An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903)
The most common clinical variant of MULTIPLE SCLEROSIS, characterized by recurrent acute exacerbations of neurologic dysfunction followed by partial or complete recovery. Common clinical manifestations include loss of visual (see OPTIC NEURITIS), motor, sensory, or bladder function. Acute episodes of demyelination may occur at any site in the central nervous system, and commonly involve the optic nerves, spinal cord, brain stem, and cerebellum. (Adams et al., Principles of Neurology, 6th ed, pp903-914)
A form of multiple sclerosis characterized by a progressive deterioration in neurologic function which is in contrast to the more typical relapsing remitting form. If the clinical course is free of distinct remissions, it is referred to as primary progressive multiple sclerosis. When the progressive decline is punctuated by acute exacerbations, it is referred to as progressive relapsing multiple sclerosis. The term secondary progressive multiple sclerosis is used when relapsing remitting multiple sclerosis evolves into the chronic progressive form. (From Ann Neurol 1994;36 Suppl:S73-S79; Adams et al., Principles of Neurology, 6th ed, pp903-914)
A pathological process consisting of hardening or fibrosis of an anatomical structure, often a vessel or a nerve.
A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94)
An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5)
Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease.
Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system.
Inflammation of the optic nerve. Commonly associated conditions include autoimmune disorders such as MULTIPLE SCLEROSIS, infections, and granulomatous diseases. Clinical features include retro-orbital pain that is aggravated by eye movement, loss of color vision, and contrast sensitivity that may progress to severe visual loss, an afferent pupillary defect (Marcus-Gunn pupil), and in some instances optic disc hyperemia and swelling. Inflammation may occur in the portion of the nerve within the globe (neuropapillitis or anterior optic neuritis) or the portion behind the globe (retrobulbar neuritis or posterior optic neuritis).
An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
A chronic multi-system disorder of CONNECTIVE TISSUE. It is characterized by SCLEROSIS in the SKIN, the LUNGS, the HEART, the GASTROINTESTINAL TRACT, the KIDNEYS, and the MUSCULOSKELETAL SYSTEM. Other important features include diseased small BLOOD VESSELS and AUTOANTIBODIES. The disorder is named for its most prominent feature (hard skin), and classified into subsets by the extent of skin thickening: LIMITED SCLERODERMA and DIFFUSE SCLERODERMA.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Multiple protein bands serving as markers of specific ANTIBODIES and detected by ELECTROPHORESIS of CEREBROSPINAL FLUID or serum. The bands are most often seen during inflammatory or immune processes and are found in most patients with MULTIPLE SCLEROSIS.
One of the type I interferons produced by fibroblasts in response to stimulation by live or inactivated virus or by double-stranded RNA. It is a cytokine with antiviral, antiproliferative, and immunomodulating activity.
The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem.
A transmembrane protein present in the MYELIN SHEATH of the CENTRAL NERVOUS SYSTEM. It is one of the main autoantigens implicated in the pathogenesis of MULTIPLE SCLEROSIS.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
Determination of the degree of a physical, mental, or emotional handicap. The diagnosis is applied to legal qualification for benefits and income under disability insurance and to eligibility for Social Security and workmen's compensation benefits.
MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure.
A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system.
A myelin protein found in the periaxonal membrane of both the central and peripheral nervous systems myelin sheaths. It binds to cells surface receptors found on AXONS and may regulate cellular interactions between MYELIN and AXONS.
A syndrome characterized by acute OPTIC NEURITIS; MYELITIS, TRANSVERSE; demyelinating and/or necrotizing lesions in the OPTIC NERVES and SPINAL CORD; and presence of specific autoantibodies to AQUAPORIN 4.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges.
A myelin protein that is the major component of the organic solvent extractable lipoprotein complexes of whole brain. It has been the subject of much study because of its unusual physical properties. It remains soluble in chloroform even after essentially all of its bound lipids have been removed. (From Siegel et al., Basic Neurochemistry, 4th ed, p122)
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
Biologically active substances whose activities affect or play a role in the functioning of the immune system.
A broad specificity HLA-DR antigen that is associated with HLA-DRB1 CHAINS encoded by DRB1*01:15 and DRB1*01:16 alleles.
An acute or subacute inflammatory process of the CENTRAL NERVOUS SYSTEM characterized histologically by multiple foci of perivascular demyelination. Symptom onset usually occurs several days after an acute viral infection or immunization, but it may coincide with the onset of infection or rarely no antecedent event can be identified. Clinical manifestations include CONFUSION, somnolence, FEVER, nuchal rigidity, and involuntary movements. The illness may progress to COMA and eventually be fatal. (Adams et al., Principles of Neurology, 6th ed, p921)
Copper chelator that inhibits monoamine oxidase and causes liver and brain damage.
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.
A rare central nervous system demyelinating condition affecting children and young adults. Pathologic findings include a large, sharply defined, asymmetric focus of myelin destruction that may involve an entire lobe or cerebral hemisphere. The clinical course tends to be progressive and includes dementia, cortical blindness, cortical deafness, spastic hemiplegia, and pseudobulbar palsy. Concentric sclerosis of Balo is differentiated from diffuse cerebral sclerosis of Schilder by the pathologic finding of alternating bands of destruction and preservation of myelin in concentric rings. Alpers' Syndrome refers to a heterogeneous group of diseases that feature progressive cerebral deterioration and liver disease. (From Adams et al., Principles of Neurology, 6th ed, p914; Dev Neurosci 1991;13(4-5):267-73)
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Derivatives of propylene glycol (1,2-propanediol). They are used as humectants and solvents in pharmaceutical preparations.
Conditions characterized by loss or dysfunction of myelin (see MYELIN SHEATH) in the brain, spinal cord, or optic nerves secondary to autoimmune mediated processes. This may take the form of a humoral or cellular immune response directed toward myelin or OLIGODENDROGLIA associated autoantigens.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A species of CARDIOVIRUS which contains three strains: Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, and Rat encephalomyelitis virus.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle.
The return of a sign, symptom, or disease after a remission.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
A subtype of HLA-DRB beta chains that includes over one hundred allele variants. The HLA-DRB1 subtype is associated with several of the HLA-DR SEROLOGICAL SUBTYPES.
Proteins in the cerebrospinal fluid, normally albumin and globulin present in the ratio of 8 to 1. Increases in protein levels are of diagnostic value in neurological diseases. (Brain and Bannister's Clinical Neurology, 7th ed, p221)
The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling.
The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM.
Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides.
Infections caused by viruses of the genus CARDIOVIRUS, family PICORNAVIRIDAE.
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
A spontaneous diminution or abatement of a disease over time, without formal treatment.
The state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli.
Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury.
A PREDNISOLONE derivative with similar anti-inflammatory action.
The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
A rapid onset form of SYSTEMIC SCLERODERMA with progressive widespread SKIN thickening over the arms, the legs and the trunk, resulting in stiffness and disability.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS.
Elements of limited time intervals, contributing to particular results or situations.
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Gadolinium. An element of the rare earth family of metals. It has the atomic symbol Gd, atomic number 64, and atomic weight 157.25. Its oxide is used in the control rods of some nuclear reactors.
A general term indicating inflammation of a peripheral or cranial nerve. Clinical manifestation may include PAIN; PARESTHESIAS; PARESIS; or HYPESTHESIA.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways.
Inflammation of a transverse portion of the spinal cord characterized by acute or subacute segmental demyelination or necrosis. The condition may occur sporadically, follow an infection or vaccination, or present as a paraneoplastic syndrome (see also ENCEPHALOMYELITIS, ACUTE DISSEMINATED). Clinical manifestations include motor weakness, sensory loss, and incontinence. (Adams et al., Principles of Neurology, 6th ed, pp1242-6)
Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level.
Persons with physical or mental disabilities that affect or limit their activities of daily living and that may require special accommodations.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
A class of statistical methods applicable to a large set of probability distributions used to test for correlation, location, independence, etc. In most nonparametric statistical tests, the original scores or observations are replaced by another variable containing less information. An important class of nonparametric tests employs the ordinal properties of the data. Another class of tests uses information about whether an observation is above or below some fixed value such as the median, and a third class is based on the frequency of the occurrence of runs in the data. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1284; Corsini, Concise Encyclopedia of Psychology, 1987, p764-5)
Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure.
Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Pathologic conditions which feature SPINAL CORD damage or dysfunction, including disorders involving the meninges and perimeningeal spaces surrounding the spinal cord. Traumatic injuries, vascular diseases, infections, and inflammatory/autoimmune processes may affect the spinal cord.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
Diseases characterized by a selective degeneration of the motor neurons of the spinal cord, brainstem, or motor cortex. Clinical subtypes are distinguished by the major site of degeneration. In AMYOTROPHIC LATERAL SCLEROSIS there is involvement of upper, lower, and brainstem motor neurons. In progressive muscular atrophy and related syndromes (see MUSCULAR ATROPHY, SPINAL) the motor neurons in the spinal cord are primarily affected. With progressive bulbar palsy (BULBAR PALSY, PROGRESSIVE), the initial degeneration occurs in the brainstem. In primary lateral sclerosis, the cortical neurons are affected in isolation. (Adams et al., Principles of Neurology, 6th ed, p1089)
The least progressive form of SYSTEMIC SCLERODERMA with skin thickening restricted to the face, neck and areas distal to the elbows and/or knees, sparing the trunk. The CREST SYNDROME is a form of limited scleroderma.
A general term indicating inflammation of the BRAIN and SPINAL CORD, often used to indicate an infectious process, but also applicable to a variety of autoimmune and toxic-metabolic conditions. There is significant overlap regarding the usage of this term and ENCEPHALITIS in the literature.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A rare, slowly progressive encephalitis caused by chronic infection with the MEASLES VIRUS. The condition occurs primarily in children and young adults, approximately 2-8 years after the initial infection. A gradual decline in intellectual abilities and behavioral alterations are followed by progressive MYOCLONUS; MUSCLE SPASTICITY; SEIZURES; DEMENTIA; autonomic dysfunction; and ATAXIA. DEATH usually occurs 1-3 years after disease onset. Pathologic features include perivascular cuffing, eosinophilic cytoplasmic inclusions, neurophagia, and fibrous gliosis. It is caused by the SSPE virus, which is a defective variant of MEASLES VIRUS. (From Adams et al., Principles of Neurology, 6th ed, pp767-8)
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302)
'Rats, Inbred Lew' is a strain of laboratory rat that is widely used in biomedical research, known for its consistent genetic background and susceptibility to certain diseases, which makes it an ideal model for studying the genetic basis of complex traits and disease processes.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
The three membranes that cover the BRAIN and the SPINAL CORD. They are the dura mater, the arachnoid, and the pia mater.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Disturbances in mental processes related to learning, thinking, reasoning, and judgment.
Inflammation of the BRAIN due to infection, autoimmune processes, toxins, and other conditions. Viral infections (see ENCEPHALITIS, VIRAL) are a relatively frequent cause of this condition.
An opportunistic viral infection of the central nervous system associated with conditions that impair cell-mediated immunity (e.g., ACQUIRED IMMUNODEFICIENCY SYNDROME and other IMMUNOLOGIC DEFICIENCY SYNDROMES; HEMATOLOGIC NEOPLASMS; IMMUNOSUPPRESSION; and COLLAGEN DISEASES). The causative organism is JC Polyomavirus (JC VIRUS) which primarily affects oligodendrocytes, resulting in multiple areas of demyelination. Clinical manifestations include DEMENTIA; ATAXIA; visual disturbances; and other focal neurologic deficits, generally progressing to a vegetative state within 6 months. (From Joynt, Clinical Neurology, 1996, Ch26, pp36-7)
Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Diseases of viral origin, characterized by incubation periods of months to years, insidious onset of clinical manifestations, and protracted clinical course. Though the disease process is protracted, viral multiplication may not be unusually slow. Conventional viruses produce slow virus diseases such as SUBACUTE SCLEROSING PANENCEPHALITIS, progressive multifocal leukoencephalopathy (LEUKOENCEPHALOPATHY, PROGRESSIVE MULTIFOCAL), and AIDS. Diseases produced by unconventional agents were originally considered part of this group. They are now called PRION DISEASES.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
A form of muscle hypertonia associated with upper MOTOR NEURON DISEASE. Resistance to passive stretch of a spastic muscle results in minimal initial resistance (a "free interval") followed by an incremental increase in muscle tone. Tone increases in proportion to the velocity of stretch. Spasticity is usually accompanied by HYPERREFLEXIA and variable degrees of MUSCLE WEAKNESS. (From Adams et al., Principles of Neurology, 6th ed, p54)

Mental change as an early feature of multiple sclerosis. (1/4431)

Five patients with mental change as a prominent and early feature of an illness which appeared to be multiple sclerosis are reported. All the patients had in addition clinical signs of predominant brain stem involvement and the cerebrospinal fluid findings were similar. It is emphasised that mental change may be an early feature of multiple sclerosis even in those patients in whom the onset of the disease is insidious.  (+info)

Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? (2/4431)

Brain-derived neurotrophic factor (BDNF) has potent effects on neuronal survival and plasticity during development and after injury. In the nervous system, neurons are considered the major cellular source of BDNF. We demonstrate here that in addition, activated human T cells, B cells, and monocytes secrete bioactive BDNF in vitro. Notably, in T helper (Th)1- and Th2-type CD4(+) T cell lines specific for myelin autoantigens such as myelin basic protein or myelin oligodendrocyte glycoprotein, BDNF production is increased upon antigen stimulation. The BDNF secreted by immune cells is bioactive, as it supports neuronal survival in vitro. Using anti-BDNF monoclonal antibody and polyclonal antiserum, BDNF immunoreactivity is demonstrable in inflammatory infiltrates in the brain of patients with acute disseminated encephalitis and multiple sclerosis. The results raise the possibility that in the nervous system, inflammatory infiltrates have a neuroprotective effect, which may limit the success of nonselective immunotherapies.  (+info)

Cortical lesions in multiple sclerosis. (3/4431)

Although previous studies have shown that the lesions of multiple sclerosis may involve the cerebral cortex, there is little published research on the prevalence and distribution of such lesions. Using neuropathological techniques and MRI, a series of studies has been undertaken in order to assess this, in particular to identify their relationship to cortical veins. A serial MRI study showed that the use of gadolinium proffered an increase in cortical lesion detection of 140% and showed that 26% of active lesions arose within or adjacent to the cortex. In a post-mortem study, MRI under-reported lesions subsequently analysed neuropathologically, particularly those arising within the cortex. In a further 12 cases examined, 478 cortical lesions were identified, of which 372 also involved the subcortical white matter. Seven different lesion types were identified; the majority arose within the territory of the principal cortical veins, whilst the remaining quarter arose within the territory of the small branch or superficial veins. Small cortical lesions are common in multiple sclerosis and are under-reported by MRI. Investigation of the cortical venous supply shows how such lesions may arise, and why the majority also involve the underlying white matter.  (+info)

The psychometric properties of clinical rating scales used in multiple sclerosis. (4/4431)

OullII;l y Many clinical rating scales have been proposed to assess the impact of multiple sclerosis on patients, but only few have been evaluated formally for reliability, validity and responsiveness. We assessed the psychometric properties of five commonly used scales in multiple sclerosis, the Expanded Disability Status Scale (EDSS), the Scripps Neurological Rating Scale (SNRS), the Functional Independence Measure (FIM), the Ambulation Index (AI) and the Cambridge Multiple Sclerosis Basic Score (CAMBS). The score frequency distributions of all five scales were either bimodal (EDSS and AI) or severely skewed (SNRS, FIM and CAMBS). The reliability of each scale depended on the definition of 'agreement'. Inter-and intra-rater reliabilities were high when 'agreement' was considered to exist despite a difference of up to 1.0 EDSS point (two 0.5 steps), 13 SNRS points, 9 FIM points, 1 AI point and 1 point on the various CAMBS domains. The FIM, AI, and the relapse and progression domains of the CAMBS were sensitive to clinical change, but the EDSS and the SNRS were unresponsive. The validity of these scales as impairment (SNRS and EDSS) and disability (EDSS, FIM, AI and the disability domain of the CAMBS) measures was established. All scales correlated closely with other measures of handicap and quality of life. None of these scales satisfied the psychometric requirements of outcome measures completely, but each had some desirable properties. The SNRS and the EDSS were reliable and valid measures of impairment and disability, but they were unresponsive. The FIM was a reliable, valid and responsive measure of disability, but it is cumbersome to administer and has a limited content validity. The AI was a reliable and valid ambulation-related disability scale, but it was weakly responsive. The CAMBS was a reliable (all four domains) and responsive (relapse and progression domains) outcome measure, but had a limited validity (handicap domain). These psychometric properties should be considered when designing further clinical trials in multiple sclerosis.  (+info)

