Vascular diseases characterized by thickening and hardening of the walls of ARTERIES inside the SKULL. There are three subtypes: (1) atherosclerosis with fatty deposits in the ARTERIAL INTIMA; (2) Monckeberg's sclerosis with calcium deposits in the media and (3) arteriolosclerosis involving the small caliber arteries. Clinical signs include HEADACHE; CONFUSION; transient blindness (AMAUROSIS FUGAX); speech impairment; and HEMIPARESIS.
Common occlusive arterial disease which is caused by ATHEROSCLEROSIS. It is characterized by lesions in the innermost layer (ARTERIAL INTIMA) of arteries including the AORTA and its branches to the extremities. Risk factors include smoking, HYPERLIPIDEMIA, and HYPERTENSION.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
The transference of a heart from one human or animal to another.
"WF (Wistar Furth) rats are an inbred strain of albino rats that were developed through brother-sister mating for over 80 generations, resulting in a high degree of genetic uniformity and predictability, making them widely used in biomedical research."
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
Transplantation of tissue typical of one area to a different recipient site. The tissue may be autologous, heterologous, or homologous.
The main trunk of the systemic arteries.
An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient.
The aorta from the DIAPHRAGM to the bifurcation into the right and left common iliac arteries.
The innermost layer of an artery or vein, made up of one layer of endothelial cells and supported by an internal elastic lamina.
Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause.
The nonstriated involuntary muscle tissue of blood vessels.
The veins and arteries of the HEART.
A non-atherosclerotic, inflammatory thrombotic disease that commonly involves small and medium-sized arteries or veins in the extremities. It is characterized by occlusive THROMBOSIS and FIBROSIS in the vascular wall leading to digital and limb ISCHEMIA and ulcerations. Thromboangiitis obliterans is highly associated with tobacco smoking.
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
The immune responses of a host to a graft. A specific response is GRAFT REJECTION.
The vessels carrying blood away from the heart.
Pathological processes involving any part of the AORTA.
Transference of a tissue or organ from either an alive or deceased donor, within an individual, between individuals of the same species, or between individuals of different species.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
A cyclic undecapeptide from an extract of soil fungi. It is a powerful immunosupressant with a specific action on T-lymphocytes. It is used for the prophylaxis of graft rejection in organ and tissue transplantation. (From Martindale, The Extra Pharmacopoeia, 30th ed).
The inferior and superior venae cavae.
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
Hardening of the KIDNEY due to infiltration by fibrous connective tissue (FIBROSIS), usually caused by renovascular diseases or chronic HYPERTENSION. Nephrosclerosis leads to renal ISCHEMIA.
A uricosuric drug that is used to reduce the serum urate levels in gout therapy. It lacks anti-inflammatory, analgesic, and diuretic properties.
The region of the lower limb between the FOOT and the LEG.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Comparison of the BLOOD PRESSURE between the BRACHIAL ARTERY and the POSTERIOR TIBIAL ARTERY. It is a predictor of PERIPHERAL ARTERIAL DISEASE.
The new and thickened layer of scar tissue that forms on a PROSTHESIS, or as a result of vessel injury especially following ANGIOPLASTY or stent placement.
Inflammation of any one of the blood vessels, including the ARTERIES; VEINS; and rest of the vasculature system in the body.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
A cytosolic carbonic anhydrase isoenzyme primarily expressed in skeletal muscle (MUSCLES, SKELETAL). EC 4.2.1.-
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
A mixture of solid hydrocarbons obtained from petroleum. It has a wide range of uses including as a stiffening agent in ointments, as a lubricant, and as a topical anti-inflammatory. It is also commonly used as an embedding material in histology.
'Rats, Inbred Lew' is a strain of laboratory rat that is widely used in biomedical research, known for its consistent genetic background and susceptibility to certain diseases, which makes it an ideal model for studying the genetic basis of complex traits and disease processes.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
Transplantation between genetically identical individuals, i.e., members of the same species with identical histocompatibility antigens, such as monozygotic twins, members of the same inbred strain, or members of a hybrid population produced by crossing certain inbred strains.
Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins).
The rhythmical expansion and contraction of an ARTERY produced by waves of pressure caused by the ejection of BLOOD from the left ventricle of the HEART as it contracts.
## I'm sorry for any confusion, but "Japan" is not a medical term or concept. It is a country located in Asia, known as Nihon-koku or Nippon-koku in Japanese, and is renowned for its unique culture, advanced technology, and rich history. If you have any questions related to medical topics, I would be happy to help answer them!
Loss of vascular ELASTICITY due to factors such as AGING; and ARTERIOSCLEROSIS. Increased arterial stiffness is one of the RISK FACTORS for many CARDIOVASCULAR DISEASES.
Antibodies from an individual that react with ISOANTIGENS of another individual of the same species.
The main artery of the thigh, a continuation of the external iliac artery.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
VASCULAR DISEASES that are associated with DIABETES MELLITUS.
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Pathological conditions involving the CAROTID ARTERIES, including the common, internal, and external carotid arteries. ATHEROSCLEROSIS and TRAUMA are relatively frequent causes of carotid artery pathology.
Death and putrefaction of tissue usually due to a loss of blood supply.
A thiol-containing amino acid formed by a demethylation of METHIONINE.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The study, based on direct observation, use of statistical records, interviews, or experimental methods, of actual practices or the actual impact of practices or policies.
Postmortem examination of the body.
Inbred CBA mice are a strain of laboratory mice that have been selectively bred to be genetically identical and uniform, which makes them useful for scientific research, particularly in the areas of immunology and cancer.
Cholesterol present in food, especially in animal products.
Pathological processes involving any of the BLOOD VESSELS in the cardiac or peripheral circulation. They include diseases of ARTERIES; VEINS; and rest of the vasculature system in the body.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
F344 rats are an inbred strain of albino laboratory rats (Rattus norvegicus) that have been widely used in biomedical research due to their consistent and reliable genetic background, which facilitates the study of disease mechanisms and therapeutic interventions.
The middle layer of blood vessel walls, composed principally of thin, cylindrical, smooth muscle cells and elastic tissue. It accounts for the bulk of the wall of most arteries. The smooth muscle cells are arranged in circular layers around the vessel, and the thickness of the coat varies with the size of the vessel.
A diet that contributes to the development and acceleration of ATHEROGENESIS.
The vessels carrying blood away from the capillary beds.
A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A chemokine that is a chemoattractant for MONOCYTES and may also cause cellular activation of specific functions related to host defense. It is produced by LEUKOCYTES of both monocyte and lymphocyte lineage and by FIBROBLASTS during tissue injury. It has specificity for CCR2 RECEPTORS.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
Pathologic deposition of calcium salts in tissues.

Cerebral atherosclerosis in Japanese. Part 4: relationship between lipid content and macroscopic severity of atherosclerosis. (1/432)

In order to evaluate chemically the macroscopic scoring methods for severity of arteriosclerosis in the cerebral arteries, concentrations of total lipids, esterified and free cholesterol and lipid phosphorus were compared to the macroscopic severity of lesions in the cerebral arteries obtained from 376 Japanese persons after unexpected death. An increase of cholesterol content was correlated significantly with an increase of Baker's score and/or Gore's atherosclerotic index. The correlation coefficient between Baker's score and total or esterified cholesterol was the highest among the tested correlations (r = 0.82, n = 376).  (+info)

Cerebral atherosclerosis in Japanese. Part 5: relationship between cholesterol deposition and glycosaminoglycans. (2/432)

Concentrations of various lipids and glycosaminoglycans (GAG) in the intima of the grossly normal and atherosclerotic cerebral arteries were compared with those of the aorta and coronary arteries. The lowest percentage of esterified cholesterol (EC) in total cholesterol, and of chondroitin sulfate-4/6 (CS-4/6) in total glycosaminoglycans and the highest percentage of heparin sulfate (HS) in total GAG are the characteristic features of the normal intima of normal cerebral arteries when compared with those in the aorta and coronary artery. In the cerebral arterial intimas, but not in the aorta or coronary arteries, there was a significant positive correlation between contents of EC and percentage and total content of CS-4/6. Atherogenesis in cerebral arteries is discussed in comparison to that of the aorta and coronary vessels.  (+info)

Subcortical arteriosclerotic encephalopathy (Binswanger's disease). A vascular etiology of dementia. (3/432)

A 51-yearold man with moderate intermittent hypertension had a rapidly progressive, profound dementia in the absence of significant localizing neurological signs. Postmortem examination disclosed the vascular alterations and diffuse white matter degeneration which characterize subcortical arteriosclerotic encephalopathy (SAE) or Binswanger's disease. The case underscores the need to consider vascular disease as an etiology of dementia -- even in the absence of focal neurological deficit.  (+info)

