A plant genus of the family EUPHORBIACEAE. Members contain fredelin type TRITERPENES, mallorepine (a cyano-pyridone), and hydrolyzable TANNINS.
The spurge family of flowering plants, in the order Euphorbiales, contains some 7,500 species in 275 genera. The family consists of annual and perennial herbs and woody shrubs or trees.
A trinitrobenzene derivative with antispasmodic properties that is used primarily as a laboratory reagent.

Anti-allergic agents from natural sources (4): anti-allergic activity of new phloroglucinol derivatives from Mallotus philippensis (Euphorbiaceae). (1/10)

Two new phloroglucinol derivatives, mallotophilippen A (1). and B (2). were isolated from the fruits of Mallotus philippensis. These compounds were identified, using chemical and spectral data, as 1-[5,7-dihydroxy-2,2-dimethyl-6-(2,4,6-trihydroxy-3-isobutyryl-5-methyl-benzyl)-2 H-chromen-8-yl]-2-methyl-butan-1-one and 1-[6-(3-Acetyl-2,4,6-trihydroxy-5-methyl-benzyl)-5,7-dihydroxy-2,2-dimethyl-2H-ch romen-8-yl]-2-methyl-butan-1-one, respectively. They inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) gene expression by a murine macrophage-like cell line (RAW 264.7), which was activated by lipopolysaccharide (LPS) and recombinant mouse interferon-gamma (IFN-gamma). Furthermore, they inhibited histamine release from rat peritoneal mast cells induced by Compound 48/80. These results suggest that the novel phloroglucinol derivatives have anti-inflammatory effects.  (+info)

Inhibition of lipopolysaccharide-induced pro-inflammatory cytokine expression via suppression of nuclear factor-kappaB activation by Mallotus japonicus phloroglucinol derivatives. (2/10)

An aqueous acetone extract obtained from the pericarps of Mallotus japonicus (MJE) was observed to inhibit pro-inflammatory cytokine (tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production in a lipopolysaccharide (LPS)-activated murine macrophage-like cell line, RAW 264.7, or human blood monocytes. Several phloroglucinol derivatives were isolated from the pericarps as active compounds. Among these compounds, isomallotochromanol and isomallotochromene were the most potent in inhibiting cytokine production. MJE and the phloroglucinol derivatives significantly reduced these cytokine mRNA expressions. Gel shift analysis revealed that stimulation of macrophages with LPS caused an increase in the DNA binding activity of nuclear factor-kappaB (NF-kappaB), which was inhibited by isomallotochromanol and isomallotochromene. Western blot analysis showed that LPS reduced the IkappaB-alpha level in macrophages, while 10 microM isomallotochromanol and 10 microM isomallotochromene attenuated the LPS-induced decrease in IkappaB-alpha protein. We conclude that these phloroglucinol derivatives inhibit pro-inflammatory cytokine production and mRNA expression via suppression of NF-kappaB activation in activated macrophages.  (+info)

Two new galloylglucosides from the leaves of Mallotus furetianus. (3/10)

Two new galloylglucosides, mallophenols A (1) and B (2), were isolated from the leaves of Mallotus furetianus (Euphorbiaceae), together with seven known compounds, (6S,9R)-roseoside (3), aviculin (4), (+)-lyoniresinol-3alpha-O-alpha-L-rhamnopyranoside (5), (Z)-3-hexenyl-beta-D-glucopyranoside (6), 3,3,8,9,10-pentahydroxydibenzo[b,d]pyran-6-one (7), 3-hydroxy-4,5(R)-dimethyl-2(5H)-furanone (8) and gallic acid (9). The stereostructures of 1 and 2 were elucidated on the basis of spectroscopic analysis and chemical evidence.  (+info)

Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). (4/10)

Three novel chalcone derivatives, mallotophilippens C (1), D (2) and E (3) were isolated from the fruits of Mallotus philippinensis MUELL. ARG. These compounds were identified, using chemical and spectral data, as 1-[6-(3,7-dimethyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-8-yl]-3 -(4-hydroxy-phenyl)-propenone, 3-(3,4-dihydroxy-phenyl)-1-[6-(3,7-dimethyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-di methyl-2H-chromen-8-yl]-propenone and 1-[5,7-dihydroxy-2-methyl-6-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-2H-chr omen-8-yl]-3-(3,4-dihydroxy-phenyl)-propenone, respectively. They inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) gene expression by a murine macrophage-like cell line (RAW 264.7), which was activated by lipopolysaccharide (LPS) and recombinant mouse interferon-gamma (IFN-gamma). Furthermore, they downregulated cyclooxygenase-2 (COX-2) gene, interleukin-6 (IL-6) gene and interleukin-1beta (IL-1beta) gene expression. These results suggest that they have anti-inflammatory and immunoregulatory effects.  (+info)

Clinico-immunologic evaluation of allergy to Himalayan tree pollen in atopic subjects in India--a new record. (5/10)

