A refractive error in which rays of light entering the EYE parallel to the optic axis are brought to a focus in front of the RETINA when accommodation (ACCOMMODATION, OCULAR) is relaxed. This results from an overly curved CORNEA or from the eyeball being too long from front to back. It is also called nearsightedness.
Excessive axial myopia associated with complications (especially posterior staphyloma and CHOROIDAL NEOVASCULARIZATION) that can lead to BLINDNESS.
Refraction of LIGHT effected by the media of the EYE.
A pair of ophthalmic lenses in a frame or mounting which is supported by the nose and ears. The purpose is to aid or improve vision. It does not include goggles or nonprescription sun glasses for which EYE PROTECTIVE DEVICES is available.
A refractive error in which rays of light entering the eye parallel to the optic axis are brought to a focus behind the retina, as a result of the eyeball being too short from front to back. It is also called farsightedness because the near point is more distant than it is in emmetropia with an equal amplitude of accommodation. (Dorland, 27th ed)
Deviations from the average or standard indices of refraction of the eye through its dioptric or refractive apparatus.
The absence or restriction of the usual external sensory stimuli to which the individual responds.
The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light.
The dioptric adjustment of the EYE (to attain maximal sharpness of retinal imagery for an object of regard) referring to the ability, to the mechanism, or to the process. Ocular accommodation is the effecting of refractive changes by changes in the shape of the CRYSTALLINE LENS. Loosely, it refers to ocular adjustments for VISION, OCULAR at various distances. (Cline et al., Dictionary of Visual Science, 4th ed)
The white, opaque, fibrous, outer tunic of the eyeball, covering it entirely excepting the segment covered anteriorly by the cornea. It is essentially avascular but contains apertures for vessels, lymphatics, and nerves. It receives the tendons of insertion of the extraocular muscles and at the corneoscleral junction contains the canal of Schlemm. (From Cline et al., Dictionary of Visual Science, 4th ed)
The distance between the anterior and posterior poles of the eye, measured either by ULTRASONOGRAPHY or by partial coherence interferometry.
The only family of the order SCANDENTIA, variously included in the order Insectivora or in the order Primates, and often in the order Microscelidea, consisting of five genera. They are TUPAIA, Ananthana (Indian tree shrew), Dendrogale (small smooth-tailed tree shrew), Urogale (Mindanao tree shrew), and Ptilocercus (pen-tailed tree shrew). The tree shrews inhabit the forest areas of eastern Asia from India and southwestern China to Borneo and the Philippines.
An objective determination of the refractive state of the eye (NEARSIGHTEDNESS; FARSIGHTEDNESS; ASTIGMATISM). By using a RETINOSCOPE, the amount of correction and the power of lens needed can be determined.
The condition of where images are correctly brought to a focus on the retina.
The use of statistical and mathematical methods to analyze biological observations and phenomena.
A genus of tree shrews of the family TUPAIIDAE which consists of about 12 species. One of the most frequently encountered species is T. glis. Members of this genus inhabit rain forests and secondary growth areas in southeast Asia.
Unequal curvature of the refractive surfaces of the eye. Thus a point source of light cannot be brought to a point focus on the retina but is spread over a more or less diffuse area. This results from the radius of curvature in one plane being longer or shorter than the radius at right angles to it. (Dorland, 27th ed)
Gas lasers with excited dimers (i.e., excimers) as the active medium. The most commonly used are rare gas monohalides (e.g., argon fluoride, xenon chloride). Their principal emission wavelengths are in the ultraviolet range and depend on the monohalide used (e.g., 193 nm for ArF, 308 nm for Xe Cl). These lasers are operated in pulsed and Q-switched modes and used in photoablative decomposition involving actual removal of tissue. (UMDNS, 2005)
A type of refractive surgery of the CORNEA to correct MYOPIA and ASTIGMATISM. An EXCIMER LASER is used directly on the surface of the EYE to remove some of the CORNEAL EPITHELIUM thus reshaping the anterior curvature of the cornea.
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.
A surgical procedure to correct MYOPIA by CORNEAL STROMA subtraction. It involves the use of a microkeratome to make a lamellar dissection of the CORNEA creating a flap with intact CORNEAL EPITHELIUM. After the flap is lifted, the underlying midstroma is reshaped with an EXCIMER LASER and the flap is returned to its original position.
Lenses designed to be worn on the front surface of the eyeball. (UMDNS, 1999)
Pieces of glass or other transparent materials used for magnification or increased visual acuity.
A procedure to surgically correct REFRACTIVE ERRORS by cutting radial slits into the CORNEA to change its refractive properties.
The measurement of curvature and shape of the anterior surface of the cornea using techniques such as keratometry, keratoscopy, photokeratoscopy, profile photography, computer-assisted image processing and videokeratography. This measurement is often applied in the fitting of contact lenses and in diagnosing corneal diseases or corneal changes including keratoconus, which occur after keratotomy and keratoplasty.
The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed)
An alternative to REFRACTIVE SURGICAL PROCEDURES. A therapeutic procedure for correcting REFRACTIVE ERRORS. It involves wearing CONTACT LENSES designed to force corrective changes to the curvature of the CORNEA that remain after the lenses are removed. The effect is temporary but is maintained by wearing the therapeutic lenses daily, usually during sleep.
The transparent, semigelatinous substance that fills the cavity behind the CRYSTALLINE LENS of the EYE and in front of the RETINA. It is contained in a thin hyaloid membrane and forms about four fifths of the optic globe.
I'm sorry for any confusion, but "Singapore" is not a medical term or concept, it's a country in Southeast Asia. If you have any questions about medical topics, I'd be happy to try and help!
The space in the eye, filled with aqueous humor, bounded anteriorly by the cornea and a small portion of the sclera and posteriorly by a small portion of the ciliary body, the iris, and that part of the crystalline lens which presents through the pupil. (Cline et al., Dictionary of Visual Science, 4th ed, p109)
Individuals whose ancestral origins are in the southeastern and eastern areas of the Asian continent.
A surgical technique to correct REFRACTIVE ERRORS of the EYE, such as MYOPIA and ASTIGMATISM. In this method, a flap of CORNEAL EPITHELIUM is created by exposure of the area to dilute alcohol. The flap is lifted and then replaced after laser ablation of the subepithelial CORNEA.
Surgical procedures employed to correct REFRACTIVE ERRORS such as MYOPIA; HYPEROPIA; or ASTIGMATISM. These may involve altering the curvature of the CORNEA; removal or replacement of the CRYSTALLINE LENS; or modification of the SCLERA to change the axial length of the eye.
Agents that dilate the pupil. They may be either sympathomimetics or parasympatholytics.
A condition of an inequality of refractive power of the two eyes.

