A circumscribed stable malformation of the skin and occasionally of the oral mucosa, which is not due to external causes and therefore presumed to be of hereditary origin.
A macular lesion on the side of the FACE, involving the CONJUNCTIVA and EYELIDS, as well as the adjacent facial skin, SCLERA; OCULOMOTOR MUSCLES; and PERIOSTEUM. Histological features vary from those of a MONGOLIAN SPOT to those of a BLUE NEVUS.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
A syndrome characterized by lesions occurring on the face, scalp, or neck which consist of congenital hypoplastic malformations of cutaneous structures and which over time undergo verrucous hyperplasia. Additionally it is associated with neurological symptoms and skeletal, ophthalmological, urogenital, and cardiovascular abnormalities.
Clinically atypical nevi (usually exceeding 5 mm in diameter and having variable pigmentation and ill defined borders) with an increased risk for development of non-familial cutaneous malignant melanoma. Biopsies show melanocytic dysplasia. Nevi are clinically and histologically identical to the precursor lesions for melanoma in the B-K mole syndrome. (Stedman, 25th ed)
A form of pigmented nevus showing intense melanocytic activity around the dermo-epidermal junction. Large numbers of spindle-shaped melanocytes proliferate downward toward the dermis and usually a large amount of pigment is present. It was first described in 1976 and the bulk of patients reported have been young females with the lesions presenting on the thighs. (From Rook et al., Textbook of Dermatology, 4th ed, 1992, p185)
Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS.
A benign compound nevus occurring most often in children before puberty, composed of spindle and epithelioid cells located mainly in the dermis, sometimes in association with large atypical cells and multinucleate cells, and having a close histopathological resemblance to malignant melanoma. The tumor presents as a smooth to slightly scaly, round to oval, raised, firm papule or nodule, ranging in color from pink-tan to purplish red, often with surface telangiectasia. (Dorland, 27th ed)
A nevus in which nests of melanocytes are found in the dermis, but not at the epidermal-dermal junction. Benign pigmented nevi in adults are most commonly intradermal. (Stedman, 25th ed)
Tumors or cancer of the SKIN.
Neoplasms composed of muscle tissue: skeletal, cardiac, or smooth. The concept does not refer to neoplasms located in muscles.
A benign skin lesion characterized by a zone of depigmentation surrounding the nevus.
Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445)
A multicentric, malignant neoplastic vascular proliferation characterized by the development of bluish-red cutaneous nodules, usually on the lower extremities, most often on the toes or feet, and slowly increasing in size and number and spreading to more proximal areas. The tumors have endothelium-lined channels and vascular spaces admixed with variably sized aggregates of spindle-shaped cells, and often remain confined to the skin and subcutaneous tissue, but widespread visceral involvement may occur. Kaposi's sarcoma occurs spontaneously in Jewish and Italian males in Europe and the United States. An aggressive variant in young children is endemic in some areas of Africa. A third form occurs in about 0.04% of kidney transplant patients. There is also a high incidence in AIDS patients. (From Dorland, 27th ed & Holland et al., Cancer Medicine, 3d ed, pp2105-7) HHV-8 is the suspected cause.
Facial neoplasms are abnormal growths or tumors that develop in the facial region, which can be benign or malignant, originating from various cell types including epithelial, glandular, connective tissue, and neural crest cells.
A connective tissue neoplasm formed by proliferation of mesodermal cells; it is usually highly malignant.
Tumors of the iris characterized by increased pigmentation of melanocytes. Iris nevi are composed of proliferated melanocytes and are associated with neurofibromatosis and malignant melanoma of the choroid and ciliary body. Malignant melanoma of the iris often originates from preexisting nevi.
A benign tumor that consists chiefly of fibrous CONNECTIVE TISSUE, with variable numbers of MUSCLE CELLS forming portions of the neoplasm (From Stedman's, 27th ed).
A malignant neoplasm that contains elements of carcinoma and sarcoma so extensively intermixed as to indicate neoplasia of epithelial and mesenchymal tissue. (Stedman, 25th ed)
A slow-growing benign pseudotumor in which plasma cells greatly outnumber the inflammatory cells.
A benign tumor composed of fat cells (ADIPOCYTES). It can be surrounded by a thin layer of connective tissue (encapsulated), or diffuse without the capsule.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
A malignant neoplasm arising from tenosynovial tissue of the joints and in synovial cells of tendons and bursae. The legs are the most common site, but the tumor can occur in the abdominal wall and other trunk muscles. There are two recognized types: the monophasic (characterized by sheaths of monotonous spindle cells) and the biphasic (characterized by slit-like spaces or clefts within the tumor, lined by cuboidal or tall columnar epithelial cells). These sarcomas occur most commonly in the second and fourth decades of life. (From Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1363)
Large multiprotein complexes that bind the centromeres of the chromosomes to the microtubules of the mitotic spindle during metaphase in the cell cycle.
Rare neoplasms of mesenchymal origin, usually benign, and most commonly involving the PLEURA (see SOLITARY FIBROUS TUMOR, PLEURAL). They also are found in extrapleural sites.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Hereditary disorder consisting of multiple basal cell carcinomas, odontogenic keratocysts, and multiple skeletal defects, e.g., frontal and temporoparietal bossing, bifurcated and splayed ribs, kyphoscoliosis, fusion of vertebrae, and cervicothoracic spina bifida. Genetic transmission is autosomal dominant.
The cell center, consisting of a pair of CENTRIOLES surrounded by a cloud of amorphous material called the pericentriolar region. During interphase, the centrosome nucleates microtubule outgrowth. The centrosome duplicates and, during mitosis, separates to form the two poles of the mitotic spindle (MITOTIC SPINDLE APPARATUS).
An intermediate filament protein found in most differentiating cells, in cells grown in tissue culture, and in certain fully differentiated cells. Its insolubility suggests that it serves a structural function in the cytoplasm. MW 52,000.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
A microtubule-associated mechanical adenosine triphosphatase, that uses the energy of ATP hydrolysis to move organelles along microtubules toward the plus end of the microtubule. The protein is found in squid axoplasm, optic lobes, and in bovine brain. Bovine kinesin is a heterotetramer composed of two heavy (120 kDa) and two light (62 kDa) chains. EC 3.6.1.-.
A sarcoma containing large spindle cells of smooth muscle. Although it rarely occurs in soft tissue, it is common in the viscera. It is the most common soft tissue sarcoma of the gastrointestinal tract and uterus. The median age of patients is 60 years. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p1865)
The outer covering of the calvaria. It is composed of several layers: SKIN; subcutaneous connective tissue; the occipitofrontal muscle which includes the tendinous galea aponeurotica; loose connective tissue; and the pericranium (the PERIOSTEUM of the SKULL).
A noninvasive technique that enables direct microscopic examination of the surface and architecture of the SKIN.
The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
Neoplasms of whatever cell type or origin, occurring in the extraskeletal connective tissue framework of the body including the organs of locomotion and their various component structures, such as nerves, blood vessels, lymphatics, etc.
Neoplasms composed of fibrous tissue, the ordinary connective tissue of the body, made up largely of yellow or white fibers. The concept does not refer to neoplasms located in fibrous tissue.
A neoplasm that arises from SCHWANN CELLS of the cranial, peripheral, and autonomic nerves. Clinically, these tumors may present as a cranial neuropathy, abdominal or soft tissue mass, intracranial lesion, or with spinal cord compression. Histologically, these tumors are encapsulated, highly vascular, and composed of a homogenous pattern of biphasic fusiform-shaped cells that may have a palisaded appearance. (From DeVita Jr et al., Cancer: Principles and Practice of Oncology, 5th ed, pp964-5)
A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE.
A tumor-like inflammatory lesion of the lung that is composed of PLASMA CELLS and fibrous tissue. It is also known as an inflammatory pseudotumor, often with calcification and measuring between 2 and 5 cm in diameter.
Mad2 is a component of the spindle-assembly checkpoint apparatus. It binds to and inhibits the Cdc20 activator subunit of the anaphase-promoting complex, preventing the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. Mad2 is required for proper microtubule capture at KINETOCHORES.
Neoplasms which arise from peripheral nerve tissue. This includes NEUROFIBROMAS; SCHWANNOMAS; GRANULAR CELL TUMORS; and malignant peripheral NERVE SHEATH NEOPLASMS. (From DeVita Jr et al., Cancer: Principles and Practice of Oncology, 5th ed, pp1750-1)
All tumors in the GASTROINTESTINAL TRACT arising from mesenchymal cells (MESODERM) except those of smooth muscle cells (LEIOMYOMA) or Schwann cells (SCHWANNOMA).
A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm but is often wrongly used as a synonym for "cancer." (From Dorland, 27th ed)
A neoplasm derived from blood vessels, characterized by numerous prominent endothelial cells that occur singly, in aggregates, and as the lining of congeries of vascular tubes or channels. Hemangioendotheliomas are relatively rare and are of intermediate malignancy (between benign hemangiomas and conventional angiosarcomas). They affect men and women about equally and rarely develop in childhood. (From Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1866)
A benign tumor of fibrous or fully developed connective tissue.
A focal malformation resembling a neoplasm, composed of an overgrowth of mature cells and tissues that normally occur in the affected area.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
Color of hair or fur.
Tumors or cancer of the CONJUNCTIVA.
A tumor composed of spindle cells with a rich vascular network, which apparently arises from pericytes, cells of smooth muscle origin that lie around small vessels. Benign and malignant hemangiopericytomas exist, and the rarity of these lesions has led to considerable confusion in distinguishing between benign and malignant variants. (From Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1364)
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
A species in the genus RHADINOVIRUS, subfamily GAMMAHERPESVIRINAE, isolated from patients with AIDS-related and "classical" Kaposi sarcoma.
Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules.
A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution.
A benign tumor composed, wholly or in part, of cells with the morphologic characteristics of HISTIOCYTES and with various fibroblastic components. Fibrous histiocytomas can occur anywhere in the body. When they occur in the skin, they are called dermatofibromas or sclerosing hemangiomas. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 5th ed, p1747)
A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.
A malignant tumor composed of more than one type of neoplastic tissue. (Dorland, 27th ed)
Tumors of the choroid; most common intraocular tumors are malignant melanomas of the choroid. These usually occur after puberty and increase in incidence with advancing age. Most malignant melanomas of the uveal tract develop from benign melanomas (nevi).
Small circumscribed melanoses resembling, but differing histologically from, freckles. The concept includes senile lentigo ('liver spots') and nevoid lentigo (nevus spilus, lentigo simplex) and may also occur in association with multiple congenital defects or congenital syndromes (e.g., Peutz-Jeghers syndrome).
A broad category of nuclear proteins that are components of or participate in the formation of the NUCLEAR MATRIX.
An unpigmented malignant melanoma. It is an anaplastic melanoma consisting of cells derived from melanoblasts but not forming melanin. (Dorland, 27th ed; Stedman, 25th ed)
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION.
Inflammation of the fascia. There are three major types: 1, Eosinophilic fasciitis, an inflammatory reaction with eosinophilia, producing hard thickened skin with an orange-peel configuration suggestive of scleroderma and considered by some a variant of scleroderma; 2, Necrotizing fasciitis (FASCIITIS, NECROTIZING), a serious fulminating infection (usually by a beta hemolytic streptococcus) causing extensive necrosis of superficial fascia; 3, Nodular/Pseudosarcomatous /Proliferative fasciitis, characterized by a rapid growth of fibroblasts with mononuclear inflammatory cells and proliferating capillaries in soft tissue, often the forearm; it is not malignant but is sometimes mistaken for fibrosarcoma.
Tumors or cancer of the EYE.
A mixed mesenchymal tumor composed of two or more mesodermal cellular elements not commonly associated, not counting fibrous tissue as one of the elements. Mesenchymomas are widely distributed in the body and about 75% are malignant. (Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p1866)
Two or more abnormal growths of tissue occurring simultaneously and presumed to be of separate origin. The neoplasms may be histologically the same or different, and may be found in the same or different sites.
Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or body fluids. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including hormones, antigens, amino and nucleic acids, enzymes, polyamines, and specific cell membrane proteins and lipids.
An intermediate filament protein found predominantly in smooth, skeletal, and cardiac muscle cells. Localized at the Z line. MW 50,000 to 55,000 is species dependent.
Neoplasms composed of more than one type of neoplastic tissue.
The cellular signaling system that halts the progression of cells through MITOSIS or MEIOSIS if a defect that will affect CHROMOSOME SEGREGATION is detected.
Tumors or cancer of the UVEA.
Diseases of the domestic dog (Canis familiaris). This term does not include diseases of wild dogs, WOLVES; FOXES; and other Canidae for which the heading CARNIVORA is used.
A benign neoplasm of fibrous tissue in which there are numerous small and large, frequently dilated, vascular channels. (Stedman, 25th ed)
A family of multisubunit cytoskeletal motor proteins that use the energy of ATP hydrolysis to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria.
A malignant tumor derived from primitive or embryonal lipoblastic cells. It may be composed of well-differentiated fat cells or may be dedifferentiated: myxoid (LIPOSARCOMA, MYXOID), round-celled, or pleomorphic, usually in association with a rich network of capillaries. Recurrences are common and dedifferentiated liposarcomas metastasize to the lungs or serosal surfaces. (From Dorland, 27th ed; Stedman, 25th ed)
Characteristic cells of granulomatous hypersensitivity. They appear as large, flattened cells with increased endoplasmic reticulum. They are believed to be activated macrophages that have differentiated as a result of prolonged antigenic stimulation. Further differentiation or fusion of epithelioid cells is thought to produce multinucleated giant cells (GIANT CELLS).
A usually benign tumor made up predominantly of myoepithelial cells.
The final phase of cell nucleus division following ANAPHASE, in which two daughter nuclei are formed, the CYTOPLASM completes division, and the CHROMOSOMES lose their distinctness and are transformed into CHROMATIN threads.
An adenocarcinoma producing mucin in significant amounts. (From Dorland, 27th ed)
Neoplasms which arise from nerve sheaths formed by SCHWANN CELLS in the PERIPHERAL NERVOUS SYSTEM or by OLIGODENDROCYTES in the CENTRAL NERVOUS SYSTEM. Malignant peripheral nerve sheath tumors, NEUROFIBROMA, and NEURILEMMOMA are relatively common tumors in this category.
A condition in which there is a change of one adult cell type to another similar adult cell type.
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
Excessive pigmentation of the skin, usually as a result of increased epidermal or dermal melanin pigmentation, hypermelanosis. Hyperpigmentation can be localized or generalized. The condition may arise from exposure to light, chemicals or other substances, or from a primary metabolic imbalance.
A moderately firm, benign, encapsulated tumor resulting from proliferation of SCHWANN CELLS and FIBROBLASTS that includes portions of nerve fibers. The tumors usually develop along peripheral or cranial nerves and are a central feature of NEUROFIBROMATOSIS 1, where they may occur intracranially or involve spinal roots. Pathologic features include fusiform enlargement of the involved nerve. Microscopic examination reveals a disorganized and loose cellular pattern with elongated nuclei intermixed with fibrous strands. (From Adams et al., Principles of Neurology, 6th ed, p1016)
