other hand, use a more complex system of membranes and joints to manipulate their wings and achieve maneuverability in flight.

Understanding animal flight has important implications for the design of aircraft and other engineering systems, as well as for our broader understanding of how animals have evolved to adapt to their environments.

Zoonoses are infectious diseases that can be transmitted from animals to humans. They are caused by pathogens such as viruses, bacteria, parasites, or fungi that naturally infect non-human animals and can sometimes infect and cause disease in humans through various transmission routes like direct contact with infected animals, consumption of contaminated food or water, or vectors like insects. Some well-known zoonotic diseases include rabies, Lyme disease, salmonellosis, and COVID-19 (which is believed to have originated from bats). Public health officials work to prevent and control zoonoses through various measures such as surveillance, education, vaccination, and management of animal populations.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Psittaciformes is not a medical term but a taxonomic order that includes parrots, cockatoos, and related species. However, in a medical context, "psittacosis" is a relevant term that can be discussed.

Psittacosis is a zoonotic disease caused by the bacterium Chlamydia psittaci, which can infect humans through contact with infected birds or their droppings. The disease is also known as parrot fever or ornithosis. Psittacosis can cause flu-like symptoms in humans, such as fever, headache, muscle aches, and cough. In severe cases, it can lead to pneumonia and other complications.

Therefore, while "Psittaciformes" is not a medical term itself, the order includes many bird species that can carry and transmit Chlamydia psittaci, leading to the disease known as psittacosis in humans.

"Pyrans" is not a term commonly used in medical definitions. It is a chemical term that refers to a class of heterocyclic compounds containing a six-membered ring with one oxygen atom and five carbon atoms. The name "pyran" comes from the fact that it contains a pyroline unit (two double-bonded carbons) and a ketone group (a carbon double-bonded to an oxygen).

While pyrans are not directly related to medical definitions, some of their derivatives have been studied for potential medicinal applications. For example, certain pyran derivatives have shown anti-inflammatory, antiviral, and anticancer activities in laboratory experiments. However, more research is needed before these compounds can be considered as potential therapeutic agents.

A chick embryo refers to the developing organism that arises from a fertilized chicken egg. It is often used as a model system in biological research, particularly during the stages of development when many of its organs and systems are forming and can be easily observed and manipulated. The study of chick embryos has contributed significantly to our understanding of various aspects of developmental biology, including gastrulation, neurulation, organogenesis, and pattern formation. Researchers may use various techniques to observe and manipulate the chick embryo, such as surgical alterations, cell labeling, and exposure to drugs or other agents.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Falconiformes is an order of diurnal birds of prey that includes falcons, hawks, eagles, vultures, and condors. These birds are characterized by their strong, hooked beaks, sharp talons, and excellent vision, which make them efficient hunters. They are widely distributed around the world and play a crucial role in maintaining the balance of ecosystems by controlling populations of small mammals, reptiles, and other birds.

I believe there may be some confusion in your question. "Raptors" is a common name used to refer to a group of birds of prey, which include hawks, eagles, falcons, and owls, among others. However, the term "raptors" does not have a specific medical definition.

If you meant to ask for a medical definition of a different term, please let me know and I will be happy to help you with that.

I'm sorry for any confusion, but "Parrots" is not a medical term. It is a common name used to refer to a group of birds that are known for their ability to mimic human speech. If you have any questions about medical terminology or health-related topics, I would be happy to try and help answer them for you!

Virology is the study of viruses, their classification, and their effects on living organisms. It involves the examination of viral genetic material, viral replication, how viruses cause disease, and the development of antiviral drugs and vaccines to treat or prevent virus infections. Virologists study various types of viruses that can infect animals, plants, and microorganisms, as well as understand their evolution and transmission patterns.

Influenza A Virus, H7N2 Subtype is a subtype of Influenza A virus that contains hemagglutinin (H) protein type 7 and neuraminidase (N) protein type 2. It is known to infect birds, but can occasionally cause disease in humans who have close contact with infected birds or contaminated environments. Human infections with H7N2 subtype are rare and typically result in mild illness, although there is potential for this subtype to mutate and cause more severe disease or become easily transmissible between humans. It is included in the group of viruses that are being monitored for potential pandemic threats by public health authorities.

RNA-dependent RNA polymerase, also known as RNA replicase, is an enzyme that catalyzes the production of RNA from an RNA template. It plays a crucial role in the replication of certain viruses, such as positive-strand RNA viruses and retroviruses, which use RNA as their genetic material. The enzyme uses the existing RNA strand as a template to create a new complementary RNA strand, effectively replicating the viral genome. This process is essential for the propagation of these viruses within host cells and is a target for antiviral therapies.

Galliformes is not a medical term, but a taxonomic order in ornithology, which is the study of birds. It includes landfowl such as grouses, turkeys, chickens, pheasants, quails, and other related species. These birds are characterized by their strong and stout bodies, short tails, and rounded wings. They typically inhabit a variety of terrestrial habitats worldwide, except for Australia and some oceanic islands. Some members of this order have cultural and economic significance as sources of food and feathers.

An epidemic is the rapid spread of an infectious disease to a large number of people in a given population within a short period of time. It is typically used to describe situations where the occurrence of a disease is significantly higher than what is normally expected in a certain area or community. Epidemics can be caused by various factors, including pathogens, environmental changes, and human behavior. They can have serious consequences for public health, leading to increased morbidity, mortality, and healthcare costs. To control an epidemic, public health officials often implement measures such as vaccination, quarantine, and education campaigns to prevent further spread of the disease.

Intranasal administration refers to the delivery of medication or other substances through the nasal passages and into the nasal cavity. This route of administration can be used for systemic absorption of drugs or for localized effects in the nasal area.

When a medication is administered intranasally, it is typically sprayed or dropped into the nostril, where it is absorbed by the mucous membranes lining the nasal cavity. The medication can then pass into the bloodstream and be distributed throughout the body for systemic effects. Intranasal administration can also result in direct absorption of the medication into the local tissues of the nasal cavity, which can be useful for treating conditions such as allergies, migraines, or pain in the nasal area.

Intranasal administration has several advantages over other routes of administration. It is non-invasive and does not require needles or injections, making it a more comfortable option for many people. Additionally, intranasal administration can result in faster onset of action than oral administration, as the medication bypasses the digestive system and is absorbed directly into the bloodstream. However, there are also some limitations to this route of administration, including potential issues with dosing accuracy and patient tolerance.

Polysorbates are a type of nonionic surfactant (a compound that lowers the surface tension between two substances, such as oil and water) commonly used in pharmaceuticals, foods, and cosmetics. They are derived from sorbitol and reacted with ethylene oxide to create a polyoxyethylene structure. The most common types of polysorbates used in medicine are polysorbate 20, polysorbate 40, and polysorbate 60, which differ in the number of oxyethylene groups in their molecular structure.

Polysorbates are often added to pharmaceutical formulations as emulsifiers, solubilizers, or stabilizers. They help to improve the solubility and stability of drugs that are otherwise insoluble in water, allowing for better absorption and bioavailability. Polysorbates can also prevent the aggregation and precipitation of proteins in injectable formulations.

In addition to their use in pharmaceuticals, polysorbates are also used as emulsifiers in food products such as ice cream, salad dressings, and baked goods. They help to mix oil and water-based ingredients together and prevent them from separating. In cosmetics, polysorbates are used as surfactants, solubilizers, and stabilizers in a variety of personal care products.

It is important to note that some people may have allergic reactions to polysorbates, particularly those with sensitivities to sorbitol or other ingredients used in their production. Therefore, it is essential to carefully consider the potential risks and benefits of using products containing polysorbates in individuals who may be at risk for adverse reactions.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

The nasopharynx is the uppermost part of the pharynx (throat), which is located behind the nose. It is a muscular cavity that serves as a passageway for air and food. The nasopharynx extends from the base of the skull to the lower border of the soft palate, where it continues as the oropharynx. Its primary function is to allow air to flow into the respiratory system through the nostrils while also facilitating the drainage of mucus from the nose into the throat. The nasopharynx contains several important structures, including the adenoids and the opening of the Eustachian tubes, which connect the middle ear to the back of the nasopharynx.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

Viral core proteins are the structural proteins that make up the viral capsid or protein shell, enclosing and protecting the viral genome. These proteins play a crucial role in the assembly of the virion, assist in the infection process by helping to deliver the viral genome into the host cell, and may also have functions in regulating viral replication. The specific composition and structure of viral core proteins vary among different types of viruses.

Mass vaccination is a coordinated effort to administer vaccine doses to a large portion of a population in a short amount of time. This strategy is often used during outbreaks of infectious diseases, such as influenza or measles, to quickly build up community immunity (herd immunity) and reduce the spread of the disease. Mass vaccination campaigns can also be implemented as part of public health initiatives to control or eliminate vaccine-preventable diseases in a population. These campaigns typically involve mobilizing healthcare workers, volunteers, and resources to reach and vaccinate as many people as possible, often through mobile clinics, community centers, and other accessible locations.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

Hemagglutination is a process where red blood cells (RBCs) agglutinate or clump together. Viral hemagglutination refers to the ability of certain viruses to bind to and agglutinate RBCs. This is often due to viral surface proteins known as hemagglutinins, which can recognize and attach to specific receptors on the surface of RBCs.

In virology, viral hemagglutination assays are commonly used for virus identification and quantification. For example, the influenza virus is known to hemagglutinate chicken RBCs, and this property can be used to identify and titrate the virus in a sample. The hemagglutination titer is the highest dilution of a virus that still causes visible agglutination of RBCs. This information can be useful in understanding the viral load in a patient or during vaccine production.

I'm sorry for any confusion, but "United States" is a geopolitical entity, specifically the name of the country consisting of 50 states, and it is not a medical term or concept. Therefore, I can't provide a medical definition for it. If you have any questions related to health, medicine, or biology, I would be happy to try to help answer those!

Drug resistance, viral, refers to the ability of a virus to continue replicating in the presence of antiviral drugs that are designed to inhibit or stop its growth. This occurs when the virus mutates and changes its genetic makeup in such a way that the drug can no longer effectively bind to and inhibit the function of its target protein, allowing the virus to continue infecting host cells and causing disease.

Viral drug resistance can develop due to several factors, including:

1. Mutations in the viral genome that alter the structure or function of the drug's target protein.
2. Changes in the expression levels or location of the drug's target protein within the virus-infected cell.
3. Activation of alternative pathways that allow the virus to replicate despite the presence of the drug.
4. Increased efflux of the drug from the virus-infected cell, reducing its intracellular concentration and effectiveness.

Viral drug resistance is a significant concern in the treatment of viral infections such as HIV, hepatitis B and C, herpes simplex virus, and influenza. It can lead to reduced treatment efficacy, increased risk of treatment failure, and the need for more toxic or expensive drugs. Therefore, it is essential to monitor viral drug resistance during treatment and adjust therapy accordingly to ensure optimal outcomes.

'Nesting behavior' is not a term typically used in medical definitions. However, it can be described as a type of behavior often observed in pregnant women, particularly close to their due date, where they have an intense desire to clean and organize their living space in preparation for the arrival of their baby. This behavior is considered a normal part of pregnancy and is not usually regarded as a medical condition.

In some cases, healthcare providers may use the term 'nesting' to describe a symptom of certain mental health disorders such as Obsessive-Compulsive Disorder (OCD) or Mania, where an individual may experience an intense urge to clean and organize their environment, but it is often accompanied by other symptoms that interfere with daily functioning.

Therefore, the definition of 'nesting behavior' can vary depending on the context in which it is used.

Immunization programs, also known as vaccination programs, are organized efforts to administer vaccines to populations or communities in order to protect individuals from vaccine-preventable diseases. These programs are typically implemented by public health agencies and involve the planning, coordination, and delivery of immunizations to ensure that a high percentage of people are protected against specific infectious diseases.

Immunization programs may target specific age groups, such as infants and young children, or populations at higher risk of certain diseases, such as travelers, healthcare workers, or individuals with weakened immune systems. The goals of immunization programs include controlling and eliminating vaccine-preventable diseases, reducing the morbidity and mortality associated with these diseases, and protecting vulnerable populations from outbreaks and epidemics.

Immunization programs may be delivered through a variety of settings, including healthcare facilities, schools, community centers, and mobile clinics. They often involve partnerships between government agencies, healthcare providers, non-governmental organizations, and communities to ensure that vaccines are accessible, affordable, and acceptable to the populations they serve. Effective immunization programs require strong leadership, adequate funding, robust data systems, and ongoing monitoring and evaluation to assess their impact and identify areas for improvement.

Hospitalization is the process of admitting a patient to a hospital for the purpose of receiving medical treatment, surgery, or other health care services. It involves staying in the hospital as an inpatient, typically under the care of doctors, nurses, and other healthcare professionals. The length of stay can vary depending on the individual's medical condition and the type of treatment required. Hospitalization may be necessary for a variety of reasons, such as to receive intensive care, to undergo diagnostic tests or procedures, to recover from surgery, or to manage chronic illnesses or injuries.

I'm sorry for any confusion, but "Hong Kong" is not a medical term or concept. It is a region located on the southeastern coast of China. If you have any questions about a medical topic, please provide more details so I can try to help you.

Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China (PRC). It was a British colony from 1842 until it was returned to China in 1997. As a SAR, Hong Kong maintains separate governing and economic systems from those of mainland China under the principle of "one country, two systems."

The region is known for its impressive skyline, deep natural harbor, and bustling urban center. It is a major port and global financial hub, and it has a high degree of autonomy in administration, legislation, and economic policies. Hong Kong's legal system is based on English common law, and it has its own currency, the Hong Kong dollar.

I hope this clarifies any confusion regarding the term "Hong Kong." If you have any medical questions, please let me know!

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Sialic acids are a family of nine-carbon sugars that are commonly found on the outermost surface of many cell types, particularly on the glycoconjugates of mucins in various secretions and on the glycoproteins and glycolipids of cell membranes. They play important roles in a variety of biological processes, including cell recognition, immune response, and viral and bacterial infectivity. Sialic acids can exist in different forms, with N-acetylneuraminic acid being the most common one in humans.

Squalene is a organic compound that is a polyunsaturated triterpene. It is a natural component of human skin surface lipids and sebum, where it plays a role in maintaining the integrity and permeability barrier of the stratum corneum. Squalene is also found in various plant and animal tissues, including olive oil, wheat germ oil, and shark liver oil.

In the body, squalene is an intermediate in the biosynthesis of cholesterol and other sterols. It is produced in the liver and transported to other tissues via low-density lipoproteins (LDLs). Squalene has been studied for its potential health benefits due to its antioxidant properties, as well as its ability to modulate immune function and reduce the risk of certain types of cancer. However, more research is needed to confirm these potential benefits.

Animal vocalization refers to the production of sound by animals through the use of the vocal organs, such as the larynx in mammals or the syrinx in birds. These sounds can serve various purposes, including communication, expressing emotions, attracting mates, warning others of danger, and establishing territory. The complexity and diversity of animal vocalizations are vast, with some species capable of producing intricate songs or using specific calls to convey different messages. In a broader sense, animal vocalizations can also include sounds produced through other means, such as stridulation in insects.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

I'm sorry for any confusion, but "sparrows" is not a term used in medical definitions. Sparrows are small, common birds that belong to the family Passeridae. If you have any questions about medical terminology or concepts, I would be happy to help with those instead!

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

I'm sorry for any confusion, but "finches" generally refers to a group of small-sized songbirds that belong to the family Fringillidae. They are not a medical term and do not have a medical definition. Finches are commonly kept as pets and are known for their melodious songs and vibrant colors. If you have any medical questions or terms, I'd be happy to help clarify those for you!

The Respiratory System is a complex network of organs and tissues that work together to facilitate the process of breathing, which involves the intake of oxygen and the elimination of carbon dioxide. This system primarily includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, bronchioles, lungs, and diaphragm.

The nostrils or mouth take in air that travels through the pharynx, larynx, and trachea into the lungs. Within the lungs, the trachea divides into two bronchi, one for each lung, which further divide into smaller tubes called bronchioles. At the end of these bronchioles are tiny air sacs known as alveoli where the exchange of gases occurs. Oxygen from the inhaled air diffuses through the walls of the alveoli into the bloodstream, while carbon dioxide, a waste product, moves from the blood to the alveoli and is exhaled out of the body.

The diaphragm, a large muscle that separates the chest from the abdomen, plays a crucial role in breathing by contracting and relaxing to change the volume of the chest cavity, thereby allowing air to flow in and out of the lungs. Overall, the Respiratory System is essential for maintaining life by providing the body's cells with the oxygen needed for metabolism and removing waste products like carbon dioxide.

Columbidae is the family that includes all pigeons and doves. According to the medical literature, there are no specific medical definitions associated with Columbidae. However, it's worth noting that some species of pigeons and doves are commonly kept as pets or used in research, and may be mentioned in medical contexts related to avian medicine, zoonoses (diseases transmissible from animals to humans), or public health concerns such as bird-related allergies.

In medical terms, "beak" is not a term that is used as a general definition or diagnosis. However, there are some specific medical contexts where the term "beak" is used:

1. In forensic medicine, "beak" refers to the pointed end of a broken bone, which can occur when a bone is fractured in a certain way.
2. In respiratory medicine, "beaked nose" is a colloquial term used to describe a nose with a sharply pointed tip.
3. In maxillofacial surgery, "beak deformity" is a rare condition where the upper jaw protrudes excessively, giving the appearance of a bird's beak.
4. In veterinary medicine, "beak trimming" refers to the practice of trimming the beaks of birds to prevent them from injuring themselves or others.

It's important to note that these are very specific medical contexts and may not be relevant to your search for a general medical definition of "beak."

Antigenic variation is a mechanism used by some microorganisms, such as bacteria and viruses, to evade the immune system and establish persistent infections. This occurs when these pathogens change or modify their surface antigens, which are molecules that can be recognized by the host's immune system and trigger an immune response.

The changes in the surface antigens can occur due to various mechanisms, such as gene mutation, gene rearrangement, or gene transfer. These changes can result in the production of new variants of the microorganism that are different enough from the original strain to avoid recognition by the host's immune system.

Antigenic variation is a significant challenge in developing effective vaccines against certain infectious diseases, such as malaria and influenza, because the constantly changing surface antigens make it difficult for the immune system to mount an effective response. Therefore, researchers are working on developing vaccines that target conserved regions of the microorganism that do not undergo antigenic variation or using a combination of antigens to increase the likelihood of recognition by the immune system.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Quarantine is a public health practice used to protect the population from the spread of communicable diseases. It involves separating and restricting the movement of individuals who have been exposed to an infectious agent, but are not yet showing symptoms, for a period of time to determine if they become sick and to prevent transmission during the incubation period. The term "quarantine" comes from the Italian word "quaranta," which means "forty," as it originally referred to the 40-day period that ships were required to be isolated before passengers and crew could go ashore during the Black Death plague epidemic in the 14th century. Nowadays, quarantine is often used in the context of travel restrictions and isolation measures for individuals who may have been exposed to diseases such as COVID-19, Ebola, or tuberculosis.

Influenza Virus B is one of the two primary types of influenza viruses that cause seasonal flu in humans, with Influenza A being the other.

Influenza Virus B primarily infects humans and is generally associated with less severe illness compared to Influenza A. However, it can still cause significant respiratory disease, hospitalizations, and deaths, particularly among high-risk populations such as young children, older adults, pregnant women, and people with certain underlying medical conditions.

Influenza Virus B has only one known host - humans, while Influenza A can infect a variety of animals, including birds, pigs, and horses, making it more prone to mutations and the emergence of new strains.

Like Influenza A, Influenza Virus B also undergoes genetic changes over time, leading to the need for regular updates to the seasonal flu vaccine to ensure that it provides protection against the circulating strains.

I'm sorry for any confusion, but "geography" is not a term that has a medical definition. Geography is a field of study that deals with the location and distribution of physical and cultural features on Earth's surface, as well as how humans interact with and affect those features. It is not a concept that is typically used in a medical context. If you have any questions related to medicine or healthcare, I would be happy to try to help answer them for you!

Reverse genetics is a term used in molecular biology that refers to the process of creating or modifying an organism's genetic material (DNA or RNA) to produce specific phenotypic traits or characteristics. In contrast to traditional forward genetics, where researchers start with an organism and identify the gene responsible for a particular trait, reverse genetics begins with a known gene or DNA sequence and creates an organism that expresses that gene.

In virology, reverse genetics is often used to study viruses by creating infectious clones of their genomes. This allows researchers to manipulate the virus's genetic material and study the effects of specific mutations on viral replication, pathogenesis, and host immune response. By using reverse genetics, scientists can gain insights into the function of individual genes and how they contribute to viral infection and disease.