Streptococcal keratitis after myopic laser in situ keratomileusis. (1/1261)

A 24-year-old healthy male underwent uncomplicated laser in situ keratomileusis (LASIK) in left eye. One day after the surgery, he complained of ocular pain and multiple corneal stromal infiltrates had developed in left eye. Immediately, the corneal interface and stromal bed were cleared, and maximal antibiotic treatments with fortified tobramycin (1.2%) and cefazolin (5%) were given topically. The causative organism was identified as 'Streptococcus viridans' both on smear and culture. Two days after antibiotic therapy was initiated, the ocular inflammation and corneal infiltrates had regressed and ocular pain was relieved. One month later, the patient's best corrected visual acuity had returned to 20/20 with -0.75 -1.00 x 10 degrees, however minimal stromal scarring still remained. This case demonstrates that microbial keratitis after LASIK, if treated promptly, does not lead to a permanent reduction in visual acuity.  (+info)

Tonic accommodation, age, and refractive error in children. (2/1261)

PURPOSE: An association between tonic accommodation, the resting accommodative position of the eye in the absence of a visually compelling stimulus, and refractive error has been reported in adults and children. In general, myopes have the lowest (or least myopic) levels of tonic accommodation. The purpose in assessing tonic accommodation was to evaluate it as a predictor of onset of myopia. METHODS: Tonic accommodation was measured in children enrolled in the Orinda Longitudinal Study of Myopia using an infrared autorefractor (model R-1; Canon, Lake Success, NY) while children viewed an empty lit field or a dark field with a fixation spot projected in Maxwellian view. Children aged 6 to 15 years were measured from 1991 through 1994 (n = 714, 766, 771, and 790 during the 4 years, successively). Autorefraction provided refractive error and tonic accommodation data, and videophakometry measured crystalline lens curvatures. RESULTS: Comparison of the two methods for measuring tonic accommodation shows a significant effect of age across all years of testing, with the lit empty-field test condition yielding higher levels of tonic accommodation compared with the dark-field test condition in children aged 6 through 11 years. For data collected in 1994, mean (+/-SD) tonic accommodation values for the lit empty-field condition were significantly lower in myopes, intermediate in emmetropes, and highest in hyperopes (1.02 +/- 1.18 D, 1.92 +/- 1.59 D, and 2.25 +/- 1.78 D, respectively; Kruskal-Wallis test, P < 0.001; between-group testing shows each group is different from the other two). Age, refractive error, and Gullstrand lens power were significant terms in a multiple regression model of tonic accommodation (R2 = 0.18 for 1994 data). Lower levels of tonic accommodation for children entering the study in the first or third grades were not associated with an increased risk of the onset of myopia, whether measured in the lit empty-field test condition (relative risk = 0.90; 95% confidence interval = 0.75, 1.08), or the dark-field test condition (relative risk = 0.83; 95% confidence interval = 0.60, 1.14). CONCLUSIONS: This is the first study to document an association between age and tonic accommodation. The known association between tonic accommodation and refractive error was confirmed and it was shown that an ocular component, Gullstrand lens power, also contributed to the tonic accommodation level. There does not seem to be an increased risk of onset of juvenile myopia associated with tonic accommodation.  (+info)

Colchicine causes excessive ocular growth and myopia in chicks. (3/1261)

Colchicine has been reported to destroy ganglion cells (GCs) in the retina of hatchling chicks. We tested whether colchicine influences normal ocular growth and form-deprivation myopia, and whether it affects cells other than GCs. Colchicine greatly increased axial length, equatorial diameter, eye weight, and myopic refractive error, while reducing corneal curvature. Colchicine caused DNA fragmentation in many GCs and some amacrine cells and photoreceptors, ultimately leading to the destruction of most GCs and particular sub-sets of amacrine cells. Colchicine-induced ocular growth may result from the destruction of amacrine cells that normally suppress ocular growth, and corneal flattening may result from the destruction of GCs whose central pathway normally plays a role in shaping the cornea.  (+info)

The growing eye: an autofocus system that works on very poor images. (4/1261)

It is unknown which retinal image features are analyzed to control axial eye growth and refractive development. On the other hand, identification of these features is fundamental for the understanding of visually acquired refractive errors. Cyclopleged chicks were individually kept in the center of a drum with only one viewing distance possible. Defocusing spectacle lenses were used to stimulate the retina with defined defocus of similar magnitude but different sign. If spatial frequency content and contrast were the only cues analyzed by the retina, all chicks should have become myopic. However, compensatory eye growth was still always in the right direction. The most likely cues for emmetropization, spatial frequency content and image contrast, do therefore not correlate with the elongation of the eye. Rather, the sign of defocus was extracted even from very poor images.  (+info)

Naturally occurring vitreous chamber-based myopia in the Labrador retriever. (5/1261)

PURPOSE: To investigate whether myopia is present in a breed of domestic dog, the Labrador retriever, and how the ocular components are related to refractive error in this breed. METHODS: Cycloplegic refractive error was measured in 75 Labrador retrievers by retinoscopy. Corneal and crystalline lens radii of curvature were measured in the right eyes of 57 of these dogs using a video-based keratophakometer, with axial ocular dimensions measured using A-scan ultrasonography. RESULTS: Of the 75 dogs tested, 11 (14.7%) were myopic by at least -0.50 D in one eye, and 6 (8.0%) were myopic in both eyes (full range of refractive errors, +3.50 D to -5.00 D). Of the 57 dogs with ocular component measurements, seven (12.3%) were myopic by at least -0.50 D in the right eye. There was a significant negative correlation between refractive error and vitreous chamber depth (Spearman r = -0.42; P < 0.001). Myopic eyes had an elongated vitreous chamber depth (10.87+/-0.34 mm for myopic dogs, 10.02+/-0.40 mm for nonmyopic dogs; P < 0.0001, Kruskal-Wallis test). There was also a significant quadratic association between lens thickness and vitreous chamber depth (P < 0.005; R2 = 0. 11), indicating that thinner lenses occurred at both shorter and longer vitreous chamber depths. CONCLUSIONS: Myopia in the Labrador retriever is analogous to human myopia in that it is caused by an elongated vitreous chamber. Thinner crystalline lenses found at longer vitreous chamber depths may be analogous to lens thinning documented in human ocular development. The Labrador retriever warrants investigation as a potential model of myopia that is naturally occurring rather than experimentally induced.  (+info)

Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. (6/1261)