Cardiovascular mortality of Chinese in New York City. (4/432)

To determine cardiovascular disease mortality among Chinese migrants in New York City and compare it to both that of residents in China and whites in New York City, mortality records for 1988 through 1992 for New York City and the 1990 US census data for New York City were linked. Age-specific death rates for urban China, reported by the World Health Organization, were used for comparison. The results show that male and female Chinese residents in New York City had lower mortality rates for all causes and total cardiovascular disease than did either New York City whites or Chinese in China. Coronary heart disease deaths among New York City Chinese were intermediate between Chinese in China (lowest) and New York City whites (highest). Stroke death rates for New York City Chinese were substantially lower than those in China and, in general, were similar to those for New York City whites. However, New York City Chinese had higher death rates for hemorrhagic stroke and lower for atherosclerotic stroke than did New York City whites. In conclusion, cardiovascular mortality rates among Chinese migrants in New York City fall below those of both Chinese in China and whites in New York City.  (+info)

Cerebral angioplasty and stenting for intracranial vertebral atherosclerotic stenosis. (5/432)

A 72-year-old man underwent cerebral angioplasty and stenting for a high-grade eccentric atherosclerotic stenosis (93%) of the right intracranial vertebral artery. The lesion was sufficiently and smoothly dilated very easily with the use of a highly flexible, balloon-expandable coronary stent. No complications occurred during or after the procedure. This therapeutic option may prove to be a safe and useful means to resolve an intracranial atherosclerotic stenosis.  (+info)

Comparative analysis of gait in Parkinson's disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. (6/432)

Quantitative gait analysis has been used to elucidate characteristic features of neurological gait disturbances. Although a number of studies compared single patient groups with controls, there are only a few studies comparing gait parameters between patients with different neurological disorders affecting gait. In the present study, gait parameters were compared between control subjects, patients with parkinsonian gait due to idiopathic Parkinson's disease, subjects suffering from cerebellar ataxia and patients with gait disturbance due to subcortical arteriosclerotic encephalopathy. In addition to recording of baseline parameters during preferred walking velocity, subjects were required to vary velocity from very slow to very fast. Values of velocity and stride length from each subject were then used for linear regression analysis. Whereas all patient groups showed slower walking velocity and reduced step length compared with healthy controls when assessed during preferred walking, patients with ataxia and subcortical arteriosclerotic encephalopathy had, in addition, increased variability of amplitude and timing of steps. Regression analysis showed that with changing velocity, subjects with Parkinson's disease changed their stride length in the same proportion as that measured in controls. In contrast, patients with ataxia and subcortical arteriosclerotic encephalopathy had a disproportionate contribution of stride length when velocity was increased. Whereas the findings in patients with Parkinson's disease can be explained as a reduction of force gain, the observations for patients with ataxia and subcortical arteriosclerotic encephalopathy reflect an altered spatiotemporal gait strategy in order to compensate for instability. The similarity of gait disturbance in subcortical arteriosclerotic encephalopathy and cerebellar ataxia suggests common mechanisms.  (+info)

Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age. (7/432)

BACKGROUND AND PURPOSE: Clinically important atherosclerotic cerebrovascular disease is mainly found in patients aged >60 years. Transcranial color-coded duplex ultrasonography (TCCD) is a relatively new technique for investigating the basal cerebral arteries; however, it is often hampered by impenetrable ultrasound windows. The aim of this study was to ascertain the as yet unknown success rate of TCCD regarding visualization of the basal cerebral arteries in patients >60 years, to provide reference data, and to compare any possible male/female differences. METHODS: In 112 atherosclerotic white patients >60 years of age, the anterior, middle, and posterior cerebral arteries and the vertebral and basilar arteries were insonated. RESULTS: In men, 99% of the temporal and 94% of the suboccipital windows could be penetrated by ultrasound compared with 77% and 95%, respectively, in women. The male versus female vessel detection rates were 91% versus 58% for the anterior cerebral artery, 97% versus 73% for the middle cerebral artery, 97% versus 68% for the posterior cerebral artery, 94% versus 93% for the vertebral artery, and 91% versus 79% for the basilar artery. In 77% of men but only 33% of women could all vascular segments be investigated. All intracranial arteries were insonated at a deeper level in men. The women showed significantly higher blood flow velocities than the men. CONCLUSIONS: In elderly white men the vessel detection rate is >90%. In women there is a much lower detection rate, due to impenetrable temporal windows. Visualization of all major intracranial arteries is possible in only one third of female patients >60 years of age.  (+info)

The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. (8/432)

BACKGROUND: Although the association between inflammation and atherosclerosis is well established, the biologic events that trigger the local inflammatory response within plaque are not fully understood. Cytotoxic free radicals and infectious agents, both of which are associated with an inflammatory response, have previously been implicated in the initiation and progression of atherosclerosis. In this study, we analyzed carotid plaque for evidence of oxidative vascular injury by determining the presence and distribution of inducible nitric oxide synthase (iNOS) expression and nitrotyrosine formation and for evidence of infection with cytomegalovirus. METHODS: Carotid plaque from 51 patients who underwent endarterectomy for either primary (n = 37) or recurrent (n = 14) stenosis were examined histologically (hematoxylin-eosin staining and Masson's trichrome staining) and with immunohistochemistry with specific antibodies to alpha-smooth muscle actin, macrophages (CD68), T-lymphocytes (CD3), and T-cell activation (human leukocyte antigen-DR). Twenty-eight specimens from patients with primary (n = 15) and recurrent (n = 13) stenosis were examined for the presence of iNOS and nitrotyrosine with immunohistochemistry and in situ hybridization (iNOS). Twenty-three additional specimens (22 primary, and 1 recurrent) were analyzed with antibodies to p53, cytomegalovirus, and the polymerase chain reaction (cytomegalovirus, n = 8). RESULTS: Primary atherosclerotic lesions were either complex heterogenous cellular plaques (n = 29) or relatively acellular fibrous plaques (n = 8). Ten of 14 recurrent plaques were either complex or fibrous lesions, and the remaining four were typical of myointimal thickening. CD68-positive staining cells were detected in all specimens regardless of their structural morphology. CD3-positive cells were interspersed between macrophages in all heterogeneous cellular plaques and only infrequently noted in fibrous plaques. iNOS and nitrotyrosine immunoreactivity were detected in macrophages and smooth muscle cells in all complex and fibrous plaques and in two of four myointimal plaques. The presence of iNOS and nitrotyrosine in plaque correlated with the existence of symptoms in 80% of primary and 62% of recurrent lesions. Cytomegalovirus was detected in only two of 23 carotid specimens (9%). CONCLUSION: The association between ischemic cerebrovascular symptoms and iNOS and nitrotyrosine immunoreactivity in complex primary and recurrent carotid plaque and the infrequent occurrence of cytomegalovirus in primary carotid lesions suggests that ongoing free radical oxidative damage rather than viral infection may contribute to plaque instability in patients with complex and fibrous carotid plaques.  (+info)

Intracranial arteriosclerosis is a medical condition characterized by the thickening and hardening of the walls of the intracranial arteries, which are the blood vessels that supply blood to the brain. This process is caused by the buildup of plaque, made up of fat, cholesterol, and other substances, within the walls of the arteries.

Intracranial arteriosclerosis can lead to a narrowing or blockage of the affected arteries, reducing blood flow to the brain. This can result in various neurological symptoms, such as headaches, dizziness, seizures, and transient ischemic attacks (TIAs) or strokes.

The condition is more common in older adults, particularly those with a history of hypertension, diabetes, smoking, and high cholesterol levels. Intracranial arteriosclerosis can be diagnosed through imaging tests such as magnetic resonance angiography (MRA) or computed tomographic angiography (CTA). Treatment typically involves managing risk factors and may include medications to control blood pressure, cholesterol levels, and prevent blood clots. In severe cases, surgical procedures such as angioplasty and stenting may be necessary to open up the affected arteries.

Arteriosclerosis obliterans (ASO) is a specific type of arteriosclerosis, which is a hardening and narrowing of the arteries. ASO is also known as peripheral artery disease (PAD). It mainly affects the arteries that supply blood to the legs, but it can also affect the arms, head, and stomach.

In ASO, fatty deposits called plaques build up in the inner lining of the arterial walls, causing them to become thickened and less flexible. This leads to a decrease in blood flow, which can cause symptoms such as leg pain or cramping when walking (claudication), numbness, weakness, and coldness in the legs or feet. In severe cases, ASO can lead to tissue damage, gangrene, and even amputation if left untreated.