Overall, reverse genetics is a powerful tool for understanding gene function and developing new strategies for treating genetic diseases or preventing viral infections.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Biological evolution is the change in the genetic composition of populations of organisms over time, from one generation to the next. It is a process that results in descendants differing genetically from their ancestors. Biological evolution can be driven by several mechanisms, including natural selection, genetic drift, gene flow, and mutation. These processes can lead to changes in the frequency of alleles (variants of a gene) within populations, resulting in the development of new species and the extinction of others over long periods of time. Biological evolution provides a unifying explanation for the diversity of life on Earth and is supported by extensive evidence from many different fields of science, including genetics, paleontology, comparative anatomy, and biogeography.

Virosomes are artificially constructed spherical vesicles composed of lipids and viral envelope proteins. They are used as a delivery system for vaccines and other therapeutic agents. In the context of vaccines, virosomes can be used to present viral antigens to the immune system in a way that mimics a natural infection, thereby inducing a strong immune response.

Virosome-based vaccines have several advantages over traditional vaccines. For example, they are non-infectious, meaning they do not contain live or attenuated viruses, which makes them safer for certain populations such as immunocompromised individuals. Additionally, virosomes can be engineered to target specific cells in the body, leading to more efficient uptake and presentation of antigens to the immune system.

Virosome-based vaccines have been developed for a variety of diseases, including influenza, hepatitis A, and HIV. While they are not yet widely used, they show promise as a safe and effective alternative to traditional vaccine approaches.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Emerging communicable diseases are infections whose incidence has increased in the past two decades or threatens to increase in the near future. These diseases can be caused by new microbial agents, or by previously known agents that have newly acquired the ability to cause disease in humans. They may also result from changes in human demographics, behavior, or travel patterns, or from technological or environmental changes. Examples of emerging communicable diseases include COVID-19, Ebola virus disease, Zika virus infection, and West Nile fever.

Immunologic adjuvants are substances that are added to a vaccine to enhance the body's immune response to the antigens contained in the vaccine. They work by stimulating the immune system and promoting the production of antibodies and activating immune cells, such as T-cells and macrophages, which help to provide a stronger and more sustained immune response to the vaccine.

Immunologic adjuvants can be derived from various sources, including bacteria, viruses, and chemicals. Some common examples include aluminum salts (alum), oil-in-water emulsions (such as MF59), and bacterial components (such as lipopolysaccharide or LPS).

The use of immunologic adjuvants in vaccines can help to improve the efficacy of the vaccine, particularly for vaccines that contain weak or poorly immunogenic antigens. They can also help to reduce the amount of antigen needed in a vaccine, which can be beneficial for vaccines that are difficult or expensive to produce.

It's important to note that while adjuvants can enhance the immune response to a vaccine, they can also increase the risk of adverse reactions, such as inflammation and pain at the injection site. Therefore, the use of immunologic adjuvants must be carefully balanced against their potential benefits and risks.

Hemagglutination tests are laboratory procedures used to detect the presence of antibodies or antigens in a sample, typically in blood serum. These tests rely on the ability of certain substances, such as viruses or bacteria, to agglutinate (clump together) red blood cells.

In a hemagglutination test, a small amount of the patient's serum is mixed with a known quantity of red blood cells that have been treated with a specific antigen. If the patient has antibodies against that antigen in their serum, they will bind to the antigens on the red blood cells and cause them to agglutinate. This clumping can be observed visually, indicating a positive test result.

Hemagglutination tests are commonly used to diagnose infectious diseases caused by viruses or bacteria that have hemagglutinating properties, such as influenza, parainfluenza, and HIV. They can also be used in blood typing and cross-matching before transfusions.

Infectious disease transmission refers to the spread of an infectious agent or pathogen from an infected person, animal, or contaminated object to another susceptible host. This can occur through various routes, including:

1. Contact transmission: Direct contact with an infected person or animal, such as through touching, kissing, or sexual contact.
2. Droplet transmission: Inhalation of respiratory droplets containing the pathogen, which are generated when an infected person coughs, sneezes, talks, or breathes heavily.
3. Airborne transmission: Inhalation of smaller particles called aerosols that can remain suspended in the air for longer periods and travel farther distances than droplets.
4. Fecal-oral transmission: Consuming food or water contaminated with fecal matter containing the pathogen, often through poor hygiene practices.
5. Vector-borne transmission: Transmission via an intermediate vector, such as a mosquito or tick, that becomes infected after feeding on an infected host and then transmits the pathogen to another host during a subsequent blood meal.
6. Vehicle-borne transmission: Consuming food or water contaminated with the pathogen through vehicles like soil, water, or fomites (inanimate objects).

Preventing infectious disease transmission is crucial in controlling outbreaks and epidemics. Measures include good personal hygiene, vaccination, use of personal protective equipment (PPE), safe food handling practices, and environmental disinfection.

"Bird Fancier's Lung" is a type of hypersensitivity pneumonitis, which is a lung disease that results from an immune system reaction to inhaled dust particles. In the case of Bird Fancier's Lung, the dust particles come from bird droppings or feathers and are inhaled by people who keep birds as pets or work with them in aviaries or breeding facilities.

The immune system of susceptible individuals mounts an inflammatory response to the inhaled antigens, leading to symptoms such as cough, shortness of breath, fever, and fatigue. Over time, repeated exposure can lead to scarring and thickening of the lung tissue, which can impair lung function and cause irreversible damage.

The medical definition of Bird Fancier's Lung is: "A hypersensitivity pneumonitis caused by inhalation of antigens derived from avian proteins, most commonly found in people who keep birds as pets or work with them in aviaries or breeding facilities."

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Host specificity, in the context of medical and infectious diseases, refers to the tendency of a pathogen (such as a virus, bacterium, or parasite) to infect and cause disease only in specific host species or individuals with certain genetic characteristics. This means that the pathogen is not able to establish infection or cause illness in other types of hosts. Host specificity can be determined by various factors such as the ability of the pathogen to attach to and enter host cells, replicate within the host, evade the host's immune response, and obtain necessary nutrients from the host. Understanding host specificity is important for developing effective strategies to prevent and control infectious diseases.

Public health surveillance is the ongoing, systematic collection, analysis, and interpretation of health-related data essential to planning, implementing, and evaluating public health practice, closely integrated with the timely dissemination of these data to those who need to know. It does not include data collected for patient care or routine administrative purposes. The purpose of public health surveillance is to provide information for action to prevent and control disease or injury, and to promote health. This can include monitoring trends in diseases, conditions, or other health-related events, identifying high-risk groups or populations, detecting outbreaks or clusters of disease, and evaluating the effectiveness of interventions and policies.

A disease reservoir refers to a population or group of living organisms, including humans, animals, and even plants, that can naturally carry and transmit a particular pathogen (disease-causing agent) without necessarily showing symptoms of the disease themselves. These hosts serve as a source of infection for other susceptible individuals, allowing the pathogen to persist and circulate within a community or environment.

Disease reservoirs can be further classified into:

1. **Primary (or Main) Reservoir**: This refers to the species that primarily harbors and transmits the pathogen, contributing significantly to its natural ecology and maintaining its transmission cycle. For example, mosquitoes are the primary reservoirs for many arboviruses like dengue, Zika, and chikungunya viruses.

2. **Amplifying Hosts**: These hosts can become infected with the pathogen and experience a high rate of replication, leading to an increased concentration of the pathogen in their bodies. This allows for efficient transmission to other susceptible hosts or vectors. For instance, birds are amplifying hosts for West Nile virus, as they can become viremic (have high levels of virus in their blood) and infect feeding mosquitoes that then transmit the virus to other animals and humans.

3. **Dead-end Hosts**: These hosts may become infected with the pathogen but do not contribute significantly to its transmission cycle, as they either do not develop sufficient quantities of the pathogen to transmit it or do not come into contact with potential vectors or susceptible hosts. For example, humans are dead-end hosts for many zoonotic diseases like rabies, as they cannot transmit the virus to other humans.

Understanding disease reservoirs is crucial in developing effective strategies for controlling and preventing infectious diseases, as it helps identify key species and environments that contribute to their persistence and transmission.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

N-Acetylneuraminic Acid (Neu5Ac) is an organic compound that belongs to the family of sialic acids. It is a common terminal sugar found on many glycoproteins and glycolipids on the surface of animal cells. Neu5Ac plays crucial roles in various biological processes, including cell recognition, signaling, and intercellular interactions. It is also involved in the protection against pathogens by serving as a barrier to prevent their attachment to host cells. Additionally, Neu5Ac has been implicated in several disease conditions, such as cancer and inflammation, due to its altered expression and metabolism.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

I'm sorry for any confusion, but "History, 20th Century" is a broad and complex topic that refers to the events, developments, and transformations that occurred throughout the world during the 1900s. It is not a medical term or concept. If you're interested in learning more about this historical period, I would recommend consulting a history textbook, reputable online resources, or speaking with a historian. They can provide detailed information about the political, social, economic, and cultural changes that took place during the 20th century.

Guanidines are organic compounds that contain a guanidino group, which is a functional group with the formula -NH-C(=NH)-NH2. Guanidines can be found in various natural sources, including some animals, plants, and microorganisms. They also occur as byproducts of certain metabolic processes in the body.

In a medical context, guanidines are most commonly associated with the treatment of muscle weakness and neuromuscular disorders. The most well-known guanidine compound is probably guanidine hydrochloride, which has been used as a medication to treat conditions such as myasthenia gravis and Eaton-Lambert syndrome.

However, the use of guanidines as medications has declined in recent years due to their potential for toxicity and the development of safer and more effective treatments. Today, guanidines are mainly used in research settings to study various biological processes, including protein folding and aggregation, enzyme inhibition, and cell signaling.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Myxovirus resistance proteins (MX proteins) are a family of large GTPases that play a crucial role in the innate immune response against various viral infections. They were initially discovered as interferon-induced genes that confer resistance to myxoviruses, such as influenza A virus.

There are two main types of MX proteins in humans, MX1 (MXA) and MX2 (MXB), which are encoded by the MX1 and MX2 genes, respectively. Both isoforms share a similar structure, consisting of an N-terminal GTPase domain, a middle domain, and a C-terminal dynamin-like domain. These domains enable MX proteins to hydrolyze GTP, oligomerize, and form higher-order structures that can inhibit viral replication.

MX1 primarily targets negative-strand RNA viruses, such as influenza A virus, vesicular stomatitis virus, and rabies virus, while MX2 has been shown to inhibit human immunodeficiency virus (HIV) and hepatitis B virus (HBV). The antiviral activity of MX proteins is mediated through their interaction with viral components, such as the nucleocapsid or polymerase complexes, leading to the inhibition of viral transcription, replication, or nuclear export.

In summary, Myxovirus resistance proteins are essential components of the innate immune system that provide broad-spectrum antiviral protection against various RNA and DNA viruses by directly targeting and inhibiting their replication processes.

Communicable disease control is a branch of public health that focuses on preventing and controlling the spread of infectious diseases within a population. The goal is to reduce the incidence and prevalence of communicable diseases through various strategies, such as:

1. Surveillance: Monitoring and tracking the occurrence of communicable diseases in a population to identify trends, outbreaks, and high-risk areas.
2. Prevention: Implementing measures to prevent the transmission of infectious agents, such as vaccination programs, education campaigns, and environmental interventions (e.g., water treatment, food safety).
3. Case management: Identifying, diagnosing, and treating cases of communicable diseases to reduce their duration and severity, as well as to prevent further spread.
4. Contact tracing: Identifying and monitoring individuals who have been in close contact with infected persons to detect and prevent secondary cases.
5. Outbreak response: Coordinating a rapid and effective response to disease outbreaks, including the implementation of control measures, communication with affected communities, and evaluation of interventions.
6. Collaboration: Working closely with healthcare providers, laboratories, policymakers, and other stakeholders to ensure a coordinated and comprehensive approach to communicable disease control.
7. Research: Conducting research to better understand the epidemiology, transmission dynamics, and prevention strategies for communicable diseases.

Effective communicable disease control requires a multidisciplinary approach that combines expertise in medicine, epidemiology, microbiology, public health, social sciences, and healthcare management.

I am not aware of a medical term specifically referred to as "crows." The term "crows" is commonly used to refer to the bird species Corvus corone or Corvus brachyrhynchos, which are known for their black feathers and intelligent behavior. However, in a medical context, "crows feet" is a slang term that refers to the fine lines and wrinkles that can form around the outer corners of the eyes, often due to aging or repeated facial expressions.

If you meant something else by "Crows," please provide more context so I can give a more accurate answer.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

Virus inactivation is the process of reducing or eliminating the infectivity of a virus, making it no longer capable of replicating and causing infection. This can be achieved through various physical or chemical methods such as heat, radiation, chemicals (like disinfectants), or enzymes that damage the viral genome or disrupt the viral particle's structure.

It is important to note that virus inactivation does not necessarily mean complete destruction of the viral particles; it only implies that they are no longer infectious. The effectiveness of virus inactivation depends on factors such as the type and concentration of the virus, the inactivation method used, and the duration of exposure to the inactivating agent.

Virus inactivation is crucial in various settings, including healthcare, laboratory research, water treatment, food processing, and waste disposal, to prevent the spread of viral infections and ensure safety.

"Influenza A Virus, H10N7 Subtype" is a specific subtype of the Influenza A virus, which is a major cause of seasonal epidemics and pandemics of human influenza. The H and N in the name refer to two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). The H10N7 subtype has hemagglutinin protein type 10 and neuraminidase protein type 7. This subtype has been found to infect various animal species, including birds and seals, and occasionally cause human infections, mostly in people with close contact with infected animals. However, it is not a dominant circulating strain in humans and does not have the same pandemic potential as other more well-known subtypes like H1N1 or H3N2.

'Bird diseases' is a broad term that refers to the various medical conditions and infections that can affect avian species. These diseases can be caused by bacteria, viruses, fungi, parasites, or toxic substances and can affect pet birds, wild birds, and poultry. Some common bird diseases include:

1. Avian influenza (bird flu) - a viral infection that can cause respiratory symptoms, decreased appetite, and sudden death in birds.
2. Psittacosis (parrot fever) - a bacterial infection that can cause respiratory symptoms, fever, and lethargy in birds and humans who come into contact with them.
3. Aspergillosis - a fungal infection that can cause respiratory symptoms and weight loss in birds.
4. Candidiasis (thrush) - a fungal infection that can affect the mouth, crop, and other parts of the digestive system in birds.
5. Newcastle disease - a viral infection that can cause respiratory symptoms, neurological signs, and decreased egg production in birds.
6. Salmonellosis - a bacterial infection that can cause diarrhea, lethargy, and decreased appetite in birds and humans who come into contact with them.
7. Trichomoniasis - a parasitic infection that can affect the mouth, crop, and digestive system in birds.
8. Chlamydiosis (psittacosis) - a bacterial infection that can cause respiratory symptoms, lethargy, and decreased appetite in birds and humans who come into contact with them.
9. Coccidiosis - a parasitic infection that can affect the digestive system in birds.
10. Mycobacteriosis (avian tuberculosis) - a bacterial infection that can cause chronic weight loss, respiratory symptoms, and skin lesions in birds.

It is important to note that some bird diseases can be transmitted to humans and other animals, so it is essential to practice good hygiene when handling birds or their droppings. If you suspect your bird may be sick, it is best to consult with a veterinarian who specializes in avian medicine.

Humoral immunity is a type of immune response in which the body produces proteins called antibodies that circulate in bodily fluids such as blood and help to protect against infection. This form of immunity involves the interaction between antigens (foreign substances that trigger an immune response) and soluble factors, including antibodies, complement proteins, and cytokines.

When a pathogen enters the body, it is recognized as foreign by the immune system, which triggers the production of specific antibodies to bind to and neutralize or destroy the pathogen. These antibodies are produced by B cells, a type of white blood cell that is part of the adaptive immune system.

Humoral immunity provides protection against extracellular pathogens, such as bacteria and viruses, that exist outside of host cells. It is an important component of the body's defense mechanisms and plays a critical role in preventing and fighting off infections.

I'm sorry for any confusion, but "North America" is not a medical term. It is a geographical term that refers to the third largest continent in the world, which includes countries such as the United States, Canada, and Mexico, among others. If you have any questions related to medical terminology or health topics, I'd be happy to help with those!

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A virus is a small infectious agent that replicates inside the living cells of an organism. It is not considered to be a living organism itself, as it lacks the necessary components to independently maintain its own metabolic functions. Viruses are typically composed of genetic material, either DNA or RNA, surrounded by a protein coat called a capsid. Some viruses also have an outer lipid membrane known as an envelope.

Viruses can infect all types of organisms, from animals and plants to bacteria and archaea. They cause various diseases by invading the host cell, hijacking its machinery, and using it to produce numerous copies of themselves, which can then infect other cells. The resulting infection and the immune response it triggers can lead to a range of symptoms, depending on the virus and the host organism.

Viruses are transmitted through various means, such as respiratory droplets, bodily fluids, contaminated food or water, and vectors like insects. Prevention methods include vaccination, practicing good hygiene, using personal protective equipment, and implementing public health measures to control their spread.

Nasal mucosa refers to the mucous membrane that lines the nasal cavity. It is a delicate, moist, and specialized tissue that contains various types of cells including epithelial cells, goblet cells, and glands. The primary function of the nasal mucosa is to warm, humidify, and filter incoming air before it reaches the lungs.

The nasal mucosa produces mucus, which traps dust, allergens, and microorganisms, preventing them from entering the respiratory system. The cilia, tiny hair-like structures on the surface of the epithelial cells, help move the mucus towards the back of the throat, where it can be swallowed or expelled.

The nasal mucosa also contains a rich supply of blood vessels and immune cells that help protect against infections and inflammation. It plays an essential role in the body's defense system by producing antibodies, secreting antimicrobial substances, and initiating local immune responses.

Disaster planning in a medical context refers to the process of creating and implementing a comprehensive plan for responding to emergencies or large-scale disasters that can impact healthcare facilities, services, and patient care. The goal of disaster planning is to minimize the impact of such events on the health and well-being of patients and communities, ensure continuity of medical services, and protect healthcare infrastructure and resources.

Disaster planning typically involves:

1. Risk assessment: Identifying potential hazards and assessing their likelihood and potential impact on healthcare facilities and services.
2. Developing a disaster plan: Creating a detailed plan that outlines the steps to be taken before, during, and after a disaster to ensure the safety of patients, staff, and visitors, as well as the continuity of medical care.
3. Training and education: Providing training and education to healthcare personnel on disaster preparedness, response, and recovery.
4. Exercises and drills: Conducting regular exercises and drills to test the effectiveness of the disaster plan and identify areas for improvement.
5. Resource management: Identifying and securing necessary resources, such as medical supplies, equipment, and personnel, to support disaster response efforts.
6. Communication and coordination: Establishing clear communication protocols and coordinating with local emergency responders, public health authorities, and other healthcare facilities to ensure a coordinated response to disasters.
7. Recovery and restoration: Developing plans for restoring medical services and infrastructure after a disaster has occurred.

Disaster planning is an essential component of healthcare delivery and is critical to ensuring the safety and well-being of patients and communities during emergencies or large-scale disasters.

"Spheniscidae" is not a medical term, but a taxonomic category in zoology. It refers to the family of birds that includes penguins. The misinterpretation might have arisen because sometimes common names of animals are mistakenly used as scientific terms in a medical context. However, it's essential to use the correct and precise scientific terminology for accurate communication, especially in fields like medicine.

"Intramuscular injections" refer to a medical procedure where a medication or vaccine is administered directly into the muscle tissue. This is typically done using a hypodermic needle and syringe, and the injection is usually given into one of the large muscles in the body, such as the deltoid (shoulder), vastus lateralis (thigh), or ventrogluteal (buttock) muscles.

Intramuscular injections are used for a variety of reasons, including to deliver medications that need to be absorbed slowly over time, to bypass stomach acid and improve absorption, or to ensure that the medication reaches the bloodstream quickly and directly. Common examples of medications delivered via intramuscular injection include certain vaccines, antibiotics, and pain relievers.

It is important to follow proper technique when administering intramuscular injections to minimize pain and reduce the risk of complications such as infection or injury to surrounding tissues. Proper site selection, needle length and gauge, and injection technique are all critical factors in ensuring a safe and effective intramuscular injection.

"Health personnel" is a broad term that refers to individuals who are involved in maintaining, promoting, and restoring the health of populations or individuals. This can include a wide range of professionals such as:

1. Healthcare providers: These are medical doctors, nurses, midwives, dentists, pharmacists, allied health professionals (like physical therapists, occupational therapists, speech therapists, dietitians, etc.), and other healthcare workers who provide direct patient care.

2. Public health professionals: These are individuals who work in public health agencies, non-governmental organizations, or academia to promote health, prevent diseases, and protect populations from health hazards. They include epidemiologists, biostatisticians, health educators, environmental health specialists, and health services researchers.

3. Health managers and administrators: These are professionals who oversee the operations, finances, and strategic planning of healthcare organizations, such as hospitals, clinics, or public health departments. They may include hospital CEOs, medical directors, practice managers, and healthcare consultants.

