Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia.
Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs.
Skeletal muscle relaxant that acts by interfering with excitation-contraction coupling in the muscle fiber. It is used in spasticity and other neuromuscular abnormalities. Although the mechanism of action is probably not central, dantrolene is usually grouped with the central muscle relaxants.
A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178)
A heterogeneous group of drugs used to produce muscle relaxation, excepting the neuromuscular blocking agents. They have their primary clinical and therapeutic uses in the treatment of muscle spasm and immobility associated with strains, sprains, and injuries of the back and, to a lesser degree, injuries to the neck. They have been used also for the treatment of a variety of clinical conditions that have in common only the presence of skeletal muscle hyperactivity, for example, the muscle spasms that can occur in MULTIPLE SCLEROSIS. (From Smith and Reynard, Textbook of Pharmacology, 1991, p358)
A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES.
A quaternary skeletal muscle relaxant usually used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for.
An inherited congenital myopathic condition characterized by weakness and hypotonia in infancy and delayed motor development. Muscle biopsy reveals a condensation of myofibrils and myofibrillar material in the central portion of each muscle fiber. (Adams et al., Principles of Neurology, 6th ed, p1452)
A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling.
A constitution or condition of the body which makes the tissues react in special ways to certain extrinsic stimuli and thus tends to make the individual more than usually susceptible to certain diseases.
Cresols, also known as hydroxytoluene, are a group of phenolic compounds including ortho-cresol, meta-cresol, and para-cresol, which differ in the position of the hydroxyl group on the benzene ring.
Prolonged shortening of the muscle or other soft tissue around a joint, preventing movement of the joint.
Continuous involuntary sustained muscle contraction which is often a manifestation of BASAL GANGLIA DISEASES. When an affected muscle is passively stretched, the degree of resistance remains constant regardless of the rate at which the muscle is stretched. This feature helps to distinguish rigidity from MUSCLE SPASTICITY. (From Adams et al., Principles of Neurology, 6th ed, p73)
Gases or volatile liquids that vary in the rate at which they induce anesthesia; potency; the degree of circulation, respiratory, or neuromuscular depression they produce; and analgesic effects. Inhalation anesthetics have advantages over intravenous agents in that the depth of anesthesia can be changed rapidly by altering the inhaled concentration. Because of their rapid elimination, any postoperative respiratory depression is of relatively short duration. (From AMA Drug Evaluations Annual, 1994, p173)
Necrosis or disintegration of skeletal muscle often followed by myoglobinuria.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.
The measure of the level of heat of a human or animal.
A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
An abnormal elevation of body temperature, usually as a result of a pathologic process.
A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions.
Surgery of the upper jaw bone usually performed to correct upper and lower jaw misalignment.
A group of inherited congenital myopathic conditions characterized clinically by weakness, hypotonia, and prominent hypoplasia of proximal muscles including the face. Muscle biopsy reveals large numbers of rod-shaped structures beneath the muscle fiber plasma membrane. This disorder is genetically heterogeneous and may occasionally present in adults. (Adams et al., Principles of Neurology, 6th ed, p1453)
Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE.
A condition caused by the failure of body to dissipate heat in an excessively hot environment or during PHYSICAL EXERTION in a hot environment. Contrast to HEAT EXHAUSTION, the body temperature in heat stroke patient is dangerously high with red, hot skin accompanied by DELUSIONS; CONVULSIONS; or COMA. It can be a life-threatening emergency and is most common in infants and the elderly.
A masticatory muscle whose action is closing the jaws.
Compounds based on imidazolidine dione. Some derivatives are ANTICONVULSANTS.
Contractile tissue that produces movement in animals.
Agents that are capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site.
A congenital disorder of CHONDROGENESIS and OSTEOGENESIS characterized by hypoplasia of endochondral bones. In most cases there is a curvature of the long bones especially the TIBIA with dimpling of the skin over the bowed areas, malformation of the pelvis and spine, 11 pairs of ribs, hypoplastic scapulae, club feet, micrognathia, CLEFT PALATE, tracheobronchomalacia, and in some patients male-to-female sex reversal (SEX REVERSAL, GONADAL). Most patients die in the neonatal period of respiratory distress. Campomelic dysplasia is associated with haploinsufficiency of the SOX9 TRANSCRIPTION FACTOR gene.
Substances added to pharmaceutical preparations to protect them from chemical change or microbial action. They include ANTI-BACTERIAL AGENTS and antioxidants.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.
Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.
Diseases of domestic swine and of the wild boar of the genus Sus.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery.
Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation.
While there isn't a specific medical definition for "North America," I can provide a geographical definition that is often used in public health and medical contexts: North America is the third largest continent by area, encompassing 23 independent states, including the United States, Canada, and Mexico, which are home to diverse populations, cultures, and ecosystems, and share common health-related challenges such as obesity, diabetes, and healthcare access disparities.
A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here.
A process fundamental to muscle physiology whereby an electrical stimulus or action potential triggers a myocyte to depolarize and contract. This mechanical muscle contraction response is regulated by entry of calcium ions into the cell.
A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
A range of methods used to reduce pain and anxiety during dental procedures.
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.

Mutation screening of the RYR1 gene and identification of two novel mutations in Italian malignant hyperthermia families. (1/375)

Point mutations in the ryanodine receptor (RYR1) gene are associated with malignant hyperthermia, an autosomal dominant disorder triggered in susceptible people (MHS) by volatile anaesthetics and depolarising skeletal muscle relaxants. To date, 17 missense point mutations have been identified in the human RYR1 gene by screening of the cDNA obtained from muscle biopsies. Here we report single strand conformation polymorphism (SSCP) screening for nine of the most frequent RYR1 mutations using genomic DNA isolated from MHS patients. In addition, the Argl63Cys mutation was analysed by restriction enzyme digestion. We analysed 57 unrelated patients and detected seven of the known RYR1 point mutations. Furthermore, we found a new mutation, Arg2454His, segregating with the MHS phenotype in a large pedigree and a novel amino acid substitution at position 2436 in another patient, indicating a 15.8% frequency of these mutations in Italian patients. A new polymorphic site in intron 16 that causes the substitution of a G at position -7 with a C residue was identified.  (+info)

The effect of cyclopiazonic acid on the development of pale, soft, and exudative pork from pigs of defined malignant hyperthermia genotype. (2/375)

Malignant hyperthermia (MH) and the mycotoxin cyclopiazonic acid (CPA) are each associated with abnormal calcium homeostasis in skeletal muscle, a key underlying factor in the development of pale, soft, and exudative (PSE) pork. To determine whether the natural presence of CPA in livestock feed ingredients contributes to the varying incidence of PSE in the pork industry, various levels of CPA (.1 to 50 mg/kg of diet) were included in the diets of market weight hogs (n = 52) of defined malignant hyperthermia genotype (NN = normal, Nn = a MH carrier, and nn = MH-positive). Animals with two copies of the MH mutation (nn) displayed improved live animal performance compared with NN and Nn animals (increased feed intake, average daily gain, and feed efficiency) but yielded lower quality loin chops as indicated by lower 45-min pH (P<.01), higher Commission Internationale de l'Eclairage (CIE) L* color coordinate values (P<.05), and higher drip losses (P<.01). The effects of CPA varied. In the first feeding trial, conducted under normal outside temperatures (2 degrees C), CPA had no effect (P> .2) on either live animal performance or meat quality. During the second trial, conducted under extreme outside temperatures (-18 degrees C), CPA-dependent reductions (P<.05) in feed intake, average daily gain, and 45-min pH in nn hogs support the possibility of interactions between malignant hyperthermia and dietary CPA on skeletal muscle calcium homeostasis and the development of PSE pork. These results suggest that this interaction may require stressful environmental conditions or the ingestion of CPA doses much higher than occur under natural conditions.  (+info)

Comparison of European and North American malignant hyperthermia diagnostic protocol outcomes for use in genetic studies. (3/375)

BACKGROUND: Halothane and caffeine diagnostic protocols and an experimental ryanodine test from the North American Malignant Hyperthermia (MH) Group (NAMHG) and the European MH Group (EMHG) have not been compared in the same persons until now. METHODS: The outcomes of the NAMHG and EMHG halothane and caffeine contracture tests were compared in 84 persons referred for diagnostic testing. In addition, the authors assessed the experimental ryanodine protocol in 50 of these persons. RESULTS: Although the NAMHG and EMHG halothane protocols are slightly different methodologically, each yielded outcomes in close (84-100%) agreement with diagnoses made by the other protocol. Excluding 23 persons judged to be equivocal (marginally positive responders) by the EMHG protocol resulted in fewer persons classified as normal and MH susceptible (42 and 19, respectively) than those classified by the NAMHG protocol (48 and 34, respectively). For the 61 persons not excluded as equivocal, the diagnoses were identical by both protocols, with the exception of one person who was diagnosed as MH susceptible by the NAMHG protocol and as "normal" by the EMHG protocol. The NAMHG protocol produced only two equivocal diagnoses. Therefore, a normal or MH diagnosis by the NAMHG protocol was frequently associated with an equivocal diagnosis by the EMHG protocol. The time to 0.2-g contracture after the addition of 1 microM ryanodine completely separated populations, which was in agreement with the EMHG protocol and, except for one person, with the NAMHG protocol. CONCLUSIONS: Overall, the NAMHG and EMHG protocols and the experimental ryanodine test yielded similar diagnoses. The EMHG protocol reduced the number of marginal responders in the final analysis, which may make the remaining diagnoses slightly more accurate for use in genetic studies.  (+info)

