Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components.
Nonsusceptibility of bacteria to the antibiotic KANAMYCIN, which can bind to their 70S ribosomes and cause misreading of messenger RNA.
A class of enzymes that inactivate aminocyclitol-aminoglycoside antibiotics (AMINOGLYCOSIDES) by regiospecific PHOSPHORYLATION of the 3' and/or 5' hydroxyl.
Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS.
Cyclic peptide antibiotic similar to VIOMYCIN. It is produced by Streptomyces capreolus.
A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics.
Substances that reduce the growth or reproduction of BACTERIA.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation.
An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis.
Antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C. It acts by inhibiting translation during protein synthesis.
A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS.
A component of NEOMYCIN that is produced by Streptomyces fradiae. On hydrolysis it yields neamine and neobiosamine B. (From Merck Index, 11th ed)
A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes.
A strongly basic peptide, antibiotic complex from several strains of Streptomyces. It is allergenic and toxic to kidneys and the labyrinth. Viomycin is used in tuberculosis as several different salts and in combination with other agents.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The functional hereditary units of BACTERIA.
The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE.
An aminoglycoside, broad-spectrum antibiotic produced by Streptomyces tenebrarius. It is effective against gram-negative bacteria, especially the PSEUDOMONAS species. It is a 10% component of the antibiotic complex, NEBRAMYCIN, produced by the same species.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis.
An oligosaccharide antibiotic produced by various STREPTOMYCES.
Analog of KANAMYCIN with antitubercular as well as broad-spectrum antimicrobial properties.
Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic.
Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
Proteins found in any species of bacterium.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106)
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in the intestines of humans and a wide variety of animals, as well as in manure, soil, and polluted waters. Its species are pathogenic, causing urinary tract infections and are also considered secondary invaders, causing septic lesions at other sites of the body.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
An antibiotic produced by Streptomyces lincolnensis var. lincolnensis. It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections.
Derivatives of BUTYRIC ACID that contain one or more amino groups attached to the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Basic lipopeptide antibiotic group obtained from Bacillus polymyxa. They affect the cell membrane by detergent action and may cause neuromuscular and kidney damage. At least eleven different members of the polymyxin group have been identified, each designated by a letter.
A layer of stratified EPITHELIUM forming the endolymphatic border of the cochlear duct at the lateral wall of the cochlea. Stria vascularis contains primarily three cell types (marginal, intermediate, and basal), and capillaries. The marginal cells directly facing the ENDOLYMPH are important in producing ion gradients and endochoclear potential.
Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.
An antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A semi-synthetic aminoglycoside antibiotic that is used in the treatment of TUBERCULOSIS.
Broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function.
A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation.
Gram-negative rods isolated from human urine and feces.
Tuberculosis resistant to ISONIAZID and RIFAMPIN and at least three of the six main classes of second-line drugs (AMINOGLYCOSIDES; polypeptide agents; FLUOROQUINOLONES; THIOAMIDES; CYCLOSERINE; and PARA-AMINOSALICYLIC ACID) as defined by the CDC.

Tobramycin, amikacin, sissomicin, and gentamicin resistant Gram-negative rods. (1/782)

Sensitivities to gentamicin, sissomicin, tobramycin, and amikacin were compared in 196 gentamicin-resistant Gram-negative rods and in 212 similar organisms sensitive to gentamicin, mainly isolated from clinical specimens. Amikacin was the aminoglycoside most active against gentamicin-resistant organisms, Pseudomonas aeruginosa, klebsiella spp, Escherichia coli, Proteus spp, Providencia spp, and Citrobacter spp being particularly susceptible. Most of the gentamicin-resistant organisms were isolated from the urine of patients undergoing surgery. Gentamicin was the most active antibiotic against gentamicin-sensitive E coli, Proteus mirabilis, and Serratia spp. Pseudomonas aeruginosa and other Pseudomonas spp were most susceptible to tobramycin.  (+info)

UK-18892, a new aminoglycoside: an in vitro study. (2/782)

UK-18892 is a new aminoglycoside antibiotic, a derivative of kanamycin A structurally related to amikacin. It was found to be active against a wide range of pathogenic bacteria, including many gentamicin-resistant strains. The spectrum and degree of activity of UK-18892 were similar to those of amikacin, and differences were relatively minor. UK-18892 was about twice as active as amikacin against gentamicin-susceptible strains of Pseudomonas aeruginosa. Both amikacin and UK-18892 were equally active against gentamicin-resistant strains of P. aeruginosa. There were no appreciable differences in the activity of UK-18892 and amikacin against Enterobacteriaceae and Staphylococcus aureus. Cross-resistance between these two antimicrobials was also apparent.  (+info)

A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. (3/782)

The nature of the broad substrate specificity phenomenon, as manifested by multidrug resistance proteins, is not yet understood. In the Escherichia coli multidrug transporter, MdfA, the hydrophobicity profile and PhoA fusion analysis have so far identified only one membrane-embedded charged amino acid residue (E26). In order to determine whether this negatively charged residue may play a role in multidrug recognition, we evaluated the expression and function of MdfA constructs mutated at this position. Replacing E26 with the positively charged residue lysine abolished the multidrug resistance activity against positively charged drugs, but retained chloramphenicol efflux and resistance. In contrast, when the negative charge was preserved in a mutant with aspartate instead of E26, chloramphenicol recognition and transport were drastically inhibited; however, the mutant exhibited almost wild-type multidrug resistance activity against lipophilic cations. These results suggest that although the negative charge at position 26 is not essential for active transport, it dictates the multidrug resistance character of MdfA. We show that such a negative charge is also found in other drug resistance transporters, and its possible significance regarding multidrug resistance is discussed.  (+info)

Effects of chronic administration of kanamycin on conditioned suppression to auditory stimulus in rats. (4/782)

The conditioned suppression technique was employed to study the ototoxic effects of chronic administration of the antibiotic, kanamycin. Lever pressing behavior for food reinforcement of rats was suppressed in the presence of an auditory stimulus (sound) or visual stimulus (light) that had been previously paired with electric shocks. Repeated administration of kanamycin at the dose of 400 mg/kg/day for more than 50 days significantly attenuated the conditioned suppression to auditory stimulus but did not attenuate the conditioned suppression to visual stimulus. This finding suggests that the attenuating effect of chronic administration of kanamycin on conditioned suppression to auditory stimulus can be interpreted in terms of the selective action of the drug on the auditory system.  (+info)

Experimental enteropathy in athymic and euthymic rats: synergistic role of lipopolysaccharide and indomethacin. (5/782)