Exposure to local pollen allergens has a direct bearing on the prevalence of allergic symptoms among the inhabiting atopic population. The populations in the Himalayas and around it are exposed to a variety of pollen grains from trees growing in the region, but the pollen-population interaction has not been clinically investigated. Himalayan tree pollen from five different taxa, i.e. Alnus nitida (AN), Betula utilis (BU), Cedrus deodara (CD), Mallotus phillipensis (MP) and Quercus incana (QI) were evaluated for their allergenicity in the Indian population by in vivo (skin prick test) and in vitro (ELISA) clinico-immunological methods. The presence of specific IgE against these tree pollen in the sera of skin test positive patients was taken as evidence for sensitization to these pollen. The average skin positivity in atopic populations recorded at different allergy centers in India varied from 2.2% against AN, to 4.7% against MP pollen. Significantly raised specific IgE against these pollen were observed in the sera of hypersensitive patients. The sensitization pattern to Himalayan tree pollen in these atopic populations varied. It was concluded that skin prick test positivity and raised IgE antibodies specific to AN, BU, CD, MP and QI established Himalayan tree pollen as important sensitizers in the atopic populations of India. A high incidence of skin sensitivity was observed to pollen antigens of Cedrus deodara, Mallotus phillipensis and Quercus incana in patients of Chandigarh residing in the hills and foothills of the Himalayas while Alnus nitida, Betula utilis and Cedrus deodara were important sensitizers in Delhi patients. The skin sensitization pattern against these pollen was in accordance with the level of exposure to these pollen of the subjects residing in that part of the country.  (+info)

The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam. (6/10)

 (+info)

Potent bactericidal constituents from Mallotus philippinensis against clarithromycin and metronidazole resistant strains of Japanese and Pakistani Helicobacter pylori. (7/10)

In the quest for potent anti-Helicobacter pylori agents, we found 70% EtOH extract of Mallotus philippinensis (LAM.) MUELL. (MPM) with strong bactericidal activity at the concentration of 15.6-31.2 mg/l against eight H. pylori strains. Further fractionation and purification of 70% EtOH extract of MPM led to the isolation of 5 compounds, namely 5,7-dihydroxy-8-methyl-6-prenylflavanone (1), 3'-prenylrubranine (2), red compound (3), isorottlerin (4), and rottlerin (5) which were elucidated on the basis of nuclear magnetic resonance and mass spectroscopy. Among the isolated compounds, rottlerin exhibited most potent bactericidal activity with minimum bactericidal concentration (MBC) value of 3.12-6.25 mg/l against several clinical H. pylori isolates including Japanese and Pakistani strains, nine clarithromycin resistant (CR), and seven metronidazole resistant (MR) strains. Minimum inhibitory concentration (MIC) values of CR (8->256 mg/l) and MR (>256 mg/l) strains were analyzed by E test. Moreover, the clarithromycin resistant strains were evaluated for A2143G and A2144G point mutations of 23s rRNA gene to correlate the MBC values with mutation type. Our results revealed the potent in vitro anti-H. pylori activity of MPM and rottlerin, specially against CR and MR strains, which could be gainfully utilized for the development of novel antimicrobials to prevent H. pylori related disorders.  (+info)

Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. (8/10)

 (+info)

I'm sorry for any confusion, but "Mallotus plant" is not a recognized medical term or concept in medicine or healthcare. The term "Mallotus" refers to a genus of flowering plants in the spurge family, Euphorbiaceae. These plants are native to tropical and subtropical regions of Asia, Africa, and Australia. Some species of Mallotus have been used in traditional medicine, but there is limited scientific evidence supporting their effectiveness or safety.

If you have any questions related to a specific medical condition or treatment, I would be happy to try to help you with that instead!

Euphorbiaceae is not a medical term, but a taxonomic category in botany. It refers to the spurge family, which is a large family of flowering plants that includes around 300 genera and 7,500 species. Some members of this family have medicinal uses, but others are toxic or invasive. Therefore, it is important to use caution when handling or consuming any plant material from this family.

Phloroglucinol is not strictly a medical term, but it is used in medicine and pharmacology. Phloroglucinol is an aromatic organic compound with the formula C6H6(OH)3. It is a white crystalline solid that is soluble in water and polar organic solvents.

In a medical context, phloroglucinol is most commonly used as a smooth muscle relaxant. It is often found in over-the-counter medications used to treat gastrointestinal symptoms such as abdominal cramps, spasms, and pain. Phloroglucinol works by relaxing the smooth muscles of the digestive tract, which can help to reduce spasms and relieve pain.

Phloroglucinol is also used in some countries as a treatment for kidney stones. It is believed to help to relax the ureter, the tube that connects the kidney to the bladder, making it easier to pass small kidney stones. However, its effectiveness for this use is not well established, and it is not approved by the U.S. Food and Drug Administration (FDA) for this purpose.

It's important to note that phloroglucinol should only be used under the guidance of a healthcare provider, as it can have side effects and interact with other medications.

No FAQ available that match "mallotus plant"

No images available that match "mallotus plant"