Effects of the halothane genotype and slaughter weight on texture of pork. (4/375)

The objective of this study was to investigate the effects of the halothane (HAL) genotype, slaughter weight (SW), and the HAL x SW interaction on compositional and textural traits of raw and cooked pork. Pigs were bred to exhibit one of the three HAL genotypes (NN, Nn, and nn) with otherwise equivalent genomes. The nn halothane reactors are known to typically produce PSE pork, whereas NN pigs do not typically produce PSE pork. Pietrain x Large White gilts and boars, all with verified Nn genotype (by DNA test), were mated to obtain F2 littermates of the three HAL genotypes. These pigs were slaughtered at either 101 +/- 3 ("light") or 127 +/- 3 ("heavy") kg BW and were evaluated for longissimus muscle traits. The pH at .5 h after death (pH1) was 6.35, 6.13, and 5.68 in NN, Nn, and nn pigs, respectively. Sarcomere length was greater in nn than in NN and Nn pigs (1.94 vs 1.83 and 1.85 microm, respectively). Mechanical resistance was higher in nn than in NN pigs for both raw and cooked meat. Meat from nn pigs was judged by a trained panel to be less rough, more cohesive, harder, more fibrous, less granular, more elastic, and less easy to swallow than meat from NN pigs. For most traits under study, the heterozygotes were intermediate between the homozygotes but closer to NN than to nn pigs. Muscle from heavy pigs had longer sarcomeres and less moisture than muscle from light pigs. The n allele of the HAL gene unfavorably affects pork texture, and this effect is maintained throughout the range of 101 to 127 kg BW.  (+info)

ATX II, a sodium channel toxin, sensitizes skeletal muscle to halothane, caffeine, and ryanodine. (5/375)

BACKGROUND: The function or expression of subtypes of the sodium ion (Na+) channel is altered in biopsies or cultures of skeletal muscle from many persons who are susceptible to malignant hyperthermia (MH). ATX II, a specific Na+ channel toxin from a sea anemone, causes delayed inactivation of the channel similar to that seen in cell cultures of MH muscle. ATX II was added to skeletal muscle to determine whether altered Na+ channel function could increase the sensitivity of normal skeletal muscle to agents (halothane, caffeine, ryanodine) to which MH muscle is hypersensitive. METHODS: Studies were performed of fiber bundles from the vastus lateralis muscle of persons who were deemed not MH susceptible (MH-) or MH susceptible (MH+) according to the MH diagnostic test and of strips of diaphragm muscle from rats. Preparations in a tissue bath containing Krebs solution were connected to a force transducer. ATX II was introduced 5 min before halothane, caffeine, or ryanodine. RESULTS: ATX II increased the magnitude of contracture to halothane in preparations from most MH-, but not MH+, human participants. After ATX II treatment, preparations from 9 of 24 MH- participants generated contractures to halothane, 3%, that were of the same magnitude as those from MH+ participants. Preparations from four of six ATX II-treated healthy participants also gave responses of the same magnitude as those of MH-susceptible participants to a graded halothane challenge (0.5-3%). The contractures to bolus doses of halothane in specimens from male participants were more than three times larger than the contractures in specimens from female participants. In rat muscle, ATX II increased the magnitude of contracture to caffeine (2 mM) and decreased the time to produce a 1-g contracture to ryanodine (1 microM). CONCLUSIONS: ATX II, which causes delayed inactivation of the Na+ channel in cell cultures similar to that reported in cultures of MH+ skeletal muscle, increased the sensitivity of normal muscle to three agents to which MH+ muscle is hypersensitive. The increased sensitivity to halothane, 3%, occurred in most (79%), but not all, MH- participants, and this effect was most evident in male participants. Therefore, abnormal function of the Na+ channel, even if it is a secondary event in MH, may contribute to a positive contracture test result for MH.  (+info)

A case of discordance between genotype and phenotype in a malignant hyperthermia family. (6/375)

Malignant hyperthermia (MH) is an inherited autosomal dominant pharmacogenetic disorder and is the major cause of anaesthesia-induced death. Malignant hyperthermia susceptibility is usually diagnosed by the in vitro contracture test (IVCT) performed on fresh muscle biopsies exposed to caffeine and halothane, respectively. Around 50% of affected families are linked to the ryanodine receptor (RYR1) gene. The human RYR1 gene maps to chromosome 19q13.1 and encodes a protein that associates as a homotetramer and acts as a calcium-release channel from the sarcoplasmic reticulum. To date, 17 mutations have been identified in the coding region of the RYR1 gene and appear to be associated to the MH-susceptible phenotype. Here we describe a rare case of discordance between genotype (characterised by the presence of the Arg614Cys mutation in the RYR1 gene) and MH-normal typed phenotype. Although the IVCT remains a very reliable procedure for the assessment of MH status, genetic data can provide in some cases an additional aid to clinical diagnosis.  (+info)

4-chloro-m-cresol triggers malignant hyperthermia in susceptible swine at doses greatly exceeding those found in drug preparations. (7/375)

BACKGROUND: Chlorocresols are used as preservatives in numerous commercial drugs that have been shown to induce myoplasmic Ca2+ release; the most potent isoform is 4-chloro-m-cresol. The aims of this study were to (1) examine the in vivo effects of 4-chloro-m-cresol on swine susceptible to malignant hyperthermia and (2) contrast in vivo versus in vitro dose-response curves. METHODS: Susceptible swine (weight: 38.5 kg+/-3.55 kg) were anesthetized and monitored for variations in physiological responses, including end-tidal CO2, heart rate, blood pressure, blood chemistry, and temperatures. In the first animals studied, 4-chloro-m-cresol, at equivalent cumulative doses of 0.14, 0.28, 0.57, 1.14, 2.27, 4.54, and 9.08 mg/kg (n = 3; 12.5, 25, 50, 100, 200, 400, and 800 micromol) were administered, and in a second group, larger doses were used: 1.14, 3.41, 7.95, 17.04 (n = 4), and/or 35.22 (n = 1) mg/kg (100, 300, 700, 1,500, and/or 3,100 micromol). For comparison, in vitro rectus abdominis muscle preparations obtained from normal and susceptible swine were exposed to 4-chloro-m-cresol, at cumulative concentrations of 6.25, 12.5, 25, 50, 100, 200, 400, 800, and 1,600 micromol; standard caffeine and halothane contracture testing was also performed. RESULTS: Episodes of malignant hyperthermia were not triggered in response to administration of low doses of 4-chloro-m-cresol, but transient cardiovascular reactions (e.g., tachycardia, arrhythmias, and hypotension) were observed. Subsequently, episodes in these animals were triggered when halothane (0.87; 1 MAC) and succinylcholine (2 mg/kg) were given. Animals administered the higher doses of 4-chloro-m-cresol all had fulminant episodes of malignant hyperthermia that were fatal, when equivalent cumulative concentrations were greater than 1,500 micromol. The levels of 4-chloro-m-cresol in the plasma rapidly decreased: e.g., 5 min postadministration of the 1,500-micromol dose, the mean plasma level was only 52+/-18 micromol (n = 4). Hemolysis was detected following 4-chloro-m-cresol administration at concentrations > 200 micromol. In vitro, muscle from susceptible animals elicited contractures > 200 mg at 50-micromol bath concentrations of 4-chloro-m-cresol (n = 29), whereas normal muscle did not elicit such contractures until bath concentrations were > 800 micromol (n = 10). CONCLUSIONS: 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine, but only when serum concentrations are far above those likely to be encountered in humans. A relatively low concentration of 4-chloro-m-cresol, 50 micromol, is sufficient to activate sarcoplasmic [Ca+2] release in vitro (e.g., contractures); this same bolus dose administered in vivo (0.57 mg/kg) has minimal effects due to the rapid decrease in its plasma levels.  (+info)

4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine. (8/375)

BACKGROUND: 4-Chloro-m-cresol (4-CmC) induces marked contractures in skeletal muscle specimens from individuals susceptible to malignant hyperthermia (MHS). In contrast, 4-CmC induces only small contractures in specimens from normal (MHN) patients. 4-CmC is a preservative within a large number of commercially available drug-preparations (e.g., insulin, heparin, succinylcholine), and it has been suggested that 4-CmC might trigger malignant hyperthermia. This study was designed to investigate the effects of 4-CmC in vivo and in vitro in the same animals. METHODS: After approval of the animal care committee, six Pietrain MHS and six control (MHN) swine were anesthetized with azaperone 4 mg/kg intramuscularly and metomidate 10 mg/kg intraperitoneally. After endotracheal intubation, lungs were mechanically ventilated (inspired oxygen fraction 0.3) and anesthesia was maintained with etomidate 2.5 mg x kg(-1) x h(-1) and fentanyl 50 microg x kg(-1) x h(-1). Animals were surgically prepared with arterial and central venous catheters for measurement of hemodynamic parameters and to obtain blood samples. Before exposure to 4-CmC in vivo, muscle specimens were excised for in vitro contracture tests with 4-CmC in concentrations of 75 and 200 microM. Subsequently, pigs were exposed to cumulative administration of 3, 6, 12, 24, and 48 mg/kg 4-CmC intravenously. If an unequivocal episode of malignant hyperthermia occurred, as indicated by venous carbon dioxide concentration > or = 70 mmHg, pH < or = 7.25, and an increase of temperature > or = 2 degrees C, the animals were treated with dantrolene, 3.5 mg/kg. RESULTS: All MHS swine developed malignant hyperthermia after administration of 4-CmC in doses of 12 or 24 mg/kg. Venous carbon dioxide concentration significantly increased and pH significantly decreased. Temperature increased in all MHS animals more than 2 degrees C. Blood lactate concentrations and creatine kinase levels were significantly elevated. All MHS swine were treated successfully with dantrolene. In contrast, no MHN swine developed signs of malignant hyperthermia. After receiving 4-CmC in a concentration of 48 mg/kg, however, all MHN animals died by ventricular fibrillation. The in vitro experiments showed that both concentrations of 4-CmC produced significantly greater contractures in MHS than in MHN specimens. CONCLUSIONS: 4-CmC is in vivo a trigger of malignant hyperthermia in swine. However, the 4-CmC doses required for induction of malignant hyperthermia were between 12 and 24 mg/kg, which is about 150-fold higher than the 4-CmC concentrations within clinically used preparations.  (+info)

Malignant hyperthermia (MH) is a rare, but potentially life-threatening genetic disorder that can occur in susceptible individuals as a reaction to certain anesthetic drugs or other triggers. The condition is characterized by a rapid and uncontrolled increase in body temperature (hyperthermia), muscle rigidity, and metabolic rate due to abnormal skeletal muscle calcium regulation.