ASO is typically caused by risk factors such as smoking, high blood pressure, diabetes, high cholesterol, and a family history of the disease. Treatment may include lifestyle changes, medication, or surgery to improve blood flow.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

Heart transplantation is a surgical procedure where a diseased, damaged, or failing heart is removed and replaced with a healthy donor heart. This procedure is usually considered as a last resort for patients with end-stage heart failure or severe coronary artery disease who have not responded to other treatments. The donor heart typically comes from a brain-dead individual whose family has agreed to donate their loved one's organs for transplantation. Heart transplantation is a complex and highly specialized procedure that requires a multidisciplinary team of healthcare professionals, including cardiologists, cardiac surgeons, anesthesiologists, perfusionists, nurses, and other support staff. The success rates for heart transplantation have improved significantly over the past few decades, with many patients experiencing improved quality of life and increased survival rates. However, recipients of heart transplants require lifelong immunosuppressive therapy to prevent rejection of the donor heart, which can increase the risk of infections and other complications.

I'm happy to help! However, I believe there may be a slight error in your question. "WF" is not a recognized strain identifier for inbred rats used in scientific research. Instead, "WI" or "Wistar-Imamichi" is sometimes used to refer to an inbred strain of rat developed in Japan.

Assuming you meant to ask about "Rats, Inbred WI," here's a definition:

Inbred WI rats are a strain of laboratory rats that have been selectively bred for research purposes. "Inbred" means that the rats have been brother-sister mated for at least 20 generations, resulting in a high degree of genetic uniformity within the strain. This uniformity makes it easier to control variables and repeat experiments.

WI rats were developed in Japan by crossing outbred Wistar rats with an inbred strain called F344. They have since been maintained as an independent inbred strain.

These rats are often used in biomedical research due to their well-characterized genetic background and consistent phenotypic traits, such as their size, behavior, and susceptibility to certain diseases. However, like all animal models, they have limitations and may not always accurately reflect human physiology or disease processes.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Heterotopic transplantation is a type of organ or tissue transplant where the graft is placed in a different location from where it normally resides while still maintaining its original site. This is often done to supplement the function of the existing organ rather than replacing it. A common example of heterotopic transplantation is a heart transplant, where the donor's heart is placed in a new location in the recipient's body, while the recipient's own heart remains in place but is typically nonfunctional. This allows for the possibility of returning the function of the recipient's heart if the transplanted organ fails.

In heterotopic kidney transplantation, the donor kidney is placed in a different location, usually in the lower abdomen, while the recipient's own kidneys are left in place. This approach can be beneficial for recipients with poor renal function or other medical conditions that make traditional kidney transplantation too risky.

Heterotopic transplantation is also used in liver transplantation, where a portion of the donor liver is placed in a different location, typically in the recipient's abdomen, while the recipient's own liver remains in place. This approach can be useful for recipients with acute liver failure or other conditions that make traditional liver transplantation too risky.

One advantage of heterotopic transplantation is that it allows for the possibility of returning the function of the recipient's organ if the transplanted organ fails, as well as reducing the risk of rejection and improving overall outcomes for the recipient. However, this approach also has some disadvantages, such as increased complexity of the surgical procedure, potential for complications related to the placement of the graft, and the need for ongoing immunosuppression therapy to prevent rejection.

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

Graft rejection is an immune response that occurs when transplanted tissue or organ (the graft) is recognized as foreign by the recipient's immune system, leading to the activation of immune cells to attack and destroy the graft. This results in the failure of the transplant and the need for additional medical intervention or another transplant. There are three types of graft rejection: hyperacute, acute, and chronic. Hyperacute rejection occurs immediately or soon after transplantation due to pre-existing antibodies against the graft. Acute rejection typically occurs within weeks to months post-transplant and is characterized by the infiltration of T-cells into the graft. Chronic rejection, which can occur months to years after transplantation, is a slow and progressive process characterized by fibrosis and tissue damage due to ongoing immune responses against the graft.

The abdominal aorta is the portion of the aorta, which is the largest artery in the body, that runs through the abdomen. It originates from the thoracic aorta at the level of the diaphragm and descends through the abdomen, where it branches off into several smaller arteries that supply blood to the pelvis, legs, and various abdominal organs. The abdominal aorta is typically divided into four segments: the suprarenal, infrarenal, visceral, and parietal portions. Disorders of the abdominal aorta can include aneurysms, atherosclerosis, and dissections, which can have serious consequences if left untreated.

Tunica intima, also known as the intima layer, is the innermost layer of a blood vessel, including arteries and veins. It is in direct contact with the flowing blood and is composed of simple squamous endothelial cells that form a continuous, non-keratinized, stratified epithelium. These cells play a crucial role in maintaining vascular homeostasis by regulating the passage of molecules and immune cells between the blood and the vessel wall, as well as contributing to the maintenance of blood fluidity and preventing coagulation.

The tunica intima is supported by a thin layer of connective tissue called the basement membrane, which provides structural stability and anchorage for the endothelial cells. Beneath the basement membrane lies a loose network of elastic fibers and collagen, known as the internal elastic lamina, that separates the tunica intima from the middle layer, or tunica media.

In summary, the tunica intima is the innermost layer of blood vessels, primarily composed of endothelial cells and a basement membrane, which regulates various functions to maintain vascular homeostasis.

Coronary artery disease (CAD) is a medical condition in which the coronary arteries, which supply oxygen-rich blood to the heart muscle, become narrowed or blocked due to the buildup of cholesterol, fatty deposits, and other substances, known as plaque. Over time, this buildup can cause the arteries to harden and narrow (a process called atherosclerosis), reducing blood flow to the heart muscle.

The reduction in blood flow can lead to various symptoms and complications, including:

1. Angina (chest pain or discomfort) - This occurs when the heart muscle doesn't receive enough oxygen-rich blood, causing pain, pressure, or discomfort in the chest, arms, neck, jaw, or back.
2. Shortness of breath - When the heart isn't receiving adequate blood flow, it can't pump blood efficiently to meet the body's demands, leading to shortness of breath during physical activities or at rest.
3. Heart attack - If a piece of plaque ruptures or breaks off in a coronary artery, a blood clot can form and block the artery, causing a heart attack (myocardial infarction). This can damage or destroy part of the heart muscle.
4. Heart failure - Chronic reduced blood flow to the heart muscle can weaken it over time, leading to heart failure, a condition in which the heart can't pump blood efficiently to meet the body's needs.
5. Arrhythmias - Reduced blood flow and damage to the heart muscle can lead to abnormal heart rhythms (arrhythmias), which can be life-threatening if not treated promptly.

Coronary artery disease is typically diagnosed through a combination of medical history, physical examination, and diagnostic tests such as electrocardiograms (ECGs), stress testing, cardiac catheterization, and imaging studies like coronary computed tomography angiography (CCTA). Treatment options for CAD include lifestyle modifications, medications, medical procedures, and surgery.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Thromboangiitis obliterans, also known as Buerger's disease, is a rare inflammatory disease that affects the small and medium-sized arteries and veins, most commonly in the legs and feet but sometimes in the arms and hands. The condition is characterized by the formation of blood clots (thrombi) and inflammation in the affected blood vessels, leading to their obstruction and damage.

The exact cause of thromboangiitis obliterans is not known, but it is strongly associated with tobacco use, particularly smoking. The condition primarily affects young men, although women can also develop the disease. The symptoms include pain and cramping in the affected limbs, especially during exercise, skin discoloration, ulcers, and in severe cases, gangrene.

The diagnosis of thromboangiitis obliterans is based on a combination of clinical presentation, medical history, laboratory tests, and imaging studies. There is no cure for the disease, but quitting smoking and other tobacco products can help slow its progression and reduce the risk of complications. Treatment typically involves medications to manage symptoms, improve blood flow, and prevent further clotting. In severe cases, surgery may be necessary to remove damaged tissue or bypass blocked blood vessels.

The carotid arteries are a pair of vital blood vessels in the human body that supply oxygenated blood to the head and neck. Each person has two common carotid arteries, one on each side of the neck, which branch off from the aorta, the largest artery in the body.

The right common carotid artery originates from the brachiocephalic trunk, while the left common carotid artery arises directly from the aortic arch. As they ascend through the neck, they split into two main branches: the internal and external carotid arteries.

The internal carotid artery supplies oxygenated blood to the brain, eyes, and other structures within the skull, while the external carotid artery provides blood to the face, scalp, and various regions of the neck.

Maintaining healthy carotid arteries is crucial for overall cardiovascular health and preventing serious conditions like stroke, which can occur when the arteries become narrowed or blocked due to the buildup of plaque or fatty deposits (atherosclerosis). Regular check-ups with healthcare professionals may include monitoring carotid artery health through ultrasound or other imaging techniques.