The aim of this study was to investigate the immunologic and microbiological bases of indomethacin enteropathy. Athymic nude and euthymic specific pathogen-free (SPF) rats were reared under conventional or SPF conditions. In each group, indomethacin was given intrarectally for 2 days. Indomethacin enteropathy was evaluated using a previously described ulcer index and tissue myeloperoxidase activity. Both euthymic and athymic nude rats developed intestinal ulcers to the same degree under conventional conditions but no or minimal ulcer under SPF conditions. Pretreatment of conventional rats with intragastric kanamycin sulfate, an aminoglycoside antibiotic, attenuated indomethacin enteropathy in a dose-dependent fashion. Interestingly, when lipopolysaccharide was injected intraperitoneally in kanamycin-pretreated rats, it fully restored enteropathy in these rats in a dose-dependent manner. We confirmed that kanamycin decreased the number of gram-negative bacteria and endotoxin concentration of the small intestine in a dose-dependent fashion. These results indicate that indomethacin enteropathy is bacteria dependent and does not require a T cell function. Synergy between indomethacin and bacterial lipopolysaccharide may play a major role in this enteropathy.  (+info)

CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. (6/782)

CspA, CspB, and CspG, the major cold shock proteins of Escherichia coli, are dramatically induced upon temperature downshift. In this report, we examined the effects of kanamycin and chloramphenicol, inhibitors of protein synthesis, on cold shock inducibility of these proteins. Cell growth was completely blocked at 37 degrees C in the presence of kanamycin (100 microgram/ml) or chloramphenicol (200 microgram/ml). After 10 min of incubation with the antibiotics at 37 degrees C, cells were cold shocked at 15 degrees C and labeled with [35S]methionine at 30 min after the cold shock. Surprisingly, the synthesis of all these cold shock proteins was induced at a significantly high level virtually in the absence of synthesis of any other protein, indicating that the cold shock proteins are able to bypass the inhibitory effect of the antibiotics. Possible bypass mechanisms are discussed. The levels of cspA and cspB mRNAs for the first hour at 15 degrees C were hardly affected in the absence of new protein synthesis caused either by antibiotics or by amino acid starvation.  (+info)

Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. (7/782)

Genes required for natural transformation of Haemophilus influenzae Rd were identified by a cassette mutagenesis protocol consisting of the following steps: random insertional mutagenesis, phenotypic screening, sequencing of genome sequence tags from the DNA flanking the insertion in the selected mutants and comparison of genome sequence tags to genomic sequence data. The cassette mutagenesis screen for transformation genes resulted in five distinct mutant classes, two of which have been identified in previous studies. Insertions in the three newly identified loci interrupted genes with predicted protein products homologous to a type IV pilin-like protein biogenesis operon, drug-efflux transporters and a phospholipid-biosynthesis enzyme. The most significant finding of this screen is the requirement for type IV pilin-like proteins in genetic transformation of H. influenzae. These surface structures are utilized for DNA uptake in a number of Gram-positive and Gram-negative bacteria, and appear to be the common component among the systems for DNA binding.  (+info)

In vitro comparison of kanamycin, kanendomycin, gentamicin, amikacin, sisomicin, and dibekacin against 200 strains of Pseudomonas aeruginosa. (8/782)

The antimicrobial activity of kanamycin, kanendomycin, gentamicin, amikacin, sisomicin, and dibekacin against 200 strains of Pseudomonas aeruginosa was compared. Dibekacin was found to be the most active against the tested organisms, whereas the other aminoglycoside antibiotics fell in the following order of diminishing antibacterial potency: amikacin, sisomicin, gentamicin, kanendomycin, and kanamycin. Seven strains showed high-level resistance to gentamicin (minimal inhibitory concentration, 400 mug/ml), and two of them were also resistant to amikacin and sisomicin (minimal inhibitory concentration, 75 mug/ml). The minimal inhibitory concentration of dibekacin for these seven strains was 0.625 mug/ml.  (+info)

Kanamycin is an aminoglycoside antibiotic that is derived from the bacterium Streptomyces kanamyceticus. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Kanamycin is primarily used to treat serious infections caused by Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It is also used in veterinary medicine to prevent bacterial infections in animals.

Like other aminoglycosides, kanamycin can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, it is important to monitor patients closely for signs of toxicity and adjust the dose accordingly. Kanamycin is not commonly used as a first-line antibiotic due to its potential side effects and the availability of safer alternatives. However, it remains an important option for treating multidrug-resistant bacterial infections.

Kanamycin resistance is a type of antibiotic resistance in which bacteria have the ability to grow in the presence of kanamycin, a type of aminoglycoside antibiotic. This resistance can be caused by various mechanisms, including:

1. Enzymatic inactivation: Bacteria can produce enzymes that modify or degrade kanamycin, rendering it ineffective.
2. Alteration of the drug target: Changes in the structure or function of the bacterial ribosome, the target of kanamycin, can prevent the antibiotic from binding and inhibiting protein synthesis.
3. Efflux pumps: Overexpression of efflux pumps can lead to increased expulsion of kanamycin from the bacterial cell, reducing its intracellular concentration and effectiveness.
4. Reduced permeability: Decreased uptake of kanamycin into the bacterial cell due to changes in membrane permeability or reduced expression of porin channels can also contribute to resistance.

The development and spread of antibiotic resistance, including kanamycin resistance, pose significant challenges for the treatment of bacterial infections and are a major public health concern.

Kanamycin Kinase is not a widely recognized medical term, but it is a concept from the field of microbiology. It refers to an enzyme produced by certain bacteria that catalyzes the phosphorylation of kanamycin, an aminoglycoside antibiotic. The phosphorylation of kanamycin inactivates its antibacterial activity, making it less effective against those bacteria that produce this kinase. This is one mechanism by which some bacteria develop resistance to antibiotics.

Aminoglycosides are a class of antibiotics that are derived from bacteria and are used to treat various types of infections caused by gram-negative and some gram-positive bacteria. These antibiotics work by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death.

Some examples of aminoglycosides include gentamicin, tobramycin, neomycin, and streptomycin. These antibiotics are often used in combination with other antibiotics to treat severe infections, such as sepsis, pneumonia, and urinary tract infections.

Aminoglycosides can have serious side effects, including kidney damage and hearing loss, so they are typically reserved for use in serious infections that cannot be treated with other antibiotics. They are also used topically to treat skin infections and prevent wound infections after surgery.

It's important to note that aminoglycosides should only be used under the supervision of a healthcare professional, as improper use can lead to antibiotic resistance and further health complications.