OBJECTIVE: Determine the outcomes of single-zone photorefractive keratectomy (SZPRK), aspherical photorefractive keratectomy (ASPRK), and laser in-situ keratomileusis (LASIK) for the correction of myopia between -6 and -12 diopters. DESIGN: Two simultaneous prospective, randomized, multi-center clinical trials. PARTICIPANTS: 286 first-treated eyes of 286 patients enrolled in one of two studies. In Study I, 134 eyes were randomized to SZPRK (58 eyes) or ASPRK (76 eyes). In Study II, 152 eyes were randomized to ASPRK (76 eyes) or to LASIK (76 eyes). INTERVENTION: All eyes received spherical one-pass excimer laser ablation as part of PRK or LASIK performed with the Summit Technologies Apex laser under an investigational device exemption, with attempted corrections between -6 and -12 diopters. MAIN OUTCOME MEASURES: Data on uncorrected and best spectacle-corrected visual acuity, predictability and stability of refraction, and complications were analyzed. Follow-up was 12 months. RESULTS: At 1 month postoperatively, more eyes in the LASIK group achieved 20/20 and 20/25 or better uncorrected visual acuity than PRK-treated eyes; at the 20/25 or better level, the difference was significant for LASIK (29/76 eyes, 38%) over SZPRK (10/58 eyes, 17%) (P = .0064). At all subsequent postoperative intervals, no difference was seen between treatment groups. Similarly, best corrected visual acuities were better for LASIK than all PRK eyes at 1 month postoperatively, and LASIK was better than SZPRK at 3 months follow-up (e.g., for 20/20 or better at 1 month, LASIK 50/76 eyes (66%) versus SZPRK 24/57 eyes (42%), P = .0066). PRK eyes had a mean loss of BCVA through 6 months, while LASIK eyes had a slight gain of mean BCVA through month 6; at 12 months, both ASPRK groups but not SZPRK continued to have a small mean loss of BCVA (e.g., compared to preoperative, mean BCVA at 12 months for SZPRK was + 0.3, LASIK was +.21, ASPRK I was -0.11, and ASPRK II -0.31 (SZPRK versus ASPRK II, P = .0116). Predictability was better for PRK than LASIK at all follow-up intervals (e.g., for manifest refraction spherical equivalent +/- 1.0 diopters at 6 months, ASPRK I 42/62 eyes (68%) versus LASIK 29/72 eyes (40%), P = .0014%). Stability was slightly but insignificantly less in the LASIK eyes compared to PRK eyes. All visual outcome measures were better for eyes with preoperative myopia between -6 and -8.9 D compared with eyes with myopia between -9 and -12 D. No consistent differences in refractive outcomes or postoperative corneal haze were seen between aspherical and single-zone ablations; haze diminished over 12 months and was judged to be vision-impairing in only one ASPRK eye. Microkeratome and flap complications occurred in 4 eyes, resulting in delay of completion of the procedure in 3 eyes but not causing long-term impairment. CONCLUSIONS: Improvement in uncorrected visual acuity and return of best corrected visual acuity was more rapid for LASIK than PRK, but efficacy outcomes in the longer term through 12 months were similar for all treatment groups. LASIK eyes tended toward undercorrection with the nomogram employed in this study compared to PRK, but the scatter was similar, suggesting little difference between these procedures for most patients by 6 months and thereafter. No consistent advantage was demonstrated between aspherical and single-zone ablation patterns. Predictability was much better for all procedures for corrections of -6 to -8.9 D compared with -9 to -12 D. Sporadic loss of best corrected vision in the PRK eyes not found in the LASIK eyes and other measures of visual function require further study.  (+info)

Enhancement ablation for the treatment of undercorrection after excimer laser in situ keratomileusis for correcting myopia. (7/1261)

OBJECTIVE: To evaluate the treatment of undercorrection after the excimer laser in situ keratomileusis (LASIK) for correcting moderate and high myopia. METHODS: An enhancement ablation was performed in 48 eyes of 39 patients who had undergone LASIK but remained in undercorrection. Four procedures were performed within 1 month postoperatively, and the others performed between 3 and 10 months. The surgical technique includes the re-invert of the corneal cap from the temporal side, the excimer laser ablation, and the re-position of the cap. RESULTS: The undercorrection (spherical equivalent) ranged from -2.00 to -11.00 D, with a mean of -4.34D +/- 1.95 D. Following up after enhancement ablation was done after 4 to 12 months, the refractions in the 42 eyes were found to be within +/- 1.00 D. Undercorrection of -2.50 D to -5.00 D recurred in 6 eyes. Uncorrected visual acuity equals to the preoperative spectacle corrected visual acuity in 39 of 48 eyes (81.3%). Five eyes gained 1 line, 1 eye gained 2 lines and 4 eyes lost 1 line. No eyes had haze. CONCLUSION: Undercorrection after LASIK can be corrected by an enhancement ablation of the stroma under the primary corneal cap with a 193 nm ArF excimer laser, and the time for the enhancement of ablation is at 3 months postoperatively.  (+info)

Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia? (8/1261)

Experiments in animal models have shown that the retinal analyzes the image to identify the position of the plane of focus and fine-tunes the growth of the underlying sclera. It is fundamental to the understanding of the development of refractive errors to know which image features are processed. Since the position of the image plane fluctuates continuously with accommodative status and viewing distance, a meaningful control of refractive development can only occur by an averaging procedure with a long time constant. As a candidate for a retinal signal for enhanced eye growth and myopia we propose the level of contrast adaptation which varies with the average amount of defocus. Using a behavioural paradigm, we have found in chickens (1) that contrast adaptation (CA, here referred to as an increase in contrast sensitivity) occurs at low spatial frequencies (0.2 cyc/deg) already after 1.5 h of wearing frosted goggles which cause deprivation myopia, (2) that CA also occurs with negative lenses (-7.4D) and positive lenses (+6.9D) after 1.5 h, at least if accommodation is paralyzed and, (3) that CA occurs at a retinal level or has, at least, a retinal component. Furthermore, we have studied the effects of atropine and reserpine, which both suppress myopia development, on CA. Quisqualate, which causes retinal degeneration but leaves emmetropization functional, was also tested. We found that both atropine and reserpine increase contrast sensitivity to a level where no further CA could be induced by frosted goggles. Quisqualate increased only the variability of refractive development and of contrast sensitivity. Taken together, CA occurring during extended periods of defocus is a possible candidate for a retinal error signal for myopia development. However, the situation is complicated by the fact that there must be a second image processing mode generating a powerful inhibitory growth signal if the image is in front of the retina, even with poor images (Diether, S., & Schaeffel, F. (1999).  (+info)

Myopia, also known as nearsightedness, is a common refractive error of the eye. It occurs when the eye is either too long or the cornea (the clear front part of the eye) is too curved. As a result, light rays focus in front of the retina instead of directly on it, causing distant objects to appear blurry while close objects remain clear.

Myopia typically develops during childhood and can progress gradually or rapidly until early adulthood. It can be corrected with glasses, contact lenses, or refractive surgery such as LASIK. Regular eye examinations are essential for people with myopia to monitor any changes in their prescription and ensure proper correction.

While myopia is generally not a serious condition, high levels of nearsightedness can increase the risk of certain eye diseases, including cataracts, glaucoma, retinal detachment, and myopic degeneration. Therefore, it's crucial to manage myopia effectively and maintain regular follow-ups with an eye care professional.

Degenerative Myopia is a progressive form of nearsightedness, characterized by excessive elongation of the eyeball, which results in a steep curvature of the cornea and an overly long axial length. This condition causes light to focus in front of the retina instead of directly on it, resulting in blurred distance vision.

In degenerative myopia, this elongation continues throughout adulthood and is often associated with various complications such as thinning of the retinal tissue, stretching of the layers beneath the retina, and abnormal blood vessel growth. These changes can lead to a higher risk of developing retinal detachment, macular holes, glaucoma, and cataracts.

Degenerative myopia is considered a more severe form of myopia than the common or simple myopia, which usually stabilizes in the teenage years. It is also sometimes referred to as pathological myopia or malignant myopia. Regular eye examinations are essential for individuals with degenerative myopia to monitor and manage any potential complications.