4. Health support staff: This group includes various personnel who provide essential services to healthcare organizations, such as medical records technicians, billing specialists, receptionists, and maintenance workers.

5. Health researchers and academics: These are professionals involved in conducting research, teaching, and disseminating knowledge related to health sciences, medicine, public health, or healthcare management in universities, research institutions, or think tanks.

The World Health Organization (WHO) defines "health worker" as "a person who contributes to the promotion, protection, or improvement of health through prevention, treatment, rehabilitation, palliation, health promotion, and health education." This definition encompasses a wide range of professionals working in various capacities to improve health outcomes.

Population dynamics, in the context of public health and epidemiology, refers to the study of the changes in size and structure of a population over time, as well as the factors that contribute to those changes. This can include birth rates, death rates, migration patterns, aging, and other demographic characteristics. Understanding population dynamics is crucial for planning and implementing public health interventions, such as vaccination programs or disease prevention strategies, as they allow researchers and policymakers to identify vulnerable populations, predict future health trends, and evaluate the impact of public health initiatives.

I'm sorry for any confusion, but "Reptiles" is not a medical term. It is a term used in biology to describe a class of cold-blooded, scaly-skinned animals that include snakes, lizards, alligators, crocodiles, turtles, and tortoises. They are characterized by having lungs for breathing, laying eggs on land, and having a three-chambered heart. If you have any medical questions or terms, I'd be happy to help clarify those!

"Coturnix" is a genus of birds that includes several species of quails. The most common species is the Common Quail (Coturnix coturnix), which is also known as the European Quail or the Eurasian Quail. This small ground-dwelling bird is found throughout Europe, Asia, and parts of Africa, and it is known for its distinctive call and its migratory habits. Other species in the genus Coturnix include the Rain Quail (Coturnix coromandelica), the Stubble Quail (Coturnix pectoralis), and the Harlequin Quail (Coturnix delegorguei). These birds are all similar in appearance and behavior, with small, round bodies, short wings, and strong legs that are adapted for running and scratching in leaf litter. They are also known for their cryptic coloration, which helps them blend in with their surroundings and avoid predators. Quails are popular game birds and are also kept as pets and for ornamental purposes in some parts of the world.

"Animals, Zoo" is not a medical term. However, it generally refers to a collection of various species of wild animals kept in enclosures or exhibits for the public to view and learn about. These animals are usually obtained from different parts of the world and live in environments that attempt to simulate their natural habitats. Zoos play an essential role in conservation efforts, education, and research. They provide a unique opportunity for people to connect with wildlife and understand the importance of preserving and protecting endangered species and their ecosystems.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Haemosporida is a biological order of parasitic alveolates that include several genera of intracellular parasites. These parasites infect the red blood cells of vertebrates, including mammals, birds, and reptiles, and can cause significant disease in their hosts. The most well-known Haemosporida are the genus Plasmodium, which includes the parasites that cause malaria in humans. Other genera include Haemoproteus, Leucocytozoon, and Polychromophilus, which infect various bird and reptile species.

The life cycle of Haemosporida involves both sexual and asexual reproduction and requires both an invertebrate vector (typically a mosquito or tick) and a vertebrate host. The parasites are transmitted to the vertebrate host through the bite of an infected vector, where they infect red blood cells and undergo asexual replication. This can lead to the destruction of large numbers of red blood cells, causing anemia, fever, and other symptoms in the host.

Overall, Haemosporida are important parasites that can cause significant disease in both human and animal populations. Prevention and control efforts typically focus on reducing exposure to infected vectors through the use of insecticide-treated bed nets, indoor residual spraying, and personal protective measures such as wearing long sleeves and using insect repellent.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Hemadsorption is a medical procedure that involves the use of a device to remove certain substances, such as toxic byproducts or excess amounts of cytokines (proteins involved in immune responses), from the bloodstream. This is accomplished by passing the patient's blood through an external filter or adsorbent column, which contains materials that selectively bind to the target molecules. The clean blood is then returned to the patient's circulation.

Hemadsorption can be used as a supportive treatment in various clinical scenarios, such as poisoning, sepsis, and other critical illnesses, where rapid removal of harmful substances from the bloodstream may help improve the patient's condition and outcomes. However, its effectiveness and safety are still subjects of ongoing research and debate.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

Acetamides are organic compounds that contain an acetamide functional group, which is a combination of an acetyl group (-COCH3) and an amide functional group (-CONH2). The general structure of an acetamide is R-CO-NH-CH3, where R represents the rest of the molecule.

Acetamides are found in various medications, including some pain relievers, muscle relaxants, and anticonvulsants. They can also be found in certain industrial chemicals and are used as intermediates in the synthesis of other organic compounds.

It is important to note that exposure to high levels of acetamides can be harmful and may cause symptoms such as headache, dizziness, nausea, and vomiting. Chronic exposure has been linked to more serious health effects, including liver and kidney damage. Therefore, handling and use of acetamides should be done with appropriate safety precautions.

I'm sorry for any confusion, but the term "Europe" is a geographical and political designation, rather than a medical one. It refers to the continent located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. It is bordered by the Arctic Ocean to the north, the Atlantic Ocean to the west, and the Mediterranean Sea to the south. Europe is made up of approximately 50 countries, depending on how one defines a "country."

If you have any questions related to medical terminology or health-related topics, I'd be happy to help answer them!

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Feeding behavior refers to the various actions and mechanisms involved in the intake of food and nutrition for the purpose of sustaining life, growth, and health. This complex process encompasses a coordinated series of activities, including:

1. Food selection: The identification, pursuit, and acquisition of appropriate food sources based on sensory cues (smell, taste, appearance) and individual preferences.
2. Preparation: The manipulation and processing of food to make it suitable for consumption, such as chewing, grinding, or chopping.
3. Ingestion: The act of transferring food from the oral cavity into the digestive system through swallowing.
4. Digestion: The mechanical and chemical breakdown of food within the gastrointestinal tract to facilitate nutrient absorption and eliminate waste products.
5. Assimilation: The uptake and utilization of absorbed nutrients by cells and tissues for energy production, growth, repair, and maintenance.
6. Elimination: The removal of undigested material and waste products from the body through defecation.

Feeding behavior is regulated by a complex interplay between neural, hormonal, and psychological factors that help maintain energy balance and ensure adequate nutrient intake. Disruptions in feeding behavior can lead to various medical conditions, such as malnutrition, obesity, eating disorders, and gastrointestinal motility disorders.

Palaeognathae is a clade or superorder of birds that includes flightless birds such as ostriches, emus, rheas, cassowaries, and kiwis, as well as the more recently flighted tinamou species. The name "Palaeognathae" comes from the ancient Greek words "paleos," meaning ancient or old, and "gnathos," meaning jaw. This name refers to the fact that these birds have a distinctive feature in their jaw structure called the palatine process, which is an ancient characteristic that sets them apart from other bird groups.

Palaeognathae species are characterized by several unique features, including:

1. A highly reduced keel on the sternum (breastbone), which makes flight difficult or impossible for most members of this group.
2. A unique jaw structure with a palatine process and a relatively unspecialized beak that lacks the keratinized sheath found in many other bird groups.
3. A simplified brain structure, particularly in the cerebellum, compared to other bird lineages.
4. A kinetic (movable) pelvis, which is not fused to the vertebral column as it is in most birds.
5. A single ovary and functional left testis in females and males, respectively.
6. A clutch size of one to a few eggs, with extended incubation periods that can last for several months.

Palaeognathae species are primarily found in the Southern Hemisphere, particularly in Africa, Australia, New Zealand, and South America. The tinamou species are an exception, as they inhabit Central and South America. These birds occupy a wide range of habitats, from deserts to forests, grasslands, and wetlands. They play essential roles in their ecosystems as seed dispersers, scavengers, and prey for other animals.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

An "ecosystem" is not a term that has a specific medical definition, as it is a concept that is more commonly used in the fields of ecology and environmental science. However, I can provide you with the general ecological definition of an ecosystem:

An ecosystem is a community of living organisms interacting with each other and their non-living environment, including both biotic factors (plants, animals, microorganisms) and abiotic factors (climate, soil, water, and air). These interactions create a complex network of relationships that form the foundation of ecological processes, such as energy flow, nutrient cycling, and population dynamics.

While there is no direct medical definition for an ecosystem, understanding the principles of ecosystems can have important implications for human health. For example, healthy ecosystems can provide clean air and water, regulate climate, support food production, and offer opportunities for recreation and relaxation, all of which contribute to overall well-being. Conversely, degraded ecosystems can lead to increased exposure to environmental hazards, reduced access to natural resources, and heightened risks of infectious diseases. Therefore, maintaining the health and integrity of ecosystems is crucial for promoting human health and preventing disease.

I'm sorry for any confusion, but "Japan" is not a medical term. Japan is the name of a country, officially known as Nippon-koku or Nihon-koku in Japanese, and is located in East Asia. It is an island nation in the Pacific Ocean with a population of about 126 million people.

If you have any medical questions or terms that you would like me to define, please let me know!

I understand you are asking for a medical definition of "Horse Diseases." However, it's important to note that there isn't a specific medical field dedicated to horse diseases as we typically categorize medical fields by human diseases and conditions. Veterinary medicine is the field responsible for studying, diagnosing, and treating diseases in animals, including horses.

Here's a general definition of 'Horse Diseases':

Horse diseases are health issues or medical conditions that affect equine species, particularly horses. These diseases can be caused by various factors such as bacterial, viral, fungal, or parasitic infections; genetic predispositions; environmental factors; and metabolic disorders. Examples of horse diseases include Strangles (Streptococcus equi), Equine Influenza, Equine Herpesvirus, West Nile Virus, Rabies, Potomac Horse Fever, Lyme Disease, and internal or external parasites like worms and ticks. Additionally, horses can suffer from musculoskeletal disorders such as arthritis, laminitis, and various injuries. Regular veterinary care, preventative measures, and proper management are crucial for maintaining horse health and preventing diseases.

"World Health" is not a term that has a specific medical definition. However, it is often used in the context of global health, which can be defined as:

"The area of study, research and practice that places a priority on improving health and achieving equity in health for all people worldwide. It emphasizes trans-national health issues, determinants, and solutions; involves many disciplines within and beyond the health sciences and engages stakeholders from across sectors and societies." (World Health Organization)

Therefore, "world health" could refer to the overall health status and health challenges faced by populations around the world. It encompasses a broad range of factors that affect the health of individuals and communities, including social, economic, environmental, and political determinants. The World Health Organization (WHO) plays a key role in monitoring and promoting global health, setting international standards and guidelines, and coordinating responses to global health emergencies.

A nose, in a medical context, refers to the external part of the human body that is located on the face and serves as the primary organ for the sense of smell. It is composed of bone and cartilage, with a thin layer of skin covering it. The nose also contains nasal passages that are lined with mucous membranes and tiny hairs known as cilia. These structures help to filter, warm, and moisturize the air we breathe in before it reaches our lungs. Additionally, the nose plays an essential role in the process of verbal communication by shaping the sounds we make when we speak.

The pharynx is a part of the digestive and respiratory systems that serves as a conduit for food and air. It is a musculo-membranous tube extending from the base of the skull to the level of the sixth cervical vertebra where it becomes continuous with the esophagus.

The pharynx has three regions: the nasopharynx, oropharynx, and laryngopharynx. The nasopharynx is the uppermost region, which lies above the soft palate and is connected to the nasal cavity. The oropharynx is the middle region, which includes the area between the soft palate and the hyoid bone, including the tonsils and base of the tongue. The laryngopharynx is the lowest region, which lies below the hyoid bone and connects to the larynx.

The primary function of the pharynx is to convey food from the oral cavity to the esophagus during swallowing and to allow air to pass from the nasal cavity to the larynx during breathing. It also plays a role in speech, taste, and immune defense.

Hemagglutination is a medical term that refers to the agglutination or clumping together of red blood cells (RBCs) in the presence of an agglutinin, which is typically a protein or a polysaccharide found on the surface of certain viruses, bacteria, or incompatible blood types.

In simpler terms, hemagglutination occurs when the agglutinin binds to specific antigens on the surface of RBCs, causing them to clump together and form visible clumps or aggregates. This reaction is often used in diagnostic tests to identify the presence of certain viruses or bacteria, such as influenza or HIV, by mixing a sample of blood or other bodily fluid with a known agglutinin and observing whether hemagglutination occurs.

Hemagglutination inhibition (HI) assays are also commonly used to measure the titer or concentration of antibodies in a serum sample, by adding serial dilutions of the serum to a fixed amount of agglutinin and observing the highest dilution that still prevents hemagglutination. This can help determine whether a person has been previously exposed to a particular pathogen and has developed immunity to it.

Adamantane is a chemical compound with the formula C10H16. It is a hydrocarbon that consists of a cage-like structure of carbon atoms, making it one of the simplest diamondoid compounds. The term "adamantane" is also used more broadly to refer to any compound that contains this characteristic carbon cage structure.

In the context of medicine, adamantane derivatives are a class of antiviral drugs that have been used to treat and prevent influenza A infections. These drugs work by binding to the M2 protein of the influenza virus, which is essential for viral replication. By blocking the function of this protein, adamantane derivatives can prevent the virus from multiplying within host cells.

Examples of adamantane derivatives used in medicine include amantadine and rimantadine. These drugs are typically administered orally and have been shown to be effective at reducing the severity and duration of influenza A symptoms, particularly when used early in the course of infection. However, resistance to these drugs has become increasingly common among circulating strains of influenza A virus, which has limited their usefulness in recent years.

I'm sorry for any confusion, but "Thailand" is not a medical term. It is a country located in Southeast Asia. If you have any questions about medical terms or concepts, I would be happy to help answer those for you!

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

Real-Time Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences in real-time. It is a sensitive and specific method that allows for the quantification of target nucleic acids, such as DNA or RNA, through the use of fluorescent reporter molecules.

The RT-PCR process involves several steps: first, the template DNA is denatured to separate the double-stranded DNA into single strands. Then, primers (short sequences of DNA) specific to the target sequence are added and allowed to anneal to the template DNA. Next, a heat-stable enzyme called Taq polymerase adds nucleotides to the annealed primers, extending them along the template DNA until a new double-stranded DNA molecule is formed.

During each amplification cycle, fluorescent reporter molecules are added that bind specifically to the newly synthesized DNA. As more and more copies of the target sequence are generated, the amount of fluorescence increases in proportion to the number of copies present. This allows for real-time monitoring of the PCR reaction and quantification of the target nucleic acid.

RT-PCR is commonly used in medical diagnostics, research, and forensics to detect and quantify specific DNA or RNA sequences. It has been widely used in the diagnosis of infectious diseases, genetic disorders, and cancer, as well as in the identification of microbial pathogens and the detection of gene expression.

An "injection, intradermal" refers to a type of injection where a small quantity of a substance is introduced into the layer of skin between the epidermis and dermis, using a thin gauge needle. This technique is often used for diagnostic or research purposes, such as conducting allergy tests or administering immunizations in a way that stimulates a strong immune response. The injection site typically produces a small, raised bump (wheal) that disappears within a few hours. It's important to note that intradermal injections should be performed by trained medical professionals to minimize the risk of complications.

The term "Theoretical Models" is used in various scientific fields, including medicine, to describe a representation of a complex system or phenomenon. It is a simplified framework that explains how different components of the system interact with each other and how they contribute to the overall behavior of the system. Theoretical models are often used in medical research to understand and predict the outcomes of diseases, treatments, or public health interventions.

A theoretical model can take many forms, such as mathematical equations, computer simulations, or conceptual diagrams. It is based on a set of assumptions and hypotheses about the underlying mechanisms that drive the system. By manipulating these variables and observing the effects on the model's output, researchers can test their assumptions and generate new insights into the system's behavior.

Theoretical models are useful for medical research because they allow scientists to explore complex systems in a controlled and systematic way. They can help identify key drivers of disease or treatment outcomes, inform the design of clinical trials, and guide the development of new interventions. However, it is important to recognize that theoretical models are simplifications of reality and may not capture all the nuances and complexities of real-world systems. Therefore, they should be used in conjunction with other forms of evidence, such as experimental data and observational studies, to inform medical decision-making.

Viral load refers to the amount or quantity of virus (like HIV, Hepatitis C, SARS-CoV-2) present in an individual's blood or bodily fluids. It is often expressed as the number of virus copies per milliliter of blood or fluid. Monitoring viral load is important in managing and treating certain viral infections, as a higher viral load may indicate increased infectivity, disease progression, or response to treatment.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Mammals are a group of warm-blooded vertebrates constituting the class Mammalia, characterized by the presence of mammary glands (which produce milk to feed their young), hair or fur, three middle ear bones, and a neocortex region in their brain. They are found in a diverse range of habitats and come in various sizes, from tiny shrews to large whales. Examples of mammals include humans, apes, monkeys, dogs, cats, bats, mice, raccoons, seals, dolphins, horses, and elephants.

Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that belongs to the genus Avulavirus in the family Paramyxoviridae. It is the causative agent of Newcastle disease, a highly contagious and often fatal viral infection affecting birds and poultry worldwide. The virus can cause various clinical signs, including respiratory distress, neurological disorders, and decreased egg production, depending on the strain's virulence. NDV has zoonotic potential, but human infections are rare and typically result in mild, flu-like symptoms.

Newcastle Disease is a highly contagious viral disease caused by the Newcastle Disease Virus (NDV). It primarily affects birds and poultry, causing severe respiratory, neurological, and gastrointestinal symptoms. The virus can also infect mammals, including humans, but human cases are relatively rare and usually result in mild or asymptomatic infections.

In birds, the disease can cause significant mortality, especially in young chickens. Symptoms may include respiratory distress, depression, greenish diarrhea, muscle tremors, twisting of the neck (torticollis), paralysis, and decreased egg production. The virus is transmitted through direct contact with infected birds or their feces, as well as through contaminated food, water, and equipment.

In humans, Newcastle Disease typically results in conjunctivitis, mild respiratory symptoms, or influenza-like illness. It is not considered a significant public health concern, but proper biosecurity measures should be taken to prevent transmission between birds and humans. Vaccination programs are widely used to control the disease in poultry populations.

Dinosaurs are a group of reptiles that were the dominant terrestrial vertebrates for over 160 million years, from the late Triassic period until the end of the Cretaceous period. They first appeared approximately 230 million years ago and went extinct around 65 million years ago.

Dinosaurs are characterized by their upright stance, with legs positioned directly under their bodies, and a wide range of body sizes and shapes. Some dinosaurs were enormous, such as the long-necked sauropods that could reach lengths of over 100 feet, while others were small and agile.

Dinosaurs are classified into two main groups: the saurischians (lizard-hipped) and the ornithischians (bird-hipped). The saurischians include both the large carnivorous theropods, such as Tyrannosaurus rex, and the long-necked sauropods. The ornithischians were primarily herbivores and included a diverse array of species, such as the armored ankylosaurs and the horned ceratopsians.

Despite their extinction, dinosaurs have left a lasting impact on our planet and continue to be a source of fascination for people of all ages. The study of dinosaurs, known as paleontology, has shed light on many aspects of Earth's history and the evolution of life on our planet.

Coinfection is a term used in medicine to describe a situation where a person is infected with more than one pathogen (infectious agent) at the same time. This can occur when a person is infected with two or more viruses, bacteria, parasites, or fungi. Coinfections can complicate the diagnosis and treatment of infectious diseases, as the symptoms of each infection can overlap and interact with each other.

Coinfections are common in certain populations, such as people who are immunocompromised, have chronic illnesses, or live in areas with high levels of infectious agents. For example, a person with HIV/AIDS may be more susceptible to coinfections with tuberculosis, hepatitis, or pneumocystis pneumonia. Similarly, a person who has recently undergone an organ transplant may be at risk for coinfections with cytomegalovirus, Epstein-Barr virus, or other opportunistic pathogens.

Coinfections can also occur in people who are otherwise healthy but are exposed to multiple infectious agents at once, such as through travel to areas with high levels of infectious diseases or through close contact with animals that carry infectious agents. For example, a person who travels to a tropical area may be at risk for coinfections with malaria and dengue fever, while a person who works on a farm may be at risk for coinfections with influenza and Q fever.

Effective treatment of coinfections requires accurate diagnosis and appropriate antimicrobial therapy for each pathogen involved. In some cases, treating one infection may help to resolve the other, but in other cases, both infections may need to be treated simultaneously to achieve a cure. Preventing coinfections is an important part of infectious disease control, and can be achieved through measures such as vaccination, use of personal protective equipment, and avoidance of high-risk behaviors.

The Basic Reproduction Number, often denoted as R0 (pronounced "R nought" or "R zero"), is a fundamental concept in infectious disease epidemiology. It refers to the average number of new infections that a single infected individual is expected to cause in a population that is entirely susceptible to the infection, in the absence of any interventions or behavioral changes.