The process by which the CYTOPLASM of a cell is divided.
Irradiation directly from the sun.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
A heritable disorder of faulty keratinization characterized by the proliferation of abnormal clones of KERATINOCYTES and lesions showing varying atrophic patches surrounded by an elevated, keratotic border. These keratotic lesions can progress to overt cutaneous neoplasm. Several clinical variants are recognized, including porokeratosis of Mibelli, linear porokeratosis, disseminated superficial actinic porokeratosis, palmoplantar porokeratosis, and punctate porokeratosis.
Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Neoplasms of the bony orbit and contents except the eyeball.
Coloration of the skin.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length.
A malignant solid tumor arising from mesenchymal tissues which normally differentiate to form striated muscle. It can occur in a wide variety of sites. It is divided into four distinct types: pleomorphic, predominantly in male adults; alveolar (RHABDOMYOSARCOMA, ALVEOLAR), mainly in adolescents and young adults; embryonal (RHABDOMYOSARCOMA, EMBRYONAL), predominantly in infants and children; and botryoidal, also in young children. It is one of the most frequently occurring soft tissue sarcomas and the most common in children under 15. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p2186; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1647-9)
An amorphous region of electron dense material in the cytoplasm from which the MICROTUBULES polymerization is nucleated. The pericentriolar region of the CENTROSOME which surrounds the CENTRIOLES is an example.
Using fine needles (finer than 22-gauge) to remove tissue or fluid specimens from the living body for examination in the pathology laboratory and for disease diagnosis.
An injury to the skin causing erythema, tenderness, and sometimes blistering and resulting from excessive exposure to the sun. The reaction is produced by the ultraviolet radiation in sunlight.
The phase of cell nucleus division following PROPHASE, when the breakdown of the NUCLEAR ENVELOPE occurs and the MITOTIC SPINDLE APPARATUS enters the nuclear region and attaches to the KINETOCHORES.
Simple sweat glands that secrete sweat directly onto the SKIN.
A vascular anomaly due to proliferation of BLOOD VESSELS that forms a tumor-like mass. The common types involve CAPILLARIES and VEINS. It can occur anywhere in the body but is most frequently noticed in the SKIN and SUBCUTANEOUS TISSUE. (from Stedman, 27th ed, 2000)
Pigmentation disorders are conditions that affect the production or distribution of melanin, the pigment responsible for skin, hair, and eye color, leading to changes in the color of these bodily features.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A protein-tyrosine kinase receptor that is specific for STEM CELL FACTOR. This interaction is crucial for the development of hematopoietic, gonadal, and pigment stem cells. Genetic mutations that disrupt the expression of PROTO-ONCOGENE PROTEINS C-KIT are associated with PIEBALDISM, while overexpression or constitutive activation of the c-kit protein-tyrosine kinase is associated with tumorigenesis.
Cancer or tumors of the MAXILLA or upper jaw.
Proteins found in the microtubules.
Neoplasms composed of sebaceous or sweat gland tissue or tissue of other skin appendages. The concept does not refer to neoplasms located in the sebaceous or sweat glands or in the other skin appendages.
Tumors or cancers of the KIDNEY.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Self-replicating, short, fibrous, rod-shaped organelles. Each centriole is a short cylinder containing nine pairs of peripheral microtubules, arranged so as to form the wall of the cylinder.
The first phase of cell nucleus division, in which the CHROMOSOMES become visible, the CELL NUCLEUS starts to lose its identity, the SPINDLE APPARATUS appears, and the CENTRIOLES migrate toward opposite poles.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
A malignant cystic or semisolid tumor most often occurring in the ovary. Rarely, one is solid. This tumor may develop from a mucinous cystadenoma, or it may be malignant at the onset. The cysts are lined with tall columnar epithelial cells; in others, the epithelium consists of many layers of cells that have lost normal structure entirely. In the more undifferentiated tumors, one may see sheets and nests of tumor cells that have very little resemblance to the parent structure. (Hughes, Obstetric-Gynecologic Terminology, 1972, p184)
A relatively large mass of unusually firm scarlike connective tissue resulting from active participation of fibroblasts, occurring most frequently in the abdominal muscles of women who have borne children. The fibroblasts infiltrate surrounding muscle and fascia. (Stedman, 25th ed)
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Highly conserved proteins that specifically bind to and activate the anaphase-promoting complex-cyclosome, promoting ubiquitination and proteolysis of cell-cycle-regulatory proteins. Cdc20 is essential for anaphase-promoting complex activity, initiation of anaphase, and cyclin proteolysis during mitosis.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A large group of diseases which are characterized by a low prevalence in the population. They frequently are associated with problems in diagnosis and treatment.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
A solid, unencapsulated tumor of the KIDNEY composed of spindle mesenchymal cells that resemble FIBROBLASTS or muscle cells. The homogeneous mass typically extends into the renal parenchyma and replaces most of the kidney. In most cases, mesoblastic nephroma is benign and occurs in the fetus or newborn, and rarely in the older child or the adult.
Benign and malignant neoplastic processes arising from or involving components of the central, peripheral, and autonomic nervous systems, cranial nerves, and meninges. Included in this category are primary and metastatic nervous system neoplasms.
A monomeric GTP-binding protein involved in nucleocytoplasmic transport of proteins into the nucleus and RNA into the cytoplasm. This enzyme was formerly listed as EC 3.6.1.47.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
The property of nonisotropic media, such as crystals, whereby a single incident beam of light traverses the medium as two beams, each plane-polarized, the planes being at right angles to each other. (Cline et al., Dictionary of Visual Science, 4th ed)
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
An aurora kinase that is a component of the chromosomal passenger protein complex and is involved in the regulation of MITOSIS. It mediates proper CHROMOSOME SEGREGATION and contractile ring function during CYTOKINESIS.
Neoplasms located in the vasculature system, such as ARTERIES and VEINS. They are differentiated from neoplasms of vascular tissue (NEOPLASMS, VASCULAR TISSUE), such as ANGIOFIBROMA or HEMANGIOMA.
Soft tissue tumors or cancer arising from the mucosal surfaces of the LIP; oral cavity; PHARYNX; LARYNX; and cervical esophagus. Other sites included are the NOSE and PARANASAL SINUSES; SALIVARY GLANDS; THYROID GLAND and PARATHYROID GLANDS; and MELANOMA and non-melanoma skin cancers of the head and neck. (from Holland et al., Cancer Medicine, 4th ed, p1651)
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
A non-inherited congenital condition with vascular and neurological abnormalities. It is characterized by facial vascular nevi (PORT-WINE STAIN), and capillary angiomatosis of intracranial membranes (MENINGES; CHOROID). Neurological features include EPILEPSY; cognitive deficits; GLAUCOMA; and visual defects.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
A sarcoma of the deep layers of the skin. The tumors are locally aggressive tends to recur but rarely metastatic. It can be classified into variants depending on the cell type tumors are derived from or by its characteristics: Pigmented variant from MELANIN-containing DERMAL DENDRITIC CELLS; Myxoid variant, myxoid STROMAL CELLS; Giant cell variant characterized by GIANT CELLS in the tumors; and Fibrosarcomatous variant chracterized by tumor areas histologically indistinguishable from FIBROSARCOMA.
A sarcoma derived from deep fibrous tissue, characterized by bundles of immature proliferating fibroblasts with variable collagen formation, which tends to invade locally and metastasize by the bloodstream. (Stedman, 25th ed)
Color of the iris.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Tumors or cancer of the MANDIBLE.
Tumors or cancer located in muscle tissue or specific muscles. They are differentiated from NEOPLASMS, MUSCLE TISSUE which are neoplasms composed of skeletal, cardiac, or smooth muscle tissue, such as MYOSARCOMA or LEIOMYOMA.
General disorders of the sclera or white of the eye. They may include anatomic, embryologic, degenerative, or pigmentation defects.
A malignant skin neoplasm that seldom metastasizes but has potentialities for local invasion and destruction. Clinically it is divided into types: nodular, cicatricial, morphaic, and erythematoid (pagetoid). They develop on hair-bearing skin, most commonly on sun-exposed areas. Approximately 85% are found on the head and neck area and the remaining 15% on the trunk and limbs. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1471)
Genes that code for proteins that regulate the CELL DIVISION CYCLE. These genes form a regulatory network that culminates in the onset of MITOSIS by activating the p34cdc2 protein (PROTEIN P34CDC2).
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Hamartoneoplastic malformation syndrome of uncertain etiology characterized by partial GIGANTISM of the hands and/or feet, asymmetry of the limbs, plantar hyperplasia, hemangiomas (HEMANGIOMA), lipomas (LIPOMA), lymphangiomas (LYMPHANGIOMA), epidermal NEVI; MACROCEPHALY; cranial HYPEROSTOSIS, and long-bone overgrowth. Joseph Merrick, the so-called "elephant man", apparently suffered from Proteus syndrome and not NEUROFIBROMATOSIS, a disorder with similar characteristics.
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.
A characteristic symptom complex.
Radiographic visualization of the body between the thorax and the pelvis, i.e., within the peritoneal cavity.
A neoplasm originating from thymic tissue, usually benign, and frequently encapsulated. Although it is occasionally invasive, metastases are extremely rare. It consists of any type of thymic epithelial cell as well as lymphocytes that are usually abundant. Malignant lymphomas that involve the thymus, e.g., lymphosarcoma, Hodgkin's disease (previously termed granulomatous thymoma), should not be regarded as thymoma. (From Stedman, 25th ed)
The process by which the CELL NUCLEUS is divided.
A benign, non-neoplastic, usually self-limiting epithelial lesion closely resembling squamous cell carcinoma clinically and histopathologically. It occurs in solitary, multiple, and eruptive forms. The solitary and multiple forms occur on sunlight exposed areas and are identical histologically; they affect primarily white males. The eruptive form usually involves both sexes and appears as a generalized papular eruption.
Macrophages found in the TISSUES, as opposed to those found in the blood (MONOCYTES) or serous cavities (SEROUS MEMBRANE).
A malignant tumor arising from the embryonic remains of the notochord. It is also called chordocarcinoma, chordoepithelioma, and notochordoma. (Dorland, 27th ed)
'Skin diseases' is a broad term for various conditions affecting the skin, including inflammatory disorders, infections, benign and malignant tumors, congenital abnormalities, and degenerative diseases, which can cause symptoms such as rashes, discoloration, eruptions, lesions, itching, or pain.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Non-hematopoietic cells, with extensive dendritic processes, found in the primary and secondary follicles of lymphoid tissue (the B cell zones). They are different from conventional DENDRITIC CELLS associated with T-CELLS. They are derived from MESENCHYMAL STEM CELLS and are negative for class II MHC antigen and do not process or present antigen like the conventional dendritic cells do. Instead, follicular dendritic cells have FC RECEPTORS and C3B RECEPTORS that hold antigen in the form of ANTIGEN-ANTIBODY COMPLEXES on their surfaces for long periods for recognition by B-CELLS.
Tumors or cancer of the VULVA.
Preparations of cell constituents or subcellular materials, isolates, or substances.
Proteins that are involved in or cause CELL MOVEMENT such as the rotary structures (flagellar motor) or the structures whose movement is directed along cytoskeletal filaments (MYOSIN; KINESIN; and DYNEIN motor families).
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
The portion of the leg in humans and other animals found between the HIP and KNEE.
Complexes of enzymes that catalyze the covalent attachment of UBIQUITIN to other proteins by forming a peptide bond between the C-terminal GLYCINE of UBIQUITIN and the alpha-amino groups of LYSINE residues in the protein. The complexes play an important role in mediating the selective-degradation of short-lived and abnormal proteins. The complex of enzymes can be broken down into three components that involve activation of ubiquitin (UBIQUITIN-ACTIVATING ENZYMES), conjugation of ubiquitin to the ligase complex (UBIQUITIN-CONJUGATING ENZYMES), and ligation of ubiquitin to the substrate protein (UBIQUITIN-PROTEIN LIGASES).
Diseases, dysfunctions, or disorders of or located in the iris.
A clear, homogenous, structureless, eosinophilic substance occurring in pathological degeneration of tissues.
An E3 ubiquitin ligase primarily involved in regulation of the metaphase-to-anaphase transition during MITOSIS through ubiquitination of specific CELL CYCLE PROTEINS. Enzyme activity is tightly regulated through subunits and cofactors, which modulate activation, inhibition, and substrate specificity. The anaphase-promoting complex, or APC-C, is also involved in tissue differentiation in the PLACENTA, CRYSTALLINE LENS, and SKELETAL MUSCLE, and in regulation of postmitotic NEURONAL PLASTICITY and excitability.
A rare malignant neoplasm characterized by rapidly proliferating, extensively infiltrating, anaplastic cells derived from blood vessels and lining irregular blood-filled or lumpy spaces. (Stedman, 25th ed)
A CELL CYCLE and tumor growth marker which can be readily detected using IMMUNOCYTOCHEMISTRY methods. Ki-67 is a nuclear antigen present only in the nuclei of cycling cells.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
A benign tumor of the intrahepatic bile ducts.
Proteins found in any species of fungus.
A cellular subtype of malignant melanoma. It is a pigmented lesion composed of melanocytes occurring on sun-exposed skin, usually the face and neck. The melanocytes are commonly multinucleated with a "starburst" appearance. It is considered by many to be the in situ phase of lentigo maligna melanoma.
Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A mature haploid female germ cell extruded from the OVARY at OVULATION.
Tumors or cancer of the LIP.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
I'm sorry for any confusion, but "Colorado" is a place, specifically a state in the United States, and does not have a medical definition. If you have any questions about medical conditions or terminology, I would be happy to help with those!
Agents that interact with TUBULIN to inhibit or promote polymerization of MICROTUBULES.
A species of gram-positive, aerobic bacteria that causes granulomatous or ulcerating skin lesions in immunosuppressed persons. This organism owes its name to its requirement for growth of high levels of iron, conveniently supplied as blood, heme, or ferric ammonium citrate.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
The rear surface of an upright primate from the shoulders to the hip, or the dorsal surface of tetrapods.
A vascular connective tissue formed on the surface of a healing wound, ulcer, or inflamed tissue. It consists of new capillaries and an infiltrate containing lymphoid cells, macrophages, and plasma cells.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
DNA present in neoplastic tissue.
An adenocarcinoma containing finger-like processes of vascular connective tissue covered by neoplastic epithelium, projecting into cysts or the cavity of glands or follicles. It occurs most frequently in the ovary and thyroid gland. (Stedman, 25th ed)
A splenic rupture is a medical condition characterized by the traumatic tearing or disruption of the spleen, leading to potential internal bleeding and, if left untreated, potentially life-threatening complications.
An alkaloid isolated from Colchicum autumnale L. and used as an antineoplastic.
Tumors or cancer of the SPLEEN.
Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.