Ocular refraction is a medical term that refers to the bending of light as it passes through the optical media of the eye, including the cornea and lens. This process allows the eye to focus light onto the retina, creating a clear image. The refractive power of the eye is determined by the curvature and transparency of these structures.

In a normal eye, light rays are bent or refracted in such a way that they converge at a single point on the retina, producing a sharp and focused image. However, if the curvature of the cornea or lens is too steep or too flat, the light rays may not converge properly, resulting in a refractive error such as myopia (nearsightedness), hyperopia (farsightedness), or astigmatism.

Ocular refraction can be measured using a variety of techniques, including retinoscopy, automated refraction, and subjective refraction. These measurements are used to determine the appropriate prescription for corrective lenses such as eyeglasses or contact lenses. In some cases, ocular refractive errors may be corrected surgically through procedures such as LASIK or PRK.

Eyeglasses are a medical device used to correct vision problems. Also known as spectacles, they consist of frames that hold one or more lenses through which a person looks to see clearly. The lenses may be made of glass or plastic and are designed to compensate for various visual impairments such as nearsightedness, farsightedness, astigmatism, or presbyopia. Eyeglasses can be custom-made to fit an individual's face and prescription, and they come in a variety of styles, colors, and materials. Some people wear eyeglasses all the time, while others may only need to wear them for certain activities such as reading or driving.

Hyperopia, also known as farsightedness, is a refractive error in which the eye does not focus light directly on the retina when looking at a distant object. Instead, light is focused behind the retina, causing close-up objects to appear blurry. This condition usually results from the eyeball being too short or the cornea having too little curvature. It can be corrected with eyeglasses, contact lenses, or refractive surgery.

Refractive errors are a group of vision conditions that include nearsightedness (myopia), farsightedness (hyperopia), astigmatism, and presbyopia. These conditions occur when the shape of the eye prevents light from focusing directly on the retina, causing blurred or distorted vision.

Myopia is a condition where distant objects appear blurry while close-up objects are clear. This occurs when the eye is too long or the cornea is too curved, causing light to focus in front of the retina instead of directly on it.

Hyperopia, on the other hand, is a condition where close-up objects appear blurry while distant objects are clear. This happens when the eye is too short or the cornea is not curved enough, causing light to focus behind the retina.

Astigmatism is a condition that causes blurred vision at all distances due to an irregularly shaped cornea or lens.

Presbyopia is a natural aging process that affects everyone as they get older, usually around the age of 40. It causes difficulty focusing on close-up objects and can be corrected with reading glasses, bifocals, or progressive lenses.

Refractive errors can be diagnosed through a comprehensive eye exam and are typically corrected with eyeglasses, contact lenses, or refractive surgery such as LASIK.

Sensory deprivation, also known as perceptual isolation or sensory restriction, refers to the deliberate reduction or removal of stimuli from one or more of the senses. This can include limiting input from sight, sound, touch, taste, and smell. The goal is to limit a person's sensory experiences in order to study the effects on cognition, perception, and behavior.

In a clinical context, sensory deprivation can occur as a result of certain medical conditions or treatments, such as blindness, deafness, or pharmacological interventions that affect sensory processing. Prolonged sensory deprivation can lead to significant psychological and physiological effects, including hallucinations, delusions, and decreased cognitive function.

It's important to note that sensory deprivation should not be confused with meditation or relaxation techniques that involve reducing external stimuli in a controlled manner to promote relaxation and focus.

The eye is the organ of sight, primarily responsible for detecting and focusing on visual stimuli. It is a complex structure composed of various parts that work together to enable vision. Here are some of the main components of the eye:

1. Cornea: The clear front part of the eye that refracts light entering the eye and protects the eye from harmful particles and microorganisms.
2. Iris: The colored part of the eye that controls the amount of light reaching the retina by adjusting the size of the pupil.
3. Pupil: The opening in the center of the iris that allows light to enter the eye.
4. Lens: A biconvex structure located behind the iris that further refracts light and focuses it onto the retina.
5. Retina: A layer of light-sensitive cells (rods and cones) at the back of the eye that convert light into electrical signals, which are then transmitted to the brain via the optic nerve.
6. Optic Nerve: The nerve that carries visual information from the retina to the brain.
7. Vitreous: A clear, gel-like substance that fills the space between the lens and the retina, providing structural support to the eye.
8. Conjunctiva: A thin, transparent membrane that covers the front of the eye and the inner surface of the eyelids.
9. Extraocular Muscles: Six muscles that control the movement of the eye, allowing for proper alignment and focus.

The eye is a remarkable organ that allows us to perceive and interact with our surroundings. Various medical specialties, such as ophthalmology and optometry, are dedicated to the diagnosis, treatment, and management of various eye conditions and diseases.

Ocular accommodation is the process by which the eye changes optical power to maintain a clear image or focus on an object as its distance varies. This is primarily achieved by the lens of the eye changing shape through the action of the ciliary muscles inside the eye. When you look at something far away, the lens becomes flatter, and when you look at something close up, the lens thickens. This ability to adjust focus allows for clear vision at different distances.

The sclera is the tough, white, fibrous outer coating of the eye in humans and other vertebrates, covering about five sixths of the eyeball's surface. It provides protection for the delicate inner structures of the eye and maintains its shape. The sclera is composed mainly of collagen and elastic fiber, making it strong and resilient. Its name comes from the Greek word "skleros," which means hard.

Axial length, in the context of the eye, refers to the measurement of the distance between the front and back portions of the eye, specifically from the cornea (the clear front "window" of the eye) to the retina (the light-sensitive tissue at the back of the eye). This measurement is typically expressed in millimeters (mm).

The axial length of the eye is an important factor in determining the overall refractive power of the eye and can play a role in the development of various eye conditions, such as myopia (nearsightedness) or hyperopia (farsightedness). Changes in axial length, particularly elongation, are often associated with an increased risk of developing myopia. Regular monitoring of axial length can help eye care professionals track changes in the eye and manage these conditions more effectively.

Tupaiidae is a family of small mammals commonly known as treeshrews. They are not true shrews (Soricidae) but are included in the order Scandentia. There are about 20 species placed in this family, and they are found primarily in Southeast Asian forests. Treeshrews are small animals, typically weighing between 50 and 150 grams, with a body length of around 10-25 cm. They have pointed snouts, large eyes, and ears, and most species have a long, bushy tail.

Treeshrews are omnivorous, feeding on a variety of plant and animal matter, including fruits, insects, and small vertebrates. They are agile animals, well-adapted to life in the trees, with sharp claws for climbing and a keen sense of sight and smell.

Medically, treeshrews have been used as animal models in biomedical research, particularly in studies of infectious diseases such as malaria and HIV. They are susceptible to these infections and can provide valuable insights into the mechanisms of disease and potential treatments. However, they are not typically used in clinical medicine or patient care.