Capreomycin is an antibiotic drug that is primarily used to treat tuberculosis (TB) that is resistant to other first-line medications. It belongs to a class of drugs called cyclic polypeptides, which work by inhibiting bacterial protein synthesis. Capreomycin is administered via intramuscular injection and is typically used in combination with other anti-TB drugs as part of a multidrug regimen.

The medical definition of 'Capreomycin' is:

A cyclic polypeptide antibiotic derived from Streptomyces capreolus, used in the treatment of tuberculosis, particularly drug-resistant strains. It inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit and is administered intramuscularly.

Amikacin is a type of antibiotic known as an aminoglycoside, which is used to treat various bacterial infections. It works by binding to the 30S subunit of the bacterial ribosome, inhibiting protein synthesis and ultimately leading to bacterial cell death. Amikacin is often used to treat serious infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It may be given intravenously or intramuscularly, depending on the severity and location of the infection. As with all antibiotics, amikacin should be used judiciously to prevent the development of antibiotic resistance.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

In the context of medical laboratory reporting, "R factors" refer to a set of values that describe the resistance of certain bacteria to different antibiotics. These factors are typically reported as R1, R2, R3, and so on, where each R factor corresponds to a specific antibiotic or class of antibiotics.

An R factor value of "1" indicates susceptibility to the corresponding antibiotic, while an R factor value of "R" (or "R-", depending on the laboratory's reporting practices) indicates resistance. An intermediate category may also be reported as "I" or "I-", indicating that the bacterium is intermediately sensitive to the antibiotic in question.

It's important to note that R factors are just one piece of information used to guide clinical decision-making around antibiotic therapy, and should be interpreted in conjunction with other factors such as the patient's clinical presentation, the severity of their infection, and any relevant guidelines or recommendations from infectious disease specialists.

Streptomycin is an antibiotic drug derived from the actinobacterium Streptomyces griseus. It belongs to the class of aminoglycosides and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial death.

Streptomycin is primarily used to treat a variety of infections caused by gram-negative and gram-positive bacteria, including tuberculosis, brucellosis, plague, tularemia, and certain types of bacterial endocarditis. It is also used as part of combination therapy for the treatment of multidrug-resistant tuberculosis (MDR-TB).

Like other aminoglycosides, streptomycin has a narrow therapeutic index and can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, its use is typically limited to cases where other antibiotics are ineffective or contraindicated.

It's important to note that the use of streptomycin requires careful monitoring of drug levels and kidney function, as well as regular audiometric testing to detect any potential hearing loss.

Neomycin is an antibiotic drug derived from the bacterium Streptomyces fradiae. It belongs to the class of aminoglycoside antibiotics and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Neomycin is primarily used topically (on the skin or mucous membranes) due to its poor absorption into the bloodstream when taken orally. It is effective against a wide range of gram-positive and gram-negative bacteria. Medical definitions for Neomycin include:

1. An antibiotic (aminoglycoside) derived from Streptomyces fradiae, used primarily for topical application in the treatment of superficial infections, burns, and wounds. It is not usually used systemically due to its potential ototoxicity and nephrotoxicity.
2. A medication (generic name) available as a cream, ointment, solution, or powder, often combined with other active ingredients such as bacitracin and polymyxin B for broader-spectrum antibacterial coverage. Neomycin is used to treat various skin conditions, including eczema, dermatitis, and minor cuts or abrasions.
3. A component of some over-the-counter products (e.g., ear drops, eye drops) intended for the treatment of external otitis, swimmer's ear, or bacterial conjunctivitis. It is crucial to follow the instructions carefully and avoid using neomycin-containing products for extended periods or in larger quantities than recommended, as this may increase the risk of antibiotic resistance and potential side effects.

In summary, Neomycin is an aminoglycoside antibiotic primarily used topically for treating various superficial bacterial infections due to its effectiveness against a wide range of gram-positive and gram-negative bacteria. It should be used cautiously and as directed to minimize the risk of side effects and antibiotic resistance.

Gentamicin is an antibiotic that belongs to the class of aminoglycosides. It is used to treat various types of bacterial infections, including:

* Gram-negative bacterial infections, such as those caused by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis
* Certain Gram-positive bacterial infections, such as those caused by Staphylococcus aureus and Streptococcus pyogenes

Gentamicin works by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death. It is typically given via injection (intramuscularly or intravenously) and is often used in combination with other antibiotics to treat serious infections.

Like all aminoglycosides, gentamicin can cause kidney damage and hearing loss, especially when used for long periods of time or at high doses. Therefore, monitoring of drug levels and renal function is recommended during treatment.

Framycetin is an aminoglycoside antibiotic, which is derived from the bacterium Streptomyces fradiae. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Framycetin is primarily used topically (on the skin or mucous membranes) to treat infections caused by susceptible strains of Gram-negative bacteria, such as Escherichia coli, Proteus species, and Klebsiella pneumoniae. It is often found in combination with other antibiotics, corticosteroids, or both in various topical formulations like creams, ointments, and ear drops.

It's important to note that Framycetin, like other aminoglycosides, has the potential for ototoxicity (damage to the inner ear) and nephrotoxicity (kidney damage), but these side effects are less likely to occur with topical use compared to systemic administration. However, it should still be used cautiously, and patients should follow their healthcare provider's instructions carefully when using products containing Framycetin.

Genetic conjugation is a type of genetic transfer that occurs between bacterial cells. It involves the process of one bacterium (the donor) transferring a piece of its DNA to another bacterium (the recipient) through direct contact or via a bridge-like connection called a pilus. This transferred DNA may contain genes that provide the recipient cell with new traits, such as antibiotic resistance or virulence factors, which can make the bacteria more harmful or difficult to treat. Genetic conjugation is an important mechanism for the spread of antibiotic resistance and other traits among bacterial populations.

Viomycin is an antibiotic that belongs to the class of drugs known as aminoglycosides. It works by binding to bacterial ribosomes and interfering with protein synthesis, leading to bacterial cell death. Viomycin is primarily used to treat tuberculosis and other mycobacterial infections that are resistant to other antibiotics. However, its use is limited due to its potential toxicity to the kidneys and hearing.

Here's a medical definition of Viomycin from Stedman's Medical Dictionary:

"A crystalline, basic polypeptide antibiotic produced by certain strains of Streptomyces floridae var. violaceusniger; used in the treatment of tuberculosis and other mycobacterial infections."

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Bacterial transformation is a natural process by which exogenous DNA is taken up and incorporated into the genome of a bacterial cell. This process was first discovered in 1928 by Frederick Griffith, who observed that dead virulent bacteria could transfer genetic material to live avirulent bacteria, thereby conferring new properties such as virulence to the recipient cells.