Gastrointestinal stromal tumors: a clinicopathologic and immunohistochemical study of 136 cases. (1/5)

The clinicopathologic features of 136 gastrointestinal stromal tumors were analyzed. The tumors occurred in 60 women and 76 men, ranging in age from 19 to 88 years (median 59 years, mean 59.2 years). Sixty-one cases arose from stomach, 38 from small intestine and 11 from colon or rectum. Abdominal cavity was indicated as tumor site in 10 cases, but the extra-gastrointestinal origin using strict criteria was not proved. Four locally recurrent cases and 12 metastatic samples were also included. The primary and recurrent tumors ranged in size from 0.5 to 30 cm (mean 8.3 cm). The large number of high-grade cases (85 of 112 classifiable) is alarming and emphasize the importance of oncology care. Histologically, ninety-two cases were classified as spindle cell while 11 as epithelioid GIST. Mixed cellularity was seen in 33 cases. Skeinoid fibers were present in 14 and coagulation necrosis in 40 primary cases. Ulceration observed by microscopic examination was common (36 of 110 cases, 32.7%), explaining the clinically frequently observed gastrointestinal bleeding. Unusual histological features such as stromal hyalinization and nuclear palisading were present in 30 and 27 cases, respectively. Immunohistochemical CD117 (c-kit) positivity was documented in 133 cases. Three cases with CD117 negative results were included, because their morphology was most consistent with GIST and immunohistochemical reactions excluded the possibility of other neoplasms. CD34 positivity was seen in 70%, alpha-smooth muscle actin positivity in 39.6% of examined cases. Only one case showed desmin reactivity and seven had S100 positive tumor cells. For h-caldesmon 39 cases proved to be positive (60.9% of the tested cases).  (+info)