A Host vs Graft Reaction, also known as graft-versus-host disease (GVHD), is a condition that can occur after a transplant of immunocompetent tissue (like bone marrow or peripheral blood stem cells) from a donor (graft) to a recipient (host). It occurs when the transplanted immune cells recognize the recipient's tissues as foreign and mount an immune response against them. This reaction can cause inflammation and damage to various organs, including the skin, liver, and gastrointestinal tract.

GVHD can be acute or chronic, depending on the time of onset and the severity of symptoms. Acute GVHD typically occurs within 100 days of transplantation and is characterized by a rash, diarrhea, and liver dysfunction. Chronic GVHD, which can occur after day 100, is often more severe and can affect multiple organs, leading to fibrosis and organ dysfunction.

Preventing and managing GVHD is an important consideration in transplant medicine, as it can significantly impact the success of the transplant and the recipient's quality of life. Strategies for preventing and treating GVHD include immunosuppressive therapy, T-cell depletion of the graft, and careful matching of donor and recipient to minimize histocompatibility differences.

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

Aortic diseases refer to conditions that affect the aorta, which is the largest and main artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. Aortic diseases can weaken or damage the aorta, leading to various complications. Here are some common aortic diseases with their medical definitions:

1. Aortic aneurysm: A localized dilation or bulging of the aortic wall, which can occur in any part of the aorta but is most commonly found in the abdominal aorta (abdominal aortic aneurysm) or the thoracic aorta (thoracic aortic aneurysm). Aneurysms can increase the risk of rupture, leading to life-threatening bleeding.
2. Aortic dissection: A separation of the layers of the aortic wall due to a tear in the inner lining, allowing blood to flow between the layers and potentially cause the aorta to rupture. This is a medical emergency that requires immediate treatment.
3. Aortic stenosis: A narrowing of the aortic valve opening, which restricts blood flow from the heart to the aorta. This can lead to shortness of breath, chest pain, and other symptoms. Severe aortic stenosis may require surgical or transcatheter intervention to replace or repair the aortic valve.
4. Aortic regurgitation: Also known as aortic insufficiency, this condition occurs when the aortic valve does not close properly, allowing blood to leak back into the heart. This can lead to symptoms such as fatigue, shortness of breath, and palpitations. Treatment may include medication or surgical repair or replacement of the aortic valve.
5. Aortitis: Inflammation of the aorta, which can be caused by various conditions such as infections, autoimmune diseases, or vasculitides. Aortitis can lead to aneurysms, dissections, or stenosis and may require medical treatment with immunosuppressive drugs or surgical intervention.
6. Marfan syndrome: A genetic disorder that affects the connective tissue, including the aorta. People with Marfan syndrome are at risk of developing aortic aneurysms and dissections, and may require close monitoring and prophylactic surgery to prevent complications.

Transplantation is a medical procedure where an organ or tissue is removed from one person (the donor) and placed into another person (the recipient) for the purpose of replacing the recipient's damaged or failing organ or tissue with a functioning one. The goal of transplantation is to restore normal function, improve quality of life, and extend lifespan in individuals with organ failure or severe tissue damage. Common types of transplants include kidney, liver, heart, lung, pancreas, small intestine, and bone marrow transplantations. The success of a transplant depends on various factors, including the compatibility between the donor and recipient, the health of both individuals, and the effectiveness of immunosuppressive therapy to prevent rejection of the transplanted organ or tissue.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Cyclosporine is a medication that belongs to a class of drugs called immunosuppressants. It is primarily used to prevent the rejection of transplanted organs, such as kidneys, livers, and hearts. Cyclosporine works by suppressing the activity of the immune system, which helps to reduce the risk of the body attacking the transplanted organ.

In addition to its use in organ transplantation, cyclosporine may also be used to treat certain autoimmune diseases, such as rheumatoid arthritis and psoriasis. It does this by suppressing the overactive immune response that contributes to these conditions.

Cyclosporine is available in capsule, oral solution, and injectable forms. Common side effects of the medication include kidney problems, high blood pressure, tremors, headache, and nausea. Long-term use of cyclosporine can also increase the risk of certain types of cancer and infections.

It is important to note that cyclosporine should only be used under the close supervision of a healthcare provider, as it requires regular monitoring of blood levels and kidney function.

"Venae Cavae" is a term that refers to the two large veins in the human body that return deoxygenated blood from the systemic circulation to the right atrium of the heart.

The "Superior Vena Cava" receives blood from the upper half of the body, including the head, neck, upper limbs, and chest, while the "Inferior Vena Cava" collects blood from the lower half of the body, including the abdomen and lower limbs.

Together, these veins play a crucial role in the circulatory system by ensuring that oxygen-depleted blood is efficiently returned to the heart for reoxygenation in the lungs.

The thoracic aorta is the segment of the largest artery in the human body (the aorta) that runs through the chest region (thorax). The thoracic aorta begins at the aortic arch, where it branches off from the ascending aorta, and extends down to the diaphragm, where it becomes the abdominal aorta.

The thoracic aorta is divided into three parts: the ascending aorta, the aortic arch, and the descending aorta. The ascending aorta rises from the left ventricle of the heart and is about 2 inches (5 centimeters) long. The aortic arch curves backward and to the left, giving rise to the brachiocephalic trunk, the left common carotid artery, and the left subclavian artery. The descending thoracic aorta runs downward through the chest, passing through the diaphragm to become the abdominal aorta.

The thoracic aorta supplies oxygenated blood to the upper body, including the head, neck, arms, and chest. It plays a critical role in maintaining blood flow and pressure throughout the body.

Nephrosclerosis is a medical term that refers to the thickening and scarring (fibrosis) of the small arteries and arterioles in the kidneys, resulting in reduced blood flow and damage to the kidney tissue. This process can lead to decreased kidney function and ultimately result in chronic kidney disease or end-stage renal failure.

The two main types of nephrosclerosis are:

1. Hypertensive nephrosclerosis: This type is caused by long-term high blood pressure (hypertension), which damages the small blood vessels in the kidneys over time, leading to scarring and thickening of the arterial walls.
2. Ischemic nephrosclerosis: This type results from reduced blood flow to the kidneys due to atherosclerosis or other vascular diseases that cause narrowing or blockage of the renal arteries.

Nephrosclerosis is often asymptomatic in its early stages, but as the condition progresses, it may lead to symptoms such as proteinuria (protein in the urine), hematuria (blood in the urine), edema (swelling), and hypertension. Diagnosis typically involves a combination of medical history, physical examination, laboratory tests, and imaging studies. Treatment focuses on managing underlying conditions such as high blood pressure and diabetes, which can help slow or prevent further kidney damage.

Sulfinpyrazone is a medication that belongs to the class of drugs known as uricosurics. It works by increasing the amount of uric acid that is removed from the body through urine, which helps to lower the levels of uric acid in the blood. This makes it useful for the treatment of conditions such as gout and kidney stones that are caused by high levels of uric acid.

In addition to its uricosuric effects, sulfinpyrazone also has antiplatelet properties, which means that it can help to prevent blood clots from forming. This makes it useful for the prevention of heart attacks and strokes in people who are at risk.

Sulfinpyrazone is available by prescription and is typically taken by mouth in the form of tablets. It may be used alone or in combination with other medications, depending on the individual patient's needs and medical condition. As with any medication, sulfinpyrazone should be used under the supervision of a healthcare provider, and patients should follow their provider's instructions carefully to ensure safe and effective use.

The ankle, also known as the talocrural region, is the joint between the leg and the foot. It is a synovial hinge joint that allows for dorsiflexion and plantarflexion movements. The ankle is composed of three bones: the tibia and fibula of the lower leg, and the talus of the foot. The bottom portion of the tibia and fibula, called the malleoli, form a mortise that surrounds and articulates with the talus.

The ankle joint is strengthened by several ligaments, including the medial (deltoid) ligament and lateral ligament complex. The ankle also contains important nerves and blood vessels that provide sensation and circulation to the foot.

Damage to the ankle joint, such as sprains or fractures, can result in pain, swelling, and difficulty walking. Proper care and rehabilitation are essential for maintaining the health and function of the ankle joint.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

The Ankle-Brachial Index (ABI) is a medical test used to diagnose and evaluate peripheral artery disease (PAD), a condition characterized by narrowing or blockage of the blood vessels outside of the heart. The ABI measures the ratio of blood pressure in the ankles to the blood pressure in the arms, which can indicate whether there is reduced blood flow to the legs due to PAD.

To perform the test, healthcare professionals measure the blood pressure in both arms and ankles using a blood pressure cuff and a Doppler ultrasound device. The systolic blood pressure (the higher number) is used for the calculation. The ABI value is obtained by dividing the highest ankle pressure by the highest arm pressure.

In healthy individuals, the ABI values typically range from 0.9 to 1.3. Values below 0.9 suggest that there may be narrowed or blocked blood vessels in the legs, indicating PAD. The lower the ABI value, the more severe the blockage is likely to be. Additionally, an ABI of 1.4 or higher may indicate calcification of the arteries, which can also affect blood flow.