The uptake of DNA by bacterial cells typically occurs through a process called "competence," which can be either naturally induced under certain environmental conditions or artificially induced in the laboratory using various methods. Once inside the cell, the exogenous DNA may undergo recombination with the host genome, resulting in the acquisition of new genes or the alteration of existing ones.

Bacterial transformation has important implications for both basic research and biotechnology. It is a powerful tool for studying gene function and for engineering bacteria with novel properties, such as the ability to produce valuable proteins or degrade environmental pollutants. However, it also poses potential risks in the context of genetic engineering and biocontainment, as transformed bacteria may be able to transfer their newly acquired genes to other organisms in the environment.

Tobramycin is an aminoglycoside antibiotic used to treat various types of bacterial infections. According to the Medical Subject Headings (MeSH) terminology of the National Library of Medicine (NLM), the medical definition of Tobramycin is:

"A semi-synthetic modification of the aminoglycoside antibiotic, NEOMYCIN, that retains its antimicrobial activity but has less nephrotoxic and neurotoxic side effects. Tobramycin is used in the treatment of serious gram-negative infections, especially Pseudomonas infections in patients with cystic fibrosis."

Tobramycin works by binding to the 30S ribosomal subunit of bacterial cells, inhibiting protein synthesis and ultimately leading to bacterial cell death. It is commonly used to treat severe infections caused by susceptible strains of gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Serratia marcescens, and Enterobacter species.

Tobramycin is available in various formulations, such as injectable solutions, ophthalmic ointments, and inhaled powder for nebulization. The choice of formulation depends on the type and location of the infection being treated. As with any antibiotic, it's essential to use Tobramycin appropriately and under medical supervision to minimize the risk of antibiotic resistance and potential side effects.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

Tetracycline is a broad-spectrum antibiotic, which is used to treat various bacterial infections. It works by preventing the growth and multiplication of bacteria. It is a part of the tetracycline class of antibiotics, which also includes doxycycline, minocycline, and others.

Tetracycline is effective against a wide range of gram-positive and gram-negative bacteria, as well as some atypical organisms such as rickettsia, chlamydia, mycoplasma, and spirochetes. It is commonly used to treat respiratory infections, skin infections, urinary tract infections, sexually transmitted diseases, and other bacterial infections.

Tetracycline is available in various forms, including tablets, capsules, and liquid solutions. It should be taken orally with a full glass of water, and it is recommended to take it on an empty stomach, at least one hour before or two hours after meals. The drug can cause tooth discoloration in children under the age of 8, so it is generally not recommended for use in this population.

Like all antibiotics, tetracycline should be used only to treat bacterial infections and not viral infections, such as the common cold or flu. Overuse or misuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Paromomycin is an antiprotozoal medication, which belongs to the class of aminoglycoside antibiotics. It is primarily used to treat various intestinal infectious diseases caused by protozoa, such as amebiasis (an infection caused by Entamoeba histolytica) and giardiasis (an infection caused by Giardia lamblia). Paromomycin works by inhibiting the protein synthesis in the parasites, leading to their death. It is not typically used to treat bacterial infections in humans, as other aminoglycosides are.

It's important to note that paromomycin has limited systemic absorption and is primarily active within the gastrointestinal tract when taken orally. This makes it a valuable option for treating intestinal parasitic infections without causing significant harm to the beneficial bacteria in the gut or systemically affecting other organs.

Paromomycin is also used in veterinary medicine to treat various protozoal infections in animals, including leishmaniasis in dogs. The medication is available in different forms, such as tablets, capsules, and powder for oral suspension. As with any medication, paromomycin should be taken under the supervision of a healthcare professional, and its use may be subject to specific dosage, frequency, and duration guidelines.

Dibekacin is an aminoglycoside antibiotic that is primarily used in Japan for the treatment of severe bacterial infections. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Dibekacin is effective against a wide range of gram-negative and some gram-positive bacteria, including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis.

Like other aminoglycosides, dibekacin can cause serious side effects, such as kidney damage, hearing loss, and balance problems. It is usually given by injection into a vein or muscle, and the dosage is carefully monitored to minimize these risks. Dibekacin is not approved for use in the United States, but it may be available through special access programs in some cases.

Ampicillin is a penicillin-type antibiotic used to treat a wide range of bacterial infections. It works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. This causes the bacterial cells to become unstable and eventually die.

The medical definition of Ampicillin is:

"A semi-synthetic penicillin antibiotic, derived from the Penicillium mold. It is used to treat a variety of infections caused by susceptible gram-positive and gram-negative bacteria. Ampicillin is effective against both aerobic and anaerobic organisms. It is commonly used to treat respiratory tract infections, urinary tract infections, meningitis, and endocarditis."

It's important to note that Ampicillin is not effective against infections caused by methicillin-resistant Staphylococcus aureus (MRSA) or other bacteria that have developed resistance to penicillins. Additionally, overuse of antibiotics like Ampicillin can lead to the development of antibiotic resistance, which is a significant public health concern.

Genetic transformation is the process by which an organism's genetic material is altered or modified, typically through the introduction of foreign DNA. This can be achieved through various techniques such as:

* Gene transfer using vectors like plasmids, phages, or artificial chromosomes
* Direct uptake of naked DNA using methods like electroporation or chemically-mediated transfection
* Use of genome editing tools like CRISPR-Cas9 to introduce precise changes into the organism's genome.

The introduced DNA may come from another individual of the same species (cisgenic), from a different species (transgenic), or even be synthetically designed. The goal of genetic transformation is often to introduce new traits, functions, or characteristics that do not exist naturally in the organism, or to correct genetic defects.

This technique has broad applications in various fields, including molecular biology, biotechnology, and medical research, where it can be used to study gene function, develop genetically modified organisms (GMOs), create cell lines for drug screening, and even potentially treat genetic diseases through gene therapy.

Acetyltransferases are a type of enzyme that facilitates the transfer of an acetyl group (a chemical group consisting of an acetyl molecule, which is made up of carbon, hydrogen, and oxygen atoms) from a donor molecule to a recipient molecule. This transfer of an acetyl group can modify the function or activity of the recipient molecule.

In the context of biology and medicine, acetyltransferases are important for various cellular processes, including gene expression, DNA replication, and protein function. For example, histone acetyltransferases (HATs) are a type of acetyltransferase that add an acetyl group to the histone proteins around which DNA is wound. This modification can alter the structure of the chromatin, making certain genes more or less accessible for transcription, and thereby influencing gene expression.