Reed nevus (pigmented spindle-cell nevus): a report of three cases with distinct dermoscopic patterns. (2/5)

 (+info)

Congenital spindle cell naevus with unusual transformation: proliferative nodule or melanoma? (3/5)

 (+info)

Spitz nevus and Reed nevus. (4/5)

 (+info)

Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. (5/5)

 (+info)

A nevus, also known as a mole, is a benign growth or mark on the skin that is usually brown or black. It can be raised or flat and can appear anywhere on the body. Nevi are made up of cells called melanocytes, which produce the pigment melanin. Most nevi develop in childhood or adolescence, but they can also appear later in life. Some people have many nevi, while others have few or none.

There are several types of nevi, including:

* Common nevi: These are the most common type of mole and are usually small, round, and brown or black. They can be flat or raised and can appear anywhere on the body.
* Atypical nevi: These moles are larger than common nevi and have irregular borders and color. They may be flat or raised and can appear anywhere on the body, but are most commonly found on the trunk and extremities. Atypical nevi are more likely to develop into melanoma, a type of skin cancer, than common nevi.
* Congenital nevi: These moles are present at birth and can vary in size from small to large. They are more likely to develop into melanoma than moles that develop later in life.
* Spitz nevi: These are rare, benign growths that typically appear in children and adolescents. They are usually pink or red and dome-shaped.