Respiratory muscle involvement in multiple sclerosis. (5/4431)

Respiratory complications are common in the terminal stages of multiple sclerosis and contribute to mortality in these patients. When respiratory motor pathways are involved, respiratory muscle weakness frequently occurs. Although it is well established that weakness of the respiratory muscles produces a restrictive ventilatory defect, the degree of muscle weakness and pulmonary function are poorly related. Respiratory muscle weakness was observed in patients with normal or near normal pulmonary function. Expiratory muscle weakness is more prominent than inspiratory muscle weakness and may impair performance of coughing. Subsequently, in addition to bulbar dysfunction, respiratory muscle weakness may contribute to ineffective coughing, pneumonia, and sometimes even acute ventilatory failure may ensue. Respiratory muscle weakness may also occur early in the course of the disease. Recent studies suggest that the respiratory muscles can be trained for both strength and endurance in multiple sclerosis patients. Whether respiratory muscle training delays the development of respiratory dysfunction and subsequently improves exercise capacity and cough efficacy, prevents pulmonary complications or prolongs survival in the long-term remains to be determined.  (+info)

Non-coding plasmid DNA induces IFN-gamma in vivo and suppresses autoimmune encephalomyelitis. (6/4431)

Regulatory sequences used in plasmids for naked DNA vaccination can modulate cytokine production in vivo. We demonstrate here that injection of plasmid DNA can suppress the prototypic T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis, by inducing IFN-gamma.  (+info)

Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. (7/4431)

Metalloproteinases have been implicated in the pathogenesis of multiple sclerosis. We report longitudinal serum levels of gelatinase B and of the tissue inhibitors of matrix metalloproteinases (TIMP), TIMP-1 and TIMP-2, in 21 patients with relapsing multiple sclerosis. Patients had monthly clinical and gadolinium-enhanced MRI follow-up for 10 months. Longitudinal samples in nine healthy controls and cross-sectional samples from 12 patients with inflammatory CNS disease and 15 patients with other neurological diseases were used for comparison. Average serum gelatinase B, TIMP-1 and TIMP-2 levels were significantly higher in multiple sclerosis patients and those with other neurological diseases than in healthy controls. In the patients with multiple sclerosis, gelatinase B levels were significantly higher during clinical relapse compared with periods of clinical stability. Multiple sclerosis patients with high mean serum gelatinase B levels had significantly more T1-weighted gadolinium-enhancing MRI lesions than those with mean levels within the control range. TIMP-1 levels were not different during relapse and between relapses. There was a trend for TIMP-2 levels to be lower during relapse compared with non-relapse periods. For similar levels of serum gelatinase B, associated TIMP-1 levels were significantly lower and TIMP-2 levels significantly higher in multiple sclerosis patients compared with the inflammatory CNS control group. We propose that an abnormality in the inhibitory response to metalloproteinases may play an aetiological role in the chronicity of multiple sclerosis.  (+info)

A clinical study of motor evoked potentials using a triple stimulation technique. (8/4431)

Amplitudes of motor evoked potentials (MEPs) are usually much smaller than those of motor responses to maximal peripheral nerve stimulation, and show marked variation between normal subjects and from one stimulus to another. Consequently, amplitude measurements have low sensitivity to detect central motor conduction failures due to the broad range of normal values. Since these characteristics are mostly due to varying desynchronization of the descending action potentials, causing different degrees of phase cancellation, we applied the recently developed triple stimulation technique (TST) to study corticospinal conduction to 489 abductor digiti minimi muscles of 271 unselected patients referred for possible corticospinal dysfunction. The TST allows resynchronization of the MEP, and thereby a quantification of the proportion of motor units activated by the transcranial stimulus. TST results were compared with those of conventional MEPs. In 212 of 489 sides, abnormal TST responses suggested conduction failure of various degrees. By contrast, conventional MEPs detected conduction failures in only 77 of 489 sides. The TST was therefore 2.75 times more sensitive than conventional MEPs in disclosing corticospinal conduction failures. When the results of the TST and conventional MEPs were combined, 225 sides were abnormal: 145 sides showed central conduction failure, 13 sides central conduction slowing and 67 sides both conduction failure and slowing. It is concluded that the TST is a valuable addition to the study of MEPs, since it improves detection and gives quantitative information on central conduction failure, an abnormality which appears to be much more frequent than conduction slowing. This new technique will be useful in following the natural course and the benefit of treatments in disorders affecting central motor conduction.  (+info)

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), which includes the brain, spinal cord, and optic nerves. In MS, the immune system mistakenly attacks the protective covering of nerve fibers, called myelin, leading to damage and scarring (sclerosis). This results in disrupted communication between the brain and the rest of the body, causing a variety of neurological symptoms that can vary widely from person to person.

The term "multiple" refers to the numerous areas of scarring that occur throughout the CNS in this condition. The progression, severity, and specific symptoms of MS are unpredictable and may include vision problems, muscle weakness, numbness or tingling, difficulty with balance and coordination, cognitive impairment, and mood changes. There is currently no cure for MS, but various treatments can help manage symptoms, modify the course of the disease, and improve quality of life for those affected.

Relapsing-remitting multiple sclerosis (RRMS) is a type of multiple sclerosis (MS), which is a chronic autoimmune disease that affects the central nervous system (CNS). In RRMS, the immune system attacks the protective covering of nerve fibers (myelin sheath) in the CNS, leading to the formation of lesions or scars (scleroses). These attacks result in episodes of new or worsening symptoms, known as relapses or exacerbations.

The distinguishing feature of RRMS is that these relapses are followed by periods of partial or complete recovery (remissions), during which symptoms may improve, stabilize, or even disappear temporarily. The duration and severity of relapses and remissions can vary significantly among individuals with RRMS. Over time, the accumulation of damage to the nervous system can lead to progressive disability.

Approximately 85% of people with MS are initially diagnosed with the relapsing-remitting form. With appropriate treatment and management, many people with RRMS can effectively manage their symptoms and maintain a good quality of life for several years.

Multiple Sclerosis (MS), Chronic Progressive is a form of Multiple Sclerosis, a chronic autoimmune disease that affects the central nervous system (CNS). In this form, the disease follows a steady progression with no distinct relapses or remissions. The symptoms worsen over time, leading to a decline in physical functioning and increased disability.

The term "chronic progressive" is used to describe the course of the disease, which is characterized by a continuous worsening of neurological functions from the onset, or after an initial relapsing-remitting phase. There are two types of chronic progressive MS: primary and secondary.

1. Primary Chronic Progressive MS (PCP): This form of MS shows a steady progression of symptoms from the beginning, with no distinct remissions or relapses. The disability accumulates gradually over time, and the person may experience varying degrees of physical and cognitive impairment.

2. Secondary Chronic Progressive MS (SCP): In this form, an individual initially has a relapsing-remitting course of MS (RRMS), characterized by unpredictable relapses followed by periods of partial or complete recovery (remissions). However, after some time, the disease transitions to a steady progression of symptoms and disability, even without distinct relapses. This is known as secondary chronic progressive MS.

The exact cause of Multiple Sclerosis remains unknown; however, it is believed to be influenced by genetic, environmental, and immunological factors. The disease involves the immune system attacking the myelin sheath, a protective covering surrounding nerve fibers in the CNS. This results in lesions or scars (scleroses) that disrupt communication between the brain, spinal cord, and other parts of the body, leading to various physical, cognitive, and sensory symptoms.

Management of Chronic Progressive MS typically involves a multidisciplinary approach, focusing on symptom management, rehabilitation, and maintaining quality of life. Currently, there are no approved disease-modifying therapies specifically for chronic progressive MS; however, some medications used to treat relapsing-remitting MS may help slow the progression of disability in certain individuals with secondary chronic progressive MS.

Sclerosis is a medical term that refers to the abnormal hardening or scarring of body tissues, particularly in the context of various degenerative diseases affecting the nervous system. The term "sclerosis" comes from the Greek word "skleros," which means hard. In these conditions, the normally flexible and adaptable nerve cells or their protective coverings (myelin sheath) become rigid and inflexible due to the buildup of scar tissue or abnormal protein deposits.

There are several types of sclerosis, but one of the most well-known is multiple sclerosis (MS). In MS, the immune system mistakenly attacks the myelin sheath surrounding nerve fibers in the brain and spinal cord, leading to scarring and damage that disrupts communication between the brain and the rest of the body. This results in a wide range of symptoms, such as muscle weakness, numbness, vision problems, balance issues, and cognitive impairment.

Other conditions that involve sclerosis include:

1. Amyotrophic lateral sclerosis (ALS): Also known as Lou Gehrig's disease, ALS is a progressive neurodegenerative disorder affecting motor neurons in the brain and spinal cord, leading to muscle weakness, stiffness, and atrophy.
2. Systemic sclerosis: A rare autoimmune connective tissue disorder characterized by thickening and hardening of the skin and internal organs due to excessive collagen deposition.
3. Plaque psoriasis: A chronic inflammatory skin condition marked by red, scaly patches (plaques) resulting from rapid turnover and accumulation of skin cells.
4. Adhesive capsulitis: Also known as frozen shoulder, this condition involves stiffening and thickening of the shoulder joint's capsule due to scarring or inflammation, leading to limited mobility and pain.

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that affects nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movements, such as speaking, walking, breathing, and swallowing. The condition is characterized by the degeneration of motor neurons in the brain (upper motor neurons) and spinal cord (lower motor neurons), leading to their death.

The term "amyotrophic" comes from the Greek words "a" meaning no or negative, "myo" referring to muscle, and "trophic" relating to nutrition. When a motor neuron degenerates and can no longer send impulses to the muscle, the muscle becomes weak and eventually atrophies due to lack of use.

The term "lateral sclerosis" refers to the hardening or scarring (sclerosis) of the lateral columns of the spinal cord, which are primarily composed of nerve fibers that carry information from the brain to the muscles.

ALS is often called Lou Gehrig's disease, named after the famous American baseball player who was diagnosed with the condition in 1939. The exact cause of ALS remains unknown, but it is believed to involve a combination of genetic and environmental factors. There is currently no cure for ALS, and treatment primarily focuses on managing symptoms and maintaining quality of life.

The progression of ALS varies from person to person, with some individuals experiencing rapid decline over just a few years, while others may have a more slow-progressing form of the disease that lasts several decades. The majority of people with ALS die from respiratory failure within 3 to 5 years after the onset of symptoms. However, approximately 10% of those affected live for 10 or more years following diagnosis.

Autoimmune encephalomyelitis (EAE) is a model of inflammatory demyelinating disease used in medical research to study the mechanisms of multiple sclerosis (MS) and develop new therapies. It is experimentally induced in laboratory animals, typically mice or rats, through immunization with myelin antigens or T-cell transfer. The resulting immune response leads to inflammation, demyelination, and neurological dysfunction in the central nervous system (CNS), mimicking certain aspects of MS.

EAE is a valuable tool for understanding the pathogenesis of MS and testing potential treatments. However, it is essential to recognize that EAE is an experimental model and may not fully recapitulate all features of human autoimmune encephalomyelitis.

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes non-cancerous (benign) tumors to grow in many parts of the body. These tumors can affect the brain, skin, heart, kidneys, eyes, and lungs. The signs and symptoms of TSC can vary widely, depending on where the tumors develop and how severely a person is affected.

The condition is caused by mutations in either the TSC1 or TSC2 gene, which regulate a protein that helps control cell growth and division. When these genes are mutated, the protein is not produced correctly, leading to excessive cell growth and the development of tumors.

TSC is typically diagnosed based on clinical symptoms, medical imaging, and genetic testing. Treatment for TSC often involves a multidisciplinary approach, with specialists in neurology, dermatology, cardiology, nephrology, pulmonology, and ophthalmology working together to manage the various symptoms of the condition. Medications, surgery, and other therapies may be used to help control seizures, developmental delays, skin abnormalities, and other complications of TSC.

Demyelinating diseases are a group of disorders that are characterized by damage to the myelin sheath, which is the protective covering surrounding nerve fibers in the brain, optic nerves, and spinal cord. Myelin is essential for the rapid transmission of nerve impulses, and its damage results in disrupted communication between the brain and other parts of the body.

The most common demyelinating disease is multiple sclerosis (MS), where the immune system mistakenly attacks the myelin sheath. Other demyelinating diseases include:

1. Acute Disseminated Encephalomyelitis (ADEM): An autoimmune disorder that typically follows a viral infection or vaccination, causing widespread inflammation and demyelination in the brain and spinal cord.
2. Neuromyelitis Optica (NMO) or Devic's Disease: A rare autoimmune disorder that primarily affects the optic nerves and spinal cord, leading to severe vision loss and motor disability.
3. Transverse Myelitis: Inflammation of the spinal cord causing damage to both sides of one level (segment) of the spinal cord, resulting in various neurological symptoms such as muscle weakness, numbness, or pain, depending on which part of the spinal cord is affected.
4. Guillain-Barré Syndrome: An autoimmune disorder that causes rapid-onset muscle weakness, often beginning in the legs and spreading to the upper body, including the face and breathing muscles. It occurs when the immune system attacks the peripheral nerves' myelin sheath.
5. Central Pontine Myelinolysis (CPM): A rare neurological disorder caused by rapid shifts in sodium levels in the blood, leading to damage to the myelin sheath in a specific area of the brainstem called the pons.

These diseases can result in various symptoms, such as muscle weakness, numbness, vision loss, difficulty with balance and coordination, and cognitive impairment, depending on the location and extent of the demyelination. Treatment typically focuses on managing symptoms, modifying the immune system's response, and promoting nerve regeneration and remyelination when possible.

Optic neuritis is a medical condition characterized by inflammation and damage to the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various symptoms such as vision loss, pain with eye movement, color vision disturbances, and pupillary abnormalities. Optic neuritis may occur in isolation or be associated with other underlying medical conditions, including multiple sclerosis, neuromyelitis optica, and autoimmune disorders. The diagnosis typically involves a comprehensive eye examination, including visual acuity testing, dilated funduscopic examination, and possibly imaging studies like MRI to evaluate the optic nerve and brain. Treatment options may include corticosteroids or other immunomodulatory therapies to reduce inflammation and prevent further damage to the optic nerve.

Myelin Basic Protein (MBP) is a key structural protein found in the myelin sheath, which is a multilayered membrane that surrounds and insulates nerve fibers (axons) in the nervous system. The myelin sheath enables efficient and rapid transmission of electrical signals (nerve impulses) along the axons, allowing for proper communication between different neurons.

MBP is one of several proteins responsible for maintaining the structural integrity and organization of the myelin sheath. It is a basic protein, meaning it has a high isoelectric point due to its abundance of positively charged amino acids. MBP is primarily located in the intraperiod line of the compact myelin, which is a region where the extracellular leaflets of the apposing membranes come into close contact without fusing.

MBP plays crucial roles in the formation, maintenance, and repair of the myelin sheath:

1. During development, MBP helps mediate the compaction of the myelin sheath by interacting with other proteins and lipids in the membrane.
2. MBP contributes to the stability and resilience of the myelin sheath by forming strong ionic bonds with negatively charged phospholipids in the membrane.
3. In response to injury or disease, MBP can be cleaved into smaller peptides that act as chemoattractants for immune cells, initiating the process of remyelination and repair.

Dysregulation or damage to MBP has been implicated in several demyelinating diseases, such as multiple sclerosis (MS), where the immune system mistakenly attacks the myelin sheath, leading to its degradation and loss. The presence of autoantibodies against MBP is a common feature in MS patients, suggesting that an abnormal immune response to this protein may contribute to the pathogenesis of the disease.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Systemic Scleroderma, also known as Systemic Sclerosis (SSc), is a rare, chronic autoimmune disease that involves the abnormal growth and accumulation of collagen in various connective tissues, blood vessels, and organs throughout the body. This excessive collagen production leads to fibrosis or scarring, which can cause thickening, hardening, and tightening of the skin and damage to internal organs such as the heart, lungs, kidneys, and gastrointestinal tract.