Abnormal regulation of acetyltransferases has been implicated in various diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the function and regulation of these enzymes is an important area of research in biomedicine.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Extrachromosomal inheritance refers to the transmission of genetic information that occurs outside of the chromosomes, which are the structures in the cell nucleus that typically contain and transmit genetic material. This type of inheritance is relatively rare and can involve various types of genetic elements, such as plasmids or transposons.

In extrachromosomal inheritance, these genetic elements can replicate independently of the chromosomes and be passed on to offspring through mechanisms other than traditional Mendelian inheritance. This can lead to non-Mendelian patterns of inheritance, where traits do not follow the expected dominant or recessive patterns.

One example of extrachromosomal inheritance is the transmission of mitochondrial DNA (mtDNA), which occurs in the cytoplasm of the cell rather than on the chromosomes. Mitochondria are organelles that produce energy for the cell, and they contain their own small circular genome that is inherited maternally. Mutations in mtDNA can lead to a variety of genetic disorders, including mitochondrial diseases.

Overall, extrachromosomal inheritance is an important area of study in genetics, as it can help researchers better understand the complex ways in which genetic information is transmitted and expressed in living organisms.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

Chloramphenicol is an antibiotic medication that is used to treat a variety of bacterial infections. It works by inhibiting the ability of bacteria to synthesize proteins, which essential for their growth and survival. This helps to stop the spread of the infection and allows the body's immune system to clear the bacteria from the body.

Chloramphenicol is a broad-spectrum antibiotic, which means that it is effective against many different types of bacteria. It is often used to treat serious infections that have not responded to other antibiotics. However, because of its potential for serious side effects, including bone marrow suppression and gray baby syndrome, chloramphenicol is usually reserved for use in cases where other antibiotics are not effective or are contraindicated.

Chloramphenicol can be given by mouth, injection, or applied directly to the skin in the form of an ointment or cream. It is important to take or use chloramphenicol exactly as directed by a healthcare provider, and to complete the full course of treatment even if symptoms improve before all of the medication has been taken. This helps to ensure that the infection is fully treated and reduces the risk of antibiotic resistance.

'Proteus' doesn't have a specific medical definition itself, but it is related to a syndrome in medicine. Proteus syndrome is a rare genetic disorder characterized by the overgrowth of various tissues and organs in the body. The name "Proteus" comes from the Greek god Proteus, who could change his form at will, reflecting the diverse and ever-changing nature of this condition's symptoms.

People with Proteus syndrome experience asymmetric overgrowth of bones, skin, and other tissues, leading to abnormalities in body shape and function. The disorder can also affect blood vessels, causing benign tumors called hamartomas to develop. Additionally, individuals with Proteus syndrome are at an increased risk of developing certain types of cancer.

The genetic mutation responsible for Proteus syndrome is found in the AKT1 gene, which plays a crucial role in cell growth and division. This disorder is typically not inherited but instead arises spontaneously as a new mutation in the affected individual. Early diagnosis and management of Proteus syndrome can help improve patients' quality of life and reduce complications associated with the condition.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

Lincomycin is defined as an antibiotic produced by Streptomyces lincolnensis. It is primarily bacteriostatic, inhibiting protein synthesis in sensitive bacteria by binding to the 50S ribosomal subunit. Lincomycin is used clinically to treat a variety of infections caused by susceptible gram-positive organisms, including some anaerobes. It has activity against many strains of streptococci, pneumococci, and staphylococci, but not enterococci. Common side effects include gastrointestinal symptoms such as nausea, vomiting, and diarrhea.

Aminobutyrates are compounds that contain an amino group (-NH2) and a butyric acid group (-CH2-CH2-CH2-COOH). The most common aminobutyrate is gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter in the central nervous system. GABA plays a crucial role in regulating brain excitability and is involved in various physiological processes, including sleep, memory, and anxiety regulation. Abnormalities in GABAergic neurotransmission have been implicated in several neurological and psychiatric disorders, such as epilepsy, anxiety disorders, and chronic pain. Other aminobutyrates may also have important biological functions, but their roles are less well understood than that of GABA.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Polymyxins are a group of antibiotics derived from the bacterium Paenibacillus polymyxa. They consist of polymyxin B and polymyxin E (also known as colistin), which have similar structures and mechanisms of action. Polymyxins bind to the lipopolysaccharide component of the outer membrane of Gram-negative bacteria, causing disruption of the membrane and ultimately leading to bacterial cell death. These antibiotics are primarily used to treat serious infections caused by multidrug-resistant Gram-negative bacteria, but their use is limited due to potential nephrotoxicity and neurotoxicity.

Stria vascularis is a highly vascularized (rich in blood vessels) structure located in the cochlea of the inner ear. It plays a crucial role in the process of hearing by maintaining the endocochlear potential, which is essential for the conversion of sound waves into electrical signals that can be interpreted by the brain. The stria vascularis is composed of three layers: the marginal cells, intermediate cells, and basal cells, which work together to maintain the ionic balance and generate the endocochlear potential. Damage to the stria vascularis can result in hearing loss.

Bacterial chromosomes are typically circular, double-stranded DNA molecules that contain the genetic material of bacteria. Unlike eukaryotic cells, which have their DNA housed within a nucleus, bacterial chromosomes are located in the cytoplasm of the cell, often associated with the bacterial nucleoid.

Bacterial chromosomes can vary in size and structure among different species, but they typically contain all of the genetic information necessary for the survival and reproduction of the organism. They may also contain plasmids, which are smaller circular DNA molecules that can carry additional genes and can be transferred between bacteria through a process called conjugation.

One important feature of bacterial chromosomes is their ability to replicate rapidly, allowing bacteria to divide quickly and reproduce in large numbers. The replication of the bacterial chromosome begins at a specific origin point and proceeds in opposite directions until the entire chromosome has been copied. This process is tightly regulated and coordinated with cell division to ensure that each daughter cell receives a complete copy of the genetic material.

Overall, the study of bacterial chromosomes is an important area of research in microbiology, as understanding their structure and function can provide insights into bacterial genetics, evolution, and pathogenesis.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

Spectinomycin is an antibiotic that belongs to the aminoglycoside family. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Spectinomycin is primarily used to treat infections caused by susceptible strains of Gram-negative and Gram-positive bacteria, including gonorrhea, penicillin-resistant streptococci, and some anaerobes. It is administered parenterally (usually intramuscularly) and has a relatively narrow spectrum of activity compared to other aminoglycosides. Spectinomycin is not commonly used in many countries due to the availability of alternative antibiotics with broader spectra and fewer side effects.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Dihydrostreptomycin sulfate is an antibiotic that is derived from streptomycin, a naturally occurring antibiotic produced by the bacterium Streptomyces griseus. Dihydrostreptomycin is a semi-synthetic derivative of streptomycin, in which one of the amino groups has been reduced to a hydroxyl group, resulting in improved water solubility and stability compared to streptomycin.