It is important to monitor nevi for changes in size, shape, color, and texture, as these can be signs of melanoma. If you notice any changes in a mole, or if you have a new mole that is unusual or bleeding, it is important to see a healthcare provider for further evaluation.

A Nevus of Ota, also known as an oculodermal melanocytosis, is a benign birthmark characterized by the presence of darkly pigmented (melanin-containing) cells called melanocytes in the skin and mucous membranes around the eye. These pigmented cells can also extend to the sclera (the white part of the eye), dura mater (the outer covering of the brain), and leptomeninges (the middle layer of the meninges, which cover the brain and spinal cord).

The Nevus of Ota typically presents as a unilateral (occurring on one side) bluish-gray or brown patch that follows the distribution of the ophthalmic and maxillary divisions of the trigeminal nerve. It usually affects the eye, forehead, temple, and cheek, but it can also involve other areas of the face, scalp, and neck.

While Nevi of Ota are generally harmless, they may be associated with an increased risk of developing melanoma (a type of skin cancer) in the affected area. Therefore, regular monitoring and evaluation by a healthcare professional is recommended.

The spindle apparatus is a microtubule-based structure that plays a crucial role in the process of cell division, specifically during mitosis and meiosis. It consists of three main components:

1. The spindle poles: These are organized structures composed of microtubules and associated proteins that serve as the anchoring points for the spindle fibers. In animal cells, these poles are typically formed by centrosomes, while in plant cells, they form around nucleation sites called microtubule-organizing centers (MTOCs).
2. The spindle fibers: These are dynamic arrays of microtubules that extend between the two spindle poles. They can be categorized into three types: kinetochore fibers, which connect to the kinetochores on chromosomes; astral fibers, which radiate from the spindle poles and help position the spindle within the cell; and interpolar fibers, which lie between the two spindle poles and contribute to their separation during anaphase.
3. Regulatory proteins: Various motor proteins, such as dynein and kinesin, as well as non-motor proteins like tubulin and septins, are involved in the assembly, maintenance, and dynamics of the spindle apparatus. These proteins help to generate forces that move chromosomes, position the spindle, and ultimately segregate genetic material between two daughter cells during cell division.

The spindle apparatus is essential for ensuring accurate chromosome separation and maintaining genomic stability during cell division. Dysfunction of the spindle apparatus can lead to various abnormalities, including aneuploidy (abnormal number of chromosomes) and chromosomal instability, which have been implicated in several diseases, such as cancer and developmental disorders.

A nevus sebaceous of Jadassohn is a type of congenital benign skin tumor or birthmark that is composed of epidermal, hair follicle, and sebaceous gland components. It typically appears as a yellowish, greasy, or warty plaque on the scalp or face during infancy or early childhood. The lesion tends to enlarge slowly and may undergo various changes in appearance over time.

In adolescence or adulthood, there is a risk of secondary tumor development within the nevus sebaceous, such as basal cell carcinoma, squamous cell carcinoma, or sebaceous carcinoma. Therefore, regular monitoring and possible surgical removal of the lesion may be recommended, especially in cases where the nevus is large, symptomatic, or shows signs of malignant transformation.

Dysplastic Nevus Syndrome, also known as atypical mole syndrome, is a condition characterized by the presence of numerous dysplastic nevi (abnormal moles) that may appear irregular in shape, color, and size. These moles are typically larger than normal moles (greater than 5 mm in diameter) and have an asymmetrical shape, uneven borders, and varied colors.

Individuals with Dysplastic Nevus Syndrome have a higher risk of developing melanoma, a type of skin cancer that can be life-threatening if not detected and treated early. The syndrome is usually inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the gene from an affected parent.

It's important to note that having dysplastic nevi does not necessarily mean that a person will develop melanoma, but it does increase their risk. Regular skin examinations by a dermatologist and self-examinations are recommended for early detection of any changes in moles or the development of new suspicious lesions.

A "Spindle Cell Nevus" is a type of melanocytic nevus (mole), which is a benign growth that occurs from the uncontrolled multiplication of melanocytes (pigment-producing cells). In a spindle cell nevus, the melanocytes are elongated and take on a spindle shape. This type of nevus is not common and typically appears as a solitary, brown or skin-colored papule or nodule. Spindle cell nevi can be found anywhere on the body but are most commonly located on the scalp and face. They usually occur in adults and are generally considered to have a low malignant potential, although there is a small risk of transformation into a malignant melanoma. It's important to monitor any changes in size, color, or shape of a spindle cell nevus and to have it evaluated by a healthcare professional if there are any concerns.

Muscle spindles are specialized sensory organs found within the muscle belly, which primarily function as proprioceptors, providing information about the length and rate of change in muscle length. They consist of small, encapsulated bundles of intrafusal muscle fibers that are interspersed among the extrafusal muscle fibers (the ones responsible for force generation).

Muscle spindles have two types of sensory receptors called primary and secondary endings. Primary endings are located near the equatorial region of the intrafusal fiber, while secondary endings are situated more distally. These endings detect changes in muscle length and transmit this information to the central nervous system (CNS) through afferent nerve fibers.

The activation of muscle spindles plays a crucial role in reflexive responses, such as the stretch reflex (myotatic reflex), which helps maintain muscle tone and joint stability. Additionally, they contribute to our sense of body position and movement awareness, known as kinesthesia.

A nevus is a general term for a benign growth or mole on the skin. There are many different types of nevi, including epithelioid and spindle cell nevi.

Epithelioid cell: A type of cell that is typically found in certain types of nevi, as well as in some malignant tumors such as melanoma. Epithelioid cells are large, round cells with a pale, clear cytoplasm and centrally located nuclei.

Spindle cell: A type of cell that is often found in certain types of nevi, including Spitz nevi and deep penetrating nevi. Spindle cells are elongated, thin cells with cigar-shaped nuclei. They can also be found in some malignant tumors such as melanoma.

Epithelioid and spindle cell nevus: A type of nevus that contains both epithelioid and spindle cells. These nevi are typically benign, but they can sometimes be difficult to distinguish from melanoma, especially if they have atypical features. Therefore, it is important for these types of nevi to be evaluated by a dermatopathologist or a specialist in skin pathology.

An intradermal nevus, also known as an intradermal naevus or compound nevus, is a type of benign pigmented skin lesion that originates from melanocytes, which are the pigment-producing cells in the skin. It develops when melanocytes grow and multiply in the dermis, the middle layer of the skin.

Intradermal nevi are typically small, round or oval, raised bumps that range in color from flesh-colored to brown or black. They can appear anywhere on the body, but they are most commonly found on the trunk and extremities. These nevi usually develop during childhood or adolescence and may continue to grow slowly over time.

Intradermal nevi are generally harmless and do not require treatment unless they become symptomatic (e.g., itchy, painful, or bleed) or change in appearance, which could indicate a potential malignant transformation into melanoma. In such cases, a biopsy may be performed to confirm the diagnosis and determine the appropriate course of action.

It is essential to monitor any changes in existing nevi and consult a healthcare professional if there are concerns about new or changing lesions. Regular skin examinations can help detect early signs of skin cancer and improve treatment outcomes.

Skin neoplasms refer to abnormal growths or tumors in the skin that can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled multiplication of skin cells, which can form various types of lesions. These growths may appear as lumps, bumps, sores, patches, or discolored areas on the skin.

Benign skin neoplasms include conditions such as moles, warts, and seborrheic keratoses, while malignant skin neoplasms are primarily classified into melanoma, squamous cell carcinoma, and basal cell carcinoma. These three types of cancerous skin growths are collectively known as non-melanoma skin cancers (NMSCs). Melanoma is the most aggressive and dangerous form of skin cancer, while NMSCs tend to be less invasive but more common.

It's essential to monitor any changes in existing skin lesions or the appearance of new growths and consult a healthcare professional for proper evaluation and treatment if needed.

Neoplasms in muscle tissue refer to abnormal and excessive growths of muscle cells that can be benign or malignant. These growths can arise from any of the three types of muscle tissue: skeletal, cardiac, or smooth muscle. Neoplasms in muscle tissue are classified based on their origin, behavior, and histological features.

Benign neoplasms in muscle tissue include leiomyomas (smooth muscle), rhabdomyomas (skeletal muscle), and myxomas (cardiac muscle). These tumors are usually slow-growing and do not invade surrounding tissues or spread to other parts of the body.