Systemic Scleroderma is characterized by two main features: small blood vessel abnormalities (Raynaud's phenomenon) and fibrosis. The disease can be further classified into two subsets based on the extent of skin involvement: limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc).

Limited cutaneous systemic sclerosis affects the skin distally, typically involving fingers, hands, forearms, feet, lower legs, and face. It is often associated with Raynaud's phenomenon, calcinosis, telangiectasias, and pulmonary arterial hypertension.

Diffuse cutaneous systemic sclerosis involves more extensive skin thickening and fibrosis that spreads proximally to affect the trunk, upper arms, thighs, and face. It is commonly associated with internal organ involvement, such as interstitial lung disease, heart disease, and kidney problems.

The exact cause of Systemic Scleroderma remains unknown; however, it is believed that genetic, environmental, and immunological factors contribute to its development. There is currently no cure for Systemic Scleroderma, but various treatments can help manage symptoms, slow disease progression, and improve quality of life.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Oligoclonal bands (OB) are a pattern of immunoglobulin (antibody) proteins found in the cerebrospinal fluid (CSF) when it is analyzed using a technique called electrophoresis. This pattern shows a limited number (oligo) of distinct protein bands, which are clonally expanded (clonal), indicating the presence of an intr Theatreaterathecal immunoglobulin synthesis, typically in response to some sort of central nervous system (CNS) antigenic stimulation or immune response.

The detection of oligoclonal bands is often associated with inflammatory conditions affecting the CNS, such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and other infectious or autoimmune diseases. However, it's important to note that their presence alone does not confirm a specific diagnosis, but rather serves as a supportive finding in conjunction with other clinical and diagnostic data.

Interferon-beta (IFN-β) is a type of cytokine - specifically, it's a protein that is produced and released by cells in response to stimulation by a virus or other foreign substance. It belongs to the interferon family of cytokines, which play important roles in the body's immune response to infection.

IFN-β has antiviral properties and helps to regulate the immune system. It works by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to the activation of genes involved in the antiviral response. This results in the production of proteins that inhibit viral replication and promote the death of infected cells.

IFN-β is used as a medication for the treatment of certain autoimmune diseases, such as multiple sclerosis (MS). In MS, the immune system mistakenly attacks the protective coating around nerve fibers in the brain and spinal cord, causing inflammation and damage to the nerves. IFN-β has been shown to reduce the frequency and severity of relapses in people with MS, possibly by modulating the immune response and reducing inflammation.

It's important to note that while IFN-β is an important component of the body's natural defense system, it can also have side effects when used as a medication. Common side effects of IFN-β therapy include flu-like symptoms such as fever, chills, and muscle aches, as well as injection site reactions. More serious side effects are rare but can occur, so it's important to discuss the risks and benefits of this treatment with a healthcare provider.

The myelin sheath is a multilayered, fatty substance that surrounds and insulates many nerve fibers in the nervous system. It is essential for the rapid transmission of electrical signals, or nerve impulses, along these nerve fibers, allowing for efficient communication between different parts of the body. The myelin sheath is produced by specialized cells called oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). Damage to the myelin sheath, as seen in conditions like multiple sclerosis, can significantly impair nerve function and result in various neurological symptoms.

Myelin-Oligodendrocyte Glycoprotein (MOG) is a protein found exclusively on the outermost layer of myelin sheath in the central nervous system (CNS). The myelin sheath is a fatty substance that surrounds and insulates nerve fibers, allowing for efficient and rapid transmission of electrical signals. MOG plays a crucial role in maintaining the integrity and structure of the myelin sheath. It is involved in the adhesion of oligodendrocytes to the surface of neuronal axons and contributes to the stability of the compact myelin structure. Autoimmune reactions against MOG have been implicated in certain inflammatory demyelinating diseases, such as optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis (ADEM).

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

Disability Evaluation is the process of determining the nature and extent of a person's functional limitations or impairments, and assessing their ability to perform various tasks and activities in order to determine eligibility for disability benefits or accommodations. This process typically involves a medical examination and assessment by a licensed healthcare professional, such as a physician or psychologist, who evaluates the individual's symptoms, medical history, laboratory test results, and functional abilities. The evaluation may also involve input from other professionals, such as vocational experts, occupational therapists, or speech-language pathologists, who can provide additional information about the person's ability to perform specific tasks and activities in a work or daily living context. Based on this information, a determination is made about whether the individual meets the criteria for disability as defined by the relevant governing authority, such as the Social Security Administration or the Americans with Disabilities Act.

Myelin proteins are proteins that are found in the myelin sheath, which is a fatty (lipid-rich) substance that surrounds and insulates nerve fibers (axons) in the nervous system. The myelin sheath enables the rapid transmission of electrical signals (nerve impulses) along the axons, allowing for efficient communication between different parts of the nervous system.

There are several types of myelin proteins, including:

1. Proteolipid protein (PLP): This is the most abundant protein in the myelin sheath and plays a crucial role in maintaining the structure and function of the myelin sheath.
2. Myelin basic protein (MBP): This protein is also found in the myelin sheath and helps to stabilize the compact structure of the myelin sheath.
3. Myelin-associated glycoprotein (MAG): This protein is involved in the adhesion of the myelin sheath to the axon and helps to maintain the integrity of the myelin sheath.
4. 2'3'-cyclic nucleotide 3' phosphodiesterase (CNP): This protein is found in oligodendrocytes, which are the cells that produce the myelin sheath in the central nervous system. CNP plays a role in maintaining the structure and function of the oligodendrocytes.

Damage to myelin proteins can lead to demyelination, which is a characteristic feature of several neurological disorders, including multiple sclerosis (MS), Guillain-Barré syndrome, and Charcot-Marie-Tooth disease.

Oligodendroglia are a type of neuroglial cell found in the central nervous system (CNS) of vertebrates, including humans. These cells play a crucial role in providing support and insulation to nerve fibers (axons) in the CNS, which includes the brain and spinal cord.

More specifically, oligodendroglia produce a fatty substance called myelin that wraps around axons, forming myelin sheaths. This myelination process helps to increase the speed of electrical impulse transmission (nerve impulses) along the axons, allowing for efficient communication between different neurons.

In addition to their role in myelination, oligodendroglia also contribute to the overall health and maintenance of the CNS by providing essential nutrients and supporting factors to neurons. Dysfunction or damage to oligodendroglia has been implicated in various neurological disorders, such as multiple sclerosis (MS), where demyelination of axons leads to impaired nerve function and neurodegeneration.

Myelin-Associated Glycoprotein (MAG) is a glycoprotein found on the surface of myelin sheaths, which are the protective insulating layers around nerve fibers in the nervous system. MAG plays a role in the adhesion and interaction between the myelin sheath and the axon it surrounds. It's particularly important during the development and maintenance of the nervous system. Additionally, MAG has been implicated in the regulation of neuronal growth and signal transmission. In certain autoimmune diseases like Guillain-Barré syndrome, the immune system may mistakenly attack MAG, leading to damage of the myelin sheath and associated neurological symptoms.

Neuromyelitis optica (NMO), also known as Devic's disease, is an autoimmune disorder that affects the central nervous system (CNS). It primarily causes inflammation and damage to the optic nerves (which transmit visual signals from the eye to the brain) and the spinal cord. This results in optic neuritis (inflammation of the optic nerve, causing vision loss) and myelitis (inflammation of the spinal cord, leading to motor, sensory, and autonomic dysfunction).

A key feature of NMO is the presence of autoantibodies against aquaporin-4 (AQP4-IgG), a water channel protein found in astrocytes (a type of glial cell) in the CNS. These antibodies play a crucial role in the development of the disease, as they target and damage the AQP4 proteins, leading to inflammation, demyelination (loss of the protective myelin sheath around nerve fibers), and subsequent neurological dysfunction.

NMO is distinct from multiple sclerosis (MS), another autoimmune disorder affecting the CNS, as it has different clinical features, radiological findings, and treatment responses. However, NMO can sometimes be misdiagnosed as MS due to overlapping symptoms in some cases. Accurate diagnosis of NMO is essential for appropriate management and treatment, which often includes immunosuppressive therapies to control the autoimmune response and prevent further damage to the nervous system.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Myelin Proteolipid Protein (PLP) is a major component of the myelin sheath, which is a fatty insulating substance that covers and protects nerve fibers in the central nervous system (CNS). PLP makes up about 50% of the proteins found in the myelin sheath. It plays a crucial role in the structure and function of the myelin sheath, including maintaining its compactness and stability. Defects or mutations in the gene that encodes for PLP can lead to various demyelinating diseases, such as X-linked adrenoleukodystrophy (X-ALD) and Pelizaeus-Merzbacher disease (PMD), which are characterized by the degeneration of the myelin sheath and subsequent neurological impairments.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

Immunologic factors refer to the elements of the immune system that contribute to the body's defense against foreign substances, infectious agents, and cancerous cells. These factors include various types of white blood cells (such as lymphocytes, neutrophils, monocytes, and eosinophils), antibodies, complement proteins, cytokines, and other molecules involved in the immune response.

Immunologic factors can be categorized into two main types: innate immunity and adaptive immunity. Innate immunity is the non-specific defense mechanism that provides immediate protection against pathogens through physical barriers (e.g., skin, mucous membranes), chemical barriers (e.g., stomach acid, enzymes), and inflammatory responses. Adaptive immunity, on the other hand, is a specific defense mechanism that develops over time as the immune system learns to recognize and respond to particular pathogens or antigens.

Abnormalities in immunologic factors can lead to various medical conditions, such as autoimmune disorders, immunodeficiency diseases, and allergies. Therefore, understanding immunologic factors is crucial for diagnosing and treating these conditions.

HLA-DR2 antigen is a type of human leukocyte antigen (HLA) class II histocompatibility antigen. HLAs are proteins that play an important role in the body's immune system. They help the immune system distinguish between the body's own cells and foreign substances, such as viruses and bacteria.

The HLA-DR2 antigen is found on the surface of certain white blood cells called B lymphocytes and activated T lymphocytes. It is encoded by genes located on chromosome 6 in a region known as the major histocompatibility complex (MHC). The HLA-DR2 antigen is further divided into two subtypes, DRB1*1501 and DRB1*1502.

The HLA-DR2 antigen is associated with an increased risk of developing certain autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type 1 diabetes. It is also associated with an increased susceptibility to certain infectious diseases, such as leprosy and tuberculosis.

It's important to note that having the HLA-DR2 antigen does not guarantee that a person will develop an autoimmune or infectious disease, but it may increase their risk. Other genetic and environmental factors also play a role in the development of these conditions.

Acute disseminated encephalomyelitis (ADEM) is a rare inflammatory demyelinating disease of the central nervous system, characterized by a sudden onset of widespread inflammation and damage to the brain and spinal cord. It typically follows a viral infection or, less commonly, vaccination and is more prevalent in children than adults.

The condition involves the rapid development of multiple inflammatory lesions throughout the white matter of the brain and spinal cord. These lesions lead to demyelination, which means the loss of the protective myelin sheath surrounding nerve fibers, disrupting communication between neurons. This results in various neurological symptoms such as:

1. Encephalopathy (changes in consciousness, behavior, or mental status)
2. Weakness or paralysis of limbs
3. Visual disturbances
4. Speech and language problems
5. Seizures
6. Ataxia (loss of coordination and balance)
7. Sensory changes
8. Autonomic nervous system dysfunction (e.g., temperature regulation, blood pressure, heart rate)

The diagnosis of ADEM is based on clinical presentation, radiological findings, and laboratory tests to exclude other possible causes. Magnetic resonance imaging (MRI) typically shows multiple, large, bilateral lesions in the white matter of the brain and spinal cord. Cerebrospinal fluid analysis may reveal an elevated white blood cell count and increased protein levels.

Treatment for ADEM generally includes high-dose corticosteroids to reduce inflammation and improve outcomes. Intravenous immunoglobulin (IVIG) or plasma exchange (plasmapheresis) may be used if there is no response to steroid therapy. Most patients with ADEM recover completely or have significant improvement within several months, although some may experience residual neurological deficits.

Cuprizone is not a medical condition or disease, but rather a chemical compound that is used in laboratory settings for research purposes. Cuprizone, also known as bis-cyclohexanone oxaldihydrazone, is a copper chelator, which means it can bind to and remove copper ions from various substances.

In research, cuprizone is often used to induce demyelination in animal models of multiple sclerosis (MS) and other neurological disorders. Demyelination refers to the loss or damage of the myelin sheath, which is a fatty substance that surrounds and protects nerve fibers in the brain and spinal cord. When cuprizone is added to the diet of laboratory animals such as mice, it can cause demyelination in specific areas of the brain, making it a useful tool for studying the mechanisms underlying MS and other demyelinating diseases.

It's important to note that while cuprizone is a valuable research tool, it is not used as a medical treatment or therapy for any human conditions.

Myelinated nerve fibers are neuronal processes that are surrounded by a myelin sheath, a fatty insulating substance that is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. This myelin sheath helps to increase the speed of electrical impulse transmission, also known as action potentials, along the nerve fiber. The myelin sheath has gaps called nodes of Ranvier where the electrical impulses can jump from one node to the next, which also contributes to the rapid conduction of signals. Myelinated nerve fibers are typically found in the peripheral nerves and the optic nerve, but not in the central nervous system (CNS) tracts that are located within the brain and spinal cord.

Diffuse cerebral sclerosis of Schilder, also known as Schilder's disease, is a rare inflammatory demyelinating disorder of the central nervous system. It primarily affects children and young adults, but can occur at any age. The condition is characterized by widespread destruction of the myelin sheath, which surrounds and protects nerve fibers in the brain.

The hallmark feature of Schilder's disease is the presence of multiple, large, symmetrical lesions in the white matter of both cerebral hemispheres. These lesions are typically located in the parieto-occipital regions of the brain and can extend to involve other areas as well.

The symptoms of Schilder's disease vary depending on the location and extent of the lesions, but may include:

* Progressive intellectual decline
* Seizures
* Visual disturbances
* Weakness or paralysis on one side of the body (hemiparesis)
* Loss of sensation in various parts of the body
* Speech difficulties
* Behavioral changes, such as irritability, mood swings, and depression

The exact cause of Schilder's disease is not known, but it is believed to be an autoimmune disorder, in which the body's own immune system mistakenly attacks the myelin sheath. There is no cure for Schilder's disease, and treatment typically involves corticosteroids or other immunosuppressive therapies to reduce inflammation and slow the progression of the disease. Despite treatment, many patients with Schilder's disease experience significant disability and may require long-term care.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Propylene glycol is not a medical term, but rather a chemical compound. Medically, it is classified as a humectant, which means it helps retain moisture. It is used in various pharmaceutical and cosmetic products as a solvent, preservative, and moisturizer. In medical settings, it can be found in topical creams, oral and injectable medications, and intravenous (IV) fluids.

The chemical definition of propylene glycol is:

Propylene glycol (IUPAC name: propan-1,2-diol) is a synthetic organic compound with the formula CH3CH(OH)CH2OH. It is a viscous, colorless, and nearly odorless liquid that is miscible with water, acetone, and chloroform. Propylene glycol is used as an antifreeze when mixed with water, as a solvent in the production of polymers, and as a moisturizer in various pharmaceutical and cosmetic products. It has a sweet taste and is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA) for use as a food additive.

Demyelinating autoimmune diseases of the central nervous system (CNS) are a group of disorders characterized by inflammation and damage to the myelin sheath, which is the protective covering that surrounds nerve fibers in the brain and spinal cord. This damage can result in various neurological symptoms, including muscle weakness, sensory loss, vision problems, and cognitive impairment.

The most common demyelinating autoimmune disease of the CNS is multiple sclerosis (MS), which affects approximately 2.3 million people worldwide. Other examples include neuromyelitis optica spectrum disorder (NMOSD), acute disseminated encephalomyelitis (ADEM), and transverse myelitis.