MH can develop quickly during or after surgery, usually within the first hour of exposure to triggering anesthetics such as succinylcholine or volatile inhalational agents (e.g., halothane, sevoflurane, desflurane). The increased metabolic rate and muscle activity lead to excessive production of heat, carbon dioxide, lactic acid, and potassium, which can cause severe complications such as heart rhythm abnormalities, kidney failure, or multi-organ dysfunction if not promptly recognized and treated.

The primary treatment for MH involves discontinuing triggering anesthetics, providing supportive care (e.g., oxygen, fluid replacement), and administering medications to reduce body temperature, muscle rigidity, and metabolic rate. Dantrolene sodium is the specific antidote for MH, which works by inhibiting calcium release from the sarcoplasmic reticulum in skeletal muscle cells, thereby reducing muscle contractility and metabolism.

Individuals with a family history of MH or who have experienced an episode should undergo genetic testing and counseling to determine their susceptibility and take appropriate precautions when receiving anesthesia.

Hyperthermia, induced, is a medically controlled increase in core body temperature beyond the normal range (36.5-37.5°C or 97.7-99.5°F) to a target temperature typically between 38-42°C (100.4-107.6°F). This therapeutic intervention is used in various medical fields, including oncology and critical care medicine. Induced hyperthermia can be achieved through different methods such as whole-body heating or localized heat application, often combined with chemotherapy or radiation therapy to enhance treatment efficacy.

In the context of oncology, hyperthermia is used as a sensitizer for cancer treatments by increasing blood flow to tumors, enhancing drug delivery, and directly damaging cancer cells through protein denaturation and apoptosis at higher temperatures. In critical care settings, induced hyperthermia may be applied in therapeutic hypothermia protocols to protect the brain after cardiac arrest or other neurological injuries by decreasing metabolic demand and reducing oxidative stress.

It is essential to closely monitor patients undergoing induced hyperthermia for potential adverse effects, including cardiovascular instability, electrolyte imbalances, and infections, and manage these complications promptly to ensure patient safety during the procedure.

Dantrolene is a muscle relaxant that is used to treat or prevent muscle spasms and stiffness caused by various medical conditions, such as spinal cord injuries, stroke, cerebral palsy, multiple sclerosis, and certain types of poisoning. It works by reducing the sensitivity of the muscles to nerve impulses, which helps to relieve muscle spasms and reduce muscle tone.

Dantrolene is available in oral capsule and injectable forms. The oral form is typically used for long-term management of muscle spasticity, while the injectable form is used as an emergency treatment for a life-threatening condition called malignant hyperthermia, which can occur as a complication of general anesthesia in susceptible individuals.

It's important to note that dantrolene can have side effects, including drowsiness, dizziness, weakness, and diarrhea. It should be used with caution and under the supervision of a healthcare provider, especially when used in combination with other medications or in patients with certain medical conditions.

Halothane is a general anesthetic agent, which is a volatile liquid that evaporates easily and can be inhaled. It is used to produce and maintain general anesthesia (a state of unconsciousness) during surgical procedures. Halothane is known for its rapid onset and offset of action, making it useful for both induction and maintenance of anesthesia.

The medical definition of Halothane is:

Halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is a volatile liquid general anesthetic agent with a mild, sweet odor. It is primarily used for the induction and maintenance of general anesthesia in surgical procedures due to its rapid onset and offset of action. Halothane is administered via inhalation and acts by depressing the central nervous system, leading to a reversible loss of consciousness and analgesia.

It's important to note that Halothane has been associated with rare cases of severe liver injury (hepatotoxicity) and anaphylaxis (a severe, life-threatening allergic reaction). These risks have led to the development and use of alternative general anesthetic agents with better safety profiles.

Central muscle relaxants are a class of pharmaceutical agents that act on the central nervous system (CNS) to reduce skeletal muscle tone and spasticity. These medications do not directly act on the muscles themselves but rather work by altering the messages sent between the brain and the muscles, thereby reducing excessive muscle contraction and promoting relaxation.

Central muscle relaxants are often prescribed for the management of various neuromuscular disorders, such as multiple sclerosis, spinal cord injuries, cerebral palsy, and stroke-induced spasticity. They may also be used to treat acute musculoskeletal conditions like strains, sprains, or other muscle injuries.

Examples of central muscle relaxants include baclofen, tizanidine, cyclobenzaprine, methocarbamol, and diazepam. It is important to note that these medications can have side effects such as drowsiness, dizziness, and impaired cognitive function, so they should be used with caution and under the guidance of a healthcare professional.

The Ryanodine Receptor (RyR) is a calcium release channel located on the sarcoplasmic reticulum (SR), a type of endoplasmic reticulum found in muscle cells. It plays a crucial role in excitation-contraction coupling, which is the process by which electrical signals are converted into mechanical responses in muscle fibers.

In more detail, when an action potential reaches the muscle fiber's surface membrane, it triggers the opening of voltage-gated L-type calcium channels (Dihydropyridine Receptors or DHPRs) in the sarcolemma (the cell membrane of muscle fibers). This influx of calcium ions into the cytoplasm causes a conformational change in the RyR, leading to its own opening and the release of stored calcium from the SR into the cytoplasm. The increased cytoplasmic calcium concentration then initiates muscle contraction through interaction with contractile proteins like actin and myosin.

There are three isoforms of RyR: RyR1, RyR2, and RyR3. RyR1 is primarily found in skeletal muscle, while RyR2 is predominantly expressed in cardiac muscle. Both RyR1 and RyR2 are large homotetrameric proteins with a molecular weight of approximately 2.2 million Daltons. They contain multiple domains including an ion channel pore, regulatory domains, and a foot structure that interacts with DHPRs. RyR3 is more widely distributed, being found in various tissues such as the brain, smooth muscle, and some types of neurons.

Dysfunction of these channels has been implicated in several diseases including malignant hyperthermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT), and certain forms of heart failure.

Succinylcholine is a neuromuscular blocking agent, a type of muscle relaxant used in anesthesia during surgical procedures. It works by inhibiting the transmission of nerve impulses at the neuromuscular junction, leading to temporary paralysis of skeletal muscles. This facilitates endotracheal intubation and mechanical ventilation during surgery. Succinylcholine has a rapid onset of action and is metabolized quickly, making it useful for short surgical procedures. However, its use may be associated with certain adverse effects, such as increased heart rate, muscle fasciculations, and potentially life-threatening hyperkalemia in susceptible individuals.

Central core myopathy is a rare genetic muscle disorder that is typically present at birth or appears in early childhood. It is characterized by the presence of distinctive rod-like structures, called cores, in the center of the muscle fibers. These cores are devoid of normal mitochondria and other organelles, which can lead to muscle weakness and wasting.

Central core myopathy is often associated with mutations in the ryanodine receptor 1 (RYR1) gene, which provides instructions for making a protein that plays a critical role in calcium signaling within muscles. Abnormalities in calcium signaling can lead to muscle weakness and wasting.

The symptoms of central core myopathy can vary widely, even among members of the same family with the same genetic mutation. Some people with this condition may have only mild muscle weakness, while others may be severely affected and have difficulty walking or performing other physical activities. The condition typically does not worsen over time, and life expectancy is usually normal. However, some people with central core myopathy may be at increased risk of malignant hyperthermia, a potentially life-threatening reaction to certain anesthetics.

Caffeine is a central nervous system stimulant that occurs naturally in the leaves, seeds, or fruits of some plants. It can also be produced artificially and added to various products, such as food, drinks, and medications. Caffeine has a number of effects on the body, including increasing alertness, improving mood, and boosting energy levels.

In small doses, caffeine is generally considered safe for most people. However, consuming large amounts of caffeine can lead to negative side effects, such as restlessness, insomnia, rapid heart rate, and increased blood pressure. It is also possible to become dependent on caffeine, and withdrawal symptoms can occur if consumption is suddenly stopped.

Caffeine is found in a variety of products, including coffee, tea, chocolate, energy drinks, and some medications. The amount of caffeine in these products can vary widely, so it is important to pay attention to serving sizes and labels to avoid consuming too much.

Disease susceptibility, also known as genetic predisposition or genetic susceptibility, refers to the increased likelihood or risk of developing a particular disease due to inheriting specific genetic variations or mutations. These genetic factors can make an individual more vulnerable to certain diseases compared to those who do not have these genetic changes.