Malignant neoplasms in muscle tissue, also known as sarcomas, include leiomyosarcoma (smooth muscle), rhabdomyosarcoma (skeletal muscle), and angiosarcoma (cardiac muscle). These tumors are aggressive, invasive, and have the potential to metastasize to other parts of the body.

Symptoms of neoplasms in muscle tissue depend on their location, size, and type. They may include a painless or painful mass, weakness, fatigue, weight loss, and difficulty swallowing or breathing. Treatment options for neoplasms in muscle tissue include surgery, radiation therapy, chemotherapy, and targeted therapy. The choice of treatment depends on the type, stage, location, and patient's overall health condition.

A "Halo Nevus" (also known as Sutton nevus or leukoderma acquisitum centrifugum) is a type of melanocytic nevus (mole) that is surrounded by a depigmented halo, typically measured to be 0.5-1 cm wide. The central nevus can be either a common acquired melanocytic nevus or a Spitz nevus.

The depigmentation occurs due to the destruction of melanocytes (pigment-producing cells) in the skin surrounding the nevus, which is thought to be an immune-mediated response. The halo nevus is considered a benign condition and usually appears in children and young adults. While most halo nevi are harmless, it's essential to monitor them for any changes that may indicate melanoma or other skin cancers. If you notice any changes in the size, shape, color, or border of a halo nevus, consult with a dermatologist or healthcare professional.

Microtubules are hollow, cylindrical structures composed of tubulin proteins in the cytoskeleton of eukaryotic cells. They play crucial roles in various cellular processes such as maintaining cell shape, intracellular transport, and cell division (mitosis and meiosis). Microtubules are dynamic, undergoing continuous assembly and disassembly, which allows them to rapidly reorganize in response to cellular needs. They also form part of important cellular structures like centrioles, basal bodies, and cilia/flagella.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

Melanoma is defined as a type of cancer that develops from the pigment-containing cells known as melanocytes. It typically occurs in the skin but can rarely occur in other parts of the body, including the eyes and internal organs. Melanoma is characterized by the uncontrolled growth and multiplication of melanocytes, which can form malignant tumors that invade and destroy surrounding tissue.

Melanoma is often caused by exposure to ultraviolet (UV) radiation from the sun or tanning beds, but it can also occur in areas of the body not exposed to the sun. It is more likely to develop in people with fair skin, light hair, and blue or green eyes, but it can affect anyone, regardless of their skin type.

Melanoma can be treated effectively if detected early, but if left untreated, it can spread to other parts of the body and become life-threatening. Treatment options for melanoma include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, depending on the stage and location of the cancer. Regular skin examinations and self-checks are recommended to detect any changes or abnormalities in moles or other pigmented lesions that may indicate melanoma.

Kaposi sarcoma (KS) is a type of cancer that causes abnormal growths in the skin, lymph nodes, or other organs. It is caused by the Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8). There are several forms of KS, including:

1. Classic KS: This form primarily affects older men of Mediterranean, Middle Eastern, or Ashkenazi Jewish descent. It tends to progress slowly and mainly involves the skin.
2. Endemic KS: Found in parts of Africa, this form predominantly affects children and young adults, regardless of their HIV status.
3. Immunosuppression-associated KS: This form is more aggressive and occurs in people with weakened immune systems due to organ transplantation or other causes.
4. Epidemic KS (AIDS-related KS): This is the most common form of KS, seen primarily in people with HIV/AIDS. The widespread use of antiretroviral therapy (ART) has significantly reduced its incidence.

KS lesions can appear as red, purple, or brown spots on the skin and may also affect internal organs such as the lungs, lymph nodes, or gastrointestinal tract. Symptoms vary depending on the location of the lesions but often include fever, fatigue, weight loss, and swelling in the legs or abdomen. Treatment options depend on the extent and severity of the disease and may involve local therapies (e.g., radiation, topical treatments), systemic therapies (e.g., chemotherapy, immunotherapy), or a combination of these approaches.

Facial neoplasms refer to abnormal growths or tumors that develop in the tissues of the face. These growths can be benign (non-cancerous) or malignant (cancerous). Facial neoplasms can occur in any of the facial structures, including the skin, muscles, bones, nerves, and glands.

Benign facial neoplasms are typically slow-growing and do not spread to other parts of the body. Examples include papillomas, hemangiomas, and neurofibromas. While these tumors are usually harmless, they can cause cosmetic concerns or interfere with normal facial function.

Malignant facial neoplasms, on the other hand, can be aggressive and invasive. They can spread to other parts of the face, as well as to distant sites in the body. Common types of malignant facial neoplasms include basal cell carcinoma, squamous cell carcinoma, and melanoma.

Treatment for facial neoplasms depends on several factors, including the type, size, location, and stage of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. It is important to seek medical attention promptly if you notice any unusual growths or changes in the skin or tissues of your face.

Sarcoma is a type of cancer that develops from certain types of connective tissue (such as muscle, fat, fibrous tissue, blood vessels, or nerves) found throughout the body. It can occur in any part of the body, but it most commonly occurs in the arms, legs, chest, and abdomen.

Sarcomas are classified into two main groups: bone sarcomas and soft tissue sarcomas. Bone sarcomas develop in the bones, while soft tissue sarcomas develop in the soft tissues of the body, such as muscles, tendons, ligaments, fat, blood vessels, and nerves.

Sarcomas can be further classified into many subtypes based on their specific characteristics, such as the type of tissue they originate from, their genetic makeup, and their appearance under a microscope. The different subtypes of sarcoma have varying symptoms, prognoses, and treatment options.

Overall, sarcomas are relatively rare cancers, accounting for less than 1% of all cancer diagnoses in the United States each year. However, they can be aggressive and may require intensive treatment, such as surgery, radiation therapy, and chemotherapy.

Iris neoplasms refer to abnormal growths or tumors that develop in the iris, which is the colored part of the eye. These neoplasms can be benign (non-cancerous) or malignant (cancerous). Benign iris neoplasms are typically slow-growing and do not spread to other parts of the body. Malignant iris neoplasms, on the other hand, can grow quickly and may spread to other parts of the eye or nearby structures, such as the ciliary body or choroid.

Iris neoplasms can cause various symptoms, including changes in the appearance of the eye, such as a visible mass or discoloration, pain, redness, light sensitivity, blurred vision, or changes in the size or shape of the pupil. The diagnosis of iris neoplasms typically involves a comprehensive eye examination, including a visual acuity test, refraction, slit-lamp examination, and sometimes imaging tests such as ultrasound or optical coherence tomography (OCT).

Treatment options for iris neoplasms depend on the type, size, location, and severity of the tumor. Small, benign iris neoplasms may not require treatment and can be monitored over time. Larger or malignant iris neoplasms may require surgical removal, radiation therapy, or other treatments to prevent complications or spread to other parts of the eye or body. It is essential to seek medical attention promptly if you experience any symptoms of iris neoplasms or notice any changes in your vision or the appearance of your eyes.

Myofibroma is a benign, smooth muscle tumor that can occur in various parts of the body. It primarily affects infants and children, but it can also rarely be found in adults. Myofibromas are typically composed of myofibroblasts, which are cells that have features of both fibroblasts and smooth muscle cells. These tumors can be solitary or multiple and may appear as a single mass or as multiple nodules. They usually occur in the skin, soft tissues, bones, and visceral organs. Myofibromas are generally slow-growing and non-aggressive, and they often regress spontaneously over time. Treatment options include observation, surgical excision, or a combination of both, depending on the location, size, and symptoms associated with the tumor.

Carcinosarcoma is a rare and aggressive type of cancer that occurs when malignant epithelial cells (carcinoma) coexist with malignant mesenchymal cells (sarcoma) in the same tumor. This mixed malignancy can arise in various organs, but it is most commonly found in the female reproductive tract, particularly in the uterus and ovaries.

In a carcinosarcoma, the epithelial component typically forms glands or nests, while the mesenchymal component can differentiate into various tissue types such as bone, cartilage, muscle, or fat. The presence of both malignant components in the same tumor makes carcinosarcomas particularly aggressive and challenging to treat.

Carcinosarcomas are also known by other names, including sarcomatoid carcinoma, spindle cell carcinoma, or pseudosarcoma. The prognosis for patients with carcinosarcoma is generally poor due to its high propensity for local recurrence and distant metastasis. Treatment usually involves a combination of surgery, radiation therapy, and chemotherapy.