In other words, R0 provides an estimate of how contagious an infectious agent is during the initial phase of an outbreak, before any immunity has developed in the population. An R0 greater than 1 indicates that the disease has the potential to spread and cause an epidemic, while an R0 less than 1 suggests that the disease will likely die out on its own.

It's important to note that R0 is not a fixed or absolute value for a particular infectious agent, as it can vary depending on various factors such as the duration of the infectious period, the frequency and nature of contacts between individuals, and the susceptibility of the population. Therefore, R0 should be interpreted as an approximate measure of transmissibility that provides useful insights into the potential spread of a disease under specific conditions.

An immunization schedule is a series of planned dates when a person, usually a child, should receive specific vaccines in order to be fully protected against certain preventable diseases. The schedule is developed based on scientific research and recommendations from health organizations such as the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC).

The immunization schedule outlines which vaccines are recommended, the number of doses required, the age at which each dose should be given, and the minimum amount of time that must pass between doses. The schedule may vary depending on factors such as the individual's age, health status, and travel plans.

Immunization schedules are important for ensuring that individuals receive timely protection against vaccine-preventable diseases, and for maintaining high levels of immunity in populations, which helps to prevent the spread of disease. It is important to follow the recommended immunization schedule as closely as possible to ensure optimal protection.

I'm sorry for any confusion, but "parakeets" is not a medical term. It is a common name used to refer to certain types of small to medium-sized parrots, particularly those with long tail feathers. The term is not associated with medical terminology or healthcare. If you have any questions related to animals or pets, I would be happy to try to help with those!

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

In medical terms, "wind" is not a widely used or recognized term. It might be used informally to describe symptoms such as abdominal bloating, rumbling, or the sensation of gas moving within the intestines. However, these sensations are more accurately described as related to bowel function and gas in the digestive tract. If you're experiencing persistent or severe symptoms that you're describing as "wind," it would be best to consult with a healthcare professional for a proper evaluation.

Synthetic vaccines are artificially produced, designed to stimulate an immune response and provide protection against specific diseases. Unlike traditional vaccines that are derived from weakened or killed pathogens, synthetic vaccines are created using synthetic components, such as synthesized viral proteins, DNA, or RNA. These components mimic the disease-causing agent and trigger an immune response without causing the actual disease. The use of synthetic vaccines offers advantages in terms of safety, consistency, and scalability in production, making them valuable tools for preventing infectious diseases.

I'm sorry for any confusion, but "tropical climate" is not a medical term. It is a geographical term that refers to the climate of tropical regions, which are located around the equator. These regions are characterized by high temperatures and consistent rainfall throughout the year.

However, it's worth noting that certain environmental factors, such as climate, can have an impact on human health. For instance, tropical climates can contribute to the spread of certain diseases, like malaria and dengue fever, due to the presence of mosquitoes that thrive in warm, wet environments. But a "tropical climate" itself is not a medical condition or diagnosis.

Seroepidemiologic studies are a type of epidemiological study that measures the presence and levels of antibodies in a population's blood serum to investigate the prevalence, distribution, and transmission of infectious diseases. These studies help to identify patterns of infection and immunity within a population, which can inform public health policies and interventions.

Seroepidemiologic studies typically involve collecting blood samples from a representative sample of individuals in a population and testing them for the presence of antibodies against specific pathogens. The results are then analyzed to estimate the prevalence of infection and immunity within the population, as well as any factors associated with increased or decreased risk of infection.

These studies can provide valuable insights into the spread of infectious diseases, including emerging and re-emerging infections, and help to monitor the effectiveness of vaccination programs. Additionally, seroepidemiologic studies can also be used to investigate the transmission dynamics of infectious agents, such as identifying sources of infection or tracking the spread of antibiotic resistance.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

I'm sorry for any confusion, but "population density" is actually a term used in population geography and epidemiology, rather than medical terminology. It refers to the number of people living in a specific area or region, usually measured as the number of people per square mile or square kilometer.

However, understanding population density can be important in public health and medicine because it can influence various factors related to health outcomes and healthcare delivery, such as:

1. Disease transmission rates: Higher population densities can facilitate the spread of infectious diseases, particularly those that are transmitted through close contact between individuals.
2. Access to healthcare services: Areas with lower population density might have fewer healthcare resources and providers available, making it more challenging for residents to access necessary medical care.
3. Health disparities: Population density can contribute to health inequities, as urban areas often have better access to healthcare, education, and economic opportunities than rural areas, leading to differences in health outcomes between these populations.
4. Environmental factors: Higher population densities might lead to increased pollution, noise, and other environmental hazards that can negatively impact health.

Therefore, while "population density" is not a medical definition per se, it remains an essential concept for understanding various public health and healthcare issues.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Membrane fusion is a fundamental biological process that involves the merging of two initially separate lipid bilayers, such as those surrounding cells or organelles, to form a single continuous membrane. This process plays a crucial role in various physiological events including neurotransmitter release, hormone secretion, fertilization, viral infection, and intracellular trafficking of proteins and lipids. Membrane fusion is tightly regulated and requires the participation of specific proteins called SNAREs (Soluble NSF Attachment Protein REceptors) and other accessory factors that facilitate the recognition, approximation, and merger of the membranes. The energy required to overcome the repulsive forces between the negatively charged lipid headgroups is provided by these proteins, which undergo conformational changes during the fusion process. Membrane fusion is a highly specific and coordinated event, ensuring that the correct membranes fuse at the right time and place within the cell.

Secondary immunization, also known as "anamnestic response" or "booster," refers to the enhanced immune response that occurs upon re-exposure to an antigen, having previously been immunized or infected with the same pathogen. This response is characterized by a more rapid and robust production of antibodies and memory cells compared to the primary immune response. The secondary immunization aims to maintain long-term immunity against infectious diseases and improve vaccine effectiveness. It usually involves administering additional doses of a vaccine or booster shots after the initial series of immunizations, which helps reinforce the immune system's ability to recognize and combat specific pathogens.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

A subunit vaccine is a type of vaccine that contains a specific piece or component of the microorganism (such as a protein, sugar, or part of the bacterial outer membrane), instead of containing the entire organism. This piece of the microorganism is known as an antigen, and it stimulates an immune response in the body, allowing the development of immunity against the targeted infection without introducing the risk of disease associated with live vaccines.

Subunit vaccines offer several advantages over other types of vaccines. They are generally safer because they do not contain live or weakened microorganisms, making them suitable for individuals with weakened immune systems or specific medical conditions that prevent them from receiving live vaccines. Additionally, subunit vaccines can be designed to focus on the most immunogenic components of a pathogen, potentially leading to stronger and more targeted immune responses.

Examples of subunit vaccines include the Hepatitis B vaccine, which contains a viral protein, and the Haemophilus influenzae type b (Hib) vaccine, which uses pieces of the bacterial polysaccharide capsule. These vaccines have been crucial in preventing serious infectious diseases and reducing associated complications worldwide.

I'm sorry for any confusion, but "starlings" is not a medical term. It is a common name used to refer to a type of bird, specifically the species Sturnus vulgaris, also known as the European Starling. If you have any questions about medical terminology or concepts, I would be happy to help with those!

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

Nasal lavage fluid refers to the fluid that is obtained through a process called nasal lavage or nasal washing. This procedure involves instilling a saline solution into the nose and then allowing it to drain out, taking with it any mucus, debris, or other particles present in the nasal passages. The resulting fluid can be collected and analyzed for various purposes, such as diagnosing sinus infections, allergies, or other conditions affecting the nasal cavity and surrounding areas.

It is important to note that the term "nasal lavage fluid" may also be used interchangeably with "nasal wash fluid," "nasal irrigation fluid," or "sinus rinse fluid." These terms all refer to the same basic concept of using a saline solution to clean out the nasal passages and collect the resulting fluid for analysis.

I'm sorry for any confusion, but "Spain" is not a medical term. It is a country located in southwestern Europe. If you have any questions about medical terms or topics, I would be happy to help answer them.

I'm sorry for any confusion, but "Vietnam" is not a medical term. It is the name of a country located in Southeast Asia. If you have any questions about medical conditions or terminology, I would be happy to help clarify those for you.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

I believe there might be a bit of confusion in your question. "History" is a subject that refers to events, ideas, and developments of the past. It's not something that has a medical definition. However, if you're referring to the "21st century" in a historical context, it relates to the period from 2001 to the present. It's an era marked by significant advancements in technology, medicine, and society at large. But again, it doesn't have a medical definition. If you meant something else, please provide more context so I can give a more accurate response.

I'm sorry for any confusion, but the abbreviation "USSR" stands for the Union of Soviet Socialist Republics, which was a socialist state in Eastern Europe and northern and central Asia that existed from 1922 until its dissolution in 1991. It was not a medical term or concept. If you have any questions related to medicine, I would be happy to try to help answer them for you.

RNA-binding proteins (RBPs) are a class of proteins that selectively interact with RNA molecules to form ribonucleoprotein complexes. These proteins play crucial roles in the post-transcriptional regulation of gene expression, including pre-mRNA processing, mRNA stability, transport, localization, and translation. RBPs recognize specific RNA sequences or structures through their modular RNA-binding domains, which can be highly degenerate and allow for the recognition of a wide range of RNA targets. The interaction between RBPs and RNA is often dynamic and can be regulated by various post-translational modifications of the proteins or by environmental stimuli, allowing for fine-tuning of gene expression in response to changing cellular needs. Dysregulation of RBP function has been implicated in various human diseases, including neurological disorders and cancer.

"Age distribution" is a term used to describe the number of individuals within a population or sample that fall into different age categories. It is often presented in the form of a graph, table, or chart, and can provide important information about the demographic structure of a population.

The age distribution of a population can be influenced by a variety of factors, including birth rates, mortality rates, migration patterns, and aging. Public health officials and researchers use age distribution data to inform policies and programs related to healthcare, social services, and other areas that affect the well-being of populations.

For example, an age distribution graph might show a larger number of individuals in the younger age categories, indicating a population with a high birth rate. Alternatively, it might show a larger number of individuals in the older age categories, indicating a population with a high life expectancy or an aging population. Understanding the age distribution of a population can help policymakers plan for future needs and allocate resources more effectively.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Air microbiology is the study of microorganisms, such as bacteria, fungi, and viruses, that are present in the air. These microorganisms can be suspended in the air as particles or carried within droplets of liquid, such as those produced when a person coughs or sneezes.

Air microbiology is an important field of study because it helps us understand how these microorganisms are transmitted and how they may affect human health. For example, certain airborne bacteria and fungi can cause respiratory infections, while airborne viruses can cause diseases such as the common cold and influenza.

Air microbiology involves various techniques for collecting and analyzing air samples, including culturing microorganisms on growth media, using molecular biology methods to identify specific types of microorganisms, and measuring the concentration of microorganisms in the air. This information can be used to develop strategies for controlling the spread of airborne pathogens and protecting public health.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

I'm sorry for any confusion, but "Mexico" is not a medical term or concept. It is the name of a country located in North America. If you have any questions related to medical topics, I would be happy to try and help answer those for you.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Tracheitis is a medical condition that involves inflammation of the trachea, or windpipe. It can cause symptoms such as cough, sore throat, difficulty swallowing, and fever. Tracheitis can be caused by viral or bacterial infections, and it may also occur as a complication of other respiratory conditions. In some cases, tracheitis may require medical treatment, including antibiotics for bacterial infections or corticosteroids to reduce inflammation. It is important to seek medical attention if you experience symptoms of tracheitis, especially if they are severe or persistent.

I'm sorry for any confusion, but "travel" is not a term that has a specific medical definition. In general, travel refers to the act of moving or journeying from one place to another, often over long distances. However, in a medical context, it might refer to the recommendation that individuals with certain medical conditions or those who are immunocompromised avoid traveling to areas where they may be at increased risk of exposure to infectious diseases. It's always best to check with a healthcare professional for advice related to specific medical situations and travel.

'Homing behavior' is not a term typically used in medical definitions. However, it is commonly used to describe an animal's innate ability to return to its home territory or nest after traveling large distances. This behavior has been observed in various species including birds, insects, and mammals. It is not a medical condition or disease.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Cytotoxic T-lymphocytes, also known as CD8+ T cells, are a type of white blood cell that plays a central role in the cell-mediated immune system. They are responsible for identifying and destroying virus-infected cells and cancer cells. When a cytotoxic T-lymphocyte recognizes a specific antigen presented on the surface of an infected or malignant cell, it becomes activated and releases toxic substances such as perforins and granzymes, which can create pores in the target cell's membrane and induce apoptosis (programmed cell death). This process helps to eliminate the infected or malignant cells and prevent the spread of infection or cancer.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

I apologize for any confusion, but "Asia" is not a medical term. It is the largest continent in the world, comprising about 30% of the Earth's total land area and containing around 60% of the world's current human population. It is divided into several regions, including Northern Asia (Siberia), Eastern Asia (China, Japan, Korea, Mongolia, Taiwan), Southern Asia (India, Pakistan, Bangladesh, Sri Lanka, Maldives), Southeastern Asia (Vietnam, Thailand, Indonesia, Philippines, Malaysia, Singapore, Myanmar, Cambodia, Laos, Brunei), and Western Asia (Middle East).

If you have any questions related to medical terminology or health-related topics, I'd be happy to help.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Pneumonia, pneumococcal is a type of pneumonia caused by the bacterium Streptococcus pneumoniae (also known as pneumococcus). This bacteria can colonize the upper respiratory tract and occasionally invade the lower respiratory tract, causing infection.

Pneumococcal pneumonia can affect people of any age but is most common in young children, older adults, and those with weakened immune systems. The symptoms of pneumococcal pneumonia include fever, chills, cough, chest pain, shortness of breath, and rapid breathing. In severe cases, it can lead to complications such as bacteremia (bacterial infection in the blood), meningitis (inflammation of the membranes surrounding the brain and spinal cord), and respiratory failure.

Pneumococcal pneumonia can be prevented through vaccination with the pneumococcal conjugate vaccine (PCV) or the pneumococcal polysaccharide vaccine (PPSV). These vaccines protect against the most common strains of Streptococcus pneumoniae that cause invasive disease. It is also important to practice good hygiene, such as covering the mouth and nose when coughing or sneezing, and washing hands frequently, to prevent the spread of pneumococcal bacteria.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

Immunologic memory, also known as adaptive immunity, refers to the ability of the immune system to recognize and mount a more rapid and effective response upon subsequent exposure to a pathogen or antigen that it has encountered before. This is a key feature of the vertebrate immune system and allows for long-term protection against infectious diseases.

Immunologic memory is mediated by specialized cells called memory T cells and B cells, which are produced during the initial response to an infection or immunization. These cells persist in the body after the pathogen has been cleared and can quickly respond to future encounters with the same or similar antigens. This rapid response leads to a more effective and efficient elimination of the pathogen, resulting in fewer symptoms and reduced severity of disease.

Immunologic memory is the basis for vaccines, which work by exposing the immune system to a harmless form of a pathogen or its components, inducing an initial response and generating memory cells that provide long-term protection against future infections.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

Cellular immunity, also known as cell-mediated immunity, is a type of immune response that involves the activation of immune cells, such as T lymphocytes (T cells), to protect the body against infected or damaged cells. This form of immunity is important for fighting off infections caused by viruses and intracellular bacteria, as well as for recognizing and destroying cancer cells.

Cellular immunity involves a complex series of interactions between various immune cells and molecules. When a pathogen infects a cell, the infected cell displays pieces of the pathogen on its surface in a process called antigen presentation. This attracts T cells, which recognize the antigens and become activated. Activated T cells then release cytokines, chemicals that help coordinate the immune response, and can directly attack and kill infected cells or help activate other immune cells to do so.

Cellular immunity is an important component of the adaptive immune system, which is able to learn and remember specific pathogens in order to mount a faster and more effective response upon subsequent exposure. This form of immunity is also critical for the rejection of transplanted organs, as the immune system recognizes the transplanted tissue as foreign and attacks it.

I believe there may be some confusion in your question. "Quail" is typically used to refer to a group of small birds that belong to the family Phasianidae and the subfamily Perdicinae. There is no established medical definition for "quail."

However, if you're referring to the verb "to quail," it means to shrink back, draw back, or cower, often due to fear or intimidation. In a medical context, this term could be used metaphorically to describe a patient's psychological response to a threatening situation, such as receiving a difficult diagnosis. But again, "quail" itself is not a medical term.

Infectious pregnancy complications refer to infections that occur during pregnancy and can affect the mother, fetus, or both. These infections can lead to serious consequences such as preterm labor, low birth weight, birth defects, stillbirth, or even death. Some common infectious agents that can cause pregnancy complications include:

1. Bacteria: Examples include group B streptococcus, Escherichia coli, and Listeria monocytogenes, which can cause sepsis, meningitis, or pneumonia in the mother and lead to preterm labor or stillbirth.
2. Viruses: Examples include cytomegalovirus, rubella, varicella-zoster, and HIV, which can cause congenital anomalies, developmental delays, or transmission of the virus to the fetus.
3. Parasites: Examples include Toxoplasma gondii, which can cause severe neurological damage in the fetus if transmitted during pregnancy.
4. Fungi: Examples include Candida albicans, which can cause fungal infections in the mother and lead to preterm labor or stillbirth.

Preventive measures such as vaccination, good hygiene practices, and avoiding high-risk behaviors can help reduce the risk of infectious pregnancy complications. Prompt diagnosis and treatment of infections during pregnancy are also crucial to prevent adverse outcomes.

In medical terms, "fossils" do not have a specific or direct relevance to the field. However, in a broader scientific context, fossils are the remains or impressions of prehistoric organisms preserved in petrified form or as a mold or cast in rock. They offer valuable evidence about the Earth's history and the life forms that existed on it millions of years ago.

Paleopathology is a subfield of paleontology that deals with the study of diseases in fossils, which can provide insights into the evolution of diseases and human health over time.

Epidemiological monitoring is the systematic and ongoing collection, analysis, interpretation, and dissemination of health data pertaining to a specific population or community, with the aim of identifying and tracking patterns of disease or injury, understanding their causes, and informing public health interventions and policies. This process typically involves the use of surveillance systems, such as disease registries, to collect data on the incidence, prevalence, and distribution of health outcomes of interest, as well as potential risk factors and exposures. The information generated through epidemiological monitoring can help to identify trends and emerging health threats, inform resource allocation and program planning, and evaluate the impact of public health interventions.

I'm sorry for any confusion, but "trees" is not a medical term. It is a common term used in various fields, including biology, ecology, and dendrology, to refer to a woody perennial plant with a single stem or trunk that supports branches and leaves in most species.

If you have any questions related to medical terminology or health-related topics, please provide more context so I can offer an accurate and helpful response.

Paramyxoviridae is a family of viruses that includes several important pathogens causing respiratory infections in humans and animals. According to the medical perspective, Paramyxoviridae infections refer to the diseases caused by these viruses.

Some notable human paramyxovirus infections include:

1. Respiratory Syncytial Virus (RSV) Infection: RSV is a common cause of respiratory tract infections, particularly in young children and older adults. It can lead to bronchiolitis and pneumonia, especially in infants and patients with compromised immune systems.
2. Measles (Rubeola): Measles is a highly contagious viral disease characterized by fever, cough, coryza (runny nose), conjunctivitis, and a maculopapular rash. It can lead to severe complications such as pneumonia, encephalitis, and even death, particularly in malnourished children and individuals with weakened immune systems.
3. Parainfluenza Virus Infection: Parainfluenza viruses are responsible for upper and lower respiratory tract infections, including croup, bronchitis, and pneumonia. They mainly affect young children but can also infect adults, causing mild to severe illnesses.
4. Mumps: Mumps is a contagious viral infection that primarily affects the salivary glands, causing painful swelling. It can lead to complications such as meningitis, encephalitis, deafness, and orchitis (inflammation of the testicles) in rare cases.
5. Human Metapneumovirus (HMPV) Infection: HMPV is a respiratory virus that can cause upper and lower respiratory tract infections, similar to RSV and parainfluenza viruses. It mainly affects young children and older adults, leading to bronchitis, pneumonia, and exacerbations of chronic lung diseases.

Prevention strategies for Paramyxoviridae infections include vaccination programs, practicing good personal hygiene, and implementing infection control measures in healthcare settings.

Ribonucleoproteins (RNPs) are complexes composed of ribonucleic acid (RNA) and proteins. They play crucial roles in various cellular processes, including gene expression, RNA processing, transport, stability, and degradation. Different types of RNPs exist, such as ribosomes, spliceosomes, and signal recognition particles, each having specific functions in the cell.

Ribosomes are large RNP complexes responsible for protein synthesis, where messenger RNA (mRNA) is translated into proteins. They consist of two subunits: a smaller subunit containing ribosomal RNA (rRNA) and proteins that recognize the start codon on mRNA, and a larger subunit with rRNA and proteins that facilitate peptide bond formation during translation.