Retinoscopy is a diagnostic technique used in optometry and ophthalmology to estimate the refractive error of the eye, or in other words, to determine the prescription for eyeglasses or contact lenses. This procedure involves shining a light into the patient's pupil and observing the reflection off the retina while introducing different lenses in front of the patient's eye. The examiner then uses specific movements and observations to determine the amount and type of refractive error, such as myopia (nearsightedness), hyperopia (farsightedness), astigmatism, or presbyopia. Retinoscopy is a fundamental skill for eye care professionals and helps ensure that patients receive accurate prescriptions for corrective lenses.

Emmetropia is a term used in optometry and ophthalmology to describe a state where the eye's optical power is perfectly matched to the length of the eye. As a result, light rays entering the eye are focused directly on the retina, creating a clear image without the need for correction with glasses or contact lenses. It is the opposite of myopia (nearsightedness), hyperopia (farsightedness), or astigmatism, where the light rays are not properly focused on the retina, leading to blurry vision. Emmetropia is considered a normal and ideal eye condition.

Biometry, also known as biometrics, is the scientific study of measurements and statistical analysis of living organisms. In a medical context, biometry is often used to refer to the measurement and analysis of physical characteristics or features of the human body, such as height, weight, blood pressure, heart rate, and other physiological variables. These measurements can be used for a variety of purposes, including diagnosis, treatment planning, monitoring disease progression, and research.

In addition to physical measurements, biometry may also refer to the use of statistical methods to analyze biological data, such as genetic information or medical images. This type of analysis can help researchers and clinicians identify patterns and trends in large datasets, and make predictions about health outcomes or treatment responses.

Overall, biometry is an important tool in modern medicine, as it allows healthcare professionals to make more informed decisions based on data and evidence.

"Tupaia" is not a term found in general medical terminology. It is most likely referring to a genus of small mammals known as tree shrews, also called "tupaias." They are native to Southeast Asia and are not closely related to shrews, but rather belong to their own order, Scandentia.

However, if you're referring to a specific medical condition or concept that uses the term "Tupaia," I would need more context to provide an accurate definition.

Astigmatism is a common eye condition that occurs when the cornea or lens has an irregular shape, causing blurred or distorted vision. The cornea and lens are typically smooth and curved uniformly in all directions, allowing light to focus clearly on the retina. However, if the cornea or lens is not smoothly curved and has a steeper curve in one direction than the other, it causes light to focus unevenly on the retina, leading to astigmatism.

Astigmatism can cause blurred vision at all distances, as well as eye strain, headaches, and fatigue. It is often present from birth and can be hereditary, but it can also develop later in life due to eye injuries or surgery. Astigmatism can be corrected with glasses, contact lenses, or refractive surgery such as LASIK.

An excimer laser is a type of laser that is used in various medical procedures, particularly in ophthalmology and dermatology. The term "excimer" is derived from "excited dimer," which refers to a short-lived molecule formed when two atoms combine in an excited state.

Excimer lasers emit light at a specific wavelength that is determined by the type of gas used in the laser. In medical applications, excimer lasers typically use noble gases such as argon, krypton, or xenon, combined with halogens such as fluorine or chlorine. The most commonly used excimer laser in medical procedures is the excimer laser that uses a mixture of argon and fluoride gas to produce light at a wavelength of 193 nanometers (nm).

In ophthalmology, excimer lasers are primarily used for refractive surgery, such as LASIK and PRK, to correct vision problems like myopia, hyperopia, and astigmatism. The laser works by vaporizing tiny amounts of tissue from the cornea, reshaping its curvature to improve the way light is focused onto the retina.

In dermatology, excimer lasers are used for various skin conditions, including psoriasis, vitiligo, and atopic dermatitis. The laser works by emitting high-energy ultraviolet (UV) light that selectively targets and destroys the abnormal cells responsible for these conditions while leaving surrounding healthy tissue intact.

Excimer lasers are known for their precision, accuracy, and minimal side effects, making them a popular choice in medical procedures where fine detail and tissue preservation are critical.

Photorefractive Keratectomy (PRK) is a type of refractive surgery used to correct vision issues such as nearsightedness, farsightedness, and astigmatism. It works by reshaping the cornea using a laser, which alters how light enters the eye and focuses on the retina.

In PRK, the surgeon removes the thin outer layer of the cornea (epithelium) with an alcohol solution or a blunt surgical instrument before using the laser to reshape the underlying stromal layer. The epithelium then grows back during the healing process, which can take several days.

Compared to LASIK (another type of refractive surgery), PRK has a longer recovery time and may cause more discomfort in the first few days after surgery. However, it is an option for people who are not good candidates for LASIK due to thin corneas or other eye conditions.

It's important to note that while refractive surgeries like PRK can significantly improve vision and reduce dependence on glasses or contact lenses, they may not completely eliminate the need for corrective eyewear in all cases. Additionally, as with any surgical procedure, there are potential risks and complications associated with PRK, including infection, dry eye, and visual disturbances such as glare or halos around lights.

Visual acuity is a measure of the sharpness or clarity of vision. It is usually tested by reading an eye chart from a specific distance, such as 20 feet (6 meters). The standard eye chart used for this purpose is called the Snellen chart, which contains rows of letters that decrease in size as you read down the chart.

Visual acuity is typically expressed as a fraction, with the numerator representing the testing distance and the denominator indicating the smallest line of type that can be read clearly. For example, if a person can read the line on the eye chart that corresponds to a visual acuity of 20/20, it means they have normal vision at 20 feet. If their visual acuity is 20/40, it means they must be as close as 20 feet to see what someone with normal vision can see at 40 feet.

It's important to note that visual acuity is just one aspect of overall vision and does not necessarily reflect other important factors such as peripheral vision, depth perception, color vision, or contrast sensitivity.

Laser In Situ Keratomileusis (LASIK) is a type of refractive surgery used to correct vision issues such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism. The procedure involves reshaping the cornea, which is the clear, dome-shaped surface at the front of the eye, using an excimer laser.

In LASIK, a thin flap is created on the surface of the cornea using a femtosecond or microkeratome laser. The flap is then lifted, and the excimer laser is used to reshape the underlying tissue. After the reshaping is complete, the flap is replaced, allowing for quicker healing and visual recovery compared to other refractive surgery procedures.

LASIK is an outpatient procedure that typically takes about 30 minutes or less per eye. Most people can expect to see improved vision within a few days of the procedure, although it may take several weeks for vision to fully stabilize. LASIK has a high success rate and is generally considered safe when performed by a qualified surgeon. However, as with any surgical procedure, there are risks involved, including dry eye, infection, and visual complications such as glare or halos around lights.

Contact lenses are thin, curved plastic or silicone hydrogel devices that are placed on the eye to correct vision, replace a missing or damaged cornea, or for cosmetic purposes. They rest on the surface of the eye, called the cornea, and conform to its shape. Contact lenses are designed to float on a thin layer of tears and move with each blink.

There are two main types of contact lenses: soft and rigid gas permeable (RGP). Soft contact lenses are made of flexible hydrophilic (water-absorbing) materials that allow oxygen to pass through the lens to the cornea. RGP lenses are made of harder, more oxygen-permeable materials.