It is important to note that having a genetic predisposition does not guarantee that a person will definitely develop the disease. Other factors, such as environmental exposures, lifestyle choices, and additional genetic variations, can influence whether or not the disease will manifest. In some cases, early detection and intervention may help reduce the risk or delay the onset of the disease in individuals with a known genetic susceptibility.

Cresols are a group of chemical compounds that are phenolic derivatives of benzene, consisting of methyl substituted cresidines. They have the formula C6H4(OH)(\_3CH3). There are three isomers of cresol, depending on the position of the methyl group: ortho-cresol (m-cresol), meta-cresol (p-cresol), and para-cresol (o-cresol). Cresols are used as disinfectants, antiseptics, and preservatives in various industrial and commercial applications. They have a characteristic odor and are soluble in alcohol and ether. In medical terms, cresols may be used as topical antiseptic agents, but they can also cause skin irritation and sensitization.

A contracture, in a medical context, refers to the abnormal shortening and hardening of muscles, tendons, or other tissue, which can result in limited mobility and deformity of joints. This condition can occur due to various reasons such as injury, prolonged immobilization, scarring, neurological disorders, or genetic conditions.

Contractures can cause significant impairment in daily activities and quality of life, making it difficult for individuals to perform routine tasks like dressing, bathing, or walking. Treatment options may include physical therapy, splinting, casting, medications, surgery, or a combination of these approaches, depending on the severity and underlying cause of the contracture.

Muscle rigidity is a term used to describe an increased resistance to passive movement or muscle tone that is present at rest, which cannot be overcome by the person. It is a common finding in various neurological conditions such as Parkinson's disease, stiff-person syndrome, and tetanus. In these conditions, muscle rigidity can result from hyperexcitability of the stretch reflex arc or abnormalities in the basal ganglia circuitry.

Muscle rigidity should be distinguished from spasticity, which is a velocity-dependent increase in muscle tone that occurs during voluntary movement or passive stretching. Spasticity is often seen in upper motor neuron lesions such as stroke or spinal cord injury.

It's important to note that the assessment of muscle rigidity requires a careful physical examination and may need to be evaluated in conjunction with other signs and symptoms to determine an underlying cause.

Inhalational anesthetics are a type of general anesthetic that is administered through the person's respiratory system. They are typically delivered in the form of vapor or gas, which is inhaled through a mask or breathing tube. Commonly used inhalational anesthetics include sevoflurane, desflurane, isoflurane, and nitrous oxide. These agents work by depressing the central nervous system, leading to a loss of consciousness and an inability to feel pain. They are often used for their rapid onset and offset of action, making them useful for both induction and maintenance of anesthesia during surgical procedures.

Rhabdomyolysis is a medical condition characterized by the breakdown and degeneration of skeletal muscle fibers, leading to the release of their intracellular contents into the bloodstream. This can result in various complications, including electrolyte imbalances, kidney injury or failure, and potentially life-threatening conditions if not promptly diagnosed and treated.

The process of rhabdomyolysis typically involves three key components:

1. Muscle injury: Direct trauma, excessive exertion, prolonged immobilization, infections, metabolic disorders, toxins, or medications can cause muscle damage, leading to the release of intracellular components into the bloodstream.
2. Release of muscle contents: When muscle fibers break down, they release various substances, such as myoglobin, creatine kinase (CK), lactate dehydrogenase (LDH), aldolase, and potassium ions. Myoglobin is a protein that can cause kidney damage when present in high concentrations in the bloodstream, particularly when it is filtered through the kidneys and deposits in the renal tubules.
3. Systemic effects: The release of muscle contents into the bloodstream can lead to various systemic complications, such as electrolyte imbalances (particularly hyperkalemia), acidosis, hypocalcemia, and kidney injury or failure due to myoglobin-induced tubular damage.

Symptoms of rhabdomyolysis can vary widely depending on the severity and extent of muscle damage but may include muscle pain, weakness, swelling, stiffness, dark urine, and tea-colored or cola-colored urine due to myoglobinuria. In severe cases, patients may experience symptoms related to kidney failure, such as nausea, vomiting, fatigue, and decreased urine output.

Diagnosis of rhabdomyolysis typically involves measuring blood levels of muscle enzymes (such as CK and LDH) and evaluating renal function through blood tests and urinalysis. Treatment generally focuses on addressing the underlying cause of muscle damage, maintaining fluid balance, correcting electrolyte imbalances, and preventing or managing kidney injury.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Human chromosome pair 19 refers to a group of 19 identical chromosomes that are present in every cell of the human body, except for the sperm and egg cells which contain only 23 chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of DNA (deoxyribonucleic acid) molecules.

Each chromosome is made up of two arms, a shorter p arm and a longer q arm, separated by a centromere. Human chromosome pair 19 is an acrocentric chromosome, which means that the centromere is located very close to the end of the short arm (p arm).

Chromosome pair 19 contains approximately 58 million base pairs of DNA and encodes for around 1,400 genes. It is one of the most gene-dense chromosomes in the human genome, with many genes involved in important biological processes such as metabolism, immunity, and neurological function.

Abnormalities in chromosome pair 19 have been associated with various genetic disorders, including Sotos syndrome, which is characterized by overgrowth, developmental delay, and distinctive facial features, and Smith-Magenis syndrome, which is marked by intellectual disability, behavioral problems, and distinct physical features.

Body temperature is the measure of heat produced by the body. In humans, the normal body temperature range is typically between 97.8°F (36.5°C) and 99°F (37.2°C), with an average oral temperature of 98.6°F (37°C). Body temperature can be measured in various ways, including orally, rectally, axillary (under the arm), and temporally (on the forehead).

Maintaining a stable body temperature is crucial for proper bodily functions, as enzymes and other biological processes depend on specific temperature ranges. The hypothalamus region of the brain regulates body temperature through feedback mechanisms that involve shivering to produce heat and sweating to release heat. Fever is a common medical sign characterized by an elevated body temperature above the normal range, often as a response to infection or inflammation.

Ryanodine is not a medical condition or term, but it is a chemical compound that interacts with ryanodine receptors (RyRs), which are calcium release channels found in the sarcoplasmic reticulum of muscle cells. Ryanodine receptors play a crucial role in excitation-contraction coupling, which is the process by which electrical signals trigger muscle contractions.

Ryanodine itself is a plant alkaloid that was initially isolated from the South American shrub Ryania speciosa. It can bind to and inhibit ryanodine receptors, altering calcium signaling in muscle cells. This ability of ryanodine to modulate calcium release has made it a valuable tool in researching excitation-contraction coupling and related processes.

In some cases, the term "ryanodine" may be used in a medical context to refer to the effects of ryanodine or ryanodine receptor modulation on muscle function, particularly in relation to diseases associated with calcium handling abnormalities. However, it is not a medical condition per se.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Fever, also known as pyrexia or febrile response, is a common medical sign characterized by an elevation in core body temperature above the normal range of 36.5-37.5°C (97.7-99.5°F) due to a dysregulation of the body's thermoregulatory system. It is often a response to an infection, inflammation, or other underlying medical conditions, and it serves as a part of the immune system's effort to combat the invading pathogens or to repair damaged tissues.

Fevers can be classified based on their magnitude:

* Low-grade fever: 37.5-38°C (99.5-100.4°F)
* Moderate fever: 38-39°C (100.4-102.2°F)
* High-grade or severe fever: above 39°C (102.2°F)

It is important to note that a single elevated temperature reading does not necessarily indicate the presence of a fever, as body temperature can fluctuate throughout the day and can be influenced by various factors such as physical activity, environmental conditions, and the menstrual cycle in females. The diagnosis of fever typically requires the confirmation of an elevated core body temperature on at least two occasions or a consistently high temperature over a period of time.

While fevers are generally considered beneficial in fighting off infections and promoting recovery, extremely high temperatures or prolonged febrile states may necessitate medical intervention to prevent potential complications such as dehydration, seizures, or damage to vital organs.

The sarcoplasmic reticulum (SR) is a specialized type of smooth endoplasmic reticulum found in muscle cells, particularly in striated muscles such as skeletal and cardiac muscles. It is a complex network of tubules that surrounds the myofibrils, the contractile elements of the muscle fiber.

The primary function of the sarcoplasmic reticulum is to store calcium ions (Ca2+) and regulate their release during muscle contraction and uptake during muscle relaxation. The SR contains a high concentration of calcium-binding proteins, such as calsequestrin, which help to maintain this storage.

The release of calcium ions from the sarcoplasmic reticulum is triggered by an action potential that travels along the muscle fiber's sarcolemma and into the muscle fiber's interior (the sarcoplasm). This action potential causes the voltage-gated calcium channels in the SR membrane, known as ryanodine receptors, to open, releasing Ca2+ ions into the sarcoplasm.

The increased concentration of Ca2+ ions in the sarcoplasm triggers muscle contraction by binding to troponin, a protein associated with actin filaments, causing a conformational change that exposes the active sites on actin for myosin heads to bind and generate force.

After muscle contraction, the calcium ions must be actively transported back into the sarcoplasmic reticulum by Ca2+ ATPase pumps, also known as sarco(endo)plasmic reticulum calcium ATPases (SERCAs). This process helps to lower the concentration of Ca2+ in the sarcoplasm and allows the muscle fiber to relax.

Overall, the sarcoplasmic reticulum plays a crucial role in excitation-contraction coupling, the process by which action potentials trigger muscle contraction.