Spliceosomes are dynamic RNP complexes involved in pre-messenger RNA (pre-mRNA) splicing, where introns (non-coding sequences) are removed, and exons (coding sequences) are joined together to form mature mRNA. Spliceosomes consist of five small nuclear ribonucleoproteins (snRNPs), each containing a specific small nuclear RNA (snRNA) and several proteins, as well as numerous additional proteins.

Other RNP complexes include signal recognition particles (SRPs), which are responsible for targeting secretory and membrane proteins to the endoplasmic reticulum during translation, and telomerase, an enzyme that maintains the length of telomeres (the protective ends of chromosomes) by adding repetitive DNA sequences using its built-in RNA component.

In summary, ribonucleoproteins are essential complexes in the cell that participate in various aspects of RNA metabolism and protein synthesis.

Pneumococcal vaccines are immunizing agents that protect against infections caused by the bacterium Streptococcus pneumoniae, also known as pneumococcus. These vaccines help to prevent several types of diseases, including pneumonia, meningitis, and bacteremia (bloodstream infection).

There are two main types of pneumococcal vaccines available:

1. Pneumococcal Conjugate Vaccine (PCV): This vaccine is recommended for children under 2 years old, adults aged 65 and older, and people with certain medical conditions that increase their risk of pneumococcal infections. PCV protects against 13 or 20 serotypes (strains) of Streptococcus pneumoniae, depending on the formulation (PCV13 or PCV20).
2. Pneumococcal Polysaccharide Vaccine (PPSV): This vaccine is recommended for adults aged 65 and older, children and adults with specific medical conditions, and smokers. PPSV protects against 23 serotypes of Streptococcus pneumoniae.

These vaccines work by stimulating the immune system to produce antibodies that recognize and fight off the bacteria if an individual comes into contact with it in the future. Both types of pneumococcal vaccines have been proven to be safe and effective in preventing severe pneumococcal diseases.

Domestic animals, also known as domestic animals or pets, are species that have been tamed and kept by humans for various purposes. These purposes can include companionship, work, protection, or food production. Some common examples of domestic animals include dogs, cats, cows, sheep, goats, pigs, horses, and chickens.

Domestic animals are distinguished from wild animals in that they are dependent on humans for their survival and are able to live in close proximity to people. They have often been selectively bred over generations to possess certain traits or characteristics that make them more suitable for their intended uses. For example, dogs may be bred for their size, strength, agility, or temperament, while cats may be bred for their coat patterns or behaviors.

It is important to note that the term "domestic animal" does not necessarily mean that an animal is tame or safe to handle. Some domestic animals, such as certain breeds of dogs, can be aggressive or dangerous if not properly trained and managed. It is always important to approach and handle any animal, domestic or wild, with caution and respect.

The conservation of natural resources refers to the responsible use and management of natural resources, such as water, soil, minerals, forests, and wildlife, in a way that preserves their availability for future generations. This may involve measures such as reducing waste and pollution, promoting sustainable practices, protecting habitats and ecosystems, and engaging in careful planning and decision-making to ensure the long-term sustainability of these resources. The goal of conservation is to balance the needs of the present with the needs of the future, so that current and future generations can continue to benefit from the many goods and services that natural resources provide.

The Fluorescent Antibody Technique (FAT), Direct is a type of immunofluorescence assay used in laboratory diagnostic tests. It is a method for identifying and locating specific antigens in cells or tissues by using fluorescent-labeled antibodies that directly bind to the target antigen.

In this technique, a sample (such as a tissue section or cell smear) is prepared and then treated with a fluorescently labeled primary antibody that specifically binds to the antigen of interest. After washing away unbound antibodies, the sample is examined under a fluorescence microscope. If the antigen is present in the sample, it will be visible as distinct areas of fluorescence, allowing for the direct visualization and localization of the antigen within the cells or tissues.

Direct FAT is commonly used in diagnostic laboratories to identify and diagnose various infectious diseases, including bacterial, viral, and fungal infections. It can also be used to detect specific proteins or antigens in research and clinical settings.

Statistical models are mathematical representations that describe the relationship between variables in a given dataset. They are used to analyze and interpret data in order to make predictions or test hypotheses about a population. In the context of medicine, statistical models can be used for various purposes such as:

1. Disease risk prediction: By analyzing demographic, clinical, and genetic data using statistical models, researchers can identify factors that contribute to an individual's risk of developing certain diseases. This information can then be used to develop personalized prevention strategies or early detection methods.

2. Clinical trial design and analysis: Statistical models are essential tools for designing and analyzing clinical trials. They help determine sample size, allocate participants to treatment groups, and assess the effectiveness and safety of interventions.

3. Epidemiological studies: Researchers use statistical models to investigate the distribution and determinants of health-related events in populations. This includes studying patterns of disease transmission, evaluating public health interventions, and estimating the burden of diseases.

4. Health services research: Statistical models are employed to analyze healthcare utilization, costs, and outcomes. This helps inform decisions about resource allocation, policy development, and quality improvement initiatives.

5. Biostatistics and bioinformatics: In these fields, statistical models are used to analyze large-scale molecular data (e.g., genomics, proteomics) to understand biological processes and identify potential therapeutic targets.

In summary, statistical models in medicine provide a framework for understanding complex relationships between variables and making informed decisions based on data-driven insights.

In medical terms, "outpatients" refers to individuals who receive medical care or treatment at a hospital or clinic without being admitted as inpatients. This means that they do not stay overnight or for an extended period; instead, they visit the healthcare facility for specific services such as consultations, diagnostic tests, treatments, or follow-up appointments and then return home afterward. Outpatient care can include various services like primary care, specialty clinics, dental care, physical therapy, and more. It is often more convenient and cost-effective than inpatient care, as it allows patients to maintain their daily routines while receiving necessary medical attention.

I am not aware of any medical definition for the term "Delaware." Delaware is one of the 50 states in the United States, located on the East Coast. It is named after the Delaware River and Delaware Bay, which were named after Thomas West, 3rd Baron De La Warr, who was an English nobleman and colonial governor.

If you have any specific medical context or terminology related to Delaware that you would like me to help define or explain, please let me know!

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Guillain-Barré syndrome (GBS) is a rare autoimmune disorder in which the body's immune system mistakenly attacks the peripheral nervous system, leading to muscle weakness, tingling sensations, and sometimes paralysis. The peripheral nervous system includes the nerves that control our movements and transmit signals from our skin, muscles, and joints to our brain.

The onset of GBS usually occurs after a viral or bacterial infection, such as respiratory or gastrointestinal infections, or following surgery, vaccinations, or other immune system triggers. The exact cause of the immune response that leads to GBS is not fully understood.

GBS typically progresses rapidly over days or weeks, with symptoms reaching their peak within 2-4 weeks after onset. Most people with GBS experience muscle weakness that starts in the lower limbs and spreads upward to the upper body, arms, and face. In severe cases, the diaphragm and chest muscles may become weakened, leading to difficulty breathing and requiring mechanical ventilation.

The diagnosis of GBS is based on clinical symptoms, nerve conduction studies, and sometimes cerebrospinal fluid analysis. Treatment typically involves supportive care, such as pain management, physical therapy, and respiratory support if necessary. In addition, plasma exchange (plasmapheresis) or intravenous immunoglobulin (IVIG) may be used to reduce the severity of symptoms and speed up recovery.

While most people with GBS recover completely or with minimal residual symptoms, some may experience long-term disability or require ongoing medical care. The prognosis for GBS varies depending on the severity of the illness and the individual's age and overall health.

Interferons (IFNs) are a group of signaling proteins made and released by host cells in response to the presence of pathogens such as viruses, bacteria, parasites, or tumor cells. They belong to the larger family of cytokines and are crucial for the innate immune system's defense against infections. Interferons exist in multiple forms, classified into three types: type I (alpha and beta), type II (gamma), and type III (lambda). These proteins play a significant role in modulating the immune response, inhibiting viral replication, regulating cell growth, and promoting apoptosis of infected cells. Interferons are used as therapeutic agents for various medical conditions, including certain viral infections, cancers, and autoimmune diseases.

I'm sorry for any confusion, but "Radar" is not a medical term. Radar is an acronym that stands for Radio Detection and Ranging, which is a technology used in detecting the range, angle, or velocity of objects using radio waves. It is commonly used in various fields such as aviation, navigation, meteorology, and defense. If you have any medical terms you would like me to define, please let me know!

Sequence homology is a term used in molecular biology to describe the similarity between the nucleotide or amino acid sequences of two or more genes or proteins. It is a measure of the degree to which the sequences are related, indicating a common evolutionary origin.

In other words, sequence homology implies that the compared sequences have a significant number of identical or similar residues in the same order, suggesting that they share a common ancestor and have diverged over time through processes such as mutation, insertion, deletion, or rearrangement. The higher the degree of sequence homology, the more closely related the sequences are likely to be.

Sequence homology is often used to identify similarities between genes or proteins from different species, which can provide valuable insights into their functions, structures, and evolutionary relationships. It is commonly assessed using various bioinformatics tools and algorithms, such as BLAST (Basic Local Alignment Search Tool), Clustal Omega, and multiple sequence alignment (MSA) methods.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

I'm sorry for any confusion, but "France" is not a medical term or concept. France is the largest country in Western Europe and the third-largest in Europe after Russia and Ukraine. It has been a major player in world affairs for centuries, with a significant cultural and artistic influence. If you have any questions about medical terms or concepts, I would be happy to help answer those for you.

I'm sorry for any confusion, but "Hawks" is not a commonly used medical term. It is most frequently associated with the bird of prey or a sports team name. If you have encountered this term in a medical context and are unsure of its meaning, I would recommend checking the source again or consulting with a healthcare professional for clarification.

I'm not aware of any recognized medical term or condition specifically referred to as "turkeys." The term "turkey" is most commonly used in a non-medical context to refer to the large, bird-like domesticated fowl native to North America, scientifically known as Meleagris gallopavo.

However, if you are referring to a medical condition called "turkey neck," it is a colloquial term used to describe sagging or loose skin around the neck area, which can resemble a turkey's wattle. This condition is not a formal medical diagnosis but rather a descriptive term for an aesthetic concern some people may have about their appearance.

If you meant something else by "turkeys," please provide more context so I can give you a more accurate answer.

"Canaries" is not a term that has a specific medical definition. It is most commonly known as the name of a type of small songbird, and can also refer to people or things associated with the Canary Islands or the color yellow, which is associated with the bird due to its plumage. If you have any confusion regarding a particular medical context where the term "canaries" has been used, I would recommend seeking clarification from the source.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Biodiversity is the variety of different species of plants, animals, and microorganisms that live in an ecosystem. It also includes the variety of genes within a species and the variety of ecosystems (such as forests, grasslands, deserts, and oceans) that exist in a region or on Earth as a whole. Biodiversity is important for maintaining the health and balance of ecosystems, providing resources and services such as food, clean water, and pollination, and contributing to the discovery of new medicines and other useful products. The loss of biodiversity can have negative impacts on the functioning of ecosystems and the services they provide, and can threaten the survival of species and the livelihoods of people who depend on them.

In the medical context, the term "eggs" is not typically used as a formal medical definition. However, if you are referring to reproductive biology, an egg or ovum is a female reproductive cell (gamete) that, when fertilized by a male sperm, can develop into a new individual.

In humans, eggs are produced in the ovaries and are released during ovulation, usually once per month. They are much larger than sperm and contain all the genetic information necessary to create a human being, along with nutrients that help support the early stages of embryonic development.

It's worth noting that the term "eggs" is also commonly used in everyday language to refer to chicken eggs or eggs from other birds, which are not relevant to medical definitions.

Climate, in the context of environmental science and medicine, refers to the long-term average of weather conditions (such as temperature, humidity, atmospheric pressure, wind, rainfall, and other meteorological elements) in a given region over a period of years to decades. It is the statistical description of the weather patterns that occur in a particular location over long periods of time.

In medical terms, climate can have significant impacts on human health, both physical and mental. For example, extreme temperatures, air pollution, and ultraviolet radiation levels associated with certain climates can increase the risk of respiratory and cardiovascular diseases, heat-related illnesses, and skin cancer. Similarly, changes in climate patterns can affect the distribution and prevalence of infectious diseases, such as malaria and Lyme disease.

Climate change, which refers to significant long-term changes in the statistical distribution of weather patterns over periods ranging from decades to millions of years, can have even more profound impacts on human health, including increased rates of heat-related illnesses and deaths, worsening air quality, and altered transmission patterns of infectious diseases.

I'm sorry for any confusion, but "Singapore" is not a medical term or concept. It is a sovereign city-state and island country in Southeast Asia. If you have any questions related to medical topics or definitions, I would be happy to try and help answer those for you!

Public health is defined by the World Health Organization (WHO) as "the art and science of preventing disease, prolonging life and promoting human health through organized efforts of society." It focuses on improving the health and well-being of entire communities, populations, and societies, rather than individual patients. This is achieved through various strategies, including education, prevention, surveillance of diseases, and promotion of healthy behaviors and environments. Public health also addresses broader determinants of health, such as access to healthcare, housing, food, and income, which have a significant impact on the overall health of populations.

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Biological adaptation is the process by which a organism becomes better suited to its environment over generations as a result of natural selection. It involves changes in an organism's structure, metabolism, or behavior that increase its fitness, or reproductive success, in a given environment. These changes are often genetic and passed down from one generation to the next through the process of inheritance.

Examples of biological adaptation include the development of camouflage in animals, the ability of plants to photosynthesize, and the development of antibiotic resistance in bacteria. Biological adaptation is an important concept in the field of evolutionary biology and helps to explain the diversity of life on Earth.

Humidity, in a medical context, is not typically defined on its own but is related to environmental conditions that can affect health. Humidity refers to the amount of water vapor present in the air. It is often discussed in terms of absolute humidity (the mass of water per unit volume of air) or relative humidity (the ratio of the current absolute humidity to the maximum possible absolute humidity, expressed as a percentage). High humidity can contribute to feelings of discomfort, difficulty sleeping, and exacerbation of respiratory conditions such as asthma.

Bromelains are a group of enzymes found in pineapple plants, primarily in the stem and fruit. These enzymes have been studied for their potential medicinal properties, including anti-inflammatory, analgesic, and digestive benefits. Bromelains can help break down proteins, which may support digestion and reduce inflammation in the body. They have been used in complementary medicine to treat a variety of conditions, such as osteoarthritis, sinusitis, and post-surgical inflammation. However, more research is needed to fully understand their effectiveness and safety.

I apologize for any confusion, but "Australia" is not a medical term or concept. It is the world's largest island and smallest continent, located in the Southern Hemisphere, surrounded by the Pacific and Indian Oceans. It is composed of many diverse ecosystems, including deserts, rainforests, and coastal areas, and is home to a wide variety of unique plant and animal species.

If you have any questions related to medical terminology or health-related topics, I would be happy to try and help answer them for you!

An immunocompromised host refers to an individual who has a weakened or impaired immune system, making them more susceptible to infections and decreased ability to fight off pathogens. This condition can be congenital (present at birth) or acquired (developed during one's lifetime).

Acquired immunocompromised states may result from various factors such as medical treatments (e.g., chemotherapy, radiation therapy, immunosuppressive drugs), infections (e.g., HIV/AIDS), chronic diseases (e.g., diabetes, malnutrition, liver disease), or aging.

Immunocompromised hosts are at a higher risk for developing severe and life-threatening infections due to their reduced immune response. Therefore, they require special consideration when it comes to prevention, diagnosis, and treatment of infectious diseases.

Fever, also known as pyrexia or febrile response, is a common medical sign characterized by an elevation in core body temperature above the normal range of 36.5-37.5°C (97.7-99.5°F) due to a dysregulation of the body's thermoregulatory system. It is often a response to an infection, inflammation, or other underlying medical conditions, and it serves as a part of the immune system's effort to combat the invading pathogens or to repair damaged tissues.

Fevers can be classified based on their magnitude:

* Low-grade fever: 37.5-38°C (99.5-100.4°F)
* Moderate fever: 38-39°C (100.4-102.2°F)
* High-grade or severe fever: above 39°C (102.2°F)

It is important to note that a single elevated temperature reading does not necessarily indicate the presence of a fever, as body temperature can fluctuate throughout the day and can be influenced by various factors such as physical activity, environmental conditions, and the menstrual cycle in females. The diagnosis of fever typically requires the confirmation of an elevated core body temperature on at least two occasions or a consistently high temperature over a period of time.

While fevers are generally considered beneficial in fighting off infections and promoting recovery, extremely high temperatures or prolonged febrile states may necessitate medical intervention to prevent potential complications such as dehydration, seizures, or damage to vital organs.

I apologize, but "Canada" is not a medical term or concept. It is a country located in North America, known for its vast wilderness, multicultural cities, and significant natural resources. If you have any questions related to healthcare or medical terms, I would be happy to help answer those!

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Virus internalization, also known as viral entry, is the process by which a virus enters a host cell to infect it and replicate its genetic material. This process typically involves several steps:

1. Attachment: The viral envelope proteins bind to specific receptors on the surface of the host cell.
2. Entry: The virus then enters the host cell through endocytosis or membrane fusion, depending on the type of virus.
3. Uncoating: Once inside the host cell, the viral capsid is removed, releasing the viral genome into the cytoplasm.
4. Replication: The viral genome then uses the host cell's machinery to replicate itself and produce new viral particles.

It's important to note that the specific mechanisms of virus internalization can vary widely between different types of viruses, and are an active area of research in virology and infectious disease.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Ecology is not a medical term, but rather a term used in the field of biology. It refers to the study of the relationships between living organisms and their environment. This includes how organisms interact with each other and with their physical surroundings, such as climate, soil, and water. Ecologists may study the distribution and abundance of species, the flow of energy through an ecosystem, and the effects of human activities on the environment. While ecology is not a medical field, understanding ecological principles can be important for addressing public health issues related to the environment, such as pollution, climate change, and infectious diseases.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

I believe there may be some confusion in your question. "Schools" is not a medical term. It generally refers to educational institutions where children or adults receive instruction in various subjects. If you are asking about a medical condition that might be associated with the word "school," it's possible you could mean "psychological disorders that first present or become evident during the school-aged period (approximately 5-18 years of age)." These disorders can include, but are not limited to, ADHD, learning disabilities, anxiety disorders, and mood disorders. However, without more context, it's difficult for me to provide a more specific answer.

"Serial passage" is a term commonly used in the field of virology and microbiology. It refers to the process of repeatedly transmitting or passing a virus or other microorganism from one cultured cell line or laboratory animal to another, usually with the aim of adapting the microorganism to grow in that specific host system or to increase its virulence or pathogenicity. This technique is often used in research to study the evolution and adaptation of viruses and other microorganisms.

DNA-directed RNA polymerases are enzymes that synthesize RNA molecules using a DNA template in a process called transcription. These enzymes read the sequence of nucleotides in a DNA molecule and use it as a blueprint to construct a complementary RNA strand.

The RNA polymerase moves along the DNA template, adding ribonucleotides one by one to the growing RNA chain. The synthesis is directional, starting at the promoter region of the DNA and moving towards the terminator region.

In bacteria, there is a single type of RNA polymerase that is responsible for transcribing all types of RNA (mRNA, tRNA, and rRNA). In eukaryotic cells, however, there are three different types of RNA polymerases: RNA polymerase I, II, and III. Each type is responsible for transcribing specific types of RNA.

RNA polymerases play a crucial role in gene expression, as they link the genetic information encoded in DNA to the production of functional proteins. Inhibition or mutation of these enzymes can have significant consequences for cellular function and survival.

"Specific Pathogen-Free (SPF)" is a term used to describe animals or organisms that are raised and maintained in a controlled environment, free from specific pathogens (disease-causing agents) that could interfere with research outcomes or pose a risk to human or animal health. The "specific" part of the term refers to the fact that the exclusion of pathogens is targeted to those that are relevant to the particular organism or research being conducted.

To maintain an SPF status, animals are typically housed in specialized facilities with strict biosecurity measures, such as air filtration systems, quarantine procedures, and rigorous sanitation protocols. They are usually bred and raised in isolation from other animals, and their health status is closely monitored to ensure that they remain free from specific pathogens.

It's important to note that SPF does not necessarily mean "germ-free" or "sterile," as some microorganisms may still be present in the environment or on the animals themselves, even in an SPF facility. Instead, it means that the animals are free from specific pathogens that have been identified and targeted for exclusion.

In summary, Specific Pathogen-Free Organisms refer to animals or organisms that are raised and maintained in a controlled environment, free from specific disease-causing agents that are relevant to the research being conducted or human/animal health.

Strigiformes is a biological order that consists of around 200 extant species of birds, more commonly known as owls. This group is placed within the class Aves and is part of the superorder Coraciiformes. The Strigiformes are divided into two families: Tytonidae, also known as barn-owls, and Strigidae, which includes typical owls.

Owls are characterized by their unique morphological features, such as large heads, forward-facing eyes, short hooked beaks, and strong talons for hunting. They have specialized adaptations that allow them to be nocturnal predators, including excellent night vision and highly developed hearing abilities. Owls primarily feed on small mammals, birds, insects, and other creatures, depending on their size and habitat.

