A dominantly-inherited ATAXIA first described in people of Azorean and Portuguese descent, and subsequently identified in Brazil, Japan, China, and Australia. This disorder is classified as one of the SPINOCEREBELLAR ATAXIAS (Type 3) and has been associated with a mutation of the MJD1 gene on chromosome 14. Clinical features include progressive ataxia, DYSARTHRIA, postural instability, nystagmus, eyelid retraction, and facial FASCICULATIONS. DYSTONIA is prominent in younger patients (referred to as Type I Machado-Joseph Disease). Type II features ataxia and ocular signs; Type III features MUSCULAR ATROPHY and a sensorimotor neuropathy; and Type IV features extrapyramidal signs combined with a sensorimotor neuropathy. (From Clin Neurosci 1995;3(1):17-22; Ann Neurol 1998 Mar;43(3):288-96)
Written or other literary works whose subject matter is medical or about the profession of medicine and related areas.
Metastatic lesion of the UMBILICUS associated with intra-abdominal neoplasms especially of the GASTROINTESTINAL TRACT or OVARY.
The pit in the center of the ABDOMINAL WALL marking the point where the UMBILICAL CORD entered in the FETUS.
Time period from 1801 through 1900 of the common era.
Time period from 1901 through 2000 of the common era.
The Nobel Prize is not a medical term, but a prestigious international award given annually in several categories, including Physiology or Medicine, for significant contributions to humanity that have conferred the greatest benefit to mankind.
Time period from 1701 through 1800 of the common era.
Time period from 1601 through 1700 of the common era.
A medical specialty concerned with the study of the structures, functions, and diseases of the nervous system.

Conserved domains and lack of evidence for polyglutamine length polymorphism in the chicken homolog of the Machado-Joseph disease gene product ataxin-3. (1/150)

Ataxin-3 is a protein of unknown function which is mutated in Machado-Joseph disease by expansion of a genetically unstable CAG repeat encoding polyglutamine. By analysis of chicken ataxin-3 we were able to identify four conserved domains of the protein and detected widespread expression in chicken tissues. In the first such analysis in a non-primate species we found that in contrast to primates, the chicken CAG repeat is short and genetically stable.  (+info)

Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). (2/150)

To identify determinants of peripheral involvement in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) the influence of CAG repeat length, age of onset, disease duration and age on the results of nerve conduction studies was analysed in 58 patients with SCA3/MJD. Patients with SCA3/MJD showed marked reduction of compound muscle action potential (CMAP) and sensory nerve action potential (SNAP) amplitudes indicating axonal neuropathy of both motor and sensory fibres. In addition, there was moderate slowing of nerve conduction suggestive of mild peripheral demyelination. Multivariate regression showed that CMAP and SNAP amplitudes decreased with age, but were not affected by CAG repeat length, age of onset, or disease duration. The age related decline of CMAP and SNAP amplitudes in SCA3/MJD was greater than in normal subjects. The data suggest that the degree of peripheral damage in SCA3/MJD does not depend on CAG repeat length, age of onset, or disease duration, but is mainly related to the time period over which the SCA3/MJD mutation exerts its effect.  (+info)

Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. (3/150)

Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.  (+info)

Study of three intragenic polymorphisms in the Machado-Joseph disease gene (MJD1) in relation to genetic instability of the (CAG)n tract. (4/150)

Intergenerational instability is one of the most important features of the disease-associated trinucleotide expansions, leading to variation in size of the repeat among and within families, which manifests as variable age at onset and severity, and is probably the basis for the occurrence of anticipation. Several factors are known to affect the degree of instability, namely the type of repeated sequence, its initial size, the presence or absence of interruptions in the repetitive tract and the gender of the transmitting parent. A recent study demonstrated the effect of an intragenic polymorphism (C987GG/G987GG) in the Machado-Joseph disease causative gene, immediately downstream of the CAG repeat, on the intergenerational instability of the expanded repeat. Surprisingly, there was an effect not only of the specific allele in cis to the disease chromosome, but also of the allele on the normal chromosome, suggesting the existence of an interaction between the normal and expanded alleles that affects the fidelity of replication of the (CAG)n tract. This effect could be a direct effect of the polymorphism studied or, alternatively, this polymorphism could be in disequilibrium with some other flanking sequence which affects the instability of the repetitive (CAG)n tract. In order to confirm the previous results in a different population and to distinguish between a direct and indirect effect of the CGG/GGG polymorphism, we typed 70 parent-progeny pairs for which the variation in the (CAG)n length in the MJD1 gene was known, for three intragenic polymorphisms: C987GG/G987GG and two additional, newly described ones, TAA1118/TAC1118 and A669TG/G669TG. We also typed a control population of 125 individuals for the A669TG/G669TG, C987GG/G987GG and TAA1118/TAC1118 polymorphisms, in an attempt to identify any association between haplotype and (CAG)n length in normal chromosomes, suggestive of an instability-predisposing effect of the repeat-flanking sequences, which could have led to the origin of the MJD mutation in the human population. We confirmed the effect of the C987GG/G987GG polymorphism on intergenerational instability when present in trans. Our results suggest that this effect is restricted to a small region of the gene, immediately downstream of the CAG repeat, which includes this particular nucleotide substitution and the stop codon of the MJD1 cDNA, and is not a more widespread chromosomal effect. The lack of a significant association of any specific intragenic haplotype with larger CAG repeats in normal chromosomes, together with the absence of an effect of the intragenic haplotype in cis on the intergenerational instability of the expanded (CAG)n in MJD families does not indicate the existence of an instability-predisposing haplotype.  (+info)