A maxillary osteotomy is a surgical procedure that involves making cuts in the bone of the upper jaw (maxilla). This type of surgery may be performed for various reasons, such as to correct jaw deformities, realign the jaws, or treat sleep apnea. In some cases, it may also be done in conjunction with other procedures, such as a genioplasty (chin surgery) or rhinoplasty (nose surgery).

During a maxillary osteotomy, an incision is made inside the mouth, and the surgeon carefully cuts through the bone of the upper jaw. The maxilla is then repositioned as needed and held in place with small plates and screws. In some cases, bone grafts may also be used to help support the new position of the jaw. After the surgery, the incision is closed with stitches.

It's important to note that a maxillary osteotomy is a complex surgical procedure that requires careful planning and execution. It should only be performed by an experienced oral and maxillofacial surgeon or craniofacial surgeon. As with any surgery, there are risks involved, including infection, bleeding, and reactions to anesthesia. It's important to discuss these risks with your surgeon and to follow all post-operative instructions carefully to help ensure a successful recovery.

Nemaline myopathy is a genetic muscle disorder characterized by the presence of rod-like structures called nemalines in the muscle fibers. These rods, which are composed of accumulated protein, can be observed under a microscope in biopsied muscle tissue. The condition is typically present at birth or appears in early childhood and is often associated with muscle weakness, hypotonia (low muscle tone), and delayed motor development.

There are several types of nemaline myopathy, which vary in severity and age of onset. Some individuals with the disorder may have only mild symptoms and be able to lead relatively normal lives, while others may experience significant disability and require assistance with daily activities. The condition can also affect the heart and respiratory muscles, leading to serious complications.

Nemaline myopathy is caused by mutations in one of several genes that are involved in the formation and maintenance of muscle fibers. These genetic defects lead to abnormalities in the structure and function of the muscle fibers, resulting in the characteristic symptoms of the disorder. There is currently no cure for nemaline myopathy, but treatment is focused on managing the symptoms and improving quality of life. This may include physical therapy, assistive devices, and respiratory support, as well as medications to help manage muscle spasticity and other complications.

Muscular diseases, also known as myopathies, refer to a group of conditions that affect the functionality and health of muscle tissue. These diseases can be inherited or acquired and may result from inflammation, infection, injury, or degenerative processes. They can cause symptoms such as weakness, stiffness, cramping, spasms, wasting, and loss of muscle function.

Examples of muscular diseases include:

1. Duchenne Muscular Dystrophy (DMD): A genetic disorder that results in progressive muscle weakness and degeneration due to a lack of dystrophin protein.
2. Myasthenia Gravis: An autoimmune disease that causes muscle weakness and fatigue, typically affecting the eyes and face, throat, and limbs.
3. Inclusion Body Myositis (IBM): A progressive muscle disorder characterized by muscle inflammation and wasting, typically affecting older adults.
4. Polymyositis: An inflammatory myopathy that causes muscle weakness and inflammation throughout the body.
5. Metabolic Myopathies: A group of inherited disorders that affect muscle metabolism, leading to exercise intolerance, muscle weakness, and other symptoms.
6. Muscular Dystonias: Involuntary muscle contractions and spasms that can cause abnormal postures or movements.

It is important to note that muscular diseases can have a significant impact on an individual's quality of life, mobility, and overall health. Proper diagnosis and treatment are crucial for managing symptoms and improving outcomes.

Heat stroke is a serious and potentially life-threatening condition that occurs when the body becomes unable to regulate its temperature. It is characterized by a core body temperature of 104°F (40°C) or higher, and symptoms such as hot, dry skin or heavy sweating; confusion or loss of consciousness; rapid pulse; rapid breathing; and seizures or convulsions. Heat stroke can be caused by prolonged exposure to high temperatures, physical exertion in hot weather, or dehydration. It is a medical emergency that requires immediate treatment to prevent serious complications, such as organ damage or failure, and it can be fatal if not treated promptly.

The masseter muscle is a strong chewing muscle in the jaw. It is a broad, thick, quadrilateral muscle that extends from the zygomatic arch (cheekbone) to the lower jaw (mandible). The masseter muscle has two distinct parts: the superficial part and the deep part.

The superficial part of the masseter muscle originates from the lower border of the zygomatic process of the maxilla and the anterior two-thirds of the inferior border of the zygomatic arch. The fibers of this part run almost vertically downward to insert on the lateral surface of the ramus of the mandible and the coronoid process.

The deep part of the masseter muscle originates from the deep surface of the zygomatic arch and inserts on the medial surface of the ramus of the mandible, blending with the temporalis tendon.

The primary function of the masseter muscle is to elevate the mandible, helping to close the mouth and clench the teeth together during mastication (chewing). It also plays a role in stabilizing the jaw during biting and speaking. The masseter muscle is one of the most powerful muscles in the human body relative to its size.

Hydantoins are a class of chemical compounds that contain a five-membered ring containing two nitrogen atoms, with one of the nitrogens being part of a urea group. They are important in medicine as a specific group of anticonvulsant drugs used to treat seizures, known as hydantoin derivatives or hydantoins proper. The most well-known example is phenytoin (diphenylhydantoin), which has been widely used for this purpose since the 1930s.

The structure of hydantoins allows them to interact with and stabilize voltage-gated sodium channels in the brain, reducing their excitability and thus the likelihood of seizures. However, long-term use of hydantoin derivatives can lead to several side effects, including dizziness, unsteady gait, tremors, and behavioral changes. Regular monitoring of blood levels is necessary to ensure safe and effective treatment with these medications.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Anesthetics are medications that are used to block or reduce feelings of pain and sensation, either locally in a specific area of the body or generally throughout the body. They work by depressing the nervous system, interrupting the communication between nerves and the brain. Anesthetics can be administered through various routes such as injection, inhalation, or topical application, depending on the type and the desired effect. There are several classes of anesthetics, including:

1. Local anesthetics: These numb a specific area of the body and are commonly used during minor surgical procedures, dental work, or to relieve pain from injuries. Examples include lidocaine, prilocaine, and bupivacaine.
2. Regional anesthetics: These block nerve impulses in a larger area of the body, such as an arm or leg, and can be used for more extensive surgical procedures. They are often administered through a catheter to provide continuous pain relief over a longer period. Examples include spinal anesthesia, epidural anesthesia, and peripheral nerve blocks.
3. General anesthetics: These cause a state of unconsciousness and are used for major surgical procedures or when the patient needs to be completely immobile during a procedure. They can be administered through inhalation or injection and affect the entire body. Examples include propofol, sevoflurane, and isoflurane.

Anesthetics are typically safe when used appropriately and under medical supervision. However, they can have side effects such as drowsiness, nausea, and respiratory depression. Proper dosing and monitoring by a healthcare professional are essential to minimize the risks associated with anesthesia.

Campomelic dysplasia is a rare genetic disorder that affects the development of bones and cartilage. The term "campomelic" comes from Greek words meaning "bent limb." The main feature of this condition is bowing of the legs, which occurs because of abnormal development of the bones in the legs before birth.

Campomelic dysplasia is caused by mutations in the SOX9 gene, which provides instructions for making a protein that is essential for normal development of the skeleton and reproductive system. This condition is often lethal in newborns, and those who survive may have other symptoms such as:

* Abnormalities of the face, including a small nose, cleft palate, and low-set ears
* Respiratory problems due to narrowed airways or underdeveloped lungs
* Abnormalities of the fingers and toes, such as webbing or fusion
* Genital abnormalities, particularly in males
* Hearing loss
* Intellectual disability

Campomelic dysplasia is typically inherited in an autosomal dominant manner, which means that a child can inherit the condition even if only one parent carries the mutated gene. However, most cases of campomelic dysplasia occur spontaneously due to new mutations in the SOX9 gene.

Pharmaceutical preservatives are substances that are added to medications, pharmaceutical products, or biological specimens to prevent degradation, contamination, or spoilage caused by microbial growth, chemical reactions, or environmental factors. These preservatives help extend the shelf life and ensure the stability, safety, and efficacy of the pharmaceutical formulation during storage and use.

Commonly used pharmaceutical preservatives include:

1. Antimicrobials: These are further classified into antifungals (e.g., benzalkonium chloride, chlorhexidine, thimerosal), antibacterials (e.g., parabens, phenol, benzyl alcohol), and antivirals (e.g., phenolic compounds). They work by inhibiting the growth of microorganisms like bacteria, fungi, and viruses.
2. Antioxidants: These substances prevent or slow down oxidation reactions that can degrade pharmaceutical products. Examples include ascorbic acid (vitamin C), tocopherols (vitamin E), sulfites, and butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT).
3. Chelating agents: These bind to metal ions that can catalyze degradation reactions in pharmaceutical products. Ethylenediaminetetraacetic acid (EDTA) is an example of a chelating agent used in pharmaceuticals.

The choice of preservative depends on the type of formulation, route of administration, and desired shelf life. The concentration of the preservative should be optimized to maintain product stability while minimizing potential toxicity or adverse effects. It is essential to conduct thorough safety and compatibility studies before incorporating any preservative into a pharmaceutical formulation.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Skeletal muscle fibers, also known as striated muscle fibers, are the type of muscle cells that make up skeletal muscles, which are responsible for voluntary movements of the body. These muscle fibers are long, cylindrical, and multinucleated, meaning they contain multiple nuclei. They are surrounded by a connective tissue layer called the endomysium, and many fibers are bundled together into fascicles, which are then surrounded by another layer of connective tissue called the perimysium.

Skeletal muscle fibers are composed of myofibrils, which are long, thread-like structures that run the length of the fiber. Myofibrils contain repeating units called sarcomeres, which are responsible for the striated appearance of skeletal muscle fibers. Sarcomeres are composed of thick and thin filaments, which slide past each other during muscle contraction to shorten the sarcomere and generate force.