The medical community may not directly use the term 'Strigiformes' in a clinical setting. However, understanding the ecological roles of various animal groups, including Strigiformes, can help inform public health initiatives and disease surveillance efforts. For example, owls play an essential role in controlling rodent populations, which can have implications for human health by reducing the risk of diseases spread by these animals.

Interferon-beta (IFN-β) is a type of cytokine - specifically, it's a protein that is produced and released by cells in response to stimulation by a virus or other foreign substance. It belongs to the interferon family of cytokines, which play important roles in the body's immune response to infection.

IFN-β has antiviral properties and helps to regulate the immune system. It works by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to the activation of genes involved in the antiviral response. This results in the production of proteins that inhibit viral replication and promote the death of infected cells.

IFN-β is used as a medication for the treatment of certain autoimmune diseases, such as multiple sclerosis (MS). In MS, the immune system mistakenly attacks the protective coating around nerve fibers in the brain and spinal cord, causing inflammation and damage to the nerves. IFN-β has been shown to reduce the frequency and severity of relapses in people with MS, possibly by modulating the immune response and reducing inflammation.

It's important to note that while IFN-β is an important component of the body's natural defense system, it can also have side effects when used as a medication. Common side effects of IFN-β therapy include flu-like symptoms such as fever, chills, and muscle aches, as well as injection site reactions. More serious side effects are rare but can occur, so it's important to discuss the risks and benefits of this treatment with a healthcare provider.

Superinfection is a medical term that refers to a secondary infection which occurs during or following the treatment of an initial infection. This second infection is often caused by a different microorganism that is resistant to the medication used to treat the first infection. Superinfections can occur in various parts of the body, such as the skin, respiratory system, gastrointestinal tract, or urinary tract, and are more common in individuals with weakened immune systems, chronic illnesses, or those who have been on antibiotics for an extended period.

Superinfections can lead to more severe complications, prolonged hospital stays, increased healthcare costs, and higher mortality rates if not promptly diagnosed and treated appropriately. Healthcare providers must be vigilant in monitoring patients' responses to treatment and recognizing signs of superinfection, such as worsening symptoms or the development of new ones, to ensure timely intervention and optimal patient outcomes.

'Infection Control' is a set of practices, procedures, and protocols designed to prevent the spread of infectious agents in healthcare settings. It includes measures to minimize the risk of transmission of pathogens from both recognized and unrecognized sources, such as patients, healthcare workers, visitors, and the environment.

Infection control strategies may include:

* Hand hygiene (handwashing and use of alcohol-based hand sanitizers)
* Use of personal protective equipment (PPE), such as gloves, masks, gowns, and eye protection
* Respiratory etiquette, including covering the mouth and nose when coughing or sneezing
* Environmental cleaning and disinfection
* Isolation precautions for patients with known or suspected infectious diseases
* Immunization of healthcare workers
* Safe injection practices
* Surveillance and reporting of infections and outbreaks

The goal of infection control is to protect patients, healthcare workers, and visitors from acquiring and transmitting infections.

Alligators and crocodiles are large, semi-aquatic reptiles belonging to the order Crocodylia. They are characterized by a long, broad snout, powerful tail, and sharp teeth designed for grabbing and holding onto prey. Alligators and crocodiles are similar in appearance but can be distinguished by their snouts: alligators have a wider, U-shaped snout, while crocodiles have a more V-shaped snout.

Alligators (family Alligatoridae) are native to the United States and China, with two living species: the American alligator (Alligator mississippiensis) and the Chinese alligator (Alligator sinensis). They prefer freshwater habitats such as rivers, lakes, and marshes.

Crocodiles (family Crocodylidae) are found in tropical regions around the world, including Africa, Asia, Australia, and the Americas. There are 14 species of crocodiles, including the Nile crocodile (Crocodylus niloticus), the Saltwater crocodile (Crocodylus porosus), and the American crocodile (Crocodylus acutus). Crocodiles can tolerate both freshwater and saltwater environments.

Both alligators and crocodiles are apex predators, feeding on a variety of animals such as fish, birds, and mammals. They are known for their powerful bite force and have been reported to take down large prey, including deer and cattle. Alligators and crocodiles play an important role in maintaining the balance of their ecosystems by controlling populations of other animals and helping to keep waterways clean.

While alligators and crocodiles are often feared due to their size and predatory nature, they are also threatened by habitat loss, pollution, and hunting. Several species are considered endangered or vulnerable, and conservation efforts are underway to protect them and their habitats.

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

Molecular diagnostic techniques are a group of laboratory methods used to analyze biological markers in DNA, RNA, and proteins to identify specific health conditions or diseases at the molecular level. These techniques include various methods such as polymerase chain reaction (PCR), DNA sequencing, gene expression analysis, fluorescence in situ hybridization (FISH), and mass spectrometry.

Molecular diagnostic techniques are used to detect genetic mutations, chromosomal abnormalities, viral and bacterial infections, and other molecular changes associated with various diseases, including cancer, genetic disorders, infectious diseases, and neurological disorders. These techniques provide valuable information for disease diagnosis, prognosis, treatment planning, and monitoring of treatment response.

Compared to traditional diagnostic methods, molecular diagnostic techniques offer several advantages, such as higher sensitivity, specificity, and speed. They can detect small amounts of genetic material or proteins, even in early stages of the disease, and provide accurate results with a lower risk of false positives or negatives. Additionally, molecular diagnostic techniques can be automated, standardized, and performed in high-throughput formats, making them suitable for large-scale screening and research applications.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

I am not aware of a medical definition for the term "Eagles." It is possible that you may be referring to a condition called "aquilegia," which is a genus of flowering plants commonly known as columbines. There is also no widely recognized medical condition or pathology named after the bird species known as eagles. If you have more context or information about where you encountered this term, I'd be happy to help you further!

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Cockatoos are a group of parrots that make up the family Cacatuidae. They are characterized by their distinctive crest on top of their heads, which they can raise or lower depending on their mood. Cockatoos come in a variety of sizes and colors, with some species having black, white, pink, or gray feathers.

Cockatoos are known for their intelligence and ability to mimic human speech, although not all species have this ability. They are also known for being social birds that form strong bonds with their mates and families. Many cockatoo species are popular as pets due to their friendly and affectionate personalities.

In terms of medical concerns, cockatoos can suffer from a variety of health issues, including feather-plucking, obesity, and behavioral problems. They require a balanced diet, plenty of mental and physical stimulation, and regular veterinary care to maintain their health and well-being.

I'm sorry for any confusion, but "Germany" is not a medical term or concept. It is the name of a country in central Europe. If you have any questions related to medical topics, I would be happy to try and help answer those for you!

Disease susceptibility, also known as genetic predisposition or genetic susceptibility, refers to the increased likelihood or risk of developing a particular disease due to inheriting specific genetic variations or mutations. These genetic factors can make an individual more vulnerable to certain diseases compared to those who do not have these genetic changes.

It is important to note that having a genetic predisposition does not guarantee that a person will definitely develop the disease. Other factors, such as environmental exposures, lifestyle choices, and additional genetic variations, can influence whether or not the disease will manifest. In some cases, early detection and intervention may help reduce the risk or delay the onset of the disease in individuals with a known genetic susceptibility.

I'm sorry for any confusion, but "ships" is not a medical term. It is a common noun referring to large vehicles used for transportation on water. If you have any medical questions or terms you would like defined, I would be happy to help!

The nasal cavity is the air-filled space located behind the nose, which is divided into two halves by the nasal septum. It is lined with mucous membrane and is responsible for several functions including respiration, filtration, humidification, and olfaction (smell). The nasal cavity serves as an important part of the upper respiratory tract, extending from the nares (nostrils) to the choanae (posterior openings of the nasal cavity that lead into the pharynx). It contains specialized structures such as turbinate bones, which help to warm, humidify and filter incoming air.

Clutch size is a term used in biology and ecology, particularly in the study of birds and reptiles, to refer to the number of offspring that a female produces at one time. It is called a "clutch" because the offspring are typically laid or born together and remain together for at least a portion of their development.

For example, a bird that lays four eggs in a single nesting attempt has a clutch size of four. Similarly, a reptile that gives birth to six young at one time has a clutch size of six. Clutch size can vary widely among different species and even within the same species, depending on factors such as the availability of food, the age and experience of the female, and environmental conditions.

Understanding clutch size is important for studying the reproductive biology and life history strategies of animals, as well as for conservation efforts aimed at protecting threatened or endangered species.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Immunity, in medical terms, refers to the body's ability to resist or fight against harmful foreign substances or organisms such as bacteria, viruses, parasites, and fungi. This resistance is achieved through various mechanisms, including the production of antibodies, the activation of immune cells like T-cells and B-cells, and the release of cytokines and other chemical messengers that help coordinate the immune response.

There are two main types of immunity: innate immunity and adaptive immunity. Innate immunity is the body's first line of defense against infection and involves nonspecific mechanisms such as physical barriers (e.g., skin and mucous membranes), chemical barriers (e.g., stomach acid and enzymes), and inflammatory responses. Adaptive immunity, on the other hand, is specific to particular pathogens and involves the activation of T-cells and B-cells, which recognize and remember specific antigens (foreign substances that trigger an immune response). This allows the body to mount a more rapid and effective response to subsequent exposures to the same pathogen.

Immunity can be acquired through natural means, such as when a person recovers from an infection and develops immunity to that particular pathogen, or artificially, through vaccination. Vaccines contain weakened or inactivated forms of a pathogen or its components, which stimulate the immune system to produce a response without causing the disease. This response provides protection against future infections with that same pathogen.

Respirovirus is not typically used as a formal medical term in modern taxonomy. However, historically, it was used to refer to a genus of viruses within the family Paramyxoviridae, order Mononegavirales. This genus included several important human and animal pathogens that cause respiratory infections.

Human respiroviruses include:
1. Human parainfluenza virus (HPIV) types 1, 2, and 3: These viruses are a common cause of upper and lower respiratory tract infections, such as croup, bronchitis, and pneumonia, particularly in young children.
2. Sendai virus (also known as murine respirovirus): This virus primarily infects rodents but can occasionally cause mild respiratory illness in humans, especially those who work closely with these animals.

The term "respirovirus" is not officially recognized by the International Committee on Taxonomy of Viruses (ICTV) anymore, and these viruses are now classified under different genera within the subfamily Pneumovirinae: Human parainfluenza viruses 1 and 3 belong to the genus Orthorubulavirus, while Human parainfluenza virus 2 is placed in the genus Metapneumovirus.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

The oropharynx is the part of the throat (pharynx) that is located immediately behind the mouth and includes the back one-third of the tongue, the soft palate, the side and back walls of the throat, and the tonsils. It serves as a passageway for both food and air, and is also an important area for the immune system due to the presence of tonsils.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