Contact lenses can be used to correct various vision problems, including nearsightedness, farsightedness, astigmatism, and presbyopia. They come in different shapes, sizes, and powers to suit individual needs and preferences. Proper care, handling, and regular check-ups with an eye care professional are essential for maintaining good eye health and preventing complications associated with contact lens wear.

In the context of medical terminology, "lenses" generally refers to optical lenses used in various medical devices and instruments. These lenses are typically made of glass or plastic and are designed to refract (bend) light in specific ways to help magnify, focus, or redirect images. Here are some examples:

1. In ophthalmology and optometry, lenses are used in eyeglasses, contact lenses, and ophthalmic instruments to correct vision problems like myopia (nearsightedness), hypermetropia (farsightedness), astigmatism, or presbyopia.
2. In surgical microscopes, lenses are used to provide a magnified and clear view of the operating field during microsurgical procedures like ophthalmic, neurosurgical, or ENT (Ear, Nose, Throat) surgeries.
3. In endoscopes and laparoscopes, lenses are used to transmit light and images from inside the body during minimally invasive surgical procedures.
4. In ophthalmic diagnostic instruments like slit lamps, lenses are used to examine various structures of the eye in detail.

In summary, "lenses" in medical terminology refer to optical components that help manipulate light to aid in diagnosis, treatment, or visual correction.

Radial Keratotomy (RK) is a type of refractive surgery used to correct vision problems such as nearsightedness and astigmatism. The procedure involves making small, precise incisions in the cornea in a radial pattern, like the spokes of a wheel. These incisions cause the cornea to change shape, which can help to improve the way that light is focused onto the retina and reduce the need for corrective lenses.

During the procedure, the surgeon uses a specialized blade or laser to make the incisions in the cornea. The incisions are typically made at the periphery of the cornea, leaving the central portion of the cornea untouched. This helps to preserve the strength and stability of the cornea while still allowing it to change shape enough to improve vision.

Radial keratotomy was first developed in the 1970s and was widely used in the 1980s and 1990s. However, it has largely been replaced by newer procedures such as LASIK and PRK, which are considered to be safer and more effective. RK is still occasionally performed in cases where other procedures are not an option or when a patient prefers this type of surgery.

It's important to note that any surgical procedure carries risks, including infection, scarring, and changes in vision. Patients considering radial keratotomy should discuss the potential benefits and risks with their eye care provider before making a decision.

Corneal topography is a non-invasive medical imaging technique used to create a detailed map of the surface curvature of the cornea, which is the clear, dome-shaped surface at the front of the eye. This procedure provides valuable information about the shape and condition of the cornea, helping eye care professionals assess various eye conditions such as astigmatism, keratoconus, and other corneal abnormalities. It can also be used in contact lens fitting, refractive surgery planning, and post-surgical evaluation.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

Orthokeratology, often referred to as "ortho-k," is a non-surgical procedure that uses specially designed contact lenses to temporarily reshape the cornea (the clear, dome-shaped surface at the front of the eye). The goal of orthokeratology is to flatten the cornea slightly so that it can properly focus light onto the retina and improve vision.

During an orthokeratology procedure, a patient wears specially fitted contact lenses while they sleep. These lenses gently reshape the cornea overnight, allowing the patient to see clearly during the day without needing glasses or contact lenses. The effects of orthokeratology are usually reversible and may wear off if the patient stops wearing the contact lenses regularly.

Orthokeratology is often used as an alternative to refractive surgery for people who want to correct their vision without undergoing a surgical procedure. It can be particularly useful for individuals with mild to moderate myopia (nearsightedness) and astigmatism, although it may also be used to treat other refractive errors.

It's important to note that orthokeratology is not a permanent solution for vision problems, and it does carry some risks, such as eye infections and corneal abrasions. As with any medical procedure, it's essential to consult with an eye care professional to determine whether orthokeratology is the right choice for you.

The vitreous body, also known simply as the vitreous, is the clear, gel-like substance that fills the space between the lens and the retina in the eye. It is composed mainly of water, but also contains collagen fibers, hyaluronic acid, and other proteins. The vitreous helps to maintain the shape of the eye and provides a transparent medium for light to pass through to reach the retina. With age, the vitreous can become more liquefied and may eventually separate from the retina, leading to symptoms such as floaters or flashes of light.

I'm sorry for any confusion, but "Singapore" is not a medical term or concept. It is a sovereign city-state and island country in Southeast Asia. If you have any questions related to medical topics or definitions, I would be happy to try and help answer those for you!

The anterior chamber is the front portion of the eye, located between the cornea (the clear front "window" of the eye) and the iris (the colored part of the eye). It is filled with a clear fluid called aqueous humor that provides nutrients to the structures inside the eye and helps maintain its shape. The anterior chamber plays an important role in maintaining the overall health and function of the eye.

The term "Asian Continental Ancestry Group" is a medical/ethnic classification used to describe a person's genetic background and ancestry. According to this categorization, individuals with origins in the Asian continent are grouped together. This includes populations from regions such as East Asia (e.g., China, Japan, Korea), South Asia (e.g., India, Pakistan, Bangladesh), Southeast Asia (e.g., Philippines, Indonesia, Thailand), and Central Asia (e.g., Kazakhstan, Uzbekistan, Tajikistan). It is important to note that this broad categorization may not fully capture the genetic diversity within these regions or accurately reflect an individual's specific ancestral origins.

Subepithelial laser-assisted keratectomy (SELAK) is a type of refractive surgery used to correct vision problems such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism. In this procedure, a precise and controlled laser beam is used to remove a thin layer of tissue from the cornea, specifically from the subepithelial region, which lies just beneath the surface epithelium.

The goal of SELAK is to reshape the cornea and improve its focusing power, thereby reducing or eliminating the need for corrective lenses such as glasses or contact lenses. The laser-assisted technique allows for a high degree of precision and customization, enabling the surgeon to tailor the procedure to each patient's individual needs.

It is important to note that while SELAK can be an effective treatment option for many people, it may not be suitable for everyone. A thorough eye examination and consultation with an eye care professional are necessary to determine whether this procedure is appropriate for a particular individual.

Refractive surgical procedures are a type of ophthalmic surgery aimed at improving the refractive state of the eye and reducing or eliminating the need for corrective eyewear. These procedures reshape the cornea or alter the lens of the eye to correct nearsightedness (myopia), farsightedness (hyperopia), presbyopia, or astigmatism.

Examples of refractive surgical procedures include:

1. Laser-assisted in situ keratomileusis (LASIK): A laser is used to create a thin flap in the cornea, which is then lifted to allow reshaping of the underlying tissue with another laser. The flap is replaced, and the procedure is completed.
2. Photorefractive keratectomy (PRK): This procedure involves removing the outer layer of the cornea (epithelium) and using a laser to reshape the underlying tissue. A bandage contact lens is placed over the eye to protect it during healing.
3. LASEK (laser-assisted subepithelial keratomileusis): Similar to LASIK, but instead of creating a flap, the epithelium is loosened with an alcohol solution and moved aside. The laser treatment is applied, and the epithelium is replaced.
4. Small Incision Lenticule Extraction (SMILE): A femtosecond laser creates a small lenticule within the cornea, which is then removed through a tiny incision. This procedure reshapes the cornea to correct refractive errors.
5. Refractive lens exchange (RLE): The eye's natural lens is removed and replaced with an artificial intraocular lens (IOL) to correct refractive errors, similar to cataract surgery.
6. Implantable contact lenses: A thin, foldable lens is placed between the iris and the natural lens or behind the iris to improve the eye's focusing power.