Dihydrostreptomycin sulfate is used primarily to treat severe infections caused by gram-negative bacteria, such as tuberculosis, typhoid fever, and other bacterial infections that are resistant to other antibiotics. It works by binding to the 30S subunit of the bacterial ribosome, inhibiting protein synthesis and ultimately leading to bacterial cell death.

Like all antibiotics, dihydrostreptomycin sulfate should be used only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance and other serious health consequences.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to

'Mycobacterium tuberculosis' is a species of slow-growing, aerobic, gram-positive bacteria that demonstrates acid-fastness. It is the primary causative agent of tuberculosis (TB) in humans. This bacterium has a complex cell wall rich in lipids, including mycolic acids, which provides a hydrophobic barrier and makes it resistant to many conventional antibiotics. The ability of M. tuberculosis to survive within host macrophages and resist the immune response contributes to its pathogenicity and the difficulty in treating TB infections.

M. tuberculosis is typically transmitted through inhalation of infectious droplets containing the bacteria, which primarily targets the lungs but can spread to other parts of the body (extrapulmonary TB). The infection may result in a spectrum of clinical manifestations, ranging from latent TB infection (LTBI) to active disease. LTBI represents a dormant state where individuals are infected with M. tuberculosis but do not show symptoms and cannot transmit the bacteria. However, they remain at risk of developing active TB throughout their lifetime, especially if their immune system becomes compromised.

Effective prevention and control strategies for TB rely on early detection, treatment, and public health interventions to limit transmission. The current first-line treatments for drug-susceptible TB include a combination of isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis present significant challenges in TB control and require more complex treatment regimens.

"Providencia" is a term that refers to a type of bacteria that can cause infections in humans. The scientific name for this bacterium is "Providencia stuartii." It is part of the Enterobacteriaceae family and is commonly found in the gastrointestinal tract of humans and animals.

Providencia stuartii can cause a variety of infections, including urinary tract infections, wound infections, and bloodstream infections. It is often resistant to many antibiotics, which can make it difficult to treat. People who are hospitalized, have weakened immune systems, or use catheters are at increased risk for Providencia infections.

It's important to note that while "Providencia" refers to a specific type of bacteria, the term is not typically used in medical diagnoses or treatment. Instead, healthcare providers would specify the type of infection and the name of the bacterium causing it.

Extensively Drug-Resistant Tuberculosis (XDR-TB) is a term used to describe a rare, severe form of tuberculosis (TB) that is resistant to the majority of available drugs used to treat TB. This means that the bacteria that cause TB have developed resistance to at least four of the core anti-TB drugs, including isoniazid and rifampin, as well as any fluoroquinolone and at least one of the three injectable second-line drugs (amikacin, capreomycin, or kanamycin).

XDR-TB can be challenging to diagnose and treat due to its resistance to multiple drugs. It is also more likely to cause severe illness, spread from person to person, and result in poor treatment outcomes compared to drug-susceptible TB. XDR-TB is a public health concern, particularly in areas with high rates of TB and limited access to effective treatments.

It's important to note that XDR-TB should not be confused with Multi-Drug Resistant Tuberculosis (MDR-TB), which refers to TB that is resistant to at least isoniazid and rifampin, but not necessarily to the other second-line drugs.