  • People working with poultry with known or possible infections of Highly Pathogenic Avian Influenza A viruses should follow worker protection and personal protective equipment (PPE) recommendations. (cdc.gov)
  • Avian influenza refers to disease in birds caused by infection with avian (bird) influenza (flu) Type A viruses. (cdc.gov)
  • Avian influenza A viruses have been isolated from more than 100 different species of wild birds around the world. (cdc.gov)
  • These viruses occur naturally among wild aquatic birds worldwide and can infect domestic poultry and other bird and animal species. (cdc.gov)
  • Wild aquatic birds, especially dabbling ducks, are considered reservoirs (hosts) for avian influenza A viruses. (cdc.gov)
  • Wild aquatic birds can be infected with avian influenza A viruses in their intestines and respiratory tract, but some species, such as ducks, may not get sick. (cdc.gov)
  • However, avian influenza A viruses are very contagious among birds, and some of these viruses can sicken and even kill certain domesticated bird species, including chickens, ducks and turkeys. (cdc.gov)
  • Infected birds can shed avian influenza A viruses in their saliva, nasal secretions, and feces. (cdc.gov)
  • Avian influenza A viruses are classified into the following two categories: low pathogenicity avian influenza (LPAI) A viruses, and highly pathogenic avian influenza (HPAI) A viruses. (cdc.gov)
  • Low pathogenic avian influenza viruses cause either no signs of disease or mild disease in chickens/poultry (such as ruffled feathers and a drop in egg production). (cdc.gov)
  • Most avian influenza A viruses are low pathogenic and cause few signs of disease in infected wild birds. (cdc.gov)
  • In poultry, some low-pathogenic viruses can mutate into highly pathogenic avian influenza viruses. (cdc.gov)
  • Highly pathogenic avian influenza viruses cause severe disease and high mortality in infected poultry. (cdc.gov)
  • Only some avian influenza A(H5) and A(H7) viruses are classified as HPAI A viruses, while most A(H5) and A(H7) viruses circulating among birds are LPAI A viruses. (cdc.gov)
  • Domesticated birds (chickens, turkeys, ducks, etc.) may become infected with avian influenza A viruses through direct contact with infected waterfowl or other infected poultry, or through contact with surfaces that have been contaminated with the viruses. (cdc.gov)
  • Bird flu viruses infect birds, including chickens, other poultry, and wild birds such as ducks. (medlineplus.gov)
  • Usually bird flu viruses only infect other birds. (medlineplus.gov)
  • It is rare for people to get infected with bird flu viruses, but it can happen. (medlineplus.gov)
  • Researchers altered bird flu viruses so they spread between ferrets through the air. (livescience.com)
  • Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. (nature.com)
  • Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. (nature.com)
  • The Qinghai-like Clade 2.2 virus was found to possess a high genetic relationship with viruses isolated from other countries on the migratory flyway of wild birds 4 , suggesting that the migration of wild birds played an important role in circulating H5N1 HPAIV viruses between the different avian populations. (nature.com)
  • This document briefly summarizes important clinical information related to avian influenza A viruses of public health concern and CDC's recommendations for patient evaluation, treatment, and testing. (cdc.gov)
  • Avian influenza A viruses circulate among wild aquatic birds worldwide and can infect domestic poultry and other bird and animal species to cause disease referred to as avian influenza. (cdc.gov)
  • Some avian influenza A viruses cause high morbidity and mortality in infected poultry, while others cause no illness or only mild disease in poultry. (cdc.gov)
  • Some avian influenza A viruses have caused rare, sporadic infections in people , resulting in human illness ranging from mild to severe respiratory disease. (cdc.gov)
  • These avian influenza A viruses are of public health concern because they can cause infection resulting in illness in people and because of their pandemic potential if a virus acquires the ability for sustained human-to-human transmission. (cdc.gov)
  • Some clusters of limited, non-sustained human-to-human transmission of avian influenza A viruses have been reported . (cdc.gov)
  • People who are exposed to poultry or wild aquatic birds infected with avian influenza A viruses or associated contaminated environments may become infected with these viruses. (cdc.gov)
  • Health departments may ask responders to seek care and/or testing for avian influenza A virus infection, including specific testing for avian influenza A viruses. (cdc.gov)
  • Recommended actions for patients considered to have recent exposure to avian influenza A viruses . (cdc.gov)
  • Collect respiratory specimens from the patient to test for avian influenza A viruses at the state health department. (cdc.gov)
  • It is important to remember that infection with influenza viruses, including avian influenza A viruses, does not always cause fever. (cdc.gov)
  • Standard Precautions, plus Contact and Airborne Precautions, including the use of eye protection, are recommended when evaluating patients for infection with avian influenza A viruses. (cdc.gov)
  • For more information on recommended infection prevention and control measures, please visit Infection Control Within Healthcare Settings for Patients with Novel Influenza A Viruses . (cdc.gov)
  • Although there are many kinds of bird flu, the most common kinds that concern health workers are H5N1 and H7N9 bird flu viruses. (alberta.ca)
  • These viruses are found in wild birds. (alberta.ca)
  • The bird flu virus can make people sicker than other kinds of influenza (flu) viruses. (alberta.ca)
  • Experts worry because the bird flu virus is so different from other flu viruses that our bodies do not have immunity against it. (alberta.ca)
  • The likelihood of human-to-human spread is low," WHO said while stressing the importance of global surveillance because of the constantly evolving nature of influenza viruses. (hensparty.org)
  • Low pathogenic AI viruses generally cause no clinical illness, or only minor symptoms in birds. (kxlf.com)
  • HPAI viruses are extremely infectious and fatal to poultry and some species of wild birds. (kxlf.com)
  • In the winter of 2021-2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. (flu.org.cn)
  • Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). (flu.org.cn)
  • surveillance focused on the subset of avian influenza viruses that pose significant risk of infecting humans, including certain viruses of low pathogenicity in poultry. (nationalacademies.org)
  • Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. (jcvi.org)
  • Bird flu viruses are just a few genetic steps away from the flu virus that caused the deadly 1918 Spanish flu pandemic, a new study shows. (abc.net.au)
  • In Alaska, routine surveillance of wild and domestic birds for avian influenza has occurred for many years with the occasional detection of Low Pathogenic viruses in some wild waterfowl. (alaska.gov)
  • Avian influenza is a viral disease caused by various strains of avian influenza viruses that can be classified as low pathogenic avian influenza (LPAI) or highly pathogenic avian influenza (HPAI). (usgs.gov)
  • The USGS National Wildlife Health Center (NWHC) in collaboration with multiple partners conducts research into the ecology of avian influenza virus and surveillance for highly pathogenic avian influenza (HPAI) viruses leading to several significant findings towards early detection and response to HPAI. (usgs.gov)
  • Wild birds, in particular certain species of waterfowl and shorebirds, are considered to be the natural reservoirs for avian influenza viruses. (usgs.gov)
  • In domestic birds, however, some AI viruses can be more pathogenic and mutation or recombination of a virus acquired from wild birds can increase disease potential. (usgs.gov)
  • Avian influenza viruses (AIV) are classified by a combination of two groups of proteins found on the surface of the virus: hemagglutinin proteins (H), of which there are 18 (H1-H18), and neuraminidase proteins (N), of which there are 11 (N1-N11). (usgs.gov)
  • Additional information on avian influenza viruses are available in the Field Manual of Wildlife Diseases . (usgs.gov)
  • It has been thought that Eurasian strains of avian influenza viruses enter the United States through the Pacific Flyway (Alaska to Baja California) and that this route is the most likely avenue for emerging Eurasian AIV strains to enter North America. (usgs.gov)
  • However, AIV also frequently infects domestic poultry and wild ducks in Europe and Africa and migrating wild birds that use the east Atlantic flyway may also risk introducing Eurasian strain viruses to North America via this route. (usgs.gov)
  • The USGS National Wildlife Health Center, in collaboration with the National Institutes of Health Centers of Excellence for Influenza Research and Surveillance (CEIRS), the University of Iceland, and other partners, has explored the ecology and movement of AI viruses in the North Atlantic region since 2010. (usgs.gov)
  • This research has demonstrated the importance of the migratory bird flyways in this region to the intercontinental movement of viruses between Europe and North America. (usgs.gov)
  • AI viruses from both continents, as well as recombinations of both strains, were isolated in Iceland, sometimes from within a single flock of birds, showing that this region is a hotspot of virus movement and genetic reassortment. (usgs.gov)
  • Highly pathogenic AI viruses have been frequently found in wild and domestic European birds, significantly in 2006, and annually since then. (usgs.gov)
  • Avian influenza viruses have been around for a very long time, but the Highly Pathogenic Avian Influenza (HPAI) virus strain (H5N1, clade 2.3.4.4b) that has been circulating in birds across much of the globe since 2021 has been the most long-lasting, widespread and severe on record. (epicscotland.org)
  • Birds are the natural hosts for avian influenza viruses therefore infections in humans are uncommon. (epicscotland.org)
  • However, avian influenza viruses may occasionally infect humans: one human case has been reported in the UK since October 2021. (epicscotland.org)
  • Influenza viruses are RNA viruses that evolve rapidly, hence the existence of various subtypes and strains. (epicscotland.org)
  • While there are many genera of influenza viruses, it is Influenza A that mutates fast, evolves into various subtypes, and has pandemic causing potential. (igpbeauty.com)
  • ThePrint's Sandhya Ramesh explains the nature and classification of Influenza A viruses. (igpbeauty.com)
  • Seasonal flu vaccination will not prevent infection with bird flu viruses, but can reduce the risk of getting sick with human and bird flu viruses at the same time. (cdc.gov)
  • Avian influenza is an infectious disease caused by viruses that occur naturally among wild aquatic birds worldwide. (peedeepost.com)
  • Influenza , commonly known as the " flu ," is an extremely contagious respiratory illness caused by influenza A or B viruses. (webmd.com)
  • Researchers divide flu viruses into three general categories: types A, B, and C. All three types can mutate, or change into new strains, and type A influenza mutates often, yielding new strains of the virus every few years. (webmd.com)
  • People with close, influenza (flu) viruses, but usually do not get sick. (cdc.gov)
  • Bird flu viruses can spread environments are thought to be at greater (though probably still low) risk easily between birds. (cdc.gov)
  • When bird contaminated with the viruses. (cdc.gov)
  • however, because other bird flu viruses have infected people, it is possible that human infections with these viruses could occur. (cdc.gov)
  • Bird flu viruses can infect people when enough virus gets into a person's eyes, nose, or mouth, or is inhaled. (cdc.gov)
  • Avian influenza viruses (AIV) have been frequently detected in live bird markets (LBMs) around the world, primarily in urban areas , and have the ability to spillover to other species, including humans . (bvsalud.org)
  • On rare occasions, these bird viruses can cross over and infect other species, including cats, pigs and humans and can be a potential cause of pandemics. (who.int)
  • Viruses that have caused past pandemics typically originated from animal influenza viruses. (who.int)
  • Seasonal influenza (or "flu") is most often caused by type A or B influenza viruses. (who.int)
  • Influenza viruses evolve constantly, and twice a year WHO makes recommendations to update the vaccine compositions. (who.int)
  • For the 2016-2017 northern hemisphere influenza season, the vaccine formulation was updated in February 2016 to contain two types, A viruses (H1N1 and H3N2), and a type B virus. (who.int)
  • Antiviral drugs for influenza can reduce severe complications and deaths although influenza viruses can develop resistance to the drugs. (who.int)
  • Antibiotics are not effective against influenza viruses. (who.int)
  • Seasonal influenza outbreaks are caused by small changes in viruses that have already circulated, and to which many people have some immunity. (who.int)
  • Influenza (Flu) Influenza (flu) is a viral infection of the lungs and airways with one of the influenza viruses. (msdmanuals.com)
  • It presents information on the spread of avian influenza (bird flu) viruses among birds and the outbreaks in poultry. (bvs.br)
  • A(H1N2) variant viruses and one human case of infection with an influenza A(H3N2) variant virus were reported officially.3 One additional human case of infection with an influenza A(H1N1)v virus was detected. (who.int)
  • The overall public health risk from currently known influenza viruses at the human-animal interface has not changed, and the likelihood of sustained human-to-human transmission of these viruses remains low. (who.int)
  • Environmental samples from these stalls tested positive for influenza A(H5N6) viruses. (who.int)
  • 1. What is the likelihood that additional human cases of infection with avian influenza A(H5) viruses will occur? (who.int)
  • 2. What is the likelihood of human-to-human transmission of avian influenza A(H5) viruses? (who.int)
  • Even though small clusters of A(H5) virus infections have been reported previously including those involving healthcare workers, current epidemiological and virological evidence suggests that influenza A(H5) viruses have not acquired the ability of sustained transmission among humans, thus the likelihood is low. (who.int)
  • Influenza viruses are highly contagious and can cause seasonal epidemics, manifesting as an acute febrile illness with variable degrees of severity, ranging from mild fatigue to respiratory failure and death. (medscape.com)
  • Avian influenza viruses (AIVs) cause severe diseases in poultry and humans. (who.int)
  • Several human infections with avian influenza A to high mortality among chickens ( 20 ) that required the viruses, including H5N1, H9N2, H7N3, H7N7, H7N9 intervention of the Lebanese Ministry of Agriculture and H10N8, have been reported among poultry-exposed for monitoring and controlling. (who.int)
  • The government does have a supply of a vaccine for one type of H5N1 bird flu virus and could distribute it if there was an outbreak that spread easily from person to person. (medlineplus.gov)
  • Avian influenza virus (AIV) gained a high profile after the unprecedented bird-to-human transmission of highly pathogenic AIV (HPAIV) subtype H5N1 in 1997. (cdc.gov)
  • Originating in Asia, HPAIV (H5N1) subsequently caused widespread deaths among wild and domestic birds in Southeast Asia and westward throughout Europe and Africa in 2005 and 2006. (cdc.gov)
  • Although the role of wild birds in HPAIV maintenance remains controversial ( 8 ), the magnitude of the subtype H5N1 epidemics increased the demand for early recognition of potential threats to humans and poultry and an understanding of the natural history of AIV in wild birds. (cdc.gov)
  • H5N1 is a type of bird flu, which, so far, spreads readily only among birds, not mammals like us. (livescience.com)
  • H5N1 is typically a highly pathogenic virus in birds, resulting in severe disease and death. (medscape.com)
  • [ 4 ] A reassorted H5N1 virus has been reported in the United States among wild birds but is not considered a threat to humans. (medscape.com)
  • The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). (nature.com)
  • Since 2003, multiple highly pathogenic avian influenza A (HPAI) H5 subtypes, including H5N1, H5N2, H5N6, and H5N8, have generated severe epidemics and thus not only tremendous economic losses in the domestic poultry industry, but also serious threats to human health worldwide ( Jhung and Nelson, 2015 ). (frontiersin.org)
  • As of October 3, 2016, at least 856 cases of human infection with avian influenza A (H5N1) virus in 16 countries had been reported to the World Health Organization, among which 452 had ended in death, for an apparent case fatality rate of 52.8% ( WHO, 2016 ). (frontiersin.org)
  • A strain of H5N1 avian influenza (Clade 2.3.4.4b) highly capable of causing disease in birds has been identified in wild and domestic birds in Illinois in 2022. (illinois.gov)
  • So far, the current H5N1 avian influenza virus does not seem to infect people easily or cause severe illness in people. (illinois.gov)
  • Only one human infection with the current H5N1 strain has occurred, an individual in the United Kingdom who raised birds infected with the virus. (illinois.gov)
  • This H5N1 avian influenza virus is primarily a bird health issue. (illinois.gov)
  • Visit www.canada.ca/en/public-health/services/diseases/avian-influenza-h5n1/surveillance-avian-influenza-h5n1.html for more information. (alberta.ca)
  • New York, NY, and Tel Aviv, ISRAEL, Feb. 14, 2023 (GLOBE NEWSWIRE) -- via NewMediaWire -- Todos Medical, Ltd. (OTCQB: TOMDF), a comprehensive medical diagnostics and related solutions company, today announced that its CLIA/CAP-certified laboratory Provista Diagnostics has initiated a validation plan for PCR-based Avian Influenza A (H5N1, bird flu) human testing. (yahoo.com)
  • The significant investment we have made to automate COVID PCR testing at Provista is now allowing us deploy this capability to help monitor for Bird Flu (H5N1, Avian Flu) in the human population," said Gerald E. Commissiong, President & CEO of Todos Medical. (yahoo.com)
  • A sample from each location has tested positive for the highly pathogenic avian influenza (HPAI), subtype H5N1. (gov.mb.ca)
  • Cases of HPAI H5N1 have been confirmed in a number of Canadian provinces and the United States including jurisdictions immediately south of Manitoba in North Dakota and Minnesota along the route for spring migratory birds returning to Manitoba. (gov.mb.ca)
  • Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season. (flu.org.cn)
  • This page is dedicated to H5N1 Influenza A virus. (vadscorner.com)
  • Human Cases of Avian Influenza A ( H5N1 ) Infection Hong Kong Special Administrative Region (SAR), China, 2003. (vadscorner.com)
  • A highly infectious strain of avian influenza virus (H5N1) has caused multiple outbreaks in domestic poultry and wild birds across Scotland, in other parts of the UK, and internationally. (epicscotland.org)
  • In addition to domestic and wild birds, several species of mammals have been infected with the currently circulating HPAI H5N1 (2.3.4.4b). (epicscotland.org)
  • 2. With the confirmation of avian influenza in some countries of the African Region early this year, the risk of human infection due to the highly pathogenic avian influenza virus H5N1 will persist, as will the threats of occurrence of an influenza pandemic. (who.int)
  • So far, the majority of the human H5N1 (haemagluttinin type 5 and neuraminidase subtype 1) infections have been linked to close contact with infected domestic birds during home slaughtering, de-feathering, butchering and preparation for cooking. (who.int)
  • As of mid-June 2006, 54 countries, worldwide, confirmed the presence of H5N1 in domestic and wild birds. (who.int)
  • H5N1 and H7N9, which cause most cases of bird flu in people, have similar effects. (msdmanuals.com)
  • The man was helping kill poultry that probably had the H5N1 bird flu. (medscape.com)
  • The federal government says the H5N1 virus has been found in commercial and backyard birds in 29 states and in wild birds in 34 states since the first cases were detected in late 2021. (medscape.com)
  • Out of 2500 people exposed to birds infected with H5N1, only this one case of human infection has been confirmed. (medscape.com)
  • A newly developed influenza vaccine against the H5N1 subunit of the avian influenza virus, which has pandemic potential, has been shown to be highly immunogenic in younger and older adults . (medscape.com)
  • Culling of sick birds, persons in several countries, with Egypt reporting decontamination of infected farms, and surveillance the highest number of H5N1 infections and China the within the vicinity of infected farms were applied and the highest number of H7N9 infections ( 8-13 ). (who.int)
  • Der handelsübliche Influenza A-Schnelltest erfasst das H5N1-Vogelgrippevirus nicht. (medscape.com)
  • HPAI A(H5) and A(H7) virus infections in poultry also can spill back into wild birds, resulting in further geographic spread of the virus as those birds migrate. (cdc.gov)
  • While some wild bird species can be infected with some HPAI A(H5) or A(H7) virus subtypes without appearing sick, other HPAI A(H5) and A(H7) virus subtypes can cause severe disease and mortality in some infected wild birds as well as in infected poultry. (cdc.gov)
  • Avian influenza has low-pathogenic (LPAI) and highly pathogenic (HPAI) strains. (medscape.com)
  • This strain has drawn more attention than other HPAI strains because of ongoing reports of bird-to-human transmissions that result in severe disease in the human host. (medscape.com)
  • Currently the shooting of gamebirds or other species is not restricted by the implementation of a 3km Protection Zone and 10km Surveillance Zone around sites where HPAI (highly pathogenic avian influenza) has been identified. (nfuonline.com)
  • How should I deal with wild game birds shot within an HPAI PZ or SZ? (nfuonline.com)
  • This means there is a high probability of contact with wild birds that may be contaminated with the HPAI virus. (gov.mb.ca)
  • Some hunters and news outlets have reported that no hunter-harvested game birds taken in Canada this would be allowed to be imported into the United States, but recent clarifications from the U.S. Department of Agriculture indicate that the import restrictions only apply to zones with active HPAI cases. (deltawaterfowl.org)
  • Earlier in 2022, HPAI was detected in domestic Canadian birds, prompting the USDA's Animal and Plant Health Inspection Service to prohibit most avian products from crossing the border this spring and summer. (deltawaterfowl.org)
  • Past strains of avian influenza have not been known to cause widespread mortality in wild waterfowl, but HPAI has killed snow geese, Canada geese and bluebills in 2022. (deltawaterfowl.org)
  • HPAI has been detected in wild birds in more than 40 states and 10 provinces this year. (deltawaterfowl.org)
  • HELENA - Highly pathogenic avian influenza (HPAI) virus was detected in a snow goose from Canyon Ferry and a Canada goose from near Belgrade last week. (kxlf.com)
  • Although the Centers for Disease Control and Prevention [lnks.gd] (CDC) considers risk of HPAI spread to humans to be very low, Montanans should take precautions when handling game birds or any sick or dead bird they find. (kxlf.com)
  • It is referred to as 'highly pathogenic' avian influenza, or HPAI. (bto.org)
  • In 2016, as part of routine surveillance, a wild mallard was found to have Highly Pathogenic Avian Influenza (HPAI) H5N2. (alaska.gov)
  • On the other hand, highly pathogenic avian influenza (HPAI) strains frequently fatal to birds and easily transmissible between susceptible species. (usgs.gov)
  • While the bird flu prevention zone remains in force, even keepers of 'backyard' poultry flocks are advised to watch their birds for the tell tale signs of HPAI (Highly Pathogenic Avian Influenza) including swollen head, bluish skin discolouration, loss of appetite, stressed breathing and reducing egg production. (vetlabsupplies.co.uk)
  • These neurological symptoms are consistent with highly pathogenic avian influenza (HPAI), and though it is late in the season for the virus to be circulating, Slaterus and his colleagues have noticed a disturbing number of sick and dead birds during their counts this year (and last year, too). (thebulletin.org)
  • HPAI used to be a disease that almost exclusively affected poultry, but in 2004 it spread to wild birds in China. (thebulletin.org)
  • There are genetic and antigenic differences between the influenza A virus subtypes that typically infect only birds and those that can infect birds and people. (cdc.gov)
  • Despite measures to prevent HPAIV spread by vaccination or the culling of infected birds, several H5 influenza subtypes are already prevalent in Asia, Europe and Africa 4 . (nature.com)
  • A(H5) subtypes continue to be detected in birds in Africa, Europe and Asia. (who.int)
  • All influenza A subtypes have been isolated of escaping vaccines or producing novel viral strains from wild bird species ( 3 ). (who.int)
  • Since it was first detected in the eastern United States in January 2022, it has spread to all four bird migration flyways, including the Central and Pacific flyways which include parts of Montana. (kxlf.com)
  • Information about the outbreak of avian influenza in 2021 and 2022, its spread and its impact on breeding seabird populations. (bto.org)
  • An Avian Influenza Prevention Zone (AIPZ) was declared in October 2022 and is still in place as of February 2023 in Scotland and across Great Britain. (epicscotland.org)
  • Infection has been reported in a range of wild bird species and has caused widespread illness and deaths in wild birds in 2022. (epicscotland.org)
  • Data on wild birds have been collected since January 20, 2022. (cdc.gov)
  • The World Organisation for Animal Health (OIE) had warned in early 2022 that the current wave of bird flu had a greater risk of spreading to humans owing to the high number of variants. (medscape.com)
  • Trending Clinical Topic: Bird Flu - Medscape - May 13, 2022. (medscape.com)
  • The outbreak was successfully contained with the slaughter of the entire local chicken population (around 1.5 million birds). (medscape.com)
  • Already this year, there have been more than 5x as many outbreaks of Avian Influenza (Bird flu) as there were in the whole of 2021 and scientists suggest that this is the worst outbreak of the disease ever seen in the UK. (gofundme.com)
  • People involved in poultry outbreak response activities and others with exposures to infected birds or contaminated material, surfaces, or water may be at risk of avian influenza A virus infection. (cdc.gov)
  • An outbreak of highly pathogenic avian influenza - a.k.a. the bird flu - means the harvested meat of ducks, geese and game birds from affected areas will not be allowed to be brought into the United States. (deltawaterfowl.org)
  • The chapter concludes with an example of a low-pathogen avian influenza outbreak in a group of commercial poultry farms and the steps the industry took to contain further spread of the virus, minimize the risk of exposure, and monitor and prevent further infections. (nationalacademies.org)
  • Over the winter of 2021/22, an outbreak of avian influenza was confirmed in Barnacle Geese wintering on the Solway Firth. (bto.org)
  • The strain of influenza virus behind the outbreak has a high potential to cause disease. (bto.org)
  • The current outbreak is experiencing the highest numbers of cases observed in both domestic and wild bird populations and, unusually, it continued through the summer months with unprecedented mortality of breeding wild birds such as seabirds. (epicscotland.org)
  • Above the usual measures put in place for the prevention, surveillance, and reporting of avian influenza, additional investigations are being conducted in wild and domestic bird populations to identify why this outbreak has been more severe than previous outbreaks. (epicscotland.org)
  • More than 130 cases of Avian Influenza (AI) have been recorded since the start of the AI season last October, in the worst ever outbreak of bird flu to date. (livetecsystems.co.uk)
  • Due to the severe outbreak impacting the wild bird population, there continues to be a threat of infection despite the AIPZ being lifted. (livetecsystems.co.uk)
  • For emergency assistance, such as if you suspect an outbreak of bird flu on your premises, our new online emergency help form can be found here . (livetecsystems.co.uk)
  • A separate canine influenza virus, H3N2, had been reported in Korea, China and Thailand, but not in the U.S. until 2015, when an outbreak in Chicago, IL was determined to be caused by the H3N2 strain. (nilesanimalhospital.com)
  • A: The first recognized outbreak of canine influenza in the world is believed to have occurred in racing greyhounds in January 2004 at a track in Florida. (nilesanimalhospital.com)
  • Everyone can help us to understand more about the ongoing outbreak of this very worrying disease by reporting any dead birds they do see via BirdTrack and to Defra's online portal. (bto.org)