In summary, the Ankle-Brachial Index (ABI) is a medical test that measures the ratio of blood pressure in the ankles to the blood pressure in the arms, providing valuable information about peripheral artery disease and overall circulatory health.

Neointima is a term used in pathology and refers to the layer of tissue that forms inside a blood vessel as part of the healing process after an injury, such as angioplasty or stenting. This new tissue is composed mainly of smooth muscle cells and extracellular matrix and can grow inward, potentially causing restenosis (re-narrowing) of the vessel lumen.

In simpler terms, Neointima is a type of scar tissue that forms inside blood vessels as part of the healing process after an injury, but its growth can sometimes cause problems by narrowing the vessel and restricting blood flow.

Vasculitis is a group of disorders characterized by inflammation of the blood vessels, which can cause changes in the vessel walls including thickening, narrowing, or weakening. These changes can restrict blood flow, leading to organ and tissue damage. The specific symptoms and severity of vasculitis depend on the size and location of the affected blood vessels and the extent of inflammation. Vasculitis can affect any organ system in the body, and its causes can vary, including infections, autoimmune disorders, or exposure to certain medications or chemicals.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

Carbonic anhydrase III (CAIII) is a member of the carbonic anhydrase enzyme family, which catalyzes the reversible reaction between carbon dioxide and water to form bicarbonate and protons. This enzyme is primarily found in muscle tissues, where it plays a role in regulating pH levels during muscle contraction and relaxation. CAIII has a lower catalytic activity compared to other carbonic anhydrase isoforms, suggesting that it may have additional functions beyond simple CO2 hydration. Additionally, CAIII has been implicated in various physiological processes such as protection against oxidative stress and regulation of muscle metabolism.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

In a medical context, paraffin is often referred to as "medical-grade paraffin," which is a type of mineral wax that is highly refined and purified for use in various medical applications. It is typically used in the form of paraffin baths for heat therapy, where a part of the body is dipped into a bath of melted paraffin to provide soothing warmth and pain relief. Medical-grade paraffin is colorless, odorless, tasteless, and chemically stable, making it safe for topical use on the skin. It has a high melting point and does not conduct electricity, which also makes it suitable for use in certain types of medical equipment and supplies.

I'm happy to help! "Rats, Inbred Lew" is a specific strain of laboratory rats that have been inbred for research purposes. The "Lew" part of the name refers to the location where they were first developed, the Lewis Institute in Lake Bluff, Illinois, USA.

Inbreeding is a process of mating closely related individuals over many generations to create a genetically homogeneous population. This results in a high degree of genetic similarity among members of the strain, making them ideal for use as experimental models because any differences observed between individuals are more likely to be due to the experimental manipulation rather than genetic variation.

Inbred Lew rats have been widely used in biomedical research, particularly in studies related to hypertension and cardiovascular disease. They exhibit a number of unique characteristics that make them useful for these types of studies, including their susceptibility to developing high blood pressure when fed a high-salt diet or given certain drugs.

It's important to note that while inbred strains like Lew rats can be very useful tools for researchers, they are not perfect models for human disease. Because they have been bred in a controlled environment and selected for specific traits, they may not respond to experimental manipulations in the same way that humans or other animals would. Therefore, it's important to interpret findings from these studies with caution and consider multiple lines of evidence before drawing any firm conclusions.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Isogeneic transplantation is a type of transplant where the donor and recipient are genetically identical, meaning they are identical twins or have the same genetic makeup. In this case, the immune system recognizes the transplanted organ or tissue as its own and does not mount an immune response to reject it. This reduces the need for immunosuppressive drugs, which are typically required in other types of transplantation to prevent rejection.

In medical terms, isogeneic transplantation is defined as the transfer of genetic identical tissues or organs between genetically identical individuals, resulting in minimal risk of rejection and no need for immunosuppressive therapy.

Blood vessels are the part of the circulatory system that transport blood throughout the body. They form a network of tubes that carry blood to and from the heart, lungs, and other organs. The main types of blood vessels are arteries, veins, and capillaries. Arteries carry oxygenated blood away from the heart to the rest of the body, while veins return deoxygenated blood back to the heart. Capillaries connect arteries and veins and facilitate the exchange of oxygen, nutrients, and waste materials between the blood and the body's tissues.

A pulse is a medical term that refers to the tactile sensation of the heartbeat that can be felt in various parts of the body, most commonly at the wrist, neck, or groin. It is caused by the surge of blood through an artery as the heart pushes blood out into the body during systole (contraction). The pulse can provide important information about a person's heart rate, rhythm, and strength, which are all crucial vital signs that help healthcare professionals assess a patient's overall health and identify any potential medical issues.

In summary, a pulse is a palpable manifestation of the heartbeat felt in an artery due to the ejection of blood by the heart during systole.

I'm sorry for any confusion, but "Japan" is not a medical term. Japan is the name of a country, officially known as Nippon-koku or Nihon-koku in Japanese, and is located in East Asia. It is an island nation in the Pacific Ocean with a population of about 126 million people.

If you have any medical questions or terms that you would like me to define, please let me know!

Vascular stiffness, also known as arterial stiffness, refers to the reduced elasticity of the blood vessels, particularly the arteries. This results in less efficient pumping of the heart and increased force on the artery walls during each heartbeat. Vascular stiffness can contribute to various cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. It is often assessed through measurements such as pulse wave velocity (PWV) or augmentation index (AI).

Isoantibodies are antibodies produced by the immune system that recognize and react to antigens (markers) found on the cells or tissues of another individual of the same species. These antigens are typically proteins or carbohydrates present on the surface of red blood cells, but they can also be found on other cell types.

Isoantibodies are formed when an individual is exposed to foreign antigens, usually through blood transfusions, pregnancy, or tissue transplantation. The exposure triggers the immune system to produce specific antibodies against these antigens, which can cause a harmful immune response if the individual receives another transfusion or transplant from the same donor in the future.

There are two main types of isoantibodies:

1. Agglutinins: These are IgM antibodies that cause red blood cells to clump together (agglutinate) when mixed with the corresponding antigen. They develop rapidly after exposure and can cause immediate transfusion reactions or hemolytic disease of the newborn in pregnant women.
2. Hemolysins: These are IgG antibodies that destroy red blood cells by causing their membranes to become more permeable, leading to lysis (bursting) of the cells and release of hemoglobin into the plasma. They take longer to develop but can cause delayed transfusion reactions or hemolytic disease of the newborn in pregnant women.

Isoantibodies are detected through blood tests, such as the crossmatch test, which determines compatibility between a donor's and recipient's blood before transfusions or transplants.

The femoral artery is the major blood vessel that supplies oxygenated blood to the lower extremity of the human body. It is a continuation of the external iliac artery and becomes the popliteal artery as it passes through the adductor hiatus in the adductor magnus muscle of the thigh.

The femoral artery is located in the femoral triangle, which is bound by the sartorius muscle anteriorly, the adductor longus muscle medially, and the biceps femoris muscle posteriorly. It can be easily palpated in the groin region, making it a common site for taking blood samples, measuring blood pressure, and performing surgical procedures such as femoral artery catheterization and bypass grafting.

The femoral artery gives off several branches that supply blood to the lower limb, including the deep femoral artery, the superficial femoral artery, and the profunda femoris artery. These branches provide blood to the muscles, bones, skin, and other tissues of the leg, ankle, and foot.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Diabetic angiopathies refer to a group of vascular complications that occur due to diabetes mellitus. Prolonged exposure to high blood sugar levels can damage the blood vessels, leading to various types of angiopathies such as:

1. Diabetic retinopathy: This is a condition where the small blood vessels in the retina get damaged due to diabetes, leading to vision loss or blindness if left untreated.
2. Diabetic nephropathy: In this condition, the kidneys' glomeruli (the filtering units) become damaged due to diabetes, leading to protein leakage and eventually kidney failure if not managed properly.
3. Diabetic neuropathy: This is a type of nerve damage caused by diabetes that can affect various parts of the body, including the legs, feet, and hands, causing numbness, tingling, or pain.
4. Diabetic cardiomyopathy: This is a condition where the heart muscle becomes damaged due to diabetes, leading to heart failure.
5. Diabetic peripheral arterial disease (PAD): In this condition, the blood vessels that supply the legs and feet become narrowed or blocked due to diabetes, leading to pain, cramping, or even gangrene in severe cases.

Overall, diabetic angiopathies are serious complications of diabetes that can significantly impact a person's quality of life and overall health. Therefore, it is crucial for individuals with diabetes to manage their blood sugar levels effectively and undergo regular check-ups to detect any early signs of these complications.