Doi O, Ogura M, Tanaka N, Umezawa H (Sep 1968). "Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in ... Antibiotics, such as the aminoglycosides kanamycin or neomycin, are added to the cultures during growth phases in order to ... The systematic name of this enzyme class is ATP:kanamycin 3-O-phosphotransferase. This enzyme is also called neomycin- ... Gray GS, Fitch WM (1983). "Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from ...
Detailed drug Information for Kanamycin. Includes common brand names, drug descriptions, warnings, side effects and dosing ... Detailed Kanamycin dosage information Precautions while using kanamycin. Your doctor will check your progress closely while you ... Kanamycin (Injection). Generic name: kanamycin [ kan-a-MYE-sin ]. Drug class: Aminoglycosides ... Uses for kanamycin. Kanamycin injection is used to treat serious bacterial infections in many different parts of the body. This ...
Kanamycin acid sulfate , C18H40N4O19S2 , CID 24721551 - structure, chemical names, physical and chemical properties, ...
Control bacterial contamination in your cell culture with Kanamycin Sulphate Solution, a broad-spectrum aminoglycoside ... Youre reviewing: Kanamycin Sulfate Solution. How do you rate this product? *. 1 star. 2 stars. 3 stars. 4 stars. 5 stars. ... Kanamycin Sulfate Solution is a 10 mg/mL broad-spectrum aminoglycoside antibiotic solution used as a supplement to cell culture ...
Shop MilliporeSigma SIGMA Kanamycin solution from Streptomyces kanamyceticus, 50mg/mL in 0.9% NaCl, BioReagent, liquid, sterile ... SIGMA Kanamycin solution from Streptomyces kanamyceticus, 50mg/mL in 0.9% NaCl, BioReagent, liquid, sterile-filtered, suitable ... SIGMA Kanamycin solution from Streptomyces kanamyceticus, 50mg/mL in 0.9% NaCl, BioReagent, liquid, sterile-filtered, suitable ... Kanamycin solution from Streptomyces kanamyceticus, 50mg/mL in 0.9% NaCl, BioReagent, liquid, sterile-filtered, suitable for ...
1.14.11.37: kanamycin B dioxygenase. This is an abbreviated version!. For detailed information about kanamycin B dioxygenase, ...
... also known as Kanamycin sulfate or Kanamycin A, is an aminoglycoside bacteriocidal antibiotic and can be used as a selection ... Kanamycin sulfate, also known as Kanamycin sulfate or Kanamycin A, is an aminoglycoside bacteriocidal antibiotic and can be ... Kanamycin sulfate can be used as a selection agent for bacteria transformed with the kanamycin B resistance gene and ... Kanamycin sulfate is an aminoglycoside bacteriocidal antibiotic and is effective against gram-negative and gram-positive ...
Kanamycin Sulfate Powder. Shipping prices are for delivery in the United States ONLY. Please call us for international shipping ... Kanamycin Sulfate Powder. Fish Disease Diagnosis: Gram-negative bacteria and resistant strains of tuberculosis. Works ...
Anticorps Kanamycin (ABIN2144811). Validé pour ELISA. Testé dans Streptomyces kanamyceticus. Commandez en ligne. ... Détails sur Kanamycin (cache) Antigène Kanamycin Abstract Kanamycin Produits Classe de substances Chemical ... Antigène Tous les produits Kanamycin Kanamycin Reactivité Toutes les réactivités sur Kanamycin Anticorps * Streptomyces ... Cet anticorp Kanamycin est non-conjugé Application Tous les applications à travers Kanamycin Anticorps. * ELISA 7 ...
CONTACT BAIRD-PARKER EGG YOLK TELLURITE + NEUTRALIZERS ...
is backordered. We will ship it separately in 10 to 15 days.. ...
Kanamycin ELISA Kit K 4210-100.. April 9, 2022. Lieven0 Kanamycin is an aminoglycoside anti-toxin and is generally utilized in ...
Find information on Kanamycin (Kantrex) in Daviss Drug Guide including dosage, side effects, interactions, nursing ... "Kanamycin." Daviss Drug Guide, 18th ed., F.A. Davis Company, 2023. Anesthesia Central, anesth.unboundmedicine.com/anesthesia/ ... view/Davis-Drug-Guide/109063/7/kanamycin. Vallerand AHA, Sanoski CAC, Quiring CC. Kanamycin. Daviss Drug Guide. F.A. Davis ... Vallerand, A. H., Sanoski, C. A., & Quiring, C. (2023). Kanamycin. In Daviss Drug Guide (18th ed.). F.A. Davis Company. https ...
10 mg/mL. Add antibiotic solution to culture medium (after autoclaving and cooling to 50° C) at a rate of 1 mL of antibiotic solution per 100 mL of medium. Antibiotic solutions are stable for 1 month refrigerated or longer if frozen. Please specify delivery date to ensure fresh materials.
Kanamycin Sulfate published on Jun 2018 by American Society of Health-System Pharmacists. ...
Kanamycin test can effectively detect the residual kanamycin in honey to ensure the quality and safety of honey. ... 1. What is the Kanamycin test?. 2. What is Kanamycin?. 3. Kanamycin Uses. 4. The hazards of Kanamycin. 5. Features of Kanamycin ... 9. Importance of Kanamycin Test. 10. Components of Kanamycin Test. 11. Materials for Kanamycin Test. 12. How to use Kanamycin ... 6. Detection Method of Kanamycin Test. 7. Samples of Kanamycin Test. 8. Detection Limit of Kanamycin Test. ...
Remel Kanamycin Disc is used for presumptive identification of anaerobic gram-negative bacilli, including Bacteroides fragilis. ... Thermo Scientificâ„¢ Remel Kanamycin Disc is used for presumptive identification of anaerobic gram-negative bacilli, including ...
Kanamycin Sulfate, an aminoglycoside antibiotic effective against Gram-negative bacteria, Gram-positive bacteria, and ... Kanamycin Sulfate Solution, 30mg/mL, Sterile. Regular price $59.78 Sale SKU# 40120863-1 ... Kanamycin Sulfate, an aminoglycoside antibiotic effective against Gram-negative bacteria, Gram-positive bacteria, and ...
El Salvador - 2019 / Kanamycin Kanamycin. Injection 50 mg (sulfate)/mL in ampoule Injection 500 mg Injection 100 mg in 1 ml ...
Buy Kanamycin Acid Sulfate for research. Visit TOKU-E.com for details. ... Standard grade Kanamycin is composed of a mixture of three different fractions: Kanamycin A, B, and C. Kanamycin A is the major ... Kanamycin Acid Sulfate is typically used at a concentration of 50 µg/mL. Pryjma et al.used Kanamycin Sulfate (TOKU-E) to select ... Kanamycin can be used as a selective agent in several types of isolation media:. Kanamycin Aesculin Azide Agar - Enterococci ...
Consultare la scheda tecnica su Thermo Fisher Scientific
LB Agar Kanamycin-40 (100X100mm, Square 20PK) LB (Luria-Bertani) plates are most common plate used in Bio-Labs, which contain 1 ... LB Agar plates with 40µg/ml Kanamycin.. Applications: For use with Kanamycin resistant stains and stains harboring plasmids ... LB Agar Kanamycin-40 (100X100mm, Square 20PK). LB (Luria-Bertani) plates are most common plate used in Bio-Labs, which contain ...
Kanamycin. Kanamycin is also an injectable agent. It is available in 75-mg, 500-mg, and 1-g vials. The usual daily dosage is 15 ... Kanamycin. Thiacetazone. POTENTIALLY EFFECTIVE DRUGS THAT HAVE NOT BEEN WIDELY USED IN THE THERAPY OF TUBERCULOSIS. Amikacin. ... This toxic potential is presumably shared by kanamycin and capreomycin; however, there is little specific information on the ... In patients with impairment of renal function, streptomycin, kanamycin, and capreomycin should be avoided if possible. If there ...
Renal & Urology News publishes timely news coverage of scientific developments of interest to nephrologists and urologists, including in-depth coverage of all relevant medical conferences.. All of the news and departments from the print edition are fully archived on the site.. ...
Information on how the Division of TB Eliminations Laboratory Branch conducts M. tuberculosis complex drug susceptibility testing. Provided by the Centers for Disease Control and Prevention (CDC).