  • And if you haven't heard, the avian influenza outbreak is the worst in all of history. (beyondgoldandsilver.com)
  • This is the worst outbreak of avian influenza since 2015 . (medscape.com)
  • Ferrets are a good model for (studies on) influenza, how much they mimic humans is another question," said Elankumaran Subbiah, an assistant professor of virology in the college of veterinary medicine at Virginia Tech. (livescience.com)
  • Avian influenza is a potential and unpredictable threat to humans because of the segmented nature of the genome. (medscape.com)
  • Although all strains of influenza A virus naturally infect birds, certain strains can infect mammalian hosts such as pigs and humans. (medscape.com)
  • As humans grappled with the effects of COVID-19, another virus was decimating bird populations around the world. (wamc.org)
  • Since April 2014, new infections of H5N6 avian influenza virus (AIV) in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. (frontiersin.org)
  • There are no known cases of transmission of this strain of the virus from birds to humans in North America. (gov.mb.ca)
  • Although the risk of transmission of avian influenza to humans is low, people should not touch dead birds or other wildlife with their bare hands. (gov.mb.ca)
  • The OIE is developing influenza surveillance guidelines that encompass birds, domestic mammals, wildlife, and humans. (nationalacademies.org)
  • A deadly strain of bird flu known to infect humans is spreading rapidly and silently through chicken populations across China. (abc.net.au)
  • Laboratory-confirmed infection with influenza in humans is reportable to the Alaska Section of Epidemiology (SOE). (alaska.gov)
  • They can affect birds, humans/swine, or other mammals. (epicscotland.org)
  • Find out how we define and monitor cases of avian influenza in humans, and where you can learn more about this disease. (health.gov.au)
  • Like humans who unwittingly carried SARS-CoV-2 on airplanes from Wuhan to Seattle and from Wuhan and Italy to Belgium and soon from virtually everywhere else to virtually everywhere else in early 2020, infected wild birds are often asymptomatic, so they can migrate carrying the virus. (thebulletin.org)
  • Chlamydia psittaci is a bacterium that can be transmitted from pet birds to humans. (cdc.gov)
  • The recommendations in this compendium provide effective, standardized procedures for controlling AC in the pet bird population, an essential step in efforts to control psittacosis among humans. (cdc.gov)
  • Most C. psittaci infections in humans result from exposure to pet psittacine birds. (cdc.gov)
  • To prevent the spread of AIV to humans and wild birds , we suggest implementing regular surveillance at live bird markets and enhancing biosecurity practices in peri-urban and rural areas in Bangladesh . (bvsalud.org)
  • An influenza pandemic occurs when there is emergence of a new subtype that has not previously circulated in humans. (who.int)
  • A pandemic occurs when an influenza virus emerges that most people do not have immunity from because it is so different from any previous strain in humans. (who.int)
  • From the first case of H5 avian influenza in humans in the United States to reports of ongoing, widespread disease in birds , the potential of a possible pandemic variant has many keeping a watchful eye on the disease. (medscape.com)
  • Global avian influenza surveillance data is available from the World Organization for Animal Health website at Avian Influenza - WOAH - World Organisation for Animal Health . (cdc.gov)
  • Additional information about avian influenza surveillance in wild birds is available at the USGS National Wildlife Health Center . (cdc.gov)
  • Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. (cdc.gov)
  • We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. (cdc.gov)
  • Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases. (cdc.gov)
  • Consequently, surveillance of aquatic bird populations surged ( 9 ). (cdc.gov)
  • and 4) identification of the pathogens that infect individual birds or populations, often as part of multipathogen surveillance. (cdc.gov)
  • Updates on wild bird surveillance testing and results are posted on the CHWC website at www.cwhc-rcsf.ca/avian_influenza.php . (gov.mb.ca)
  • For more information on AI in wild birds, visit https://fwp.mt.gov/conservation/diseases/avian-influenza [lnks.gd] , or visit the USGS website at https://www.usgs.gov/centers/nwhc/science/avian-influenza-surveillance [lnks.gd] . (kxlf.com)
  • Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. (flu.org.cn)
  • We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. (jcvi.org)
  • The dataset provides a list of the wild birds identified and submitted under both passive and active (targeted) surveillance programmes in Great Britain for testing for Avian Influenza by the. (data.gov.uk)
  • with its federal, state, local and industry partners to quickly respond to any Surveillance of flocks that are nearby or linked to the infected flock(s) bird flu findings. (cdc.gov)
  • This pandemic potential has emphasized the importance culate in wild birds mostly as lowly pathogenic AI (LPAI) of intensive surveillance and control measures at the with few or no clinical signs ( 5 ). (who.int)
  • Infections in poultry and mass mortalities of wild birds have now (as of February 2023) been reported in several South American countries, including Argentina, which raises further conservation concerns if the virus reaches Antarctica, which could be devastating to the huge seabird colonies there. (epicscotland.org)
  • This document updates Member States on the current situation and recommends interventions to further enhance pandemic influenza preparedness and response. (who.int)
  • Susceptible birds become infected when they have contact with the virus as it is shed by infected birds. (cdc.gov)
  • They also can become infected through contact with surfaces that are contaminated with virus from infected birds. (cdc.gov)
  • The real truth is so far nature has been the worst bioterrorist we know, and it comes up time and again with infectious agents that we couldn't even dream about, so research on bird flu must be continued," said Eckard Wimmer, of Stony Brook University in New York, who was one of the creators of the first synthetic virus. (livescience.com)
  • We have more in common with ferrets than we do with H5N1's original hosts, birds, but that doesn't mean the virus will have the same effect on us that it does on a ferret, virologists say. (livescience.com)
  • Influenza virus is an orthomyxovirus-an enveloped, segmented, negative-sense RNA virus. (medscape.com)
  • Influenza virus has 3 strains-A, B, and C. (For additional information on influenza, see Medscape's Influenza Resource Center . (medscape.com)
  • Avian influenza is caused by influenza A virus, which has 8 RNA segments. (medscape.com)
  • Furthermore, this virus was shown to be highly pathogenic to both birds and mammals and demonstrate tropism for the nervous system. (nature.com)
  • In 2006, a Qinghai-like Clade 2.2 virus re-emerged in Qinghai Lake and caused more infections in wild birds, including bar-headed geese and great black-headed gulls. (nature.com)
  • And while the risk for human infection and mortality from the bird flu remains low, some scientists are concerned that this virus could potentially mutate and cause another pandemic. (wamc.org)
  • With this in mind, we will be erecting a large net over the whole of the North Somerset Bird of Prey Centre to stop any wild birds from entering as it seems infected wild birds are the main way in which the virus is being transmitted. (gofundme.com)
  • This lethal virus is unlikely to ever go away and it is vital we do everything we can to protect our bird collection from avian influenza. (gofundme.com)
  • The absence of fever should not supersede clinical judgment when evaluating a patient for illness compatible with avian influenza A virus infection. (cdc.gov)
  • These recommendations are consistent with existing infection control guidance for care of patients who might be infected with a novel influenza A virus associated with severe disease. (cdc.gov)
  • Bird flu is an infection caused by a certain kind of avian influenza virus. (alberta.ca)
  • Most of the time, wild birds don't get sick from the virus. (alberta.ca)
  • But wild birds can easily pass the virus to birds that are being raised for food, such as chickens, ducks, and turkeys. (alberta.ca)
  • Usually bird flu virus is not passed from birds to people. (alberta.ca)
  • Bird flu is caused by a virus. (alberta.ca)
  • After a wild bird infects a farm-raised bird, the virus can easily and quickly spread among hundreds or thousands of birds. (alberta.ca)
  • Sick birds must then be killed to stop the virus from spreading. (alberta.ca)
  • Bird flu virus can be passed through bird droppings and saliva on surfaces such as cages, tractors, and other farm equipment. (alberta.ca)
  • Most people don't need to worry about getting sick with bird flu virus. (alberta.ca)
  • You cannot get bird flu from eating fully cooked chicken, turkey, or duck, because heat kills the virus. (alberta.ca)
  • How bird flu is treated depends on what the virus is doing to your body. (alberta.ca)
  • If you have bird flu, you will stay in a private hospital room ( isolation room ) to reduce the chances of spreading the virus to others. (alberta.ca)
  • This is only the third case of human infection with an avian influenza A (H3N8) virus ever reported. (hensparty.org)
  • Several more birds from around the state are currently undergoing testing for the virus. (kxlf.com)
  • Avian influenza (AI) virus is a naturally occurring virus in birds. (kxlf.com)
  • The severity of disease depends on the virus strain and species of bird, and varies from a subclinical to a highly pathogenic form with up to 100 % mortality within 48 hours. (dtu.dk)
  • Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. (jcvi.org)
  • Scientists are to create mutant forms of the H7N9 bird flu virus that has emerged in China so they can gauge the risk of it becoming a lethal human pandemic. (abc.net.au)
  • Australian researchers have helped develop a new class of influenza drug that tricks the virus by using its own mechanism of infection. (abc.net.au)
  • Experts agreed to publish mutant bird flu paper only after author explained that the virus was 'much less lethal' than previously feared. (abc.net.au)
  • A new study has found that bird flu virus could survive for up to two years in the carcasses of buried birds. (abc.net.au)
  • Estimates suggest that many thousands of birds died as a result of the virus. (bto.org)
  • Samples tested at the Alaska State Virology Laboratory in Fairbanks are routinely subtyped to determine the strain of influenza virus present. (alaska.gov)
  • Avian influenza virus, detectable using the FASTest® AIV Ag Avian Flu Diagnostic Test Kit , is spread from bird to bird via faeces, body fluids, contaminated feed, soils and water. (vetlabsupplies.co.uk)
  • Is the Subject Area "Influenza A virus" applicable to this article? (plos.org)
  • A: Canine influenza (CI), or dog flu, is a highly contagious respiratory infection of dogs that is caused by an influenza A virus. (nilesanimalhospital.com)
  • The canine influenza virus (CIV) is closely related to the virus that causes equine influenza and it is thought that the equine influenza virus mutated to produce the canine influenza virus. (nilesanimalhospital.com)
  • In the U.S., canine influenza has been caused by the H3N8 influenza A virus. (nilesanimalhospital.com)
  • Two clinical syndromes have been seen in dogs infected with the canine influenza virus-a mild form of the disease and a more severe form that is accompanied by pneumonia. (nilesanimalhospital.com)
  • The canine influenza virus has been reported in 30 states and Washington, DC. (nilesanimalhospital.com)
  • So if a wild bird is in your field and they have excrement or something left behind and it's diseased and your birds interact with it, they can pick up those pathogens and that virus. (beyondgoldandsilver.com)
  • Earlier studies have suggested that having repeated annual influenza vaccine can prevent natural immunity to the virus, and potentially increase the susceptibility to influenza illness in the event of a pandemic, or when the vaccine does not "match" the virus circulating in the community. (rtmagazine.com)
  • Most reported bird a person touches something that has virus on it and then touches their flu infections in people have happened after unprotected contact with mouth, eyes or nose. (cdc.gov)
  • Bird Flu in Wild Birds used to treat people who are sick from human seasonal flu virus infection. (cdc.gov)
  • Infected birds have virus prolonged, unprotected exposure with infected birds or contaminated in their saliva, mucous and droppings (feces). (cdc.gov)
  • Bird flu A(H5) or A(H7) virus outbreaks in poultry, where and quarantine of exposed flocks with culling if disease is detected, are depopulation (or culling, also called "stamping out") of infected flocks is the preferred control and eradication methods. (cdc.gov)
  • Prevalence and risk factors for avian influenza virus (H5 and H9) contamination in peri-urban and rural live bird markets in Bangladesh. (bvsalud.org)
  • Avian influenza is an infectious disease of birds caused by type A strains of the influenza virus. (who.int)
  • Influenza pandemic occurs when a new influenza virus emerges and spreads around the world, and most people do not have immunity. (who.int)
  • Influenza can spread quickly between people when an infected person coughs or sneezes, dispersing droplets of the virus into the air. (who.int)
  • Influenza is a respiratory virus that can infect the nose, throat and sometimes the lungs. (who.int)
  • with strains of influenza virus that normally occur in wild birds and domestic poultry. (msdmanuals.com)
  • The bird flu virus rarely spreads from animals to people (spread to people may occur if the genetic material of the virus mutates). (msdmanuals.com)
  • Bird flu is caused by several strains of influenza A virus that normally infect wild birds. (msdmanuals.com)
  • It may spread from birds to people if the genetic material of the virus changes (mutates), enabling the virus to attach to cells in the human respiratory tract. (msdmanuals.com)
  • This vaccination program can help prevent the bird flu virus from spreading from wild birds to domestic birds. (msdmanuals.com)
  • All human infections caused by a new influenza subtype are required to be reported under the International Health Regulations (IHR, 2005).4 This includes any influenza A virus that has demonstrated the capacity to infect a human and its haemagglutinin gene (or protein) is not a mutated form of those, i.e. (who.int)
  • Since the last risk assessment on 21 May 2021, one new laboratory-confirmed human case of influenza A(H5N6) virus infection was reported from China to WHO on 30 May 2021. (who.int)
  • The detection of influenza A(H5) virus in nasopharyngeal/oropharyngeal samples collected from individuals in close contact with infected poultry or other birds, whether the individuals are symptomatic or not, is not unexpected. (who.int)
  • Swine influenza virus. (medscape.com)
  • Both do- burden of influenza in middle eastern countries is now of mesticated and wild birds can be infected with AI virus considerable concern. (who.int)
  • Um Influenza A und B zu diagnostizieren, wird standardmäßig ein Nasen- und/ oder Rachenabstrich gemacht und eine Kultur angelegt, in der das Virus nachgewiesen werden soll. (medscape.com)
  • Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. (nature.com)
  • National process, migratory birds regulatory reports. (canada.ca)
  • circulate in numerous species ( 1,2-5 ), and LPAIVs are believed to perpetuate in aquatic bird populations ( 6 ). (cdc.gov)
  • These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. (flu.org.cn)
  • Medical historians like Thomas Short, Lazare Rivière and Charles Creighton gathered descriptions of catarrhal fevers recognized as influenza by modern physicians attacking populations with the greatest intensity between 1557 and 1559. (wikipedia.org)
  • This continued European epizootic increases the risk of HPAIV being transported from Europe to North America as bird populations migrate through the North Atlantic to breeding sites in Greenland and Canada, and highlights the importance of these studies. (usgs.gov)
  • Slaterus is an environmental planner by training and a researcher with Sovon Bird Research Netherlands, a nonprofit that monitors bird populations in the country for management and policy development. (thebulletin.org)
  • RALEIGH - The North Carolina Wildlife Resources Commission has been advised that avian influenza was detected recently in the northwestern United States, but there is no evidence of an immediate threat to North Carolina wild bird populations. (peedeepost.com)
  • Wildlife biologists will continue to monitor migratory bird populations. (peedeepost.com)
  • All dead and sick birds of any species should be reported to BirdTrack, which allows researchers to follow the disease's geographical spread and rapidly assess potential impacts on populations, and to Defra, so that if needed, dead birds can be collected for testing. (bto.org)
  • A: The first vaccine for H3N8 canine influenza was approved in 2009, and there are several H3N8 canine Influenza vaccines available. (nilesanimalhospital.com)
  • A recent study shows that there are no negative effects from having annual influenza vaccine. (rtmagazine.com)
  • But now, researchers at the Influenza Center in Bergen have published an important study, which concludes that annual vaccination does not increase susceptibility to infection in years of vaccine mismatch. (rtmagazine.com)
  • These findings are important because they show that it is only positive to have annual vaccination, and it supports continuing the policy of repeated annual vaccine," says Professor Rebecca Cox, Head of the Influenza Centre. (rtmagazine.com)
  • Even if a bird is not suspected to have died from a contagious disease, gloves should always be worn if a dead animal must be handled for disposal. (kxlf.com)
  • Avian influenza (AI) is a highly contagious disease that can affect all bird species. (dtu.dk)
  • The Iowa Department of Natural Resources and its federal partners are working together to monitor for the presence of avian influenza in Iowa's wild birds. (iowadnr.gov)
  • Manitoba Natural Resources and Northern Development advises the Canadian Wildlife Health Cooperative (CWHC) has confirmed the presence of avian influenza in two different wild bird samples in Manitoba. (gov.mb.ca)
  • Signs/symptoms may include uncomplicated upper respiratory tract signs and symptoms also referred to as influenza-like illness (ILI) [fever ≥100°F plus cough or sore throat], fever (temperature of 100ºF [37.8ºC] or greater) or feeling feverish, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, fatigue, eye redness (or conjunctivitis), shortness of breath or difficulty breathing. (cdc.gov)
  • What are the symptoms of bird flu? (alberta.ca)
  • If your doctor thinks that you may have bird flu, your doctor will do a physical examination and ask you questions about your symptoms and past health. (alberta.ca)
  • Symptoms vary between bird species, but the infection can cause severe disease and can cause high mortality rates. (epicscotland.org)
  • Avian flu can cause neurological symptoms in birds, such as the loss of balance this barnacle goose in the Netherlands displayed in May. (thebulletin.org)
  • Some of the symptoms that you can look out for in both wild birds and in your livestock are swollen face around the beak. (beyondgoldandsilver.com)
  • A lot of times there won't be any symptoms and you'll just see one bird or a few birds dead if this is the case. (beyondgoldandsilver.com)
  • Or even if you go to the park and see wild birds that are exhibiting any of these symptoms, it's really important to call the CDC or the USDA to report it. (beyondgoldandsilver.com)
  • Psittacosis often causes influenza-like symptoms and can lead to severe pneumonia and nonrespiratory health problems. (cdc.gov)
  • See Clinical Presentation for more detailed information on the signs and symptoms of pediatric influenza. (medscape.com)
  • The risk of avian influenza to human health is low. (gov.mb.ca)
  • Whole wild game birds harvested outside of highly pathogenic avian influenza control zones can be brought into the United States," Mike Stepien, a USDA spokesman, told the Duluth (Minnesota) News Tribune . (deltawaterfowl.org)
  • Most AI strains are classified as low pathogenic avian influenza (LPAI) and cause few clinical signs in infected birds. (usgs.gov)
  • Highly pathogenic avian influenza outbreaks in domestic poultry cause large economic losses to the U.S. economy. (usgs.gov)
  • Highly pathogenic avian influenza is a notifiable disease. (livetecsystems.co.uk)
  • Some aspects of influenza pandemics can appear similar to seasonal influenza while other characteristics may be quite different. (who.int)
  • Histologic findings may include pulmonary changes with alveolar damage similar to seasonal influenza. (medscape.com)
  • Waterbirds like the barnacle goose, greylag goose, and black tailed godwit are reservoirs for avian influenza. (thebulletin.org)
  • These strategies are presented, along with background information on the biology, ecology, and epidemiology of avian influenza, by David Swayne and David Suarez of the USDA. (nationalacademies.org)
  • Most of the people who get bird flu have had close contact with infected birds or with surfaces that have been contaminated by the birds' saliva, mucous, or droppings. (medlineplus.gov)
  • Appropriate cleansing, disinfection and biosecurity measures should be taken, relevant to the location of the activity and the likelihood of contact with infected birds. (nfuonline.com)
  • Although there have been no human cases of this type of avian influenza in the U.S., there is concern it could occasionally spread to individuals who have very close contact with infected live or dead birds. (illinois.gov)
  • Learn what to do if you have contact with infected birds and become sick. (cdc.gov)
  • However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. (frontiersin.org)
  • So you could see why it would be such a huge problem for both people that raise birds for commercial venues and for backyard gardeners that love their chickens and treat them like pets. (beyondgoldandsilver.com)
  • It can be spread by smaller birds, other chickens. (beyondgoldandsilver.com)
  • Bird loss in the wild is a natural occurrence, so seeing one dead bird shouldn't be cause for alarm, but if someone is finding a number of dead birds, especially ducks, geese or raptors, we want to know about it," said Dr. Rachel Ruden, state wildlife veterinarian with the Iowa DNR. (iowadnr.gov)
  • More information on avian influenza is available at the USDA avian influenza webpage and Ducks Unlimited's waterfowl biology webpage . (peedeepost.com)
  • It can be spread by wild birds like ducks and other migrating species that perhaps come onto your property. (beyondgoldandsilver.com)
  • Wild water birds (like ducks and geese) can be infected with avian (bird) surfaces are thought to be at very low risk of infection. (cdc.gov)
  • Worryingly, the breeding population has already been in decline for a number of years, and the species was placed on the Amber List of Birds of Conservation Concern in 2021. (bto.org)
  • large groups of dead birds, such as more than 20 of any species. (gov.mb.ca)
  • Several mammal species that predate or scavenge infected birds, such as foxes, otters, minks, seals, have also been found to be infected. (epicscotland.org)
  • Avian influenza (bird flu) is a viral disease, and the high pathogenic strains can cause severe disease or death in some poultry and wild bird species. (epicscotland.org)
  • Poultry keepers with flocks of more than 50 birds are already required to register their flocks even if the flock isn't made up of just one species. (vetlabsupplies.co.uk)
  • Roy Slaterus has been birdwatching since he was 7 or 8, and now, at 44, he says he can recognize nearly all of the 200-plus species of birds that are endemic to his native Netherlands by their calls. (thebulletin.org)
  • He had set out at dawn to walk through one of many set areas, counting breeding birds on a tablet computer loaded with custom-built software with which he records every sighting of each species seen. (thebulletin.org)
  • It can infect domestic poultry, as well as other bird and animal species. (peedeepost.com)
  • The impact Avian Influenza will have on this already struggling species remains unclear, but if the current rate of mortality continues it has the potential to have a large impact on this familiar and charismatic species. (bto.org)
  • The bacterium C. psittaci has been isolated from approximately 100 bird species and is most commonly identified in psittacine birds such as parrots, macaws, cockatiels, and parakeets. (cdc.gov)
  • Bird flu can quickly progress to pneumonia and acute respiratory distress syndrome , a serious lung problem that can be deadly. (alberta.ca)
  • severe form - Dogs with the severe form of canine influenza develop high fevers (104ºF to 106ºF) and have clinical signs of pneumonia, such as increased respiratory rates and effort. (nilesanimalhospital.com)
  • Infection with C. psittaci usually occurs when a person inhales the organism, which has been aerosolized from respiratory secretions or dried feces of infected birds. (cdc.gov)
  • Influenza is one of the most significant causes of acute upper respiratory tract infections worldwide. (medscape.com)
  • the partners plan to exchange scientific information on avian influenza, share viral isolates, and may eventually manufacture human vaccines against avian viral strains. (nationalacademies.org)
  • APHA alerts include a range of animal health risks including foot and mouth, bluetongue, avian influenza, Newcastle Disease, swine fever and various equine diseases. (vetlabsupplies.co.uk)
  • This compendium provides information about psittacosis and AC to public health officials, physicians, veterinarians, members of the pet bird industry, and others concerned about controlling these diseases and protecting public health. (cdc.gov)
  • Restrictions have been issued in specific regions - called primary control zones - where the disease has been identified in domestic birds. (deltawaterfowl.org)
  • Avoid contact with wild or domestic birds that appear ill or have died and call to report sick or dead birds. (cdc.gov)
  • The infection can spread to domestic birds. (msdmanuals.com)
  • Bird flu illness in people can range from mild to severe. (medlineplus.gov)
  • Older adults suffer the most severe health effects from influenza, often leading to catastrophic disability. (medscape.com)
  • However, typical seasonal influenza causes most of its deaths among the elderly while other severe cases occur most commonly in people with a variety of medical conditions. (who.int)
  • However, influenza can cause severe illness or death in high risk groups (see Who is most at risk? (who.int)
  • According to a prospective cohort study, as many as 1 in 3 children seeking treatment in the ED for influenza-like illnesses (ILI) at the peak of flu season are at high risk of suffering severe complications. (medscape.com)
  • We are encouraging the public not to handle sick or dead birds or to take sick birds to a wildlife rehabilitator to avoid unintentionally spreading avian influenza in the event that the bird is positive," said Dr. Ruden. (iowadnr.gov)
  • Researchers from the British Trust for Ornithology (BTO) want members of the public to help track the spread of Avian Influenza by reporting all dead birds through both the BirdTrack app and to Defra. (bto.org)
  • In Northern Ireland, dead birds should be reported both through BirdTrack and DAERA. (bto.org)
  • Although only a relatively small number of dead birds are tested for Avian Influenza, current sampling suggests very large numbers of Black-headed Gulls are already affected. (bto.org)
  • Large numbers of dead birds are now also being reported at breeding colonies in Belgium, the Netherlands, Germany, Denmark and Poland. (bto.org)
  • The first reports of large mortalities started in the last week of March with, for example, dozens of dead birds being reported at Rutland Water and Marsh Lane Nature Reserve. (bto.org)
  • Since then, the numbers of sick and dead birds has increased rapidly with reports coming in from across central England. (bto.org)
  • No human infections due to avian influenza have been reported in Alaska. (alaska.gov)
  • Samples collected from a live poultry market visited by the woman before she became ill were positive for influenza A (H3N8), suggesting this may have been the source of infection. (hensparty.org)
  • This chapter focuses on the global phenomenon of avian influenza, its impact on the poultry industry, and potential means to control influenza transmission among birds and mammals. (nationalacademies.org)
  • Outbreaks of bird flu happen among birds from time to time. (cdc.gov)
  • In birds, C. psittaci infection is referred to as avian chlamydiosis (AC). (cdc.gov)
  • To date, no cases of avian influenza have been detected in poultry flocks in Manitoba. (gov.mb.ca)
  • People and equipment that have been in contact with wild game birds should avoid contact with back yard poultry flocks. (kxlf.com)