A "Plasma Cell Granuloma" is a specific type of granulomatous inflammation that is characterized by the presence of numerous plasma cells. Plasma cells are white blood cells that produce antibodies, which are proteins that help the body fight off infections and diseases. In a Plasma Cell Granuloma, there is an excessive accumulation of these cells, leading to the formation of a nodular lesion or mass.

Plasma Cell Granulomas can occur in various organs, including the skin, lungs, gastrointestinal tract, and oral cavity. They are often associated with chronic inflammation, autoimmune disorders, or malignancies. The exact cause of Plasma Cell Granulomas is not always known, but they may be triggered by infections, foreign bodies, or other stimuli that induce an immune response.

Histologically, a Plasma Cell Granuloma is composed of a central area of plasma cells surrounded by a rim of lymphocytes and macrophages. The lesion may also contain multinucleated giant cells, eosinophils, and other inflammatory cells. Treatment options for Plasma Cell Granulomas depend on the location and extent of the lesion, as well as the underlying cause. Surgical excision is often curative, but medical therapy may be necessary in some cases.

A lipoma is a common, benign (non-cancerous) soft tissue growth. It is composed of adipose or fatty tissue and typically found just beneath the skin, but they can also occur deeper within the body. Lipomas are usually round, moveable, and painless, although they may cause discomfort if they grow large enough to put pressure on nearby nerves or if they're located in a sensitive area. They generally grow slowly over time. Surgical removal is an option if the lipoma becomes bothersome or grows significantly in size. It's important to note that while lipomas are typically harmless, any new lumps or bumps should be evaluated by a healthcare professional to confirm the diagnosis and rule out other more serious conditions.

Anaphase is a stage in the cell division process called mitosis, where sister chromatids (the two copies of each chromosome formed during DNA replication) separate at the centromeres and move toward opposite poles of the cell. This separation is facilitated by the attachment of microtubules from the spindle apparatus to the kinetochores, protein structures located on the centromeres of each sister chromatid. Anaphase is followed by telophase, during which the nuclear membrane reforms around each set of separated chromosomes, and cytokinesis, the division of the cytoplasm to form two separate daughter cells.

Synovial sarcoma is a rare type of cancer that typically develops in the soft tissues surrounding the joints, such as the synovial membrane, which lines the joint capsules. Despite its name, synovial sarcoma does not necessarily arise from the synovium. It is called so due to its resemblance to this tissue under a microscope.

This form of sarcoma primarily affects young adults and can be found in various parts of the body, but it most commonly occurs in the extremities, particularly near the knees. Synovial sarcoma is characterized by specific genetic changes that result in the formation of fusion proteins, which contribute to uncontrolled cell growth and tumor development.

There are two main subtypes of synovial sarcoma: monophasic and biphasic. Monophasic synovial sarcoma is composed of either spindle-shaped (spaghetti-like) cells or epithelioid (roundish) cells, while biphasic synovial sarcoma contains both types of cells. A third subtype, called poorly differentiated synovial sarcoma, has a more aggressive behavior and is composed of small round cells that do not resemble the typical spindle or epithelioid cells.

Treatment for synovial sarcoma usually involves surgical removal of the tumor, often followed by radiation therapy and/or chemotherapy to reduce the risk of recurrence and metastasis. The prognosis varies depending on factors such as the size and location of the tumor, the patient's age, and the presence of metastases at diagnosis.

Kinetochores are specialized protein structures that form on the centromere region of a chromosome. They play a crucial role in the process of cell division, specifically during mitosis and meiosis. The primary function of kinetochores is to connect the chromosomes to the microtubules of the spindle apparatus, which is responsible for separating the sister chromatids during cell division. Through this connection, kinetochores facilitate the movement of chromosomes towards opposite poles of the cell during anaphase, ensuring equal distribution of genetic material to each resulting daughter cell.

Solitary fibrous tumors (SFTs) are rare type of slow-growing neoplasms that typically arise from the pleura, the thin layer of tissue that covers the lungs. However, they can also occur in other locations throughout the body such as the peritoneum, meninges, and deep soft tissues.

SFTs are composed of spindle-shaped cells arranged in a patternless architecture, with a variably collagenous stroma. They are usually well-circumscribed and encapsulated, although they can become invasive in some cases. The cellularity of SFTs varies from low to high, and the tumors can contain staghorn vessels, which are dilated blood vessels with a branching pattern.

The majority of SFTs are benign, but approximately 10-20% of them can be malignant or have aggressive behavior, with potential for local recurrence and distant metastasis. The diagnosis of SFT is usually made by histopathological examination of the tumor tissue, which shows characteristic features such as CD34 and Bcl-2 positivity on immunohistochemistry.

Treatment options for SFTs include surgical resection with wide margins, radiation therapy, and systemic therapy with chemotherapy or targeted agents. The choice of treatment depends on the location, size, and behavior of the tumor, as well as the patient's overall health status. Regular follow-up is necessary to monitor for recurrence or metastasis.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Basal Cell Nevus Syndrome (BCNS), also known as Gorlin-Goltz Syndrome, is a rare genetic disorder that is characterized by the development of multiple basal cell carcinomas (BCCs), which are skin cancer tumors that arise from the basal cells in the outermost layer of the skin.

The syndrome is caused by mutations in the PTCH1 gene, which regulates the hedgehog signaling pathway involved in embryonic development and tissue growth regulation. The condition is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the mutated gene from an affected parent.

Individuals with BCNS typically develop hundreds to thousands of BCCs over their lifetime, often beginning in childhood or adolescence. They may also have other benign and malignant tumors, such as medulloblastomas (brain tumors), fibromas, and rhabdomyosarcomas.

Additional features of BCNS can include:

1. Facial abnormalities, such as a broad nasal bridge, widely spaced eyes, and pits or depressions on the palms and soles.
2. Skeletal abnormalities, such as spine deformities, rib anomalies, and jaw cysts.
3. Developmental delays and intellectual disabilities in some cases.
4. Increased risk of other cancers, including breast, ovarian, and lung cancer.

Early detection and management of BCCs and other tumors are crucial for individuals with BCNS to prevent complications and improve their quality of life. Regular dermatological examinations, sun protection measures, and surgical removal of tumors are common treatment approaches.

A centrosome is a microtubule-organizing center found in animal cells. It consists of two barrel-shaped structures called centrioles, which are surrounded by a protein matrix called the pericentriolar material. The centrosome plays a crucial role in organizing the microtubules that form the cell's cytoskeleton and help to shape the cell, as well as in separating the chromosomes during cell division.

During mitosis, the two centrioles of the centrosome separate and move to opposite poles of the cell, where they nucleate the formation of the spindle fibers that pull the chromosomes apart. The centrosome also helps to ensure that the genetic material is equally distributed between the two resulting daughter cells.

It's worth noting that while centrioles are present in many animal cells, they are not always present in all types of cells. For example, plant cells do not have centrioles or centrosomes, and instead rely on other mechanisms to organize their microtubules.

Vimentin is a type III intermediate filament protein that is expressed in various cell types, including mesenchymal cells, endothelial cells, and hematopoietic cells. It plays a crucial role in maintaining cell structure and integrity by forming part of the cytoskeleton. Vimentin is also involved in various cellular processes such as cell division, motility, and intracellular transport.

In addition to its structural functions, vimentin has been identified as a marker for epithelial-mesenchymal transition (EMT), a process that occurs during embryonic development and cancer metastasis. During EMT, epithelial cells lose their polarity and cell-cell adhesion properties and acquire mesenchymal characteristics, including increased migratory capacity and invasiveness. Vimentin expression is upregulated during EMT, making it a potential target for therapeutic intervention in cancer.

In diagnostic pathology, vimentin immunostaining is used to identify mesenchymal cells and to distinguish them from epithelial cells. It can also be used to diagnose certain types of sarcomas and carcinomas that express vimentin.

Metaphase is a phase in the cell division process (mitosis or meiosis) where the chromosomes align in the middle of the cell, also known as the metaphase plate or equatorial plane. During this stage, each chromosome consists of two sister chromatids attached to each other by a protein complex called the centromere. The spindle fibers from opposite poles of the cell attach to the centromeres of each chromosome, and through a process called congression, they align the chromosomes in the middle of the cell. This alignment allows for accurate segregation of genetic material during the subsequent anaphase stage.