Mendelian segregation of normal CAG trinucleotide repeat alleles at three autosomal loci. (5/150)

Segregation ratio distortion (SRD) with preferential transmission of expanded CAG alleles has been reported in Machado-Joseph disease (MJD/SCA3), spinocerebellar ataxia type I (SCA1), and dentatorubral-pallidoluysian atrophy (DRPLA). We have examined the transmission frequencies of alleles in normal heterozygotes at these disease loci in 377 pairs of twins and their parents and find no evidence for SRD.  (+info)

A genetic model for human polyglutamine-repeat disease in Drosophila melanogaster. (6/150)

To apply genetics to the problem of human polyglutamine-repeat disease, we recreated polyglutamine-repeat disease in Drosophila melanogaster. To do this, we expressed forms of the human gene encoding spinocerebellar ataxia type 3, also called Machado-Joseph disease (SCA-3/MJD). This gene is responsible for the most common form of human ataxia worldwide. Expression of a normal form of the MJD protein with 27 polyglutamines (MJDtr-Q27) had no phenotype. However, expression of a form of the protein with an expanded run of 78 glutamines (MJDtr-Q78) caused late onset progressive degeneration. In addition, the MJDtr-Q78 formed abnormal protein aggregates, or nuclear inclusions (NIs), whereas the control protein was cytoplasmic. These data indicate that the mechanisms of human polyglutamine-repeat disease are conserved to Drosophila. We are currently using this model to address potential mechanisms by which the mutant disease protein causes neural degeneration, as well as to define genes that can prevent polyglutamine-induced degeneration. By applying the power of Drosophila genetics to the problem of human polyglutamine-induced neural degeneration, we hope to identify ways to prevent and treat these diseases in humans.  (+info)

French Machado-Joseph disease patients do not exhibit gametic segregation distortion: a sperm typing analysis. (7/150)

Segregation distortion has been reported to occur in a number of the trinucleotide repeat disorders. On the basis of a sperm typing study performed in patients of Japanese descent with Machado-Joseph disease (MJD), it was reported that disease alleles are preferentially transmitted during meiosis. We performed a sperm typing study of five MJD patients of French descent and analysis of the pooled data shows a ratio of mutant to normal alleles of 379:436 (46.5:53.5%), which does not support meiotic segregation distortion. To confirm these results, sperm typing analysis was also performed using a polymorphic marker, D14S1050, closely linked to the MJD1 gene. Among 910 sperm analyzed, the allele linked to the disease chromosome was detected in 50.3% of the samples and the allele linked to the normal chromosome was found in 49.6% of the sperm. The difference in frequency of these two alleles is not significant ( P = 0.8423). Likelihood-based analysis of segregation distortion in the single sperm data using the SPERMSEG program also showed no support for segregation distortion at the gamete level in this patient population. The previous report on the Japanese patients also suggested that disease allele stability may be influenced by a trans effect of an intragenic polymorphism (987 G/C) in the wild-type allele. All of the French patients were heterozygous for this polymorphism. However, analysis of the variance in repeat number in sperm from the French MJD patients overlapped significantly with the variance in repeat number observed in the C/C homozygous Japanese patients.  (+info)

Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix. (8/150)

Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is a member of the CAG/polyglutamine repeat disease family. In this family of disorders, a normally polymorphic CAG repeat becomes expanded, resulting in expression of an expanded polyglutamine domain in the disease gene product. Experimental models of polyglutamine disease implicate the nucleus in pathogenesis; however, the link between intranuclear expression of expanded polyglutamine and neuronal dysfunction remains unclear. Here we demonstrate that ataxin-3, the disease protein in SCA3/MJD, adopts a unique conformation when expressed within the nucleus of transfected cells. The monoclonal antibody 1C2 is known preferentially to bind expanded polyglutamine, but we find that it also binds a fragment of ataxin-3 containing a normal glutamine repeat. In addition, expression of ataxin-3 within the nucleus exposes the glutamine domain of the full-length non-pathological protein, allowing it to bind the monoclonal antibody 1C2. Fractionation and immunochemical experiments indicate that this novel conformation of intranuclear ataxin-3 is not due to proteolysis, suggesting instead that association with nuclear protein(s) alters the structure of full-length ataxin-3 which exposes the polyglutamine domain. This conformationally altered ataxin-3 is bound to the nuclear matrix. The pathological form of ataxin-3 with an expanded polyglutamine domain also associates with the nuclear matrix. These data suggest that an early event in the pathogenesis of SCA3/MJD may be an altered conformation of ataxin-3 within the nucleus that exposes the polyglutamine domain.  (+info)

Machado-Joseph Disease (MJD) is a genetic disorder that affects the part of the brain that controls movement. It is also known as spinocerebellar ataxia type 3 (SCA3). MJD is characterized by progressive problems with coordination, speech, and swallowing, along with muscle stiffness, tremors, and in some cases, eye movement abnormalities.

MJD is caused by a mutation in the ATXN3 gene, which results in an expanded CAG repeat sequence. This genetic defect leads to the production of an abnormal protein that accumulates in nerve cells, causing them to die. The severity and age of onset of MJD can vary widely, even within families, but symptoms typically begin between the ages of 10 and 60.

MJD is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the disease-causing mutation from an affected parent. Currently, there is no cure for MJD, but treatments can help manage symptoms and improve quality of life.

"Medicine in Literature" is not a medical term per se, but rather a field of study that explores the representation and interpretation of medicine, health, and illness in literature. It is an interdisciplinary approach that combines literary analysis with medical humanities to understand the cultural, historical, and social contexts of medical practices, theories, and experiences as depicted in various forms of literature. This field often examines how literature reflects and shapes societal attitudes towards health, disease, and medical care, and how it can contribute to medical education and empathic understanding of patients' experiences.

"Sister Mary Joseph's nodule" is a term used in medicine to describe a palpable (able to be felt) or visible nodule or lump that is located at the umbilicus (belly button). It is usually indicative of an underlying malignancy, most commonly originating from the stomach or ovaries. The presence of this nodule suggests a poor prognosis as it often indicates advanced stage cancer. The term was coined by Dr. Hamilton Bailey in honor of Sister Mary Joseph, who first recognized the association between umbilical nodules and internal malignancies during her work as a surgical nurse with Dr. William Mayo in the early 20th century.

The umbilicus, also known as the navel, is the scar left on the abdominal wall after the removal of the umbilical cord in a newborn. The umbilical cord connects the developing fetus to the placenta in the uterus during pregnancy, providing essential nutrients and oxygen while removing waste products. After birth, the cord is clamped and cut, leaving behind a small stump that eventually dries up and falls off, leaving the umbilicus. In adults, it typically appears as a slight depression or dimple on the abdomen.

"History, 19th Century" is not a medical term or concept. It refers to the historical events, developments, and figures related to the 1800s in various fields, including politics, culture, science, and technology. However, if you are looking for medical advancements during the 19th century, here's a brief overview:

The 19th century was a period of significant progress in medicine, with numerous discoveries and innovations that shaped modern medical practices. Some notable developments include:

1. Edward Jenner's smallpox vaccine (1796): Although not strictly within the 19th century, Jenner's discovery laid the foundation for vaccination as a preventive measure against infectious diseases.
2. Germ theory of disease: The work of Louis Pasteur, Robert Koch, and others established that many diseases were caused by microorganisms, leading to the development of antiseptic practices and vaccines.
3. Anesthesia: In 1842, Crawford Long first used ether as an anesthetic during surgery, followed by the introduction of chloroform in 1847 by James Simpson.
4. Antisepsis and asepsis: Joseph Lister introduced antiseptic practices in surgery, significantly reducing postoperative infections. Later, the concept of asepsis (sterilization) was developed to prevent contamination during surgical procedures.
5. Microbiology: The development of techniques for culturing and staining bacteria allowed for better understanding and identification of pathogens.
6. Physiology: Claude Bernard's work on the regulation of internal body functions, or homeostasis, contributed significantly to our understanding of human physiology.
7. Neurology: Jean-Martin Charcot made significant contributions to the study of neurological disorders, including multiple sclerosis and Parkinson's disease.
8. Psychiatry: Sigmund Freud developed psychoanalysis, a new approach to understanding mental illnesses.
9. Public health: The 19th century saw the establishment of public health organizations and initiatives aimed at improving sanitation, water quality, and vaccination programs.
10. Medical education reforms: The Flexner Report in 1910 led to significant improvements in medical education standards and practices.