These conditions are thought to arise when the immune system mistakenly attacks the myelin sheath, leading to inflammation, damage, and scarring (sclerosis) in the CNS. The exact cause of this autoimmune response is not fully understood, but it is believed to involve a complex interplay between genetic, environmental, and immunological factors.

Treatment for demyelinating autoimmune diseases of the CNS typically involves a combination of medications to manage symptoms, reduce inflammation, and modify the course of the disease. These may include corticosteroids, immunosuppressive drugs, and disease-modifying therapies (DMTs) that target specific components of the immune system.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Theilovirus is not typically considered a separate virus in modern virology. Instead, it is now classified as a genotype (genotype 3) of the human parechovirus (HPeV), which belongs to the family Picornaviridae. HPeVs are small, non-enveloped, single-stranded RNA viruses that can cause various clinical manifestations, ranging from mild respiratory or gastrointestinal symptoms to severe neurological diseases in infants and young children.

Historically, Theilovirus was first identified as a separate virus in 1958 by H. Theil and K. Maassab, isolated from the feces of healthy children. It was initially classified as a member of the Enterovirus genus but was later reclassified as a distinct genus, Theilovirus, in 1999. However, subsequent genetic analysis revealed that Theilovirus is closely related to HPeVs, and it is now considered a genotype within the HPeV species.

In summary, Theilovirus is not a separate medical term or virus but rather a historical name for what is now classified as human parechovirus genotype 3 (HPeV3).

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Nervous system diseases, also known as neurological disorders, refer to a group of conditions that affect the nervous system, which includes the brain, spinal cord, nerves, and muscles. These diseases can affect various functions of the body, such as movement, sensation, cognition, and behavior. They can be caused by genetics, infections, injuries, degeneration, or tumors. Examples of nervous system diseases include Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, migraine, stroke, and neuroinfections like meningitis and encephalitis. The symptoms and severity of these disorders can vary widely, ranging from mild to severe and debilitating.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Cerebrospinal fluid (CSF) is a clear, colorless fluid that surrounds and protects the brain and spinal cord. It acts as a shock absorber for the central nervous system and provides nutrients to the brain while removing waste products. CSF is produced by specialized cells called ependymal cells in the choroid plexus of the ventricles (fluid-filled spaces) inside the brain. From there, it circulates through the ventricular system and around the outside of the brain and spinal cord before being absorbed back into the bloodstream. CSF analysis is an important diagnostic tool for various neurological conditions, including infections, inflammation, and cancer.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

HLA-DRB1 chains are part of the major histocompatibility complex (MHC) class II molecules in the human body. The MHC class II molecules play a crucial role in the immune system by presenting pieces of foreign proteins to CD4+ T cells, which then stimulate an immune response.

HLA-DRB1 chains are one of the two polypeptide chains that make up the HLA-DR heterodimer, the other chain being the HLA-DRA chain. The HLA-DRB1 chain contains specific regions called antigen-binding sites, which bind to and present foreign peptides to CD4+ T cells.

The HLA-DRB1 gene is highly polymorphic, meaning that there are many different variations or alleles of this gene in the human population. These variations can affect an individual's susceptibility or resistance to certain diseases, including autoimmune disorders and infectious diseases. Therefore, the identification and characterization of HLA-DRB1 alleles have important implications for disease diagnosis, treatment, and prevention.

Cerebrospinal fluid (CSF) proteins refer to the proteins present in the cerebrospinal fluid, which is a clear, colorless fluid that surrounds and protects the brain and spinal cord. The protein concentration in the CSF is much lower than that in the blood, and it contains a specific set of proteins that are produced by the brain, spinal cord, and associated tissues.

The normal range for CSF protein levels is typically between 15-45 mg/dL, although this can vary slightly depending on the laboratory's reference range. An elevation in CSF protein levels may indicate the presence of neurological disorders such as meningitis, encephalitis, multiple sclerosis, or Guillain-Barre syndrome. Additionally, certain conditions such as spinal cord injury, brain tumors, or neurodegenerative diseases can also cause an increase in CSF protein levels.

Therefore, measuring CSF protein levels is an important diagnostic tool for neurologists to evaluate various neurological disorders and monitor disease progression. However, it's essential to interpret the results of CSF protein tests in conjunction with other clinical findings and laboratory test results to make an accurate diagnosis.

Microglia are a type of specialized immune cell found in the brain and spinal cord. They are part of the glial family, which provide support and protection to the neurons in the central nervous system (CNS). Microglia account for about 10-15% of all cells found in the CNS.

The primary role of microglia is to constantly survey their environment and eliminate any potentially harmful agents, such as pathogens, dead cells, or protein aggregates. They do this through a process called phagocytosis, where they engulf and digest foreign particles or cellular debris. In addition to their phagocytic function, microglia also release various cytokines, chemokines, and growth factors that help regulate the immune response in the CNS, promote neuronal survival, and contribute to synaptic plasticity.

Microglia can exist in different activation states depending on the nature of the stimuli they encounter. In a resting state, microglia have a small cell body with numerous branches that are constantly monitoring their surroundings. When activated by an injury, infection, or neurodegenerative process, microglia change their morphology and phenotype, retracting their processes and adopting an amoeboid shape to migrate towards the site of damage or inflammation. Based on the type of activation, microglia can release both pro-inflammatory and anti-inflammatory factors that contribute to either neuroprotection or neurotoxicity.

Dysregulation of microglial function has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Amyotrophic Lateral Sclerosis (ALS). Therefore, understanding the role of microglia in health and disease is crucial for developing novel therapeutic strategies to treat these conditions.

The optic nerve, also known as the second cranial nerve, is the nerve that transmits visual information from the retina to the brain. It is composed of approximately one million nerve fibers that carry signals related to vision, such as light intensity and color, from the eye's photoreceptor cells (rods and cones) to the visual cortex in the brain. The optic nerve is responsible for carrying this visual information so that it can be processed and interpreted by the brain, allowing us to see and perceive our surroundings. Damage to the optic nerve can result in vision loss or impairment.

Autoimmune diseases are a group of disorders in which the immune system, which normally protects the body from foreign invaders like bacteria and viruses, mistakenly attacks the body's own cells and tissues. This results in inflammation and damage to various organs and tissues in the body.

In autoimmune diseases, the body produces autoantibodies that target its own proteins or cell receptors, leading to their destruction or malfunction. The exact cause of autoimmune diseases is not fully understood, but it is believed that a combination of genetic and environmental factors contribute to their development.

There are over 80 different types of autoimmune diseases, including rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, Graves' disease, psoriasis, and inflammatory bowel disease. Symptoms can vary widely depending on the specific autoimmune disease and the organs or tissues affected. Treatment typically involves managing symptoms and suppressing the immune system to prevent further damage.

Cardiovirus infections refer to diseases caused by viruses belonging to the Cardiovirus genus of the Picornaviridae family. These viruses are small, single-stranded, positive-sense RNA viruses that infect a wide range of hosts, including humans, animals, and birds.

In humans, the most common cardiovirus is the human enterovirus 71 (HEV71), which primarily causes hand, foot, and mouth disease (HFMD). HFMD is a mild, self-limiting illness characterized by fever, sore throat, and rash on the hands, feet, and mouth. However, in some cases, HEV71 infection can lead to severe neurological complications such as encephalitis, meningitis, and acute flaccid paralysis.

Another important cardiovirus is the Theiler's murine encephalomyelitis virus (TMEV), which primarily infects mice and causes a biphasic disease characterized by an initial phase of flaccid paralysis followed by a second phase of chronic demyelination. TMEV has been used as a model to study the mechanisms of viral-induced demyelination and has provided valuable insights into the pathogenesis of multiple sclerosis.

Cardiovirus infections are typically diagnosed through the detection of viral RNA or antigens in clinical specimens such as stool, throat swabs, or cerebrospinal fluid. Treatment is generally supportive and aimed at managing symptoms, as there are no specific antiviral therapies available for cardiovirus infections. Prevention measures include good hygiene practices, such as handwashing and avoiding close contact with infected individuals.

A neurological examination is a series of tests used to evaluate the functioning of the nervous system, including both the central nervous system (the brain and spinal cord) and peripheral nervous system (the nerves that extend from the brain and spinal cord to the rest of the body). It is typically performed by a healthcare professional such as a neurologist or a primary care physician with specialized training in neurology.

During a neurological examination, the healthcare provider will assess various aspects of neurological function, including:

1. Mental status: This involves evaluating a person's level of consciousness, orientation, memory, and cognitive abilities.
2. Cranial nerves: There are 12 cranial nerves that control functions such as vision, hearing, smell, taste, and movement of the face and neck. The healthcare provider will test each of these nerves to ensure they are functioning properly.
3. Motor function: This involves assessing muscle strength, tone, coordination, and reflexes. The healthcare provider may ask the person to perform certain movements or tasks to evaluate these functions.
4. Sensory function: The healthcare provider will test a person's ability to feel different types of sensations, such as touch, pain, temperature, vibration, and proprioception (the sense of where your body is in space).
5. Coordination and balance: The healthcare provider may assess a person's ability to perform coordinated movements, such as touching their finger to their nose or walking heel-to-toe.
6. Reflexes: The healthcare provider will test various reflexes throughout the body using a reflex hammer.

The results of a neurological examination can help healthcare providers diagnose and monitor conditions that affect the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, or peripheral neuropathy.

Spontaneous remission in a medical context refers to the disappearance or significant improvement of symptoms of a disease or condition without any specific treatment being administered. In other words, it's a situation where the disease resolves on its own, without any apparent cause. While spontaneous remission can occur in various conditions, it is relatively rare and not well understood. It's important to note that just because a remission occurs without treatment doesn't mean that medical care should be avoided, as many conditions can worsen or lead to complications if left untreated.

Fatigue is a state of feeling very tired, weary, or exhausted, which can be physical, mental, or both. It is a common symptom that can be caused by various factors, including lack of sleep, poor nutrition, stress, medical conditions (such as anemia, diabetes, heart disease, or cancer), medications, and substance abuse. Fatigue can also be a symptom of depression or other mental health disorders. In medical terms, fatigue is often described as a subjective feeling of tiredness that is not proportional to recent activity levels and interferes with usual functioning. It is important to consult a healthcare professional if experiencing persistent or severe fatigue to determine the underlying cause and develop an appropriate treatment plan.

Autoimmunity is a medical condition in which the body's immune system mistakenly attacks and destroys healthy tissues within the body. In normal function, the immune system recognizes and fights off foreign substances such as bacteria, viruses, and toxins. However, when autoimmunity occurs, the immune system identifies self-molecules or tissues as foreign and produces an immune response against them.

This misguided response can lead to chronic inflammation, tissue damage, and impaired organ function. Autoimmune diseases can affect various parts of the body, including the joints, skin, glands, muscles, and blood vessels. Some common examples of autoimmune diseases are rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, and Graves' disease.

The exact cause of autoimmunity is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors that trigger an abnormal immune response in susceptible individuals. Treatment for autoimmune diseases typically involves managing symptoms, reducing inflammation, and suppressing the immune system's overactive response using medications such as corticosteroids, immunosuppressants, and biologics.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The Blood-Brain Barrier (BBB) is a highly specialized, selective interface between the central nervous system (CNS) and the circulating blood. It is formed by unique endothelial cells that line the brain's capillaries, along with tight junctions, astrocytic foot processes, and pericytes, which together restrict the passage of substances from the bloodstream into the CNS. This barrier serves to protect the brain from harmful agents and maintain a stable environment for proper neural function. However, it also poses a challenge in delivering therapeutics to the CNS, as most large and hydrophilic molecules cannot cross the BBB.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Methylprednisolone is a synthetic glucocorticoid drug, which is a class of hormones that naturally occur in the body and are produced by the adrenal gland. It is often used to treat various medical conditions such as inflammation, allergies, and autoimmune disorders. Methylprednisolone works by reducing the activity of the immune system, which helps to reduce symptoms such as swelling, pain, and redness.

Methylprednisolone is available in several forms, including tablets, oral suspension, and injectable solutions. It may be used for short-term or long-term treatment, depending on the condition being treated. Common side effects of methylprednisolone include increased appetite, weight gain, insomnia, mood changes, and increased susceptibility to infections. Long-term use of methylprednisolone can lead to more serious side effects such as osteoporosis, cataracts, and adrenal suppression.

It is important to note that methylprednisolone should be used under the close supervision of a healthcare provider, as it can cause serious side effects if not used properly. The dosage and duration of treatment will depend on various factors such as the patient's age, weight, medical history, and the condition being treated.

Evoked potentials, visual, also known as visually evoked potentials (VEPs), are electrical responses recorded from the brain following the presentation of a visual stimulus. These responses are typically measured using electroencephalography (EEG) and can provide information about the functioning of the visual pathways in the brain.

There are several types of VEPs, including pattern-reversal VEPs and flash VEPs. Pattern-reversal VEPs are elicited by presenting alternating checkerboard patterns, while flash VEPs are elicited by flashing a light. The responses are typically analyzed in terms of their latency (the time it takes for the response to occur) and amplitude (the size of the response).

VEPs are often used in clinical settings to help diagnose and monitor conditions that affect the visual system, such as multiple sclerosis, optic neuritis, and brainstem tumors. They can also be used in research to study the neural mechanisms underlying visual perception.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Diffuse scleroderma is a medical condition that falls under the systemic sclerosis category of autoimmune rheumatic diseases. It is characterized by thickening and hardening (sclerosis) of the skin and involvement of internal organs. In diffuse scleroderma, the process affects extensive areas of the skin and at least one internal organ.

The disease process involves an overproduction of collagen, a protein that makes up connective tissues in the body. This excessive collagen deposition leads to fibrosis (scarring) of the skin and various organs, including the esophagus, gastrointestinal tract, heart, lungs, and kidneys.

Diffuse scleroderma can present with a rapid progression of skin thickening within the first few years after onset. The skin involvement may extend to areas beyond the hands, feet, and face, which are commonly affected in limited scleroderma (another form of systemic sclerosis). Additionally, patients with diffuse scleroderma have a higher risk for severe internal organ complications compared to those with limited scleroderma.

Early diagnosis and appropriate management of diffuse scleroderma are crucial to prevent or slow down the progression of organ damage. Treatment typically involves a multidisciplinary approach, focusing on symptom management, immunosuppressive therapy, and addressing specific organ involvement.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

HLA-DR antigens are a type of human leukocyte antigen (HLA) class II molecule that plays a crucial role in the immune system. They are found on the surface of antigen-presenting cells, such as dendritic cells, macrophages, and B lymphocytes. HLA-DR molecules present peptide antigens to CD4+ T cells, also known as helper T cells, thereby initiating an immune response.

HLA-DR antigens are highly polymorphic, meaning that there are many different variants of these molecules in the human population. This diversity allows for a wide range of potential peptide antigens to be presented and recognized by the immune system. HLA-DR antigens are encoded by genes located on chromosome 6 in the major histocompatibility complex (MHC) region.

In transplantation, HLA-DR compatibility between donor and recipient is an important factor in determining the success of the transplant. Incompatibility can lead to a heightened immune response against the transplanted organ or tissue, resulting in rejection. Additionally, certain HLA-DR types have been associated with increased susceptibility to autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Gadolinium is a rare earth metal that is used as a contrast agent in medical imaging techniques such as Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA). It works by shortening the relaxation time of protons in tissues, which enhances the visibility of internal body structures on the images. Gadolinium-based contrast agents are injected into the patient's bloodstream during the imaging procedure.

It is important to note that in some individuals, gadolinium-based contrast agents can cause a condition called nephrogenic systemic fibrosis (NSF), which is a rare but serious disorder that affects people with severe kidney disease. NSF causes thickening and hardening of the skin, joints, eyes, and internal organs. Therefore, it is essential to evaluate a patient's renal function before administering gadolinium-based contrast agents.

Neuritis is a general term that refers to inflammation of a nerve or nerves, often causing pain, loss of function, and/or sensory changes. It can affect any part of the nervous system, including the peripheral nerves (those outside the brain and spinal cord) or the cranial nerves (those that serve the head and neck). Neuritis may result from various causes, such as infections, autoimmune disorders, trauma, toxins, or metabolic conditions. The specific symptoms and treatment depend on the underlying cause and the affected nerve(s).