We offer good quality Kanamycin B-20MT/Year Service from China, rapid manufacturing and production. ... Get low priced Kanamycin B-20MT/Year service on demand, ... Kanamycin B-20MT/Year. Coenzyme Q10-150MT/Year. Sophorolipid- ... China Kanamycin B-20MT/Year Supplier. Copyright © 2021 - 2023 leaderbio-ingredients.com. All Rights Reserved. Developed by ECER ...
  • Among them, kanamycin A is the raw material for the synthesis of amikacin sulfate and kanamycin monosulfate. (ballyabio.com)
  • Because sensitive bacteria are susceptible to kanamycin resistance, kanamycin is no longer directly used in the clinical market, but after deep addition, it produces kanamycin monosulfate, amikacin sulfate and other products for clinical use. (ballyabio.com)
  • The second-line injectable drugs are amikacin, kanamycin, and capreomycin. (cdc.gov)
  • Extensively drug resistant-tuberculosis is defined as multidrug-resistant tuberculosis that is also resistant to any one of the fluoroquinolones and to at least one of three injectable second-line antibiotics (amikacin, capreomycin or kanamycin). (who.int)
  • MDR-TB that is also resistant to any one of the fluoroquinolones and to at least one of three injectable second-line medicines (amikacin, capreomycin or kanamycin).6 MDR-TB and XDR-TB are principally a result of inadequate or poorly administered treatment regimens. (who.int)
  • This enzyme is also called neomycin-kanamycin phosphotransferase. (wikipedia.org)
  • Kanamycin sulfate can be used as a selection agent for bacteria transformed with the kanamycin B resistance gene and transformants carrying the neomycin phosphotransferase (NptII/neo) gene. (yeasen.com)
  • capreomycin, or kanamycin. (cdc.gov)
  • Kanamycin Sulfate Solution is a 10 mg/mL broad-spectrum aminoglycoside antibiotic solution used as a supplement to cell culture media to control bacterial contamination. (bioind.com)
  • Kanamycin sulfate is an aminoglycoside antibiotic. (ballyabio.com)
  • Kanamycin Sulfate, an aminoglycoside antibiotic effective against Gram-negative bacteria, Gram-positive bacteria, and mycoplasma, inhibits translocation and protein synthesis by binding to the 70S ribosomal subunit. (plantmedia.com)
  • Kanamycin Acid Sulfate, BP is an aminoglycoside antibiotic often used to select for bacteria which have been successfully transformed with a plasmid conferring kanamycin resistance. (toku-e.com)
  • It is used for the infection of Staphylococcus, Pneumococcus, Proteus, Pseudomonas aeruginosa and Escherichia coli, and also for the infection of Gram-negative bacteria resistant to kanamycin and gentamicin. (ballyabio.com)
  • Kanamycin sulfate, also known as Kanamycin sulfate or Kanamycin A, is an aminoglycoside bacteriocidal antibiotic and can be used as a selection agent for bacteria. (yeasen.com)
  • Kanamycin sulfate is an aminoglycoside bacteriocidal antibiotic and is effective against gram-negative and gram-positive bacteria, and mycoplasma. (yeasen.com)
  • If the bacteria produces an enzyme that destroys kanamycin, it can become a resistant strain. (ballyabio.com)
  • Kanamycin-resistant plasmids are often used as selection genes or marker genes for molecular cloning. (ballyabio.com)
  • Kanamycin Acid Sulfate is commonly used as a selective agent to select for resistant mammalian, fungal, or bacterial cells that contain the kanMX marker or other Kanamycin resistance genes. (toku-e.com)
  • Applications: For use with Kanamycin resistant stains and stains harboring plasmids such as pPIC9K, pCRBlunt, pUC9P series plasmids. (crystalgen.com)
  • Kanamycin Acid Sulfate is typically used at a concentration of 50 µg/mL. (toku-e.com)
  • Under the optimal experimental conditions, the concentration of kanamycin was proportional to the degree of ECL quenching within a linear range of 5-4500 × 10-12 mol L-1 at 0.8 V (vs. Ag/AgCl electrode electrode ), and the detection limit was 5.8 × 10-13 mol L-1. (bvsalud.org)
  • Kanamycin sulfate inhibits translocation and elicits miscoding by binding to the 70S ribosomal subunit. (yeasen.com)
  • In the current kanamycin extraction process, in the final crystallization process, ethanol is added to the concentrate and then crystallized and then centrifuged. (ballyabio.com)
  • In addition to ethanol, there is a small amount of kanamycin A in the resulting crystal mother liquor. (ballyabio.com)
  • With the kanamycin B component, ethanol can be reused after recovery. (ballyabio.com)
  • Kanamycin is very soluble in aqueous solution at 92.3 mg/mL. (toku-e.com)
  • Aminoglycoside-3'-phosphotransferase (APH(3')), also known as aminoglycoside kinase, is an enzyme that primarily catalyzes the addition of phosphate from ATP to the 3'-hydroxyl group of a 4,6-disubstituted aminoglycoside, such as kanamycin. (wikipedia.org)
  • The systematic name of this enzyme class is ATP:kanamycin 3'-O-phosphotransferase. (wikipedia.org)
  • Kanamycin injection is used to treat serious bacterial infections in many different parts of the body. (drugs.com)
  • Kanamycin injection is usually used for serious bacterial infections for which other medicines may not work. (drugs.com)
  • Appropriate studies performed to date have not demonstrated pediatric-specific problems that would limit the usefulness of kanamycin injection in children. (drugs.com)
  • No information is available on the relationship of age to the effects of kanamycin injection in geriatric patients. (drugs.com)
  • However, elderly patients are more likely to have kidney problems, which may require caution and an adjustment in the dose for patients receiving kanamycin injection. (drugs.com)
  • Kanamycin can be used for oral and intravenous injections, and is effective against a variety of bacterial infections. (ballyabio.com)
  • For the treatment of bacterial infections due to kanamycin sensitive organisms in dogs and cats. (fda.gov)
  • A common cause of resistance to kanamycin (KAN) in tuberculosis is overexpression of the enhanced intracellular survival (Eis) protein. (uky.edu)
  • OMC/In2O3 effectively amplified the ECL signal of the C-dots, thereby enhancing the detection sensitivity , whereas kanamycin quenched the signal. (bvsalud.org)
  • Used as a selection agent for cells transformed with kanamycin B (neoR, kanR) resistance gene. (thomassci.com)
  • Each milliliter of solution contains 50 or 200 milligrams (mg) of kanamycin as kanamycin sulfate. (fda.gov)
  • Kanamycin is a protein biosynthesis inhibitor that binds to 30S ribosomes to cause miscoding of the mRNA code and inhibit bacterial protein synthesis. (ballyabio.com)
  • Thermo Scientificâ„¢ Remel Kanamycin Disc is used for presumptive identification of anaerobic gram-negative bacilli, including Bacteroides fragilis. (gssl.net)
  • Kanamycin Test is based on the Colloidal Gold Immunochromatography to detect the Kanamycin residues in honey products. (ballyabio.com)
  • High purity EvoPure ® kanamycin products can be used to analyze the specific effects of individual kanamycin fractions. (toku-e.com)
  • Kanamycin belongs to the class of medicines known as aminoglycoside antibiotics. (drugs.com)
  • Kanamycin is often used in the Agrobacterium mediated transformation while using the npt II gene as selection marker. (toku-e.com)
  • A highly sensitive kanamycin electrochemiluminescence (ECL) switch sensor was constructed. (bvsalud.org)
  • Standard grade Kanamycin is composed of a mixture of three different fractions: Kanamycin A, B, and C. Kanamycin A is the major component of the complex, and Kanamycin B (II) and C (III) are minor components. (toku-e.com)
  • Anesthesia Central , anesth.unboundmedicine.com/anesthesia/view/Davis-Drug-Guide/109063/7/kanamycin. (unboundmedicine.com)
  • After kanamycin elution, the prepared sensor retained specific kanamycin recognition sites. (bvsalud.org)