I'm sorry for any confusion, but "History, 20th Century" is a broad and complex topic that refers to the events, developments, and transformations that occurred throughout the world during the 1900s. It is not a medical term or concept. If you're interested in learning more about this historical period, I would recommend consulting a history textbook, reputable online resources, or speaking with a historian. They can provide detailed information about the political, social, economic, and cultural changes that took place during the 20th century.

I'm sorry for any confusion, but the term "Nobel Prize" is not a medical definition. The Nobel Prize is an international award given annually in several categories, and one of those categories is physiology or medicine. The Nobel Prize in Physiology or Medicine is awarded to individuals who have made significant discoveries of outstanding importance in the fields of life sciences and medicine. It is one of the most prestigious awards in these fields.

I believe there might be a bit of confusion in your question. A "history" in medical terms usually refers to the detailed account of a patient's symptoms, illnesses, and treatments received, which is used by healthcare professionals to understand their health status and provide appropriate care. It is not typically associated with a specific century like the 18th century.

If you are asking for information about the medical practices or significant developments in the field of medicine during the 18th century, I would be happy to provide some insight into that! The 18th century was a time of great advancement and change in the medical field, with many notable discoveries and innovations. Some examples include:

* The development of smallpox vaccination by Edward Jenner in 1796
* The discovery of oxygen by Joseph Priestley in 1774
* The invention of the thermometer by Gabriel Fahrenheit in 1714
* The publication of "An Inquiry into the Causes and Effects of the Variolae Vaccinae" by Edward Jenner in 1798, which helped to establish the concept of vaccination
* The founding of the Royal Society of Medicine in London in 1773
* The development of new surgical techniques and instruments, such as the use of tourniquets and catgut sutures.

I believe there might be a bit of confusion in your question. A "history" in medical terms usually refers to the detailed account of a patient's symptoms, illnesses, and treatments received, which is used by healthcare professionals to understand their health status and provide appropriate care. It is not typically associated with a specific century like the 17th century.

If you are asking for information about the medical practices or significant developments in the field of medicine during the 17th century, I would be happy to provide some insight into that. The 17th century was a time of great advancement in medical knowledge and practice, with several key figures and events shaping the course of medical history.

Some notable developments in medicine during the 17th century include:

1. William Harvey's discovery of the circulation of blood (1628): English physician William Harvey published his groundbreaking work "De Motu Cordis" (On the Motion of the Heart and Blood), which described the circulatory system and the role of the heart in pumping blood throughout the body. This discovery fundamentally changed our understanding of human anatomy and physiology.
2. The development of the microscope (1600s): The invention of the microscope allowed scientists to observe structures that were previously invisible to the naked eye, such as cells, bacteria, and other microorganisms. This technology opened up new avenues of research in anatomy, physiology, and pathology, paving the way for modern medical science.
3. The establishment of the Royal Society (1660): The Royal Society, a prominent scientific organization in the UK, was founded during this century to promote scientific inquiry and share knowledge among its members. Many notable scientists and physicians, including Robert Hooke and Christopher Wren, were part of the society and contributed significantly to the advancement of medical science.
4. The Smallpox Vaccination (1796): Although this occurred near the end of the 18th century, the groundwork for Edward Jenner's smallpox vaccine was laid during the 17th century. Smallpox was a significant public health issue during this time, and Jenner's development of an effective vaccine marked a major milestone in the history of medicine and public health.
5. The work of Sylvius de le Boe (1614-1672): A Dutch physician and scientist, Sylvius de le Boe made significant contributions to our understanding of human anatomy and physiology. He was the first to describe the circulation of blood in the lungs and identified the role of the liver in metabolism.

These are just a few examples of the many advancements that took place during the 17th century, shaping the course of medical history and laying the foundation for modern medicine.

Neurology is a branch of medicine that deals with the study and treatment of diseases and disorders of the nervous system, which includes the brain, spinal cord, peripheral nerves, muscles, and autonomic nervous system. Neurologists are medical doctors who specialize in this field, diagnosing and treating conditions such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, and various types of headaches and pain disorders. They use a variety of diagnostic tests, including imaging studies like MRI and CT scans, electrophysiological tests like EEG and EMG, and laboratory tests to evaluate nerve function and identify any underlying conditions or abnormalities. Treatment options may include medication, surgery, rehabilitation, or lifestyle modifications.

No FAQ available that match "machado joseph disease"

No images available that match "machado joseph disease"