Skeletal muscle fibers can be further classified into two main types based on their contractile properties: slow-twitch (type I) and fast-twitch (type II). Slow-twitch fibers have a high endurance capacity and are used for sustained, low-intensity activities such as maintaining posture. Fast-twitch fibers, on the other hand, have a higher contractile speed and force generation capacity but fatigue more quickly and are used for powerful, explosive movements.

Calcium channels are specialized proteins that span the membrane of cells and allow calcium ions (Ca²+) to flow in and out of the cell. They are crucial for many physiological processes, including muscle contraction, neurotransmitter release, hormone secretion, and gene expression.

There are several types of calcium channels, classified based on their biophysical and pharmacological properties. The most well-known are:

1. Voltage-gated calcium channels (VGCCs): These channels are activated by changes in the membrane potential. They are further divided into several subtypes, including L-type, P/Q-type, N-type, R-type, and T-type. VGCCs play a critical role in excitation-contraction coupling in muscle cells and neurotransmitter release in neurons.
2. Receptor-operated calcium channels (ROCCs): These channels are activated by the binding of an extracellular ligand, such as a hormone or neurotransmitter, to a specific receptor on the cell surface. ROCCs are involved in various physiological processes, including smooth muscle contraction and platelet activation.
3. Store-operated calcium channels (SOCCs): These channels are activated by the depletion of intracellular calcium stores, such as those found in the endoplasmic reticulum. SOCCs play a critical role in maintaining calcium homeostasis and signaling within cells.

Dysregulation of calcium channel function has been implicated in various diseases, including hypertension, arrhythmias, migraine, epilepsy, and neurodegenerative disorders. Therefore, calcium channels are an important target for drug development and therapy.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

General anesthesia is a state of controlled unconsciousness, induced by administering various medications, that eliminates awareness, movement, and pain sensation during medical procedures. It involves the use of a combination of intravenous and inhaled drugs to produce a reversible loss of consciousness, allowing patients to undergo surgical or diagnostic interventions safely and comfortably. The depth and duration of anesthesia are carefully monitored and adjusted throughout the procedure by an anesthesiologist or certified registered nurse anesthetist (CRNA) to ensure patient safety and optimize recovery. General anesthesia is typically used for more extensive surgical procedures, such as open-heart surgery, major orthopedic surgeries, and neurosurgery.

Neuromuscular depolarizing agents are a type of muscle relaxant used in anesthesia and critical care medicine. These drugs work by causing depolarization of the post-synaptic membrane at the neuromuscular junction, which is the site where nerve impulses are transmitted to muscles. This results in the binding of the drug to the receptor and the activation of ion channels, leading to muscle contraction.

The most commonly used depolarizing agent is suxamethonium (also known as succinylcholine), which has a rapid onset and short duration of action. It is often used during rapid sequence intubation, where there is a need for immediate muscle relaxation to facilitate endotracheal intubation.

However, the use of depolarizing agents can also lead to several side effects, including increased potassium levels in the blood (hyperkalemia), muscle fasciculations, and an increase in intracranial and intraocular pressure. Therefore, these drugs should be used with caution and only under the close supervision of a trained healthcare provider.

I'm sorry for any confusion, but "North America" is not a medical term. It is a geographical term that refers to the third largest continent in the world, which includes countries such as the United States, Canada, and Mexico, among others. If you have any questions related to medical terminology or health topics, I'd be happy to help with those!

Central nervous system (CNS) stimulants are a class of drugs that increase alertness, attention, energy, and/or mood by directly acting on the brain. They can be prescribed to treat medical conditions such as narcolepsy, attention deficit hyperactivity disorder (ADHD), and depression that has not responded to other treatments.

Examples of CNS stimulants include amphetamine (Adderall), methylphenidate (Ritalin, Concerta), and modafinil (Provigil). These medications work by increasing the levels of certain neurotransmitters, such as dopamine and norepinephrine, in the brain.

In addition to their therapeutic uses, CNS stimulants are also sometimes misused for non-medical reasons, such as to enhance cognitive performance or to get high. However, it's important to note that misusing these drugs can lead to serious health consequences, including addiction, cardiovascular problems, and mental health issues.

Excitation-contraction coupling is a process in muscle physiology that describes how an electrical signal, the action potential, triggers the contraction of a muscle fiber. This process involves several steps:

1. The action potential travels along the sarcolemma (the muscle fiber's plasma membrane) and activates voltage-gated calcium channels in the T-tubules (invaginations of the sarcolemma).
2. The influx of calcium ions into the sarcoplasm (the intracellular fluid of the muscle fiber) triggers the release of calcium ions from the sarcoplasmic reticulum, a specialized endoplasmic reticulum found in muscle fibers, through ryanodine receptors.
3. The increased concentration of calcium ions in the sarcoplasm leads to the binding of calcium ions to troponin C, a protein associated with actin filaments in the myofibrils (the contractile units of muscle fibers).
4. This binding causes a conformational change in the tropomyosin-troponin complex, exposing the binding sites on actin for myosin heads.
5. The myosin heads then bind to actin and form cross-bridges, leading to the sliding of actin filaments relative to myosin filaments and muscle contraction.

Excitation-contraction coupling is a fundamental process in muscle physiology that allows for the rapid and coordinated contraction of muscles in response to electrical signals.

Anesthesia is a medical term that refers to the loss of sensation or awareness, usually induced by the administration of various drugs. It is commonly used during surgical procedures to prevent pain and discomfort. There are several types of anesthesia, including:

1. General anesthesia: This type of anesthesia causes a complete loss of consciousness and is typically used for major surgeries.
2. Regional anesthesia: This type of anesthesia numbs a specific area of the body, such as an arm or leg, while the patient remains conscious.
3. Local anesthesia: This type of anesthesia numbs a small area of the body, such as a cut or wound, and is typically used for minor procedures.

Anesthesia can be administered through various routes, including injection, inhalation, or topical application. The choice of anesthesia depends on several factors, including the type and duration of the procedure, the patient's medical history, and their overall health. Anesthesiologists are medical professionals who specialize in administering anesthesia and monitoring patients during surgical procedures to ensure their safety and comfort.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Dental anesthesia is a type of local or regional anesthesia that is specifically used in dental procedures to block the transmission of pain impulses from the teeth and surrounding tissues to the brain. The most common types of dental anesthesia include:

1. Local anesthesia: This involves the injection of a local anesthetic drug, such as lidocaine or prilocaine, into the gum tissue near the tooth that is being treated. This numbs the area and prevents the patient from feeling pain during the procedure.
2. Conscious sedation: This is a type of minimal sedation that is used to help patients relax during dental procedures. The patient remains conscious and can communicate with the dentist, but may not remember the details of the procedure. Common methods of conscious sedation include nitrous oxide (laughing gas) or oral sedatives.
3. Deep sedation or general anesthesia: This is rarely used in dental procedures, but may be necessary for patients who are extremely anxious or have special needs. It involves the administration of drugs that cause a state of unconsciousness and prevent the patient from feeling pain during the procedure.

Dental anesthesia is generally safe when administered by a qualified dentist or oral surgeon. However, as with any medical procedure, there are risks involved, including allergic reactions to the anesthetic drugs, nerve damage, and infection. Patients should discuss any concerns they have with their dentist before undergoing dental anesthesia.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