Smooth muscle myocytes are specialized cells that make up the contractile portion of non-striated, or smooth, muscles. These muscles are found in various organs and structures throughout the body, including the walls of blood vessels, the digestive system, the respiratory system, and the reproductive system.

Smooth muscle myocytes are smaller than their striated counterparts (skeletal and cardiac muscle cells) and have a single nucleus. They lack the distinctive banding pattern seen in striated muscles and instead have a uniform appearance of actin and myosin filaments. Smooth muscle myocytes are controlled by the autonomic nervous system, which allows them to contract and relax involuntarily.

These cells play an essential role in many physiological processes, such as regulating blood flow, moving food through the digestive tract, and facilitating childbirth. They can also contribute to various pathological conditions, including hypertension, atherosclerosis, and gastrointestinal disorders.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Carotid artery diseases refer to conditions that affect the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the head and neck. The most common type of carotid artery disease is atherosclerosis, which occurs when fatty deposits called plaques build up in the inner lining of the arteries.

These plaques can cause the arteries to narrow or become blocked, reducing blood flow to the brain and increasing the risk of stroke. Other carotid artery diseases include carotid artery dissection, which occurs when there is a tear in the inner lining of the artery, and fibromuscular dysplasia, which is a condition that affects the muscle and tissue in the walls of the artery.

Symptoms of carotid artery disease may include neck pain or pulsations, transient ischemic attacks (TIAs) or "mini-strokes," and strokes. Treatment options for carotid artery disease depend on the severity and type of the condition but may include lifestyle changes, medications, endarterectomy (a surgical procedure to remove plaque from the artery), or angioplasty and stenting (procedures to open blocked arteries using a balloon and stent).

Gangrene is a serious and potentially life-threatening condition that occurs when there is a loss of blood flow to a specific area of the body, resulting in tissue death. It can be caused by various factors such as bacterial infections, trauma, diabetes, vascular diseases, and smoking. The affected tissues may become discolored, swollen, and emit a foul odor due to the accumulation of bacteria and toxins.

Gangrene can be classified into two main types: dry gangrene and wet (or moist) gangrene. Dry gangrene develops slowly and is often associated with peripheral arterial disease, which reduces blood flow to the extremities. The affected area turns black and shriveled as it dries out. Wet gangrene, on the other hand, progresses rapidly due to bacterial infections that cause tissue breakdown and pus formation. This type of gangrene can spread quickly throughout the body, leading to severe complications such as sepsis and organ failure if left untreated.

Treatment for gangrene typically involves surgical removal of the dead tissue (debridement), antibiotics to control infections, and sometimes revascularization procedures to restore blood flow to the affected area. In severe cases where the infection has spread or the damage is irreversible, amputation of the affected limb may be necessary to prevent further complications and save the patient's life.

Homocysteine is an amino acid that is formed in the body during the metabolism of another amino acid called methionine. It's an important intermediate in various biochemical reactions, including the synthesis of proteins, neurotransmitters, and other molecules. However, elevated levels of homocysteine in the blood (a condition known as hyperhomocysteinemia) have been linked to several health issues, such as cardiovascular disease, stroke, and cognitive decline.

Homocysteine can be converted back to methionine with the help of vitamin B12 and a cofactor called betaine, or it can be converted to another amino acid called cystathionine with the help of vitamin B6 and folate (vitamin B9). Imbalances in these vitamins and other factors can lead to an increase in homocysteine levels.

It is crucial to maintain normal homocysteine levels for overall health, as high levels may contribute to the development of various diseases. Regular monitoring and maintaining a balanced diet rich in folate, vitamin B6, and vitamin B12 can help regulate homocysteine levels and reduce the risk of related health issues.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Empirical research is a type of scientific investigation that involves the collection and analysis of observable and measurable data to draw conclusions about patterns or relationships in reality. It is based on empirical evidence, which means evidence obtained through direct observation or experience, rather than theoretical reasoning or deduction. In medical research, empirical studies often involve the use of controlled experiments, surveys, or observational studies to test hypotheses and generate new knowledge about health, disease, and treatment outcomes. The results of empirical research can help inform clinical decision-making, public health policy, and future research directions.

An autopsy, also known as a post-mortem examination or obduction, is a medical procedure in which a qualified professional (usually a pathologist) examines a deceased person's body to determine the cause and manner of death. This process may involve various investigative techniques, such as incisions to study internal organs, tissue sampling, microscopic examination, toxicology testing, and other laboratory analyses. The primary purpose of an autopsy is to gather objective evidence about the medical conditions and factors contributing to the individual's demise, which can be essential for legal, insurance, or public health purposes. Additionally, autopsies can provide valuable insights into disease processes and aid in advancing medical knowledge.

"CBA" is an abbreviation for a specific strain of inbred mice that were developed at the Cancer Research Institute in London. The "Inbred CBA" mice are genetically identical individuals within the same strain, due to many generations of brother-sister matings. This results in a homozygous population, making them valuable tools for research because they reduce variability and increase reproducibility in experimental outcomes.

The CBA strain is known for its susceptibility to certain diseases, such as autoimmune disorders and cancer, which makes it a popular choice for researchers studying those conditions. Additionally, the CBA strain has been widely used in studies related to transplantation immunology, infectious diseases, and genetic research.

It's important to note that while "Inbred CBA" mice are a well-established and useful tool in biomedical research, they represent only one of many inbred strains available for scientific investigation. Each strain has its own unique characteristics and advantages, depending on the specific research question being asked.

Dietary cholesterol is a type of cholesterol that comes from the foods we eat. It is present in animal-derived products such as meat, poultry, dairy products, and eggs. While dietary cholesterol can contribute to an increase in blood cholesterol levels for some people, it's important to note that saturated and trans fats have a more significant impact on blood cholesterol levels than dietary cholesterol itself.

The American Heart Association recommends limiting dietary cholesterol intake to less than 300 milligrams per day for most people, and less than 200 milligrams per day for those with a history of heart disease or high cholesterol levels. However, individual responses to dietary cholesterol can vary, so it's essential to monitor blood cholesterol levels and adjust dietary habits accordingly.

Vascular diseases are medical conditions that affect the circulatory system, specifically the blood vessels (arteries, veins, and capillaries). These diseases can include conditions such as:

1. Atherosclerosis: The buildup of fats, cholesterol, and other substances in and on the walls of the arteries, which can restrict blood flow.
2. Peripheral Artery Disease (PAD): A condition caused by atherosclerosis where there is narrowing or blockage of the peripheral arteries, most commonly in the legs. This can lead to pain, numbness, and cramping.
3. Coronary Artery Disease (CAD): Atherosclerosis of the coronary arteries that supply blood to the heart muscle. This can lead to chest pain, shortness of breath, or a heart attack.
4. Carotid Artery Disease: Atherosclerosis of the carotid arteries in the neck that supply blood to the brain. This can increase the risk of stroke.
5. Cerebrovascular Disease: Conditions that affect blood flow to the brain, including stroke and transient ischemic attack (TIA or "mini-stroke").
6. Aneurysm: A weakened area in the wall of a blood vessel that causes it to bulge outward and potentially rupture.
7. Deep Vein Thrombosis (DVT): A blood clot that forms in the deep veins, usually in the legs, which can cause pain, swelling, and increased risk of pulmonary embolism if the clot travels to the lungs.
8. Varicose Veins: Swollen, twisted, and often painful veins that have filled with an abnormal collection of blood, usually appearing in the legs.
9. Vasculitis: Inflammation of the blood vessels, which can cause damage and narrowing, leading to reduced blood flow.
10. Raynaud's Phenomenon: A condition where the small arteries that supply blood to the skin become narrowed, causing decreased blood flow, typically in response to cold temperatures or stress.

These are just a few examples of vascular conditions that fall under the umbrella term "cerebrovascular disease." Early diagnosis and treatment can significantly improve outcomes for many of these conditions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

F344 is a strain code used to designate an outbred stock of rats that has been inbreeded for over 100 generations. The F344 rats, also known as Fischer 344 rats, were originally developed at the National Institutes of Health (NIH) and are now widely used in biomedical research due to their consistent and reliable genetic background.

Inbred strains, like the F344, are created by mating genetically identical individuals (siblings or parents and offspring) for many generations until a state of complete homozygosity is reached, meaning that all members of the strain have identical genomes. This genetic uniformity makes inbred strains ideal for use in studies where consistent and reproducible results are important.

F344 rats are known for their longevity, with a median lifespan of around 27-31 months, making them useful for aging research. They also have a relatively low incidence of spontaneous tumors compared to other rat strains. However, they may be more susceptible to certain types of cancer and other diseases due to their inbred status.