Autoantigens are substances that are typically found in an individual's own body, but can stimulate an immune response because they are recognized as foreign by the body's own immune system. In autoimmune diseases, the immune system mistakenly attacks and damages healthy tissues and organs because it recognizes some of their components as autoantigens. These autoantigens can be proteins, DNA, or other molecules that are normally present in the body but have become altered or exposed due to various factors such as infection, genetics, or environmental triggers. The immune system then produces antibodies and activates immune cells to attack these autoantigens, leading to tissue damage and inflammation.

Nerve degeneration, also known as neurodegeneration, is the progressive loss of structure and function of neurons, which can lead to cognitive decline, motor impairment, and various other symptoms. This process occurs due to a variety of factors, including genetics, environmental influences, and aging. It is a key feature in several neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The degeneration can affect any part of the nervous system, leading to different symptoms depending on the location and extent of the damage.

Transverse Myelitis is a neurological disorder that involves inflammation of the spinal cord, leading to damage in both sides of the cord. This results in varying degrees of motor, sensory, and autonomic dysfunction, typically defined by the level of the spine that's affected. Symptoms may include a sudden onset of lower back pain, muscle weakness, paraesthesia or loss of sensation, and bowel/bladder dysfunction. The exact cause is often unknown but can be associated with infections, autoimmune disorders, or other underlying conditions.

Image enhancement in the medical context refers to the process of improving the quality and clarity of medical images, such as X-rays, CT scans, MRI scans, or ultrasound images, to aid in the diagnosis and treatment of medical conditions. Image enhancement techniques may include adjusting contrast, brightness, or sharpness; removing noise or artifacts; or applying specialized algorithms to highlight specific features or structures within the image.

The goal of image enhancement is to provide clinicians with more accurate and detailed information about a patient's anatomy or physiology, which can help inform medical decision-making and improve patient outcomes.

According to the World Health Organization (WHO), "disabled persons" are those who have long-term physical, mental, intellectual or sensory impairments which may hinder their participation in society on an equal basis with others. The term "disability" is not meant to be understood as a 'personal tragedy' but rather as a complex interaction between the features of a person's body and mind, the activities they wish to perform and the physical and social barriers they encounter in their environment.

It's important to note that the term 'disabled persons' has been largely replaced by 'people with disabilities' or 'persons with disabilities' in many contexts, as it is considered more respectful and empowering to put the person first, rather than focusing on their disability. The United Nations Convention on the Rights of Persons with Disabilities (CRPD) uses the term "persons with disabilities" throughout its text.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Central nervous system (CNS) diseases refer to medical conditions that primarily affect the brain and spinal cord. The CNS is responsible for controlling various functions in the body, including movement, sensation, cognition, and behavior. Therefore, diseases of the CNS can have significant impacts on a person's quality of life and overall health.

There are many different types of CNS diseases, including:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites that infect the brain or spinal cord. Examples include meningitis, encephalitis, and polio.
2. Neurodegenerative diseases: These are characterized by progressive loss of nerve cells in the brain or spinal cord. Examples include Alzheimer's disease, Parkinson's disease, and Huntington's disease.
3. Structural diseases: These involve damage to the physical structure of the brain or spinal cord, such as from trauma, tumors, or stroke.
4. Functional diseases: These affect the function of the nervous system without obvious structural damage, such as multiple sclerosis and epilepsy.
5. Genetic disorders: Some CNS diseases are caused by genetic mutations, such as spinal muscular atrophy and Friedreich's ataxia.

Symptoms of CNS diseases can vary widely depending on the specific condition and the area of the brain or spinal cord that is affected. They may include muscle weakness, paralysis, seizures, loss of sensation, difficulty with coordination and balance, confusion, memory loss, changes in behavior or mood, and pain. Treatment for CNS diseases depends on the specific condition and may involve medications, surgery, rehabilitation therapy, or a combination of these approaches.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Nonparametric statistics is a branch of statistics that does not rely on assumptions about the distribution of variables in the population from which the sample is drawn. In contrast to parametric methods, nonparametric techniques make fewer assumptions about the data and are therefore more flexible in their application. Nonparametric tests are often used when the data do not meet the assumptions required for parametric tests, such as normality or equal variances.

Nonparametric statistical methods include tests such as the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for comparing two independent groups, the Wilcoxon signed-rank test for comparing two related groups, and the Kruskal-Wallis test for comparing more than two independent groups. These tests use the ranks of the data rather than the actual values to make comparisons, which allows them to be used with ordinal or continuous data that do not meet the assumptions of parametric tests.

Overall, nonparametric statistics provide a useful set of tools for analyzing data in situations where the assumptions of parametric methods are not met, and can help researchers draw valid conclusions from their data even when the data are not normally distributed or have other characteristics that violate the assumptions of parametric tests.

The corpus callosum is the largest collection of white matter in the brain, consisting of approximately 200 million nerve fibers. It is a broad, flat band of tissue that connects the two hemispheres of the brain, allowing them to communicate and coordinate information processing. The corpus callosum plays a crucial role in integrating sensory, motor, and cognitive functions between the two sides of the brain. Damage to the corpus callosum can result in various neurological symptoms, including difficulties with movement, speech, memory, and social behavior.

Immunologic adjuvants are substances that are added to a vaccine to enhance the body's immune response to the antigens contained in the vaccine. They work by stimulating the immune system and promoting the production of antibodies and activating immune cells, such as T-cells and macrophages, which help to provide a stronger and more sustained immune response to the vaccine.

Immunologic adjuvants can be derived from various sources, including bacteria, viruses, and chemicals. Some common examples include aluminum salts (alum), oil-in-water emulsions (such as MF59), and bacterial components (such as lipopolysaccharide or LPS).

The use of immunologic adjuvants in vaccines can help to improve the efficacy of the vaccine, particularly for vaccines that contain weak or poorly immunogenic antigens. They can also help to reduce the amount of antigen needed in a vaccine, which can be beneficial for vaccines that are difficult or expensive to produce.

It's important to note that while adjuvants can enhance the immune response to a vaccine, they can also increase the risk of adverse reactions, such as inflammation and pain at the injection site. Therefore, the use of immunologic adjuvants must be carefully balanced against their potential benefits and risks.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Spinal cord diseases refer to a group of conditions that affect the spinal cord, which is a part of the central nervous system responsible for transmitting messages between the brain and the rest of the body. These diseases can cause damage to the spinal cord, leading to various symptoms such as muscle weakness, numbness, pain, bladder and bowel dysfunction, and difficulty with movement and coordination.

Spinal cord diseases can be congenital or acquired, and they can result from a variety of causes, including infections, injuries, tumors, degenerative conditions, autoimmune disorders, and genetic factors. Some examples of spinal cord diseases include multiple sclerosis, spina bifida, spinal cord injury, herniated discs, spinal stenosis, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS).

The treatment for spinal cord diseases varies depending on the underlying cause and severity of the condition. Treatment options may include medication, physical therapy, surgery, and rehabilitation. In some cases, the damage to the spinal cord may be irreversible, leading to permanent disability or paralysis.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Motor Neuron Disease (MND) is a progressive neurodegenerative disorder that affects the motor neurons, which are nerve cells in the brain and spinal cord responsible for controlling voluntary muscles involved in movement, speaking, breathing, and swallowing. As the motor neurons degenerate and die, they stop sending signals to the muscles, causing them to weaken, waste away (atrophy), and eventually lead to paralysis.

There are several types of MND, including:

1. Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is the most common form of MND. It affects both upper and lower motor neurons, causing muscle weakness, stiffness, twitching, and atrophy throughout the body.
2. Progressive Bulbar Palsy (PBP): This type primarily affects the bulbar muscles in the brainstem, which control speech, swallowing, and chewing. Patients with PBP experience difficulties with speaking, slurred speech, and problems swallowing and may also have weak facial muscles and limb weakness.
3. Primary Lateral Sclerosis (PLS): This form of MND affects only the upper motor neurons, causing muscle stiffness, spasticity, and weakness, primarily in the legs. PLS progresses more slowly than ALS, and patients usually maintain their ability to speak and swallow for a longer period.
4. Progressive Muscular Atrophy (PMA): This type of MND affects only the lower motor neurons, causing muscle wasting, weakness, and fasciculations (muscle twitches). PMA progresses more slowly than ALS but can still be severely disabling over time.
5. Spinal Muscular Atrophy (SMA): This is a genetic form of MND that typically presents in infancy or childhood, although adult-onset forms exist. SMA affects the lower motor neurons in the spinal cord, causing muscle weakness and atrophy, primarily in the legs and trunk.

The exact cause of Motor Neuron Disease is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors. There is currently no cure for MND, and treatment focuses on managing symptoms, maintaining quality of life, and slowing disease progression through various therapies and medications.

Limited scleroderma, also known as limited cutaneous systemic sclerosis (lcSSc), is a subtype of scleroderma, a chronic autoimmune connective tissue disease. In this form, the fibrosis or hardening and thickening of the skin is generally limited to areas below the elbows and knees, as well as the face and neck.

The limited cutaneous form often involves the hands, causing a tightening of the skin on the fingers, known as "sclerodactyly." It can also affect the internal organs, but this is usually less severe and occurs later in the disease course compared to diffuse scleroderma.

A common characteristic of limited scleroderma is the presence of CREST syndrome, an acronym for Calcinosis, Raynaud's phenomenon, Esophageal dysmotility, Sclerodactyly, and Telangiectasia. These are specific symptoms associated with this subtype.

However, it is important to note that the manifestations of scleroderma can vary significantly from person to person, and not everyone with limited scleroderma will develop all the features of CREST syndrome.

Encephalomyelitis is a medical term that refers to inflammation of both the brain (encephalitis) and spinal cord (myelitis). This condition can be caused by various infectious agents, such as viruses, bacteria, fungi, or parasites, or it can be due to an autoimmune response where the body's own immune system attacks the nervous tissue.

The symptoms of encephalomyelitis can vary widely depending on the extent and location of the inflammation, but they may include fever, headache, stiff neck, seizures, muscle weakness, sensory changes, and difficulty with coordination or walking. In severe cases, encephalomyelitis can lead to permanent neurological damage or even death.

Treatment for encephalomyelitis typically involves addressing the underlying cause, such as administering antiviral medications for viral infections or immunosuppressive drugs for autoimmune reactions. Supportive care, such as pain management, physical therapy, and rehabilitation, may also be necessary to help manage symptoms and promote recovery.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Subacute Sclerosing Panencephalitis (SSPE) is a rare, progressive, and fatal inflammatory disease of the brain characterized by seizures, cognitive decline, and motor function loss. It is caused by a persistent infection with the measles virus, even in individuals who had an uncomplicated acute measles infection earlier in life. The infection results in widespread degeneration and scarring (sclerosis) of the brain's gray matter.

The subacute phase of SSPE typically lasts for several months to a couple of years, during which patients experience a decline in cognitive abilities, behavioral changes, myoclonic jerks (involuntary muscle spasms), and visual disturbances. As the disease progresses, it leads to severe neurological impairment, coma, and eventually death.

SSPE is preventable through early childhood measles vaccination, which significantly reduces the risk of developing this fatal condition later in life.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Neurofilament proteins (NFs) are type IV intermediate filament proteins that are specific to neurons. They are the major structural components of the neuronal cytoskeleton and play crucial roles in maintaining the structural integrity, stability, and diameter of axons. Neurofilaments are composed of three subunits: light (NFL), medium (NFM), and heavy (NFH) neurofilament proteins, which differ in their molecular weights. These subunits assemble into heteropolymers to form the neurofilament core, while the C-terminal tails of NFH and NFM extend outward from the core, interacting with other cellular components and participating in various neuronal functions. Increased levels of neurofilament proteins, particularly NFL, in cerebrospinal fluid (CSF) and blood are considered biomarkers for axonal damage and neurodegeneration in several neurological disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

I'm happy to help! "Rats, Inbred Lew" is a specific strain of laboratory rats that have been inbred for research purposes. The "Lew" part of the name refers to the location where they were first developed, the Lewis Institute in Lake Bluff, Illinois, USA.

Inbreeding is a process of mating closely related individuals over many generations to create a genetically homogeneous population. This results in a high degree of genetic similarity among members of the strain, making them ideal for use as experimental models because any differences observed between individuals are more likely to be due to the experimental manipulation rather than genetic variation.

Inbred Lew rats have been widely used in biomedical research, particularly in studies related to hypertension and cardiovascular disease. They exhibit a number of unique characteristics that make them useful for these types of studies, including their susceptibility to developing high blood pressure when fed a high-salt diet or given certain drugs.

It's important to note that while inbred strains like Lew rats can be very useful tools for researchers, they are not perfect models for human disease. Because they have been bred in a controlled environment and selected for specific traits, they may not respond to experimental manipulations in the same way that humans or other animals would. Therefore, it's important to interpret findings from these studies with caution and consider multiple lines of evidence before drawing any firm conclusions.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

The meninges are the protective membranes that cover the brain and spinal cord. They consist of three layers: the dura mater (the outermost, toughest layer), the arachnoid mater (middle layer), and the pia mater (the innermost, delicate layer). These membranes provide protection and support to the central nervous system, and contain blood vessels that supply nutrients and remove waste products. Inflammation or infection of the meninges is called meningitis, which can be a serious medical condition requiring prompt treatment.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

Cognitive disorders are a category of mental health disorders that primarily affect cognitive abilities including learning, memory, perception, and problem-solving. These disorders can be caused by various factors such as brain injury, degenerative diseases, infection, substance abuse, or developmental disabilities. Examples of cognitive disorders include dementia, amnesia, delirium, and intellectual disability. It's important to note that the specific definition and diagnostic criteria for cognitive disorders may vary depending on the medical source or classification system being used.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

Progressive multifocal leukoencephalopathy (PML) is a rare and serious demyelinating disease of the central nervous system that affects the white matter of the brain. It's caused by the reactivation of the John Cunningham virus (JCV) in immunocompromised individuals, such as those with HIV/AIDS, organ transplants, or hematologic malignancies.

In PML, the JCV infects and destroys the oligodendrocytes, which are the cells responsible for producing myelin, the fatty substance that insulates and protects nerve fibers. This results in multiple areas of focal demyelination throughout the brain, leading to progressive neurological symptoms such as cognitive decline, motor weakness, vision loss, and speech difficulties.

PML is a medical emergency, and prompt diagnosis and treatment of the underlying immunodeficiency are crucial for improving outcomes. Unfortunately, there is no specific treatment for PML itself, but restoring immune function can help slow or stop the progression of the disease.

Neuropsychological tests are a type of psychological assessment that measures cognitive functions, such as attention, memory, language, problem-solving, and perception. These tests are used to help diagnose and understand the cognitive impact of neurological conditions, including dementia, traumatic brain injury, stroke, Parkinson's disease, and other disorders that affect the brain.

The tests are typically administered by a trained neuropsychologist and can take several hours to complete. They may involve paper-and-pencil tasks, computerized tasks, or interactive activities. The results of the tests are compared to normative data to help identify any areas of cognitive weakness or strength.

Neuropsychological testing can provide valuable information for treatment planning, rehabilitation, and assessing response to treatment. It can also be used in research to better understand the neural basis of cognition and the impact of neurological conditions on cognitive function.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Slow virus diseases, also known as persistent viral infections or chronic viral infections, are characterized by a lengthy incubation period and a slow progression of symptoms. These viruses can remain dormant in the body for extended periods, sometimes even years, before they start causing damage to cells and tissues.

The term "slow virus" is somewhat misleading because it does not necessarily mean that the virus itself is slow-replicating. Instead, it refers to the fact that the disease progression is slow and can take a long time to manifest symptoms. The immune system may have difficulty recognizing and eliminating these viruses, allowing them to persist in the body and cause ongoing damage over time.