... a report from the North American Malignant Hyperthermia Registry. The North American Malignant Hyperthermia Registry of MHAUS ... Malignant hyperthermia is a disorder that can be considered a gene-environment interaction. In most people with malignant ... Malignant hyperthermia (MH) is a type of severe reaction that occurs in response to particular medications used during general ... Research into malignant hyperthermia was limited until the discovery of "porcine stress syndrome" (PSS) in Danish Landrace and ...
MacLennan, D.; Phillips, M. (1992). "Malignant hyperthermia". Science. 256 (5058): 789-794. doi:10.1126/science.1589759. PMID ...
Malignant hyperthermia. A causative mutated allele, ryanodine receptor 1 gene (RyR1) at nucleotide C7360G, generating a R2454G ... "Malignant hyperthermia: a review". ResearchGate. Retrieved August 24, 2019. Valberg SJ, Mickelson JR, Gallant EM, MacLeay JM, ... "Malignant Hyperthermia Associated with Ryanodine Receptor 1 (C7360G) Mutation in Quarter Horses". Journal of Veterinary ...
Malignant hyperthermia and malignant catatonia share features of autonomic instability, hyperthermia, and rigidity. However, ... Malignant hyperthermia most commonly occurs in the intraoperative or postoperative periods. Other signs and symptoms of ... Malignant Catatonia: Malignant catatonia is a life-threatening condition that may progress rapidly within a few days. It is ... Watt, Stacey; McAllister, Russell K. (2022). "Malignant Hyperthermia". StatPearls. StatPearls Publishing. PMID 28613578. Arnts ...
... also known as malignant hyperthermia or PSS, is a condition in pigs. It is characterised by hyperthermia triggered by stress, ... G.A. Gronert (1986). Malignant hyperthermia. In: B. Engle, B. Banker (editors) (1986). Myology. New York: McGraw Hill, pages ...
"Malignant Hyperthermia Background". www.midcentraldhb.govt.nz. Retrieved 2020-09-25. "The gene, the whaler, and 20 years of ... a 20-year-old male died during an operation at the hospital in New Zealand's first recorded case of malignant hyperthermia (MH ...
"Malignant hyperthermia: a review." Orphanet Journal of Rare Diseases 10, no. 1 (2015): 93. Davis, M., R. Brown, A. Dickson, H. ... Malignant hyperthermia has an incidence of between 1:10,000 and 1:250,000 worldwide, but 1:200 at Palmerston North Hospital due ... "Malignant hyperthermia associated with exercise-induced rhabdomyolysis or congenital abnormalities and a novel RYR1 mutation in ... Stowell is best-known publicly for her work on malignant hyperthermia (MH), a genetic disorder which causes a severe and ...
Gurrera RJ (2002). "Is neuroleptic malignant syndrome a neurogenic form of malignant hyperthermia?". Clinical Neuropharmacology ... This model of NMS strengthens its suspected association with malignant hyperthermia in which NMS may be regarded as a ... catatonia and malignant hyperthermia. Drugs such as cocaine and amphetamine may also produce similar symptoms. Features which ... malignant hyperthermia.". Morgan & Mikhail's Clinical Anesthesiology (7th ed.). McGraw Hill. ISBN 978-1-260-47379-7. Velamoor ...
Malignant hyperthermia can be a reaction to general anesthetics, as a complication in a surgery. Fractured ribs and sternum may ... "Malignant hyperthermia: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 2019-08-30. Kottachchi, Dan T.; Dong, ...
It is the primary drug used for the treatment and prevention of malignant hyperthermia, a rare, life-threatening disorder ... Harrison experimentally induced malignant hyperthermia with halothane anesthesia in genetically susceptible pigs, and obtained ... Sudo RT, Carmo PL, Trachez MM, Zapata-Sudo G (March 2008). "Effects of azumolene on normal and malignant hyperthermia- ... Dantrolene was widely used in the management of spasticity before its efficacy in treating malignant hyperthermia was ...
One research priority is to determine the role and nature of malignant hyperthermia in FSS. Such knowledge would benefit ... Litman RS, Rosenberg H (2005). "Malignant hyperthermia: update on susceptibility testing". JAMA. 293 (23): 2918-24. doi:10.1001 ... and malignant hyperthermia (MH) may affect individuals with FSS, as well. Cruickshanks et al. (1999) reports uneventful use of ...
Although a few people with Noonan syndrome have been reported to develop malignant hyperthermia, the gene mutation of diseases ... "Does Noonan Syndrome Increase Malignant Hyperthermia Susceptibility? - MHAUS". www.mhaus.org. Retrieved 2019-11-25. "DynaMed". ... known to be associated with malignant hyperthermia is different from that of Noonan syndrome. The lifespan of people with ...
The European Malignant Hyperthermia Group accepts two mutations in CACNA1S as diagnostic for malignant hyperthermia. Cav1.1 is ... "European Malignant Hyperthermia Group: Mutations in RYR1". Archived from the original on 2016-03-21. Retrieved 2015-05-14. ... GeneReviews/NCBI/NIH/UW entry on Malignant Hyperthermia Susceptibility CACNA1S+protein,+human at the U.S. National Library of ... Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997). "Malignant-hyperthermia susceptibility is associated with a mutation of ...
Hyperekplexia Neuromuscular medicine Malignant hyperthermia Gutmann, Laurie; Phillips, Lawrence H., 2nd (September 1991). " ...
For voluntary service to the British Malignant Hyperthermia Association. Karen Jean, Mrs. Heppleston Winn. For services to ...
Serious side effects may include allergic reactions; however, it has not been associated with malignant hyperthermia. Prolonged ...
Thomas J, Crowhurst T (September 2013). "Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia". ...
Susceptibility to malignant hyperthermia is often inherited as an autosomal dominant disorder, for which there are at least six ... Malignant hyperthermia (MH) from suxamethonium administration can result in a drastic and uncontrolled increase in skeletal ... Serious side effects include malignant hyperthermia, hyperkalemia and allergic reactions. It is not recommended in people who ... Side effects include malignant hyperthermia, muscle pains, acute rhabdomyolysis with high blood levels of potassium, transient ...
Sudo RT, Carmo PL, Trachez MM, Zapata-Sudo G (March 2008). "Effects of azumolene on normal and malignant hyperthermia- ... In animal studies, azumolene showed similar efficacy to dantrolene at controlling symptoms of malignant hyperthermia but with ... 2010). "Intravenous administration of azumolene to reverse malignant hyperthermia in swine". Journal of Veterinary Internal ...
It should not be used in patients with a history of malignant hyperthermia in either themselves or their family members. It is ... Serious side effects can include malignant hyperthermia or high blood potassium. ...
Of note, myotonia congenita has no association with malignant hyperthermia (MH). The prolonged muscle contractions, which occur ...
Malignant hyperthermia is a rare complication of some types of general anesthesia. Hyperthermia can also be caused by a ... Malignant hyperthermia is a rare reaction to common anesthetic agents (such as halothane) or the paralytic agent ... Various techniques of hyperthermia in the treatment of cancer include local or regional hyperthermia, as well as whole body ... or in someone taking a drug for which hyperthermia is a known side effect (drug-induced hyperthermia). The presence of signs ...
Dantrolene may be the only known drug that is effective during cases of malignant hyperthermia.[citation needed] RYR1 has been ... Mutations in the RYR1 gene are associated with malignant hyperthermia susceptibility, central core disease, minicore myopathy ... GeneReviews/NIH/UW entry on Multiminicore Disease GeneReviews/NCBI/NIH/UW entry on Malignant Hyperthermia Susceptibility RYR1 ... "Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia". Science. 253 (5018): 448-51 ...
When he wakes up, he learns that he suffers from malignant hyperthermia. He has a "shocking realisation" when he learns that ...
Laitano O, Murray KO, Leon LR (September 2020). "Overlapping Mechanisms of Exertional Heat Stroke and Malignant Hyperthermia: ... Hyperthermia Heat exhaustion Occupational heat stress Herrick RT (April 1986). "Heat illness in the athlete: siriasis is ... Gagnon D, Lemire BB, Casa DJ, Kenny GP (September 1, 2010). "Cold-water immersion and the treatment of hyperthermia: using 38.6 ... Dantrolene, a muscle relaxant used to treat other forms of hyperthermia, is not an effective treatment for heat stroke. ...
Hops, a plant used in making beer, can cause malignant hyperthermia in dogs, usually with fatal results. Certain breeds, such ... Duncan, KL; Hare, WR; Buck, WB (January 1997). "Malignant hyperthermia-like reaction secondary to ingestion of hops in five ... Both benign and malignant tumors are seen in dogs. Common benign tumors include lipomas, non-viral papillomas, sebaceous gland ... Macadamia nuts can cause non-fatal stiffness, tremors, hyperthermia, and abdominal pain. The exact mechanism is not known. Most ...
... s are also associated with malignant hyperthermia and Timothy syndrome. Mutations of the CACNA1C ... Monnier N, Procaccio V, Stieglitz P, Lunardi J (June 1997). "Malignant-hyperthermia susceptibility is associated with a ...
He announced his retirement in 2016 after he was diagnosed with malignant hyperthermia. Hodgson has represented Canada at two ... In 2017, Hodgson revealed he had retired after having been diagnosed with malignant hyperthermia. The disease, caused by a ...
... and skeletal muscle diseases and disorders including malignant hyperthermia, and neuroleptic malignant syndrome. Furthermore, ... "Screening test for malignant hyperthermia in patients with persistent hyperCKemia: a pilot study". Muscle & Nerve. 47 (5): 677- ... O'Dwyer AM, Sheppard NP (May 1993). "The role of creatine kinase in the diagnosis of neuroleptic malignant syndrome". ...
The malignant hyperthermia (MH) or porcine stress syndrome (PSS) are the terms used to refer to the state pigs are found before ... 1991). "Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia". Science. 253 (5018 ...
... a report from the North American Malignant Hyperthermia Registry. The North American Malignant Hyperthermia Registry of MHAUS ... Malignant hyperthermia is a disorder that can be considered a gene-environment interaction. In most people with malignant ... Malignant hyperthermia (MH) is a type of severe reaction that occurs in response to particular medications used during general ... Research into malignant hyperthermia was limited until the discovery of "porcine stress syndrome" (PSS) in Danish Landrace and ...
Malignant hyperthermia is a severe reaction to particular anesthetic drugs that are often used during surgery and other ... Genetic Testing Registry: Malignant hyperthermia, susceptibility to, 1 *Genetic Testing Registry: Malignant hyperthermia, ... Genetic Testing Registry: Malignant hyperthermia, susceptibility to, 5 *Genetic Testing Registry: Malignant hyperthermia, ... Fatal awake malignant hyperthermia episodes in a family with malignant hyperthermia susceptibility: a case series. Can J ...