It's important to note that while F344 rats are often used as a standard laboratory rat strain, there can still be some genetic variation between individual animals within the same strain, particularly if they come from different suppliers or breeding colonies. Therefore, it's always important to consider the source and history of any animal model when designing experiments and interpreting results.

The tunica media is the middle layer of the wall of a blood vessel or hollow organ in the body. It is primarily composed of smooth muscle cells and elastic fibers, which allow the vessel or organ to expand and contract. This layer helps regulate the diameter of the lumen (the inner space) of the vessel or organ, thereby controlling the flow of fluids such as blood or lymph through it. The tunica media plays a crucial role in maintaining proper organ function and blood pressure regulation.

An atherogenic diet is a type of eating pattern that can contribute to the development and progression of atherosclerosis, which is the hardening and narrowing of the arteries due to the buildup of fats, cholesterol, and other substances in the inner lining of the artery walls.

An atherogenic diet is typically high in saturated and trans fats, cholesterol, refined carbohydrates, and salt, and low in fiber, fruits, vegetables, and unsaturated fats. This type of diet can increase the levels of LDL (low-density lipoprotein) or "bad" cholesterol in the blood, which can lead to the formation of plaques in the arteries and increase the risk of cardiovascular disease, including heart attack and stroke.

Therefore, it is recommended to follow a heart-healthy diet that emphasizes fruits, vegetables, whole grains, lean proteins, and healthy fats to reduce the risk of atherosclerosis and other chronic diseases.

Veins are blood vessels that carry deoxygenated blood from the tissues back to the heart. They have a lower pressure than arteries and contain valves to prevent the backflow of blood. Veins have a thin, flexible wall with a larger lumen compared to arteries, allowing them to accommodate more blood volume. The color of veins is often blue or green due to the absorption characteristics of light and the reduced oxygen content in the blood they carry.

Atherosclerosis is a medical condition characterized by the buildup of plaques, made up of fat, cholesterol, calcium, and other substances found in the blood, on the inner walls of the arteries. This process gradually narrows and hardens the arteries, reducing the flow of oxygen-rich blood to various parts of the body. Atherosclerosis can affect any artery in the body, including those that supply blood to the heart (coronary arteries), brain, limbs, and other organs. The progressive narrowing and hardening of the arteries can lead to serious complications such as coronary artery disease, carotid artery disease, peripheral artery disease, and aneurysms, which can result in heart attacks, strokes, or even death if left untreated.

The exact cause of atherosclerosis is not fully understood, but it is believed to be associated with several risk factors, including high blood pressure, high cholesterol levels, smoking, diabetes, obesity, physical inactivity, and a family history of the condition. Atherosclerosis can often progress without any symptoms for many years, but as the disease advances, it can lead to various signs and symptoms depending on which arteries are affected. Treatment typically involves lifestyle changes, medications, and, in some cases, surgical procedures to restore blood flow.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Chemokine (C-C motif) ligand 2, also known as monocyte chemoattractant protein-1 (MCP-1), is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or regulatory proteins, that play important roles in immune responses and inflammation by recruiting various immune cells to sites of infection or injury.

CCL2 specifically acts as a chemoattractant for monocytes, memory T cells, and dendritic cells, guiding them to migrate towards the source of infection or tissue damage. It does this by binding to its receptor, CCR2, which is expressed on the surface of these immune cells.

CCL2 has been implicated in several pathological conditions, including atherosclerosis, rheumatoid arthritis, and various cancers, where it contributes to the recruitment of immune cells that can exacerbate tissue damage or promote tumor growth and metastasis. Therefore, targeting CCL2 or its signaling pathways has emerged as a potential therapeutic strategy for these diseases.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