Examples of slow virus diseases include:

1. Progressive multifocal leukoencephalopathy (PML): A rare and serious brain infection caused by the JC virus that primarily affects people with weakened immune systems, such as those with HIV/AIDS or those taking immunosuppressive drugs.
2. Subacute sclerosing panencephalitis (SSPE): A progressive neurological disorder caused by a measles virus infection that has become persistent in the brain. It primarily affects children and young adults who had measles during their early childhood.
3. Kuru: A rare, fatal degenerative neurological disorder that was once prevalent among the Fore people of Papua New Guinea. It is caused by an infectious protein called a prion, which can be transmitted through cannibalistic practices.
4. Creutzfeldt-Jakob disease (CJD): A rare and fatal brain disorder caused by prions. There are several types of CJD, including sporadic, hereditary, and acquired forms. The acquired form is a slow virus disease that can be transmitted through contaminated surgical instruments or dura mater grafts.
5. Human T-lymphotropic virus type 1 (HTLV-1) infection: A retrovirus that can cause adult T-cell leukemia/lymphoma and a progressive neurological disorder called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).
6. Progressive multifocal leukoencephalopathy (PML): A rare, often fatal demyelinating disease of the central nervous system caused by the JC polyomavirus. It primarily affects individuals with weakened immune systems, such as those with HIV/AIDS or those receiving immunosuppressive therapy for organ transplantation.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Brain diseases, also known as neurological disorders, refer to a wide range of conditions that affect the brain and nervous system. These diseases can be caused by various factors such as genetics, infections, injuries, degeneration, or structural abnormalities. They can affect different parts of the brain, leading to a variety of symptoms and complications.

Some examples of brain diseases include:

1. Alzheimer's disease - a progressive degenerative disorder that affects memory and cognitive function.
2. Parkinson's disease - a movement disorder characterized by tremors, stiffness, and difficulty with coordination and balance.
3. Multiple sclerosis - a chronic autoimmune disease that affects the nervous system and can cause a range of symptoms such as vision loss, muscle weakness, and cognitive impairment.
4. Epilepsy - a neurological disorder characterized by recurrent seizures.
5. Brain tumors - abnormal growths in the brain that can be benign or malignant.
6. Stroke - a sudden interruption of blood flow to the brain, which can cause paralysis, speech difficulties, and other neurological symptoms.
7. Meningitis - an infection of the membranes surrounding the brain and spinal cord.
8. Encephalitis - an inflammation of the brain that can be caused by viruses, bacteria, or autoimmune disorders.
9. Huntington's disease - a genetic disorder that affects muscle coordination, cognitive function, and mental health.
10. Migraine - a neurological condition characterized by severe headaches, often accompanied by nausea, vomiting, and sensitivity to light and sound.

Brain diseases can range from mild to severe and may be treatable or incurable. They can affect people of all ages and backgrounds, and early diagnosis and treatment are essential for improving outcomes and quality of life.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

Muscle spasticity is a motor disorder characterized by an involuntary increase in muscle tone, leading to stiffness and difficulty in moving muscles. It is often seen in people with damage to the brain or spinal cord, such as those with cerebral palsy, multiple sclerosis, or spinal cord injuries.

In muscle spasticity, the muscles may contract excessively, causing rigid limbs, awkward movements, and abnormal postures. The severity of muscle spasticity can vary from mild stiffness to severe contractures that limit mobility and function.

Muscle spasticity is caused by an imbalance between excitatory and inhibitory signals in the central nervous system, leading to overactivity of the alpha motor neurons that control muscle contraction. This can result in hyperreflexia (overactive reflexes), clonus (rapid, rhythmic muscle contractions), and flexor or extensor spasms.

Effective management of muscle spasticity may involve a combination of physical therapy, medication, surgery, or other interventions to improve function, reduce pain, and prevent complications such as contractures and pressure sores.