These procedures are typically performed on an outpatient basis and may require topical anesthesia (eye drops) or local anesthesia. Potential risks and complications include infection, dry eye, visual disturbances, and changes in night vision. It is essential to discuss these potential risks with your ophthalmologist before deciding on a refractive surgery procedure.

Mydriatics are medications that cause mydriasis, which is the dilation of the pupil. These drugs work by blocking the action of the muscarinic receptors in the iris, leading to relaxation of the circular muscle and constriction of the radial muscle, resulting in pupil dilation. Mydriatics are often used in eye examinations to facilitate examination of the interior structures of the eye. Commonly used mydriatic agents include tropicamide, phenylephrine, and cyclopentolate. It is important to note that mydriatics can have side effects such as blurred vision, photophobia, and accommodation difficulties, so patients should be advised accordingly.

Anisometropia is a medical term that refers to a condition where there is a significant difference in the refractive power between the two eyes. In other words, one eye has a significantly different optical prescription compared to the other eye. This condition can cause issues with binocular vision and depth perception, and can sometimes lead to amblyopia (lazy eye) if not corrected early in life. It is typically diagnosed through a comprehensive eye examination and can be corrected with glasses or contact lenses.

The alcohol myopia model posits that rather than disinhibit, alcohol produces a myopia effect that causes users to pay more ... People under the influence of alcohol myopia act in a risky manner because of the myopia's inhibiting effects on their ability ... is a side effect of alcohol myopia. Alcohol myopia causes individuals to become increasingly aware of sexual arousal and more ... Alcohol myopia has also been found to affect one's level of commitment to a personal goal. Individual commitment to a goal is ...
Myopia may also refer to: Myopia (Tom Fogerty album), 1974 Myopia (Rachael Sage album), 2018 Myopia (Agnes Obel album), 2020 ... "Myopia", a track from the Moby album Ambient "Myopia", a track from the Enter Shikari album The Mindsweep Alcohol myopia, a ... Look up myopia in Wiktionary, the free dictionary. Myopia, also known as "nearsightedness", is a refractive defect of the eye. ... cognitive-physiological theory Marketing myopia, a concept in strategic management Myopia Hunt Club, a foxhunting and private ...
In the "new marketing myopia." customers remain a central consideration, as in the traditional "marketing myopia." However, ... Marketing Myopia is a term that refers to the tendency of businesses to define their market so narrowly as to miss ... An example of an industry that suffered from marketing myopia is the video rental industry, which was dominated by Blockbuster ... ISBN 0-02-931110-1. Smith, N. Craig; Drumwright, Minette E.; Gentile, Mary C. (2010). "The New Marketing Myopia". Journal of ...
Drums Official website Myopia on Myspace Myopia on Myspace (in Italy) Live review at Ultimatemetal.com Myopia featured in the ... New Haven Advocate Myopia profile in "Encyclopaedia Metallum" Myopia review (in Dutch) Myopia on MTVU v t e (Articles lacking ... Myopia are an American power metal band from Connecticut assembled in 2004. In 2007, they released their first full-length ...
The Myopia Club, regarded by some historians as being the oldest country club, was founded in the 1870s by four brothers with ... Several Myopia Club members were interested in moving the club closer to Boston, and this led to the founding of The Country ... The Mystic Lake site became known as "Myopia Hill". The Winchester Country Club was founded there in 1902, and it still ... But fox hunting proved impossible in Brookline, so those most interested in this activity founded the Myopia Hunt Club in ...
... contributes to instrument myopia. They said that instrument myopia is minimised by using a binocular microscope that forces the ... Instrument myopia is the tendency of a person with normal eyes to focus them too close when looking into an optical instrument ... According to Wesner and Miller (1986), instrument myopia is promoted when the viewing is with one eye, when the field of view ... Richards attributed early research into instrument myopia to H. Imbert in 1899. Early mention of the term occurred in 1970, or ...
However, it is important to note that sustainability marketing myopia differs from green marketing myopia in that the former ... The idea of sustainability marketing myopia is rooted into conventional marketing myopia theory, as well as green marketing ... Marketing myopia has been highly influential in the formation of modern marketing theory, and was heeded by marketers to such ... Sustainability marketing myopia is a term used in sustainability marketing referring to a distortion stemming from the ...
Myopia, with or without astigmatism, is the most common eye condition in horses. Several types of occlusion myopia have been ... One animal species in which myopia occurs naturally is the domestic dog. Although the prevalence of myopia in dogs is breed ... Myopia in Elephants. "Myopia and Refractive errors in Dogs" (PDF). Investigative Ophthalmology & Visual Science. Association ... In domestic animals, myopia, with or without astigmatism, occurs frequently. Evolved for low-light hunting, cats' eyes are ...
That fall, Myopia held its first official match against the Dedham Polo and Country Club. In 1890, Myopia became one of seven ... The name "Myopia" is due to some of its founding members having come from the Myopia Club in Winchester, Massachusetts, which ... In 1902 a real tennis court was opened at the Myopia Hunt Club, but has since been converted to other uses. Myopia Hunt Club is ... First Lookout Brae Miles River Lone Tree Brook Myopia Prairie Pond Alps Road Valley Hill Ridge Long Paddock West Home Myopia ...
"Polydactyly-Myopia Syndrome". DoveMed. Retrieved 2022-06-01. RESERVED, INSERM US14-- ALL RIGHTS. "Orphanet: Polydactyly myopia ... Polydactyly-myopia syndrome, also known as Czeizel-Brooser syndrome, is a very rare genetic disorder which is characterized by ... "Polydactyly myopia syndrome - About the Disease - Genetic and Rare Diseases Information Center". rarediseases.info.nih.gov. ... "Polydactyly-myopia syndrome (Concept Id: C1868117) - MedGen - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-06-01. " ...