Malignant hyperthermia (MH) is a life-threatening clinical syndrome of hypermetabolism involving the skeletal muscle. It is ... encoded search term (Malignant Hyperthermia) and Malignant Hyperthermia What to Read Next on Medscape ... Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group ... a report from the north american malignant hyperthermia registry of the malignant hyperthermia association of the United States ...
If you or someone in your family has malignant hyperthermia susceptibility (MHS) or you think you may be at risk of malignant ... Immediate treatment of malignant hyperthermia includes:. *Medication. A drug called dantrolene (Dantrium, Revonto, Ryanodex) is ... If you have the genetic disorder MHS that puts you at risk of malignant hyperthermia, wear a medical alert bracelet or necklace ... Malignant hyperthermia is diagnosed based on signs and symptoms, monitoring during and immediately after anesthesia, and lab ...
... share details of the genetics involved in Malignant Hyperthermia. Total runtime: 6m 31s ... Testing Options for Malignant Hyperthermia (6:31): Listen to Deanna Steele, Genetic Counselor, ... Testing Options for Malignant Hyperthermia (6:31). Listen to Deanna Steele, Genetic Counselor, share details of the genetics ... 2023 Malignant Hyperthermia Association of the United States. All rights reserved. The claims and opinions expressed in sponsor ...
Malignant hyperthermia (MH) is a life-threatening clinical syndrome of hypermetabolism involving the skeletal muscle. It is ... encoded search term (Malignant Hyperthermia) and Malignant Hyperthermia What to Read Next on Medscape ... Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group ... a report from the north american malignant hyperthermia registry of the malignant hyperthermia association of the United States ...
Malignant Hyperthermia Hotline Celebrates 30-Years: MHAUS Hotline Celebrates Thirty Years of Service to the Community By MHAUS ... 2023 Malignant Hyperthermia Association of the United States. All rights reserved. The claims and opinions expressed in sponsor ... We have learned how challenging it is to distinguish the cause of hyperthermia, acidosis and rhabdomyolysis in the ... we have learned that some patients who develop hyperthermia and cardiac arrest harbor an MH mutation in their genome; we ...
Home » Health Services » Surgical and Anaesthetics » Malignant Hyperthermia » Malignant Hyperthermia Specialities Health ... Stress has sometimes been thought to be a cause of malignant hyperthermia. There is a lot of work for the body in a normal ... Childbirth and Malignant Hyperthermia. Childbirth is always an unpredictable time of life. Most babies are born normally, ... Malignant hyperthermia susceptibility is genetically transmitted. This means that a baby has a 50% chance of being susceptible ...
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Centers RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.. ...
"Hyperthermia in the Pediatric Intensive Care Unit-Is it Malignant Hyperthermia?" Dr. Schleelein and coworkers used MH hotline ... Malignant Hyperthermia is an uncommon, inherited disorder, whereby patients who are at risk may develop life-threatening ... president of the Malignant Hyperthermia Association of the US stated that Dr. Rosenbaum, who has been a codirector of the MH ... editor of the APSF Newsletter for his support of the educational mission of the Malignant Hyperthermia Association by ...
encoded search term (Malignant Hyperthermia in the Operating Room) and Malignant Hyperthermia in the Operating Room What to ... Malignant Hyperthermia in the Operating Room Updated: Jul 13, 2022 * Author: David S Beebe, MD; Chief Editor: Abirami Kumaresan ... Genetics of Malignant Hyperthermia: A Brief Update. J Anaesthesiol Clin Pharmacol. 2020 Oct-Dec. 36 (4):552-555. [QxMD MEDLINE ... Acute fulminant malignant hyperthermia syndrome in the OR and no IV dantrolene: urgent need for a global initiative for ...
How is malignant hyperthermia treated?. The main treatment for malignant hyperthermia is a drug called dantrolene (Dantrium®). ... What gases cause malignant hyperthermia?. Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that ... What drugs should be avoided in malignant hyperthermia?. Triggering Agents According to the Malignant Hyperthermia Association ... How fast does malignant hyperthermia occur?. Hyperthermia can occur as early as 15 minutes after onset of MH, usually after ...
What is Malignant Hyperthermia?. Malignant Hyperthermia (MH) is an inherited disease which causes a rapid increase in body ... Malignant Hyperthermia Carts. Malignant Hyperthermia carts combine storage space for syringes, IV supplies, Dantrolene and ... Malignant Hyperthermia Cart with 1.0 Cubic Feet Medical Grade Refrigerator, Two Drawers, Breakaway Lock, MH5216B. Add to cart ... Malignant Hyperthermia Cart with 1.8 Cubic Feet Medical Grade Refrigerator, Three Drawers, Key Lock, MH5300K. Add to cart ...
... anesthesia could cause a potentially life threatening condition known as malignant hyperthermia. ... Malignant hyperthermia is a condition where a persons body begins to overheat in a life-threatening way, most often as a ... What is malignant hyperthermia, and how can you find out if you may be at risk?. October 2, 2018. ... Most people who experience malignant hyperthermia (~70-80% of patients) have variants in the RYR1 gene (a smaller group of ...
Radiotherapy combined with hyperthermia for primary malignant melanomas of the esophagus.lemmo-admin2014-02-11T16:43:46+00:00 ... Primary malignant melanoma of the esophagus (PMME) forms about 0.1% of all primary esophageal cancers. Treatment options are ... combined with regional hyperthermia could be a good alternative to resection in patients unfit for surgery with a malignant ... This is the first report describing the results of external radiotherapy combined with regional hyperthermia for two inoperable ...
Each Malignant Hyperthermia Treatment Cart includes a built-in Accucold laboratory grade refrigerator for precise and long- ... Malignant Hyperthermia Carts, Specialty Carts Tags: accucold, hyperthermia, hypothermia, malignant hyperthermia ... Malignant Hyperthermia Cart with 2.4 Cubic Feet Medical Grade Refrigerator, Two Drawers, Breakaway Lock, MH5200B-AC quantity. ... Malignant Hyperthermia Treatment Cart with 1.8 Cubic Feet Medical Grade Refrigerator, Two Drawers, Breakaway Lock, MH5200B. Add ...
Wong is a Malignant Hyperthermia Association of the United States (Sherburne, New York) Malignant Hyperthermia Hotline ... Dantrolene and Malignant Hyperthermia Carts: Do We Need Them on Maternity Units? Cynthia A. Wong, M.D. Cynthia A. Wong, M.D. ... The Malignant Hyperthermia Association of the United States recommends storing 100-ml vials of water in the MH cart to ... Malignant hyperthermia. It is an anesthetic crisis that has been drilled into our heads since training. It is mostly ...
Erin Wakefield describes the genetic condition that is malignant hyperthermia. This crucial lecture draws awareness to the life ... Sorry, "Malignant Hyperthermia " has expired and is no longer available.. Browse Online CPD. ...
Diaphragmatic function in malignant hyperthermia. *UK/EU/International: Worldwide (International, UK and EU) ... Malignant hyperthermia (MH) is a potentially fatal hypermetabolic reaction during general anaesthesia. Genetic predisposition ...
Site map for Malignant Hyperthermia.
Malignant hyperthermia - rare but fatal *J. Quearney. Letter 10 Feb 2023. Top of page ⤴. News. ...
Malignant Hyperthermia (MH). October 23, 2017. by Debon Dwyer Definition. Malignant Hyperthermia (MH) is an acute ... Postoperative malignant hyperthermia: an analysis of cases from the North American Malignant Hyperthermia Registry. ... Malignant hyperthermia was first described as an entity and noted to be genetically inherited in a letter to the editor of the ... Clinical Malignant Hyperthermia. Signs of an MH Crisis. Early Signs. *Prolonged masseter muscle spasm after suxamethonium ...
Learn about the canine malignant hyperthermia (MH) and its characteristics. DNA testing for canine malignant hyperthermia. ... Canine Malignant Hyperthermia. Canine malignant hyperthermia (MH) is autosomal dominant inherited disorder of skeletal muscle ... malignant hyperthermia is usually fatal. Some types of anesthesia can be fatal for dogs with malignant hyperthermia gene. ... Canine malignant hyperthermia episodes usually come on unexpectedly and are very serious. If the condition is recognized early ...
labile blood pressure, hyperthermia, elevated carbon dioxide production, metabolic acidosis, and muscle rigidity. MH needs to ... Malignant hyperthermia (MH) is a rare, life-threatening, and rapidly progressing disorder of the skeletal muscle tissue. It can ... Malignant hyperthermia (MH) is a rare, life-threatening, and rapidly progressing disorder of the skeletal muscle tissue. It can ... Nyirenda, Luther, "Malignant Hyperthermia" (2022). Nursing Student Class Projects (Formerly MSN). 499. https://digitalcommons. ...
Malignant Hyperthermia. IV procainamide has been used effectively in the treatment of malignant hyperthermia† [off-label]. ...
Cite this: FDA OKs Injectable Dantrolene for Malignant Hyperthermia - Medscape - Jul 23, 2014. ... for rapid treatment of malignant hyperthermia (MH), along with the appropriate supportive measures, the company announced in a ... a founder and president of the Malignant Hyperthermia Association of the United States, said in the release. ...
Rosenberg - Malignant Hyperthermia. NOTE: This collection description is part of the the larger Hahnemann University Academic ...
Malignant hyperthyroidism or malignant hyperthermia?. Together they form a unique fingerprint. * Malignant Hyperthermia ... title = "Malignant hyperthyroidism or malignant hyperthermia?",. abstract = "Increasing awareness of the malignant hyperthermic ... Malignant hyperthyroidism or malignant hyperthermia? / Peters, K. R.; Nance, P.; Wingard, D. W. In: Anesthesia and analgesia, ... Malignant hyperthyroidism or malignant hyperthermia? Anesthesia and analgesia. 1981;60(8):613-615. doi: 10.1213/00000539- ...
Malignant Hyperthermia - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - Medical ... Pathophysiology of Malignant Hyperthermia Malignant hyperthermia affects about 1/20,000 people. Susceptibility is inherited, ... Symptoms and Signs of Malignant Hyperthermia Malignant hyperthermia may develop during anesthesia or the early postoperative ... Prevention of Malignant Hyperthermia Local or regional anesthesia is preferred to general anesthesia when possible. Potent ...

No FAQ available that match "malignant hyperthermia"

No images available that match "malignant hyperthermia"