List of multiple sclerosis organizations List of people with multiple sclerosis Compston A, Coles A (October 2008). "Multiple ... "The multiple sclerosis functional composite: a new clinical outcome measure for multiple sderosis trials". Multiple Sclerosis. ... these include tumefactive multiple sclerosis, Balo concentric sclerosis, Schilder's diffuse sclerosis, and Marburg multiple ... The name "multiple sclerosis" is short for multiple cerebro-spinal sclerosis, which refers to the numerous glial scars (or ...
Tumefactive multiple sclerosis Marburg acute multiple sclerosis Multiple sclerosis Autologous stem cell transplantation ... Multiple Sclerosis (Houndmills, Basingstoke, England), 14(2), 278-283. doi:10.1177/1352458507082604 (Multiple sclerosis). ... Autologous stem-cell transplantation in malignant multiple sclerosis: a case with a favorable long-term outcome. Multiple ... Malignant multiple sclerosis is used to describe MS patients who reach significant level of disability in a short period of ...
MS Trust Website Multiple Sclerosis Treatments "Multiple Sclerosis Trust, registered charity no. 1088353". Charity Commission ... The Multiple Sclerosis Trust (MS Trust) is an independent, national UK charity that was established in 1993. The MS Trust works ... "Bone marrow cell treatment for chronic multiple sclerosis". MS Trust Website. Retrieved 29 November 2012. "A group fatigue ... Multiple sclerosis organizations, Organizations established in 1993, Organisations based in Hertfordshire, Health charities in ...
... may refer to: The Multiple Sclerosis Society of Great Britain The Multiple Sclerosis Society of ... Other multiple sclerosis societies This disambiguation page lists articles associated with the title Multiple Sclerosis Society ... Canada The National Multiple Sclerosis Society of the United States. ...
"Mayo Clinic: Multiple Sclerosis". "FDA approves new oral treatment for multiple sclerosis". fda.gov. Retrieved 2019-05-11. ... "Myelocortical multiple sclerosis: a subgroup of multiple sclerosis patients with spinal cord and cortical demyelination". ... In 1996, the US National Multiple Sclerosis Society (NMSS) Advisory Committee on Clinical Trials in Multiple Sclerosis (ACCTMS ... pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case". Multiple Sclerosis Journal. 22 (12): 1541 ...
Some PPMS patients have been found to have a special genetic variant named rapidly progressive multiple sclerosis In these ... Comparative Effectiveness Research (CER) is an emerging field in Multiple Sclerosis treatment. The response of the disease to ... Several biomarkers for diagnosis of multiple sclerosis, disease evolution and response to medication (current or expected) are ... specific proteins in circulating CD4+ T cells is a risk factor for conversion from CIS to clinically defined multiple sclerosis ...
... the world suffer from multiple sclerosis Tumefactive multiple sclerosis cases make up 1 to 2 of every 1000 multiple sclerosis ... Idiopathic inflammatory demyelinating diseases Malignant multiple sclerosis Marburg acute multiple sclerosis Xia L., Lin S., ... yielding a diagnosis of Multiple Sclerosis. Hence the name "tumefactive multiple sclerosis". When the demyelinating lesion ... Tumefactive multiple sclerosis is a condition in which the central nervous system of a person has multiple demyelinating ...
The Multiple Sclerosis Journal (formerly Multiple Sclerosis) is a monthly peer-reviewed medical journal covering the clinical ... neurology of multiple sclerosis. The editor-in-chief is Alan J Thompson (University College London). It was established in 1995 ...
MS Focus: The Multiple Sclerosis Foundation, also known as the Multiple Sclerosis Foundation or just MS Focus, is a 501(c)(3) ... Multiple Sclerosis News Today. Retrieved 30 March 2017. "Charity Report - Multiple Sclerosis Foundation - give.org". www.give. ... Multiple Sclerosis News Today. Retrieved 30 March 2017. Ferreira, Leonor Mateus (19 June 2014). "Multiple Sclerosis Foundation ... According to the Better Business Bureau, the Multiple Sclerosis Foundation did not disclose accountability information, and ...
National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis". Neurology ... National Multiple Sclerosis Society. "Changes in multiple sclerosis disease-course (or "type") descriptions" (PDF). Archived ( ... Atlas: Multiple Sclerosis Resources in the World, 2008. World Health Organization & Multiple Sclerosis International Federation ... February 2021). "Fatigue, sleep disorders, anaemia and pain in the multiple sclerosis prodrome". Multiple Sclerosis. 27 (2): ...
The National Multiple Sclerosis Society (NMSS) is a nonprofit organization founded in 1946. NMSS was founded in New York City ... "National Multiple Sclerosis Society on the Forbes The 100 Largest U.S. Charities List". Forbes. Retrieved 2017-05-12. Tobias, ... "National Multiple Sclerosis Society". www.weizmann.ac.il. Retrieved 2017-05-13. "Home - Office of Sponsored Projects - The ... Lawry was a lawyer looking for a cure, for her brother, Bernard, who was afflicted with multiple sclerosis when she realized ...
"The multiple sclerosis functional composite: a new clinical outcome measure for multiple sderosis trials". Multiple Sclerosis. ... and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis". BMC Neurology. 14 (1): 58. doi: ... The Multiple Sclerosis Functional Composite (MSFC) is a clinical trial outcome measure of assessing the severity of multiple ... It was developed over two years from 1994 to 1996 by the National Multiple Sclerosis Society. MSFC was developed to improve the ...
"Multiple sclerosis: its effects on you and those you love" (PDF). Multiple Sclerosis Society of Canada. 2008. Archived from the ... Bakshi R (June 2003). "Fatigue associated with multiple sclerosis: diagnosis, impact and management". Multiple Sclerosis. 9 (3 ... October 2006). "Cannabis use in patients with multiple sclerosis". Multiple Sclerosis. 12 (5): 646-51. doi:10.1177/ ... "EFNS guideline on treatment of multiple sclerosis relapses: report of an EFNS task force on treatment of multiple sclerosis ...
"Exploring the overlap between multiple sclerosis, tumefactive demyelination and Baló's concentric sclerosis". Multiple ... Multiple sclerosis can be pathologically defined as the presence of distributed glial scars (or sclerosis) in the central ... Multiple sclerosis borderline Golan, Daniel; Staun-Ram, Elsebeth; Miller, Ariel (2016). "Shifting paradigms in multiple ... htm# Multiple Sclerosis at eMedicine Elovaara I, Ukkonen M, Leppäkynnäs M, et al. (April 2000). "Adhesion molecules in multiple ...
The Multiple Sclerosis International Federation (MSIF) was established in 1967 as an international body linking the activities ... Since May 2009, MSIF has organized a World Multiple Sclerosis Day, which is now supported by MS organizations and individuals ... Multiple sclerosis organizations, Organisations based in the London Borough of Southwark, Organizations established in 1967). ... and to advocate for those affected by multiple sclerosis.[citation needed] MSIF has the following key priorities: International ...
Saida T (Nov 2004). "Multiple sclerosis: treatment and prevention of relapses and progression in multiple sclerosis". Rinsho ... Vukusic S, Confavreux C (March 2006). "[Multiple sclerosis and pregnancy]" [Multiple sclerosis and pregnancy]. Revue ... Multiple Sclerosis News Today". 23 March 2016. Clinical trial number NCT00067327 for "Treatment of Multiple Sclerosis Using ... remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial". Multiple Sclerosis. ...
... , also known as Marburg multiple sclerosis or acute fulminant multiple sclerosis, is considered ... Malignant multiple sclerosis Tumefactive multiple sclerosis Fontaine, B. (2001). "Les formes frontières de sclérose en plaques ... "Marburg type and Balò's concentric sclerosis: rare and acute variants of multiple sclerosis". Neurol. Sci. 25 (Suppl): S361-3. ... "Autologous stem-cell transplantation in malignant multiple sclerosis: A case with a favorable long-term outcome". Multiple ...
... (MSDF) is a non-profit online resource created to speed progress toward a cure for multiple ... MSDF is a joint activity of Accelerated Cure Project for Multiple Sclerosis (ACP) and the MassGeneral Institute for ... 2012) Web Forum Set to Tackle Multiple Sclerosis; AlzForum. Das, Sudeshna; McCaffrey, Patricia G.; Talkington, Megan W. T.; ... Schizophrenia Research Forum Pain Research Forum (Multiple sclerosis, Internet properties established in 2012, American medical ...
Cause of nerve fiber damage in multiple sclerosis identified Wolswijk G (15 January 1998). "Chronic stage multiple sclerosis ... secondary progressive multiple sclerosis) than in RRMS (relapsing-remitting multiple sclerosis) and most of them remain ... Multiple Sclerosis Lesion Type Dictates Effective Treatment Bitsch A, Brück W (2002). "Differentiation of multiple sclerosis ... "Spinal cord grey matter lesions in multiple sclerosis detected by post-mortem high field MR imaging". Multiple Sclerosis. 15 (2 ...
"Olfactory dysfunction in multiple sclerosis". Multiple Sclerosis and Related Disorders. 21: 92-96. doi:10.1016/j.msard.2018.02. ... Probable multiple sclerosis patients, meaning after a first attack but before a secondary confirmatory one, have up to 50 ... Multiple sclerosis can cause a variety of symptoms: changes in sensation (hypoesthesia), muscle weakness, abnormal muscle ... Pucci E, Branãs P, D'Amico R, Giuliani G, Solari A, Taus C (2007). Pucci E (ed.). "Amantadine for fatigue in multiple sclerosis ...
Multiple Sclerosis Society of Great Britain Multiple Sclerosis Trust Multiple Sclerosis Society of Canada Fly for MS Multiple ... List of multiple sclerosis organizations in different countries around the world. Multiple Sclerosis International Federation ... Sclerosis Foundation Myelin Repair Foundation National Multiple Sclerosis Society (Articles with short description, Short ... description is different from Wikidata, Dynamic lists, Lists of medical and health organizations, Multiple sclerosis ...
Founded in 1948, the Multiple Sclerosis Society of Canada promotes multiple sclerosis (MS) research and provides education and ... Multiple sclerosis organizations, Medical and health organizations based in Ontario). ...
The Multiple Sclerosis Society (MS Society) is the UK's largest charity for people affected by multiple sclerosis (MS). Based ... The MS Society is the UK's largest charity for people affected by multiple sclerosis (MS). It is a membership organisation, ... Multiple Sclerosis Society UK". www.mssociety.org.uk. Retrieved 2016-10-24. Official site (Pages using infobox organization ... which focuses on progressive multiple sclerosis. The MS Society was founded in 1953 by Sir Richard and Mary Cave, who were ...
... refusing to let multiple sclerosis halt cricket career Pockrass, Bob. "Trevor Bayne diagnosed with multiple sclerosis; cleared ... "Multiple Sclerosis Research: Malu Dreyer - MS Champion". 1 October 2012. Edwards, Donna (7 July 2017). "To my colleagues in ... "Victoria Williams Has Multiple Sclerosis". msstrength. 28 January 2009. "Mavericks G Wright joins team while battling MS". ESPN ... This is a list of notable people with multiple sclerosis, a demyelinating disease in which the insulating covers of nerve cells ...
... in multiple sclerosis patients in Germany (PANGAEA)". Multiple Sclerosis. 18 (4): 222. doi:10.1177/1352458512459019. S2CID ... Multiple Sclerosis. 19 (5): 631-638. doi:10.1177/1352458512463481. PMID 23069874. S2CID 6838286. (Multiple sclerosis, Quality ... "The development of patient-reported outcome indices for multiple sclerosis (PRIMUS)". Multiple Sclerosis Journal. 15 (9): 1092- ... The Patient Reported Outcome Indices for Multiple Sclerosis (PRIMUS) is a disease specific patient-reported outcome ...
The Corinne Goldsmith Dickinson Center for Multiple Sclerosis is a multiple sclerosis research and treatment center in New York ... The laboratory is currently supported by grants from the National Institutes of Health, the National Multiple Sclerosis Society ... The pathologic hallmarks of multiple sclerosis are central inflammation, blood-brain barrier permeability, demyelination, ... Jiwa Frontier in Multiple Sclerosis: New and Emerging Therapies, by Bruce A. Cohen, et al. 40°47′21″N 73°57′17″W / 40.78907°N ...
... is a local chapter of the National Multiple Sclerosis Society. ... "Employment". National Multiple Sclerosis Society. Retrieved 2019-08-31. "About the Society". National Multiple Sclerosis ... National Multiple Sclerosis Society. Retrieved 2019-08-31. "Resources & Support". National Multiple Sclerosis Society. ... "Advocate for Change". National Multiple Sclerosis Society. 2012-03-06. Retrieved 2019-08-31. (Orphaned articles from December ...
Balo concentric sclerosis and Marburg multiple sclerosis. Symptoms are similar to those in multiple sclerosis and may include ... Myelinoclastic diffuse sclerosis (Schilder's disease) is immunologically distinct from multiple sclerosis: results from ... This disease is considered one of the borderline forms of multiple sclerosis because some authors consider them different ... Fontaine B (2001). "[Borderline forms of multiple sclerosis]". Rev. Neurol. (Paris) (in French). 157 (8-9 Pt 2): 929-34. PMID ...
Multiple sclerosis, or focal sclerosis, is a central nervous system disease which affects coordination. Osteosclerosis, a ... Tuberous sclerosis, a rare genetic disease which affects multiple systems. "Welcome To The NephCure Foundation". Archived from ... Common medical conditions whose pathology involves sclerosis include: Amyotrophic lateral sclerosis-also known as Lou Gehrig's ... Sclerosis (from Greek σκληρός sklērós, "hard") is the stiffening of a tissue or anatomical feature, usually caused by a ...
... complex affects multiple organ systems so a multidisciplinary team of medical professionals is required.[ ... Tuberous sclerosis complex is diagnosed with clinical and genetic tests. There are many different mutations in the TSC1 and ... Tuberous sclerosis complex (TSC) is a rare multisystem autosomal dominant genetic disease that causes non-cancerous tumours to ... The disease is often abbreviated to tuberous sclerosis, which refers to the hard swellings in the brains of patients, first ...
... multiple sclerosis)? A large body of research shows that there is no link between multiple sclerosis and hepatitis B ... What is multiple sclerosis (MS)?. Multiple sclerosis (MS)external icon is an autoimmune disease that affects the brain and ... Vaccines in Multiple Sclerosis Study Group. Vaccinations and the risk of relapse in multiple sclerosisexternal icon. N Engl J ... Multiple sclerosis (MS) affects women more than men. The disorder is most commonly diagnosed between ages 20 and 40, but it can ...
... and guidelines on multiple sclerosis, including advances in treatment and management. ... Multiple Sclerosis : Review in-depth clinical information, latest medical news, ...
List of multiple sclerosis organizations List of people with multiple sclerosis Compston A, Coles A (October 2008). "Multiple ... "The multiple sclerosis functional composite: a new clinical outcome measure for multiple sderosis trials". Multiple Sclerosis. ... these include tumefactive multiple sclerosis, Balo concentric sclerosis, Schilders diffuse sclerosis, and Marburg multiple ... The name "multiple sclerosis" is short for multiple cerebro-spinal sclerosis, which refers to the numerous glial scars (or ...
Multiple sclerosis (MS) slows down or blocks messages between the brain and body. MS can be mild or severe. Learn about MS ... Depression and Multiple Sclerosis (National Multiple Sclerosis Society) * Emotional Disorders in People with Multiple Sclerosis ... National Multiple Sclerosis Society) * Multiple Sclerosis (MS) and the Black Community (National Multiple Sclerosis Society) - ... Multiple sclerosis (Medical Encyclopedia) Also in Spanish * Multiple sclerosis - discharge (Medical Encyclopedia) Also in ...
Collection of all of WebMDs slideshows and galleries on Multiple Sclerosis. ... How to Keep a Symptom Diary for Multiple Sclerosis Learn how a symptom diary for multiple sclerosis can let you see patterns ... Slideshow: A Visual Guide to Multiple Sclerosis Learn more from this WebMD slideshow about multiple sclerosis, or MS -- its ... Ways to Treat Multiple Sclerosis Find out how medicine and lifestyle changes can help you manage the symptoms of multiple ...
Multiple Sclerosis (MS) Tremors Many people with multiple sclerosis (MS) have some form of tremor they cant control, in ... Complications From Multiple Sclerosis You can develop complications along with your multiple sclerosis. They can range from ... If you have multiple sclerosis (MS), your bathroom habits may not be what they used to be. You might have bowel movements a lot ... Symptoms of multiple sclerosis can vary widely, because its not clear how and where the disease will attack. But mood swings ...
Multiple sclerosis, or MS, is a disease in which the covering called myelin around the nerves of the central nervous system ( ... Multiple Sclerosis Symptoms Picture. Symptoms of multiple sclerosis may be single or multiple and may range from mild to severe ... Multiple Sclerosis (MS). Multiple sclerosis or MS is an autoimmune disorder in which brain and spinal cord nerve cells become ... There are four types of multiple sclerosis:. *Relapsing: Remitting multiple sclerosis (RRMS) is the most common form of MS. ...
Posts about Multiple Sclerosis written by David L. Hoffmann BSc Hons MNIMH ...
Multiple sclerosis (MS) is often diagnosed in women of childbearing age, and this fact prompts concerns regarding how MS can ... Multiple Sclerosis and Pregnancy. News-Medical. 07 December 2023. ,https://www.news-medical.net/health/Multiple-Sclerosis-and- ... Multiple Sclerosis and Pregnancy. News-Medical. https://www.news-medical.net/health/Multiple-Sclerosis-and-Pregnancy.aspx. ( ... Multiple Sclerosis and Pregnancy. News-Medical, viewed 07 December 2023, https://www.news-medical.net/health/Multiple-Sclerosis ...
Multiple Sclerosis Wellness Research Symposium The 6th Annual Wellness accredited half-day symposium, presented by the OHSU MS ...
Clare Fowler review the neurologic control of bladder function and the different treatments available to patients with multiple ... Current and Emerging Approaches to B-Cell-Targeted Therapies for Multiple Sclerosis 0.25 CME Credits ... Table 1. Summary of Urodynamic Abnormalities Found in Patients With Multiple Sclerosis. Urodynamic abnormality. Incidence in ... PubMed was searched for articles published from January 1965 to March 2005 using the terms "multiple sclerosis", "bladder", and ...
ACTIVE is the leader in online event registrations from 5k running races and marathons to softball leagues and local events. ACTIVE also makes it easy to learn and prepare for all the things you love to do with expert resources, training plans and fitness calculators.. ...
Multiple Sclerosis, or MS, is a chronic, debilitating disease of the central nervous system that can significantly impact the ... Caregivers of people with multiple sclerosis: experiences of support. Multiple Sclerosis Journal. 2004;10(2):219-230. doi: ... Multiple sclerosis FAQs. National Multiple Sclerosis Society. https://www.nationalmssociety.org/What-is-MS/MS-FAQ-s. Published ... Multiple Sclerosis, or MS, is a chronic, debilitating disease of the central nervous system that can significantly impact the ...
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and the most common cause of ... Multiple sclerosis: Study with twins untangles environmental and genetic influences Peer-Reviewed Publication University of ... Life sciences/Immunology/Immune disorders/Autoimmune disorders/Multiple sclerosis * /Life sciences/Genetics/Behavior genetics/ ... Multiple sclerosis: Study with twins untangles environmental and genetic influences. University of Zurich ...
2023 Healthline Media UK Ltd, Brighton, UK. All rights reserved. MNT is the registered trade mark of Healthline Media. Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a healthcare professional. See additional information ...
An example of this is the treatment of multiple sclerosis, where the pharmaceutical agents have to produce their effect above ... Nose2Brain: Better therapy for multiple sclerosis. Date:. April 27, 2017. Source:. Fraunhofer Institute for Interfacial ... An example of this is the treatment of multiple sclerosis, where the pharmaceutical agents have to produce their effect above ... An example of this is the treatment of multiple sclerosis, where the pharmaceutical agents have to produce their effect above ...
Are you a member of the news media ...
Multiple sclerosis (MS) is thought to be an autoimmune disease; however, the exact cause is not known. Early signs and symptoms ... Multiple Sclerosis Symptoms Picture. Symptoms of multiple sclerosis may be single or multiple and may range from mild to severe ... There are four types of multiple sclerosis.. 1. Relapsing-remitting multiple sclerosis (RRMS). Relapsing-remitting multiple ... Multiple Sclerosis: Signs of Multiple Sclerosis Relapse. Signs of an MS relapse can vary in type and intensity. This WebMD ...
Both genetic and environmental factors play a role in the development of multiple sclerosis. Learn more. ... Late onset multiple sclerosis is the term for multiple sclerosis (MS) that develops later in life, usually after the age of 50 ... Multiple sclerosis and systemic sclerosis are two autoimmune conditions that affect different parts of the body. Learn more ... Multiple sclerosis and systemic sclerosis are two autoimmune conditions that affect different parts of the body. Learn more ...
Sex hormones and multiple sclerosis: another informative failure. Lancet Neurology. Published online November 24, 2015. doi: ... POWER OF PREGNANCY Scientists suspect that a hormone that peaks late in pregnancy may stave off multiple sclerosis flare-ups. ... Pregnancy hormone could keep multiple sclerosis at bay. Women taking a form of estrogen had fewer relapses ... Taking a pregnancy hormone staves off multiple sclerosis relapses, a small clinical trial suggests. The results hint at a ...
Help Graham King raise money to support Multiple Sclerosis Society ...
Help Ali Simanwe raise money to support Multiple Sclerosis Society ...
Learn more about Multiple Sclerosis and how it affects the people living with this challenging condition through their own ... 2022 The National Multiple Sclerosis Society is a tax exempt 501(c)3 nonprofit organization. Its Identification Number (EIN) is ... Stories of life with multiple sclerosis are told through the everyday moments people with MS experience. ...
Although there is currently no cure for multiple sclerosis, its not a fatal condition. Heres what you need to know about MS ... About multiple sclerosis. (n.d.).. http://multiplesclerosis.ucsf.edu/education_and_support/about_multiple_sclerosis. ... A multiple sclerosis diagnosis can turn your world upside down, but it doesnt need to prevent you from doing what you love. By ... People with multiple sclerosis sometimes experience a flare-up of symptoms. Learn what triggers MS flare-ups, how long they ...
People with multiple sclerosis who eat a Mediterranean diet are less likely to show signs of cognitive impairment than people ... People with multiple sclerosis who adhere to the Mediterranean diet are less likely to have issues with cognition. The finding ... People with multiple sclerosis who eat a Mediterranean diet are less likely to show signs of cognitive impairment than people ... Multiple sclerosis is an autoimmune disorder that affects the brain and spinal cord. More than half of people with the ...
Early Treatment for Multiple Sclerosis Could Lower Disability Risk. A new study finds getting treatment for multiple sclerosis ... Study Looking at High-Dose Biotin as a Treatment for Multiple Sclerosis. The B-complex vitamin has performed well in two trials ... People with multiple sclerosis sometimes become desperate and will travel to other countries for experimental stem cell ... Multiple sclerosis attacks and damages the central nervous system, producing symptoms such as muscle weakness, trouble with ...