"Myopia by Agnes Obel Reviews and Tracks". Metacritic. Retrieved 7 October 2020. "Myopia - Agnes Obel". AllMusic. Retrieved 7 ... The Independent - Agnes Obel review - Myopia: New album inhabits a desolate place of twilight solitude "Myopia by Agnes Obel ... "Ultratop.be - Agnes Obel - Myopia" (in Dutch). Hung Medien. Retrieved 28 February 2020. "Ultratop.be - Agnes Obel - Myopia" (in ... Myopia is the fourth studio album by Danish singer-songwriter Agnes Obel. It was released on 21 February 2020 by production ...
Myopia is Tom Fogerty's fourth solo album. It was released by Fantasy Records in 1974. The cover painting is called "One Beat ...
... is an Australian musical with book and lyrics by Jonathan Biggins, Drew Forsythe and Phillip Scott and ... "The Republic Of Myopia, STC - www.smh.com.au". Sydney Morning Herald. Retrieved 5 August 2016. Collection # 6: 30 New Scripts ... The Republic of Myopia - 2003 Original Australian Cast, retrieved 5 August 2016 (Use Australian English from August 2016, All ... The comedic musical is set in 1904 in the fictional central European republic of Myopia. The Myopians are an old-fashioned, ...
... is a rare genetic disorder characterized by a combination of aplasia cutis congenita, high myopia ... "Aplasia cutis myopia - About the Disease - Genetic and Rare Diseases Information Center". rarediseases.info.nih.gov. Retrieved ... "Orphanet: Aplasia cutis myopia syndrome". www.orpha.net. Retrieved 2022-09-22. "Entry - 601075 - APLASIA CUTIS CONGENITA, HIGH ... Gershoni-Baruch, R.; Leibo, R. (1996-01-02). "Aplasia cutis congenita, high myopia, and cone-rod dysfunction in two sibs: a new ...
... amblyops Roger, 1861 Myopias bidens (Emery, 1900) Myopias breviloba (Wheeler, 1919) Myopias castaneicola (Donisthorpe, ... Myopias media Willey & Brown, 1983 Myopias menba Xu & Liu, 2011 Myopias modiglianii (Emery, 1900) Myopias nops Willey & Brown, ... 1983 Myopias emeryi (Forel, 1913) Myopias gigas Willey & Brown, 1983 Myopias hania Xu & Liu, 2011 Myopias hollandi (Forel, 1901 ... Myopias levigata (Emery, 1901) Myopias lobosa Willey & Brown, 1983 Myopias loriai (Emery, 1897) Myopias luoba Xu & Liu, 2011 ...
... is an extremely rare genetic disorder which is characterized by congenital ... "OMIM Entry - 110150 - BLEPHAROPTOSIS, MYOPIA, AND ECTOPIA LENTIS". omim.org. Retrieved 2022-05-23. v t e (Orphaned articles ... "rare disease Oscar". Gillum, W. N.; Anderson, R. L. (February 1982). "Dominantly inherited blepharoptosis, high myopia, and ... Gillum, William N.; Anderson, Richard L. (1982-02-01). "Dominantly Inherited Blepharoptosis, High Myopia, and Ectopia Lentis". ...
... , is a species of ant of the subfamily Ponerinae. It is found in Sri Lanka. "Myopias amblyops". "Myopias ... "Myopias amblyops". at antwiki.org Animaldiversity.org v t e (Articles with short description, Short description is different ...
Ball, Philip (4 April 2008). "Astrology's myopia". Nature. 452 (7187). doi:10.1038/news.2008.731. "Objections to Astrology: A ...
The Myopia and Other Plays by David Greenspan. "Go Back to Where You Are by David Greenspan - Book - Subscriptions, Membership ... "The Myopia". 18 February 2010. "Go Back to Where You Are". 24 March 2011. "Under the Radar: Festival Supported by Nettikasinot ... She Stoops to Comedy by David Greenspan, Samuel French, Inc., October 2013 The Myopia and Other Plays, University of Michigan ... The Myopia and Other Plays, a collection of five of his plays published by University of Michigan Press in 2012, won a Lambda ...
Hyperoxic myopia has occurred in closed circuit oxygen rebreather divers with prolonged exposures. It also occurs frequently in ... Oxidative damage to the eye may lead to myopia or partial detachment of the retina. Pulmonary and ocular damage are most likely ... Butler, Frank K; White, E; Twa, M (1999). "Hyperoxic myopia in a closed-circuit mixed-gas scuba diver". Undersea and Hyperbaric ... Anderson Jr, B; Shelton, DL (1987). "Axial length in hyperoxic myopia". In: Bove, Alfred A; Bachrach, Arthur J; Greenbaum, Leon ...
Kim, Richard (April 7, 2006). "Marriage Myopia". CBS News. Retrieved August 2, 2021. "What Happened in Ed Buck's Apartment". ...
p. 1. Klitgaard, Robert (1989-04-01). "Incentive myopia". World Development. 17 (4): 447-459. doi:10.1016/0305-750X(89)90254-4 ...
Manji, Irshad (16 August 2006). "Muslim Myopia". The New York Times. Retrieved 10 September 2018. Aroon, Preeti (19 April 2007 ...
Myopia is associated with 67% of retinal detachment cases. Patients with a detachment related to myopia tend to be younger than ... Retinal detachment is more common in those with severe myopia (above 5-6 diopters), as their eyes are longer, their retina is ... S2CID 10060144.{{cite journal}}: CS1 maint: multiple names: authors list (link) Hyams SW, Bialik M, Neumann E (1975). "Myopia- ... Individuals prone to retinal detachment due to a high level of myopia are encouraged to avoid activities where there is a risk ...
admin (2018-08-01). "The Museum by Leila Aboulela". Project Myopia. Retrieved 2022-04-27. "Elsewhere, Home by Leila Aboulela - ...
"Media Myopia." Archivaria 12 (1981): 146-157. Cook, Terry. " 'A Reconstruction of the World': George R. Parkin's British Empire ...
A series of authors have focused upon the increasing myopia in the youngest generations of Inuit. Myopia was almost unknown ... Morgan, R.W.; Speakman, J.S.; Grimshaw, S.E. (8 March 1975). "Inuit myopia: an environmentally induced "epidemic"?". Canadian ... Rosenfield, Mark; Gilmartin, Bernard (1998). Myopia and Nearwork. Butterworth-Heinemann. p. 21. ISBN 978-0-7506-3784-8. "Inuk ...
Myopia A number of studies have shown a correlation between IQ and myopia. Some suggest that the reason for the correlation is ... ISBN 978-0-7506-3784-8. Czepita, D.; Lodygowska, E.; Czepita, M. (2008). "Are children with myopia more intelligent? A ... Rosenfield, Mark; Gilmartin, Bernard (1998). Myopia and nearwork. Elsevier Health Sciences. p. 23. ...
He would put his "home course advantage" to good use when the USGA selected Myopia to host four U.S. Opens between 1898 and ... Jones tied for eighth place in the 1898 U.S. Open, held at Myopia Hunt Club in South Hamilton, Massachusetts. His scores of 83- ... The 1908 U.S. Open-once again contested at the Myopia Hunt Club-featured strong winds in the first two rounds that plagued many ... "Myopia Hunt Club". Links. Archived from the original on 21 May 2015. Retrieved 21 May 2015. "The Open golf championship - ...
China are working in 2013 with BHVI on juvenile myopia on a project focused on myopia clinical translational research. Myopia, ... "Myopia Research Boost". Mivision. 27 October 2011. Retrieved 4 April 2013. "Indian Vision Institute launched". The Hindu. 19 ... for the treatment of myopia (near-sightedness), presbyopia (also known as "aging sight"), hyperopia and astigmatism. It also ...

No FAQ available that match "myopia"

No images available that match "myopia"