... and intracranial arteriosclerosis. Other consequences include sensorineural deafness, seizures, and intellectual disability. ... Intracranial injection of brain and spinal cord samples into mice, rabbits and rats produced encephalitis in the animals. Wolf ...
... intracranial aneurysm MeSH C10.228.140.300.510.200.475 - intracranial arteriosclerosis MeSH C10.228.140.300.510.200.475.500 - ... intracranial embolism and thrombosis MeSH C10.228.140.300.525.400 - intracranial embolism MeSH C10.228.140.300.525.425 - ... intracranial thrombosis MeSH C10.228.140.300.525.669 - sinus thrombosis, intracranial MeSH C10.228.140.300.525.669.375 - ... intracranial hemorrhage, hypertensive MeSH C10.228.140.300.535.450 - intracranial hemorrhage, traumatic MeSH C10.228.140.300. ...
... intracranial aneurysm MeSH C14.907.253.560.200.475 - intracranial arteriosclerosis MeSH C14.907.253.560.200.475.500 - dementia ... arteriosclerosis obliterans MeSH C14.907.137.126.307 - atherosclerosis MeSH C14.907.137.126.372 - intracranial arteriosclerosis ... intracranial embolism MeSH C14.907.355.350.850.213.350 - intracranial thrombosis MeSH C14.907.355.350.850.213.669 - sinus ... intracranial embolism MeSH C14.907.355.830.850.213.350 - intracranial thrombosis MeSH C14.907.355.830.850.213.669 - sinus ...
Wall M (March 2008). "Idiopathic intracranial hypertension (pseudotumor cerebri)". Current Neurology and Neuroscience Reports. ... Arteriosclerosis, Thrombosis, and Vascular Biology. 33 (2): 285-93. doi:10.1161/ATVBAHA.112.300388. PMC 3557503. PMID 23202364 ... may be referred to as Idiopathic intracranial hypertension) Liver damage Premature epiphyseal closure Spontaneous fracture ... Gastric mucosal calcinosis Heart valve calcification Hypercalcemia Increased intracranial pressure manifesting as cerebral ...
"Normal intracranial calcifications , Radiology Reference Article , Radiopaedia.org". Radiopaedia. calcification in ovarian ... Paul Price, et al., "Warfarin-Induced Artery Calcification Is Accelerated by Growth and Vitamin D", Arteriosclerosis, ... Arteriosclerosis, Thrombosis, and Vascular Biology. 40 (7): e193-e202. doi:10.1161/ATVBAHA.120.313792. PMID 32404005. S2CID ... Calcinosis Marine biogenic calcification Monckeberg's arteriosclerosis Pineal gland Bertazzo, Sergio; Gentleman, Eileen; Cloyd ...
... showed modest benefits but a trend toward increased intracranial haemorrhage. A clinical trial published in 2006 found ... For the treatment of moderate and severe chronic circulatory disorders of peripheral arteries (e.g., arteriosclerosis ... forms of peripheral arterial circulatory disorders such as those resulting from years of heavy smoking and/or arteriosclerosis ...
Intracranial aneurysms are rare in childhood, with over 95% of all aneurysms occurring in adults.: 235 Incidence rates are two ... Arteriosclerosis, Thrombosis, and Vascular Biology. 25 (8): 1558-1566. doi:10.1161/01.ATV.0000174129.77391.55. ISSN 1079-5642. ... Lv X, Yang H, Liu P, Li Y (February 2016). "Flow-diverter devices in the treatment of intracranial aneurysms: A meta-analysis ... The Large vessels such as external and internal jugular veins Cerebral aneurysms, also known as intracranial or brain aneurysms ...
Bang, OY; Saver, JL; Ovbiagele, B; Choi, YJ; Yoon, SR; Lee, KH (2007). "Adiponectin levels in patients with intracranial ... Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (9): 1818-24. doi:10.1161/ATVBAHA.110.209577. PMC 2939448. PMID 20558816 ... in the large intracranial arteries in the brain, has been shown in various studies to be an effective tool to diagnose children ...
... myositis Incontinentia pigmenti Infantile spasms Inflammatory myopathy Intellectual disability Intracranial cyst Intracranial ... pain syndrome Central pontine myelinolysis Centronuclear myopathy Cephalic disorder Cerebral aneurysm Cerebral arteriosclerosis ...
... and aortic and intracranial aneurysm. Among their noteworthy recent discoveries is a rare variant in the ASGR1 gene that ... Arteriosclerosis, Thrombosis, and Vascular Biology, Volume 35, pp 1526-1531, 1 June 2015; A Helgadottir et al., "A Common ... abdominal aortic aneurysm and intracranial aneurysm," Nature Genetics (subscription required), Volume 40, pp 217-224, 6 January ...
If the aorta becomes rigid because of disorders, such as arteriosclerosis or atherosclerosis, the pulse pressure would be high ... A high pulse pressure combined with bradycardia and an irregular breathing pattern is associated with increased intracranial ... pressure, a condition called Cushing's triad seen in people after head trauma with increased intracranial pressure. Common ... Aortic root aneurysm Aortic root dilation Beri beri Distributive shock Endocarditis Fever Heart block Increased intracranial ...
Some have found that the treatment decreases the risk of death and increases the risk of bleeding including intracranial ... November 2014). "Thrombosis: a major contributor to global disease burden". Arteriosclerosis, Thrombosis, and Vascular Biology ... June 2014). "Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: ... American Heart Association Council on Arteriosclerosis, Thrombosis, and Vascular Biology. "Management of massive and submassive ...
Idiopathic intracranial hypertension, or unexplained high pressure in the cranium, is a rare condition that can cause visual ... May 2006). "Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss". Arteriosclerosis, ... It is most commonly seen in obese women, and the incidence of idiopathic intracranial hypertension is increasing along with ... Wall M (March 2008). "Idiopathic intracranial hypertension (pseudotumor cerebri)". Curr Neurol Neurosci Rep. 8 (2): 87-93. doi: ...
Adverse effects of alteplase include symptomatic intracranial hemorrhage and fatal intracranial hemorrhage. Angioedema is ... Collen D, Lijnen HR (August 2009). "The tissue-type plasminogen activator story". Arteriosclerosis, Thrombosis, and Vascular ... However, standard doses of alteplase used in systemic thrombolysis may lead to massive bleeding, such as intracranial ... Additional contraindications for alteplase when used specifically for acute ischemic stroke include current intracranial ...
"Arteriosclerosis / atherosclerosis - Diagnosis and treatment". Mayo Clinic. Leopold, Jane A.; Faxon, David P. (2018). " ... Common types of aneurysm include abdominal aortic aneurysm, thoracic aortic aneurysm and intracranial aneurysm. Most types of ... Arteriosclerosis, Thrombosis, and Vascular Biology. 23 (12): 2155-2163. doi:10.1161/01.ATV.0000097770.66965.2A. PMID 14512371. ... aneurysm, except intracranial aneurysm, are mainly caused by atherosclerosis. Raynaud's disease is a rare peripheral vascular ...
Migliavacca's health began to decline over a prolonged period of time (including a fight with arteriosclerosis) and on 19 ... Deaths from intracranial aneurysm, Former Jesuits, Franciscan beatified people, Italian beatified people, Italian Franciscans, ...
Wagner DD, Burger PC (December 2003). "Platelets in inflammation and thrombosis". Arteriosclerosis, Thrombosis, and Vascular ... and intraretinal and intracranial bleeding. Excessive numbers of platelets, and/or normal platelets responding to abnormal ... Arteriosclerosis. 3 (4): 383-388. doi:10.1161/01.ATV.3.4.383. PMID 6411052. S2CID 3229482. van Veen JJ, Nokes TJ, Makris M ( ...
Hunt BJ (March 2008). "Awareness and politics of venous thromboembolism in the United kingdom". Arteriosclerosis, Thrombosis, ... abortion ectopic pregnancy molar pregnancy pregnancy childbirth and the puerperium coronary portal vein thrombosis intracranial ...
... and intracranial pressures. Booth J (1977). "A short history of blood pressure measurement". Proceedings of the Royal Society ... which include arteriosclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus. In practice the different ...
Hypertension presents a risk for intracranial hemorrhage (i.e., bleeding in the brain) and, if severe, is typically treated ... or in individuals currently experiencing arteriosclerosis, glaucoma, hyperthyroidism, or severe hypertension. The FDA states ...
Intracranial arteriosclerosis is related to cerebral small vessel disease. Publication. Publication. Occupational and ... p,Intracranial arteriosclerosis has been increasingly recognized as a risk factor for cognitive impairment and even dementia. A ... as proxies for intracranial arteriosclerosis, are related to CSVD. Within the population-based Rotterdam Study, between 2003 ... possible mechanism linking intracranial arteriosclerosis to cognitive impairment and dementia involves structural brain changes ...
Arteriosclerosis, Intracranial; Arteriosclerosis, Cerebral; Arterioscleroses, Intracranial; Arterioscleroses, Cerebral; ... Other names Intracranial Atherosclerosis; Cerebral Arteriosclerosis; Intracranial Atheroscleroses; Intracranial ... Nicotinic Acids *Theobromine *Theophylline Drug Combinations Intracranial Arteriosclerosis/drug therapy. Farm Zh 28(6):79;1973 ... Cerebral Arterioscleroses; Atherosclerosis, Intracranial; Atherosclerosis, Cerebral; Atheroscleroses, Intracranial; ...
Brain Diseases - Intracranial Arteriosclerosis PubMed MeSh Term *Overview. Overview. subject area of * Functional assessment of ...
Intracranial arteriosclerosis and the risk of dementia: A population-based cohort study. van den Beukel TC, Wolters FJ, Siebert ...
Comparison of the event rates in high-risk patients in Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) vs this ... The use of a Wingspan stent in patients with severe intracranial stenosis is relatively safe with high rate of technical ... Intracranial Arteriosclerosis* / pathology * Intracranial Arteriosclerosis* / surgery * Kaplan-Meier Estimate * Male * Middle ... NIH Multi-center Wingspan Intracranial Stent Registry Study Group: Marc Chimowitz, Bethany Lane, Michael Lynn, Seegar Swanson, ...
Co-existing intracranial and extracranial carotid artery plaques are prevalent in symptomatic patients and the number of co- ... Intracranial Arteriosclerosis / complications * Intracranial Arteriosclerosis / diagnostic imaging* * Intracranial ... Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional ... For these 33 patients with stroke, the number of intracranial plaques (OR = 11.26; 95% CI, 1.27-100; p = 0.030) and co-existing ...
... and intracranial arteriosclerosis. Other consequences include sensorineural deafness, seizures, and intellectual disability. ... Intracranial injection of brain and spinal cord samples into mice, rabbits and rats produced encephalitis in the animals. Wolf ...
We determined the prevalence of morphological subtypes of intracranial arteriosclerosis and.... journal article 2022 document ... Morphological Subtypes of Intracranial Internal Carotid Artery Arteriosclerosis and the Risk of Stroke ... Accumulating evidence highlights the existence of distinct morphological subtypes of intracranial carotid arteriosclerosis. So ...
February 2013 MEDICAL PRACTICE Angioplasty and stenting for intracranial atherosclerotic stenosis: position statement of the ... Key words: Cerebral angiography; Intracranial arteriosclerosis; Risk factors; Stents. View this abstract indexed in MEDLINE:. ... In this paper, we review the management of intracranial atherosclerosis, revisit the skepticism on stenting, and state our ... Angioplasty and stenting for intracranial atherosclerotic stenosis: position statement of the Hong Kong Society of ...
Intracranial Arteriosclerosis. Arteriosclerosis. Arterial Occlusive Diseases. Vascular Diseases. Cardiovascular Diseases. ... Intracranial Arteriosclerosis Stroke Drug: Ticagrelor + Aspirin Drug: Rivaroxaban + Aspirin Drug: Clopidogrel + Aspirin Other: ... Intracranial tumor (except meningioma) or any intracranial vascular malformation. *Thrombolytic therapy within 24 hours prior ... History of any intracranial hemorrhage (parenchymal, subarachnoid, subdural, epidural). *Intracranial arterial stenosis due to ...
Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that ... Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that ...
Intracranial Arteriosclerosis (1967-1999). Intracranial Embolism and Thrombosis (1966-1999). Public MeSH Note:. 2000. ...
Intracranial Arteriosclerosis Medicine & Life Sciences 100% * Stents Medicine & Life Sciences 43% * Pathologic Constriction ... With the advent of stents for use in intracranial vasculature, new hope has arisen for the treatment of intracranial ... With the advent of stents for use in intracranial vasculature, new hope has arisen for the treatment of intracranial ... With the advent of stents for use in intracranial vasculature, new hope has arisen for the treatment of intracranial ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
CEREBRAL ARTERIOSCLEROSIS. INTRACRANIAL ARTERIOSCLEROSIS. CEREBRAL ARTERIOVENOUS MALFORMATIONS. INTRACRANIAL ARTERIOVENOUS ...
intracranial arteriosclerosis DOID:13097 * cerebellar astrocytoma DOID:4848 * brain oligodendroglioma DOID:3187 ...
Intracranial Arteriosclerosis-. vascular diseases characterized by thickening and hardening of the walls of arteries inside the ...
Intracranial Arteriosclerosis 9% * Corrigendum: Age-Dependent Relationship Between Plasma Aß40 and Aß42 and Total Tau Levels in ...
Intracranial arteriosclerosis and the risk of dementia: A population-based cohort study. ... BACKGROUND: The impact of intracranial arteriosclerosis on dementia remains largely unclear. METHODS: In 2339 stroke-free and ... Intracranial arteriosclerosis increases the risk of dementia. ... as proxy for arteriosclerosis. Associations with dementia were ... dementia-free participants (52.2% women, mean age 69.5 years) from the general population, we assessed intracranial carotid ...

No FAQ available that match "intracranial arteriosclerosis"