Effect of BEMER magnetic field therapy on the level of fatigue in patients with multiple sclerosis: a randomized, double-blind ... Long-term effects of Bio-Electromagnetic-Energy Regulation therapy on fatigue in patients with multiple sclerosis. Haase R, ... OBJECTIVES: Electromagnetic field therapy has been reported to be beneficial in patients with multiple sclerosis (MS) with sig ... OBJECTIVES: Electromagnetic field therapy has been reported to be beneficial in patients with multiple sclerosis (MS) with ...
Multiple sclerosis (MS) is the most common disabling neurological disease of young adults with symptom onset generally ... What is multiple sclerosis? Multiple sclerosis (MS) is the most common disabling neurological disease of young adults with ... The term multiple sclerosis refers to the distinctive areas of scar tissue (sclerosis-also called plaques or lesions) that ... How is multiple sclerosis diagnosed and treated?. Diagnosing MS. There is no single test used to diagnose MS. The disease is ...
Multiple Sclerosis Patient Hopes to Walk Unassisted again on Indiegogo. ...
See a list of publications by Mayo Clinic doctors on multiple sclerosis on PubMed, a service of the National Library of ... Read more about research in the Mayo Clinic Laboratories and in the Center for Multiple Sclerosis and Autoimmune Neurology. ... Mayo Clinic researchers are working to improve the diagnosis and treatment of multiple sclerosis. Specific efforts include ... Multiple sclerosis, Bladder exstrophy, Wilms tumor, Testicular cancer, Transverse myelitis, Undescended testicle, Hypospadias ...
  • Remitting multiple sclerosis (RRMS) is the most common form of MS . Remission may last for weeks to years. (medicinenet.com)
  • A study, led by Cambridge University, has found alemtuzumab, a humanized monoclonal antibody that targets CD52 on lymphocytes and monocytes designed to treat a form of leukaemia , not only stops MS from advancing in patients with relapsing-remitting multiple sclerosis (RRMS) but may also restore lost function. (disabled-world.com)
  • RRMS usually develops at a younger age than other forms of multiple sclerosis, typically between age 20 and 50, and affects women about two to three times as often as men. (thirdage.com)
  • The findings, which will be presented at an April meeting of the American Academy of Neurology in Boston, suggest that the Mediterranean diet has a protective effect on cognition in people with multiple sclerosis, says Katz Sand. (newscientist.com)
  • Read more about research in the Mayo Clinic Laboratories and in the Center for Multiple Sclerosis and Autoimmune Neurology . (mayoclinic.org)
  • When considering a diagnosis of multiple sclerosis, your doctor will be particularly interested in hearing about your symptoms, when they started and how they've eased or progressed over time. (ucsfhealth.org)
  • Plain radiographic studies have no positive predictive value in the diagnosis of multiple sclerosis, but occasionally, plain radiographs may be used to exclude mechanical bony lesions. (medscape.com)
  • Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. (medscape.com)
  • Fast Five Quiz: Multiple Sclerosis Biomarkers - Medscape - Oct 10, 2023. (medscape.com)
  • In relapsing multiple sclerosis (PRMS) patients experience increasing symptoms over time and intermittent episodes of remission. (medicinenet.com)
  • There is currently no cure for MS, though several drugs have been approved by the U.S. Food and Drug Administration to treat one or more forms of multiple sclerosis. (foxnews.com)
  • Symptoms of multiple sclerosis can vary widely, because it's not clear how and where the disease will attack. (webmd.com)
  • Signs and symptoms of multiple sclerosis are variable and depend on the area of the destruction of the myelin protecting the brain and spinal cord nerves. (medicinenet.com)
  • The symptoms of multiple sclerosis depend on which particular pathway of nerve fiber is damaged. (ucsfhealth.org)
  • The symptoms of multiple sclerosis vary widely among those affected, depending on the speed and pattern of damage. (abilitymagazine.com)
  • Both genetic and environmental factors play a role in the development of multiple sclerosis (MS), which is an autoimmune disease. (medicalnewstoday.com)
  • According to the findings caffeine blocks the development of multiple sclerosis MS, by blocking a compound called adenosine, which led to the protection of brain cells from immune system which destroys the protective coating that surround the nerve cells, myelin. (topnews.in)
  • A new discovery in B cell research may lead to better treatments for people living with multiple sclerosis (MS). (healthline.com)
  • Drugs called interferon betas are common treatments for multiple sclerosis (MS), reducing relapses and slowing motor function decline. (acs.org)
  • The term multiple sclerosis refers to the distinctive areas of scar tissue (sclerosis-also called plaques or lesions) that result from the attack on myelin by the immune system. (nih.gov)
  • The term multiple sclerosis actually means many scars. (abilitymagazine.com)
  • The study by the team led by immunologist Burkhard Becher, professor at the Institute of Experimental Immunology at UZH, and the research groups of Lisa Ann Gerdes and Eduardo Beltrán of the Institute of Clinical Neuroimmunology at the LMU Klinikum, shows that these genetic influences, while always present in MS patients, are not on their own sufficient to trigger multiple sclerosis. (eurekalert.org)
  • The researchers found that increased sensitivity to certain cytokines leads to greater activation of T cells in the blood of patients with multiple sclerosis. (eurekalert.org)
  • This unique opportunity to unravel the influence of genetics and environment in multiple sclerosis is entirely thanks to our patients who agreed to join the study," said Lisa Ann Gerdes. (eurekalert.org)
  • A small clinical trial shows big benefits for patients with multiple sclerosis who took Saccharomyces boulardii probiotic for four months. (theepochtimes.com)
  • OBJECTIVES: Electromagnetic field therapy has been reported to be beneficial in patients with multiple sclerosis (MS) with significant fatigue. (nih.gov)
  • Long-term effects of Bio-Electromagnetic-Energy Regulation therapy on fatigue in patients with multiple sclerosis . (nih.gov)
  • BACKGROUND: Electromagnetic-field therapy has beneficial short-term effects in multiple sclerosis (MS) patients with major fatigue, but long-term data are lacking. (nih.gov)
  • In patients with early, relapsing-remitting multiple sclerosis, alemtuzumab was more effective than interferon beta-1a. (disabled-world.com)
  • Multiple sclerosis (MS) is an immune-mediated inflammatory disease that attacks myelinated axons in the central nervous system, destroying the myelin and the axon in variable degrees and producing significant physical disability within 20-25 years in more than 30% of patients. (medscape.com)
  • Researchers from Northwestern University's Feinberg School of Medicine appear to have reversed the neurological dysfunction of early-stage multiple sclerosis patients by transplanting their own immune stem cells into their bodies and thereby "resetting" their immune systems. (scienceblog.com)
  • Within 10 to 15 years after onset of the disease, most patients with this relapsing-remitting MS progress to a later stage called secondary progressive multiple sclerosis. (scienceblog.com)
  • The 21 patients in the trial, ages 20 to 53, had relapsing-remitting multiple sclerosis that had not responded to at least six months of treatment with interferon beta. (scienceblog.com)
  • These pages provide information about services, events and research at University Hospitals Birmingham NHS Foundation Trust (UHB) for patients with multiple sclerosis (MS). (uhb.nhs.uk)
  • A multiple sclerosis drug that slows progression of the disease reduces the binding of a protein, a peptide and a mineral to patients' red blood cells, thereby lessening nerve damage. (acs.org)
  • Objective: To report on safety and effectiveness of subcutaneous cladribine (Litak ® ) in multiple sclerosis (MS) patients. (lu.se)
  • in multiple sclerosis (MS) patients. (lu.se)
  • The convenience sample consisted of 26 patients diagnosed with Multiple Sclerosis enrolled in the outpatient clinic, who provided their socio-demographic data and answered fatigue scales (MFIS) and functional disability (EDSS). (bvsalud.org)
  • Children and teens with multiple sclerosis are treated with the same therapies as adults, but they are considered "off label" for treating children, (not an FDA approved the use of the drug, but it is/may be effective for some people with the condition). (medicinenet.com)
  • Trigeminal neuralgia, which is a type of chronic nerve pain in your face, is common with multiple sclerosis (MS). (webmd.com)
  • Multiple Sclerosis, or MS, is a chronic, debilitating disease of the central nervous system that can significantly impact the lives of people living with the condition, as well as families and loved ones. (novartis.com)
  • Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and the most common cause of neurological impairment in young adults. (eurekalert.org)
  • Nearly 1 million people in the United States live with multiple sclerosis, a chronic autoimmune disease. (theepochtimes.com)
  • Multiple sclerosis is a chronic disease that affects the central nervous system, including the brain, spinal cord and optic nerves. (ucsfhealth.org)
  • In progressive multiple sclerosis (SPMS), exacerbations don't fully resolve during remission. (medicinenet.com)
  • Progressive primary multiple sclerosis (PPMS) progresses over time without episodes of remission. (medicinenet.com)
  • Taking a pregnancy hormone staves off multiple sclerosis relapses, a small clinical trial suggests. (sciencenews.org)
  • According to the National Multiple Sclerosis Society (NMSS) , the lifespan of people with MS has increased over time. (healthline.com)
  • Elisabeth Mari, PhD, the director of biomedical research for the National Multiple Sclerosis Society, emphasizes the importance of learning more about the role of B cells and disease progression. (healthline.com)
  • According to the National Multiple Sclerosis Society, almost a million people in the U.S. and about 2.8 million people worldwide live with MS. This autoimmune disease damages the myelin sheath, an insulating layer of proteins and fats wrapped around nerves, which leads to impaired neuronal signaling. (acs.org)
  • Shared research findings by MAGNIMS, the Consortium of Multiple Sclerosis Centers (CMSC), and the North American Imaging in MS Cooperative (NAIMS) were incorporated into the updated recommendations for clinical practice, published in 2021. (medpagetoday.com)
  • The committee found that the epidemiological evidence does not support a causal relationship between hepatitis B vaccine in adults and multiple sclerosis . (cdc.gov)
  • Multiple sclerosis (MS) is the most common disabling neurological disease of young adults with symptom onset generally occurring between the ages of 20 to 40 years. (nih.gov)
  • McKeown L, Porter-Armstrong A, Baxter G. Caregivers of people with multiple sclerosis: experiences of support. (novartis.com)
  • Multiple sclerosis caregivers. (novartis.com)
  • Multiple sclerosis is a disease that involves an immune-mediated process that results in an abnormal response in the body's immune system that damages central nervous system (CNS) tissues in which the immune system attacks myelin, the substance that surrounds and insulates nerve fibers causing demyelination that leads to nerve damage. (medicinenet.com)
  • About 1 million people worldwide have multiple sclerosis, in which the body's defense mechanisms mistakenly attack the protective coating around nerves. (disabled-world.com)
  • Multiple sclerosis is an autoimmune disease that affects the body's ability to send nerve signals. (thirdage.com)
  • In multiple sclerosis the body's immune system repeatedly attacks the protective covering (myelin) of nerve tracks in the brain and spinal cord, causing the characteristic plaques that can be identified on MRI (demyelination). (abilitymagazine.com)
  • Many people with multiple sclerosis (MS) have some form of tremor they can't control, in different parts of their bodies, like their head, arms, or legs. (webmd.com)
  • Cognitive impairment is a common symptom for people with multiple sclerosis. (webmd.com)
  • People with multiple sclerosis, or MS, often have trouble swallowing, a problem called dysphagia. (webmd.com)
  • Who gets multiple sclerosis, and how many people have it? (medicinenet.com)
  • The life span of people with this form of sclerosis, especially if it is treated early, is about the same as in the general population. (medicinenet.com)
  • Stories of life with multiple sclerosis are told through the everyday moments people with MS experience. (nationalmssociety.org)
  • People with multiple sclerosis who adhere to the Mediterranean diet are less likely to have issues with cognition. (newscientist.com)
  • Ilana Katz Sand at the Icahn School of Medicine at Mount Sinai in New York and her colleagues recruited 563 people with multiple sclerosis, all of whom were younger than 65 years old. (newscientist.com)
  • Our mission is to help people with multiple sclerosis (MS) enjoy long and active lives. (ucsfhealth.org)
  • Most people who are diagnosed with multiple sclerosis (MS) are women in their child-bearing years. (healthlinkbc.ca)
  • About 2.8 million people are living with multiple sclerosis (MS) worldwide. (medpagetoday.com)
  • An estimated 2.3 million people worldwide live with Multiple Sclerosis (MS). MS is a hard-to-predict disease of the central nervous system. (medlineplus.gov)
  • Multiple sclerosis is a variable condition and the symptoms depend on which areas of the central nervous system have been affected. (msif.org)
  • Multiple sclerosis (MS) external icon is an autoimmune disease that affects the brain and spinal cord (central nervous system). (cdc.gov)
  • Multiple sclerosis (MS) affects women more than men. (cdc.gov)
  • Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. (medlineplus.gov)
  • Multiple sclerosis is an autoimmune disorder that affects the brain and spinal cord. (newscientist.com)
  • Multiple sclerosis (MS) is a nervous system disease that affects the brain, optic nerve (which helps. (medlineplus.gov)
  • The Multiple sclerosis is a demyelinating neurological disease of the central nervous system that mainly affects young women. (bvsalud.org)
  • Mikaeloff Y, Caridade G, Rossier M, Suissa S, Tardieu M. Hepatitis B vaccination and the risk of childhood-onset multiple sclerosis external icon . (cdc.gov)
  • Multiple sclerosis (MS) has its usual onset in early adult life (average age of 30 years), but age at clinical onset varies considerably. (nih.gov)
  • Cite this: Therapy Insight: Bladder Dysfunction Associated With Multiple Sclerosis - Medscape - Oct 01, 2005. (medscape.com)
  • The bladder symptoms in multiple sclerosis become increasingly difficult to manage with progression of spinal cord disease. (medscape.com)
  • Multiple Sclerosis: Can It Cause Seizures? (medlineplus.gov)
  • If you have multiple sclerosis (MS), you may be more likely to have seizures than those who don't have MS. (webmd.com)
  • [ 1 ] Magnetic resonance imaging (MRI) of the brain is useful in the diagnosis and treatment of multiple sclerosis . (medscape.com)
  • Experts in multiple sclerosis reviewed the evidence for the use of magnetic resonance imaging in MS, especially with regard to safety measures involving gadolinium-based contrast agents. (medpagetoday.com)
  • Global experts on MS have agreed on guidelines for the use of MRI in the diagnosis, prognosis, and treatment of MS. 2 These standardized protocols reflect significant advances in imaging technology and clinical information since publication of the Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) guidelines in 2015. (medpagetoday.com)
  • Scar tissue, called sclerosis, accumulates when multiple areas of myelin are damaged. (ucsfhealth.org)
  • Multiple sclerosis is an autoimmune disease, which means it occurs when the immune system attacks healthy tissue. (medicalnewstoday.com)
  • Intermittent attacks destroy the myelin sheath, i.e. the layer which surrounds the nerve fibres, causing multiple neurological symptoms. (css.ch)
  • Multiple sclerosis (MS) is an autoimmune disease in which the immune system attacks the central nervous system. (scienceblog.com)
  • Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J. Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. (medscape.com)
  • Multiple sclerosis (MS) is often diagnosed in women of childbearing age, and this fact prompts concerns regarding how MS can affect pregnancy. (news-medical.net)
  • The Pregnancy and Multiple Sclerosis (PRIMS) trial studied 269 pregnancies in women with MS. Results showed that while relapse rates were down by 70% in the third trimester, they increased 3 to 6 months post childbirth without contributing to increased disability in the long term. (news-medical.net)
  • POWER OF PREGNANCY Scientists suspect that a hormone that peaks late in pregnancy may stave off multiple sclerosis flare-ups. (sciencenews.org)
  • In 1998, some research caused concern that hepatitis B vaccination might be linked with multiple sclerosis (MS), a progressive nerve disease. (cdc.gov)
  • Hello, I was looking through my medical records and saw that my diagnosis is non progressive relapsing multiple sclerosis. (medhelp.org)
  • My client Walter was diagnosed with Progressive Multiple Sclerosis 35 years ago. (emofree.com)
  • Multiple sclerosis is a slowly progressive, inflammatory disease of the central nervous system. (css.ch)
  • The name "multiple sclerosis" is short for multiple cerebro-spinal sclerosis, which refers to the numerous glial scars (or sclerae - essentially plaques or lesions) that develop on the white matter of the brain and spinal cord. (wikipedia.org)
  • Can children and teenagers develop multiple sclerosis (pediatric MS)? (medicinenet.com)
  • Waubant E, Chabas D. Pediatric multiple sclerosis. (medscape.com)
  • Consensus definitions proposed for pediatric multiple sclerosis and related disorders. (medscape.com)
  • Lünemann JD, Huppke P, Roberts S, Brück W, Gärtner J, Münz C. Broadened and elevated humoral immune response to EBNA1 in pediatric multiple sclerosis. (medscape.com)
  • Multiple sclerosis is the most common immune-mediated disorder affecting the central nervous system. (wikipedia.org)
  • Because the exact antigen or target of the immune-mediated attack is not known, many experts prefer to label multiple sclerosis as 'immune-mediated instead of an autoimmune disease. (medicinenet.com)
  • Multiple sclerosis is a condition caused by immune cells attacking parts of the nervous system. (thenakedscientists.com)
  • They experienced improvements in areas in which they had been affected by multiple sclerosis including walking, ataxia, limb strength, vision and incontinence. (scienceblog.com)
  • Multiple sclerosis (MS) is a degenerative disease in which the insulating covers called myelin sheaths, of nerve cells in the brain and spinal cord are damaged. (wikipedia.org)
  • Multiple sclerosis damages the outer covering of nerve cells, called myelin, a fatty tissue that protects nerve cells in the same way that insulation protects electrical wiring in a house. (ucsfhealth.org)
  • Multiple Sclerosis is a non-hereditary disease in which the fatty myelin sheaths that surround the axons in the brain and spinal cord are damaged. (koreaherald.com)
  • Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. (bvsalud.org)
  • Multiple Sclerosis Journal is a peer-reviewed international journal that focuses on all aspects of multiple sclerosis, neuromyelitis optica and other related autoimmune diseases of the central nervous system. (sagepub.com)
  • If you have multiple sclerosis, you're more likely to also have certain other medical conditions, including depression, high blood pressure, and lung disease. (webmd.com)
  • Multiple sclerosis is not considered to be a fatal disease although rarely it may be fatal due to complications. (medicinenet.com)
  • What kind of disease is multiple sclerosis? (medicinenet.com)
  • Infectious mononucleosis - also known as "mono" or "the kissing disease" - in childhood or adolescence is associated with an increased risk of developing multiple sclerosis (MS) as an adult, according to a new study. (foxnews.com)
  • Rather, the prototype demyelinating disease is multiple sclerosis and its variants. (medhelp.org)
  • Medical scientists have discovered that a drug used to treat leukaemia is effective in combating the debilitating neurological disease multiple sclerosis. (disabled-world.com)
  • Axial diffusion-weighted MRI in a patient with multiple sclerosis shows several hyperintense lesions, a feature of inflammatory disease activity. (medscape.com)
  • Multiple sclerosis is a complex disease, and its many patterns of progression make each case unique. (thirdage.com)
  • To investigate a potential risk for multiple sclerosis (MS) after vaccination with Arepanrix, the GlaxoSmithKline AS03-adjuvanted influenza A(H1N1)pdm09 vaccine, we used the provincewide immunization registry for Manitoba, Canada, to match 341,347 persons vaccinated during the 2009 pandemic to 485,941 unvaccinated persons on age, sex, address, and a propensity score measuring the probability of vaccination. (cdc.gov)
  • LONDON - Previous research has shown that providing a clinically definite multiple sclerosis (MS) diagnosis often takes several weeks or even months . (medscape.com)
  • Dr Spurlock, who helped develop the testing system and is a shareholder in IQuity, presented the study results here at the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) 2016. (medscape.com)
  • Studies in recent years have clearly shown that genetic risk variants are a necessary condition for developing multiple sclerosis. (eurekalert.org)
  • Coronal fluid-attenuated inversion recovery (FLAIR) MRI in a patient with multiple sclerosis demonstrates periventricular high-signal intensity lesions, which exhibit a typical distribution for multiple sclerosis. (medscape.com)
  • Miles for MS organizes athletic events to raise money and awareness for non-profit groups researching a cure for Multiple Sclerosis, or providing social work, or lobbying for more streamlined, effective medical legislation in regards to treating neurological diseases. (koreaherald.com)
  • An example of this is the treatment of multiple sclerosis, where the pharmaceutical agents have to produce their effect above all in the central nervous system. (sciencedaily.com)
  • Mayo Clinic researchers are working to improve the diagnosis and treatment of multiple sclerosis. (mayoclinic.org)
  • No drugs or biologic agents are approved for multiple sclerosis (MS) treatment in children. (medscape.com)
  • The findings also don't elucidate how dietary changes may impact multiple sclerosis over time. (newscientist.com)
  • When asked how easy it will be for clinicians to interpret the test's findings, he answered that results will show "a simple yes or no for a gene expression signature consistent with multiple sclerosis. (medscape.com)
  • When multiple sclerosis is more advanced, walking difficulties can occur and the risk of falling increases. (wikipedia.org)
  • women have about two to three times the risk for multiple sclerosis than men. (medicinenet.com)
  • For instance, previous studies have shown that molecules generated by gut bacteria reduce inflammation , and inflammation can exacerbate multiple sclerosis symptoms. (newscientist.com)
  • Scientists have discovered alemtuzumab a drug used to treat leukaemia is effective in combating multiple sclerosis and is more effective than interferon beta-1a. (disabled-world.com)
  • Sexual dysfunction is a very common symptom and complication of multiple sclerosis (MS). The good news is you don't have to put up with symptoms. (webmd.com)