Kinesin is not a medical term per se, but a term from the field of cellular biology. However, understanding how kinesins work is important in the context of medical and cellular research.

Kinesins are a family of motor proteins that play a crucial role in transporting various cargoes within cells, such as vesicles, organelles, and chromosomes. They move along microtubule filaments, using the energy derived from ATP hydrolysis to generate mechanical force and motion. This process is essential for several cellular functions, including intracellular transport, mitosis, and meiosis.

In a medical context, understanding kinesin function can provide insights into various diseases and conditions related to impaired intracellular transport, such as neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease) and certain genetic disorders affecting motor neurons. Research on kinesins can potentially lead to the development of novel therapeutic strategies targeting these conditions.

Leiomyosarcoma is a type of cancer that arises from the smooth muscle cells, which are responsible for the involuntary contractions of various organs and blood vessels. It most commonly occurs in the uterus, soft tissues (such as muscles and fat), and the gastrointestinal tract.

Leiomyosarcomas can vary in their aggressiveness and may spread to other parts of the body (metastasize) through the bloodstream or lymphatic system. The prognosis for leiomyosarcoma depends on several factors, including the location and size of the tumor, the patient's age and overall health, and the extent of metastasis. Treatment typically involves surgical removal of the tumor, along with radiation therapy and/or chemotherapy to help prevent recurrence or spread of the cancer.

The scalp is the anatomical region located at the upper part of the human head, covering the skull except for the face and the ears. It is made up of several layers: the skin, the connective tissue, the galea aponeurotica (a strong, flat, tendinous sheet), loose areolar tissue, and the periosteum (the highly vascularized innermost layer that attaches directly to the skull bones). The scalp has a rich blood supply and is home to numerous sensory receptors, including those for touch, pain, and temperature. It also contains hair follicles, sebaceous glands, and sweat glands.

Dermoscopy, also known as dermatoscopy or epiluminescence microscopy, is a non-invasive diagnostic technique used in dermatology to evaluate skin lesions, such as moles and pigmented skin tumors. This method involves the use of a handheld device called a dermoscope, which consists of a magnifying lens, a light source, and a transparent plate or immersion fluid that allows for better visualization of the skin's surface structures.

Dermoscopy enables dermatologists to examine the pigmented patterns, vascular structures, and other morphological features hidden beneath the skin's surface that are not visible to the naked eye. By observing these details, dermatologists can improve their ability to differentiate between benign and malignant lesions, leading to more accurate diagnoses and appropriate treatment decisions.

The primary uses of dermoscopy include:

1. Early detection and diagnosis of melanoma and other skin cancers, such as basal cell carcinoma and squamous cell carcinoma.
2. Monitoring the evolution of suspicious moles or lesions over time.
3. Assisting in the identification of various benign skin growths, like seborrheic keratoses, dermatofibromas, and nevi (moles).
4. Improving the diagnostic accuracy for infectious skin conditions, inflammatory processes, and other dermatological disorders.

Overall, dermoscopy is a valuable tool in the field of dermatology that enhances the clinician's ability to diagnose and manage various skin conditions accurately and effectively.

Chromosome segregation is the process that occurs during cell division (mitosis or meiosis) where replicated chromosomes are separated and distributed equally into two daughter cells. Each chromosome consists of two sister chromatids, which are identical copies of genetic material. During chromosome segregation, these sister chromatids are pulled apart by a structure called the mitotic spindle and moved to opposite poles of the cell. This ensures that each new cell receives one copy of each chromosome, preserving the correct number and composition of chromosomes in the organism.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

Soft tissue neoplasms refer to abnormal growths or tumors that develop in the soft tissues of the body. Soft tissues include muscles, tendons, ligaments, fascia, nerves, blood vessels, fat, and synovial membranes (the thin layer of cells that line joints and tendons). Neoplasms can be benign (non-cancerous) or malignant (cancerous), and their behavior and potential for spread depend on the specific type of neoplasm.

Benign soft tissue neoplasms are typically slow-growing, well-circumscribed, and rarely spread to other parts of the body. They can often be removed surgically with a low risk of recurrence. Examples of benign soft tissue neoplasms include lipomas (fat tumors), schwannomas (nerve sheath tumors), and hemangiomas (blood vessel tumors).

Malignant soft tissue neoplasms, on the other hand, can grow rapidly, invade surrounding tissues, and may metastasize (spread) to distant parts of the body. They are often more difficult to treat than benign neoplasms and require a multidisciplinary approach, including surgery, radiation therapy, and chemotherapy. Examples of malignant soft tissue neoplasms include sarcomas, such as rhabdomyosarcoma (arising from skeletal muscle), leiomyosarcoma (arising from smooth muscle), and angiosarcoma (arising from blood vessels).

It is important to note that soft tissue neoplasms can occur in any part of the body, and their diagnosis and treatment require a thorough evaluation by a healthcare professional with expertise in this area.

Neoplasms of fibrous tissue are abnormal growths or tumors that originate from fibroblasts, the cells responsible for producing connective tissue in the body. These neoplasms can be benign or malignant (cancerous). Benign fibrous neoplasms include fibromas and fibrohistiocytic tumors, while malignant fibrous neoplasms are called fibrosarcomas. Fibrosarcomas are aggressive tumors that invade surrounding tissues and can metastasize (spread) to other parts of the body.

Fibrous tissue neoplasms can occur in any part of the body, but they are most commonly found in the soft tissues such as muscles, tendons, and ligaments. They can also develop in bones, where they are called osteosarcomas. Symptoms of fibrous tissue neoplasms depend on their size and location, but may include a painless mass or swelling, limited mobility, or pain if the tumor is pressing on nerves or blood vessels.

Diagnosis of fibrous tissue neoplasms typically involves imaging tests such as X-rays, CT scans, or MRI scans, followed by a biopsy to confirm the type and grade of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is important to monitor for recurrence or metastasis.

A neurilemmoma, also known as schwannoma or peripheral nerve sheath tumor, is a benign, slow-growing tumor that arises from the Schwann cells, which produce the myelin sheath that surrounds and insulates peripheral nerves. These tumors can occur anywhere along the course of a peripheral nerve, but they most commonly affect the acoustic nerve (vestibulocochlear nerve), leading to a type of tumor called vestibular schwannoma or acoustic neuroma. Neurilemmomas are typically encapsulated and do not invade the surrounding tissue, although larger ones may cause pressure-related symptoms due to compression of nearby structures. Rarely, these tumors can undergo malignant transformation, leading to a condition called malignant peripheral nerve sheath tumor or neurofibrosarcoma.

Tubulin is a type of protein that forms microtubules, which are hollow cylindrical structures involved in the cell's cytoskeleton. These structures play important roles in various cellular processes, including maintaining cell shape, cell division, and intracellular transport. There are two main types of tubulin proteins: alpha-tubulin and beta-tubulin. They polymerize to form heterodimers, which then assemble into microtubules. The assembly and disassembly of microtubules are dynamic processes that are regulated by various factors, including GTP hydrolysis, motor proteins, and microtubule-associated proteins (MAPs). Tubulin is an essential component of the eukaryotic cell and has been a target for anti-cancer drugs such as taxanes and vinca alkaloids.

Pulmonary plasma cell granuloma is a benign lung lesion characterized by the accumulation of plasma cells and the formation of granulomas. It is also known as inflammatory pseudotumor or plasma cell histiocytoma. The etiology of pulmonary plasma cell granuloma remains unclear, but it is thought to be related to a chronic inflammatory response or an abnormal immune reaction.

The lesion typically consists of a mass or nodule in the lung tissue, which may be discovered incidentally on chest imaging. Symptoms, if present, may include cough, chest pain, and shortness of breath. The diagnosis is usually made by histopathological examination of a biopsy specimen, which shows a mixture of plasma cells, lymphocytes, and histiocytes, with the formation of granulomas.

Treatment is generally not necessary unless the lesion is causing symptoms or growing in size. In such cases, surgical resection may be recommended. The prognosis is excellent, with a low risk of recurrence after surgical removal.

The Mad2 (Mitotic Arrest Deficient 2) proteins are a part of the spindle assembly checkpoint (SAC), which is a crucial surveillance mechanism that ensures accurate chromosome segregation during cell division. The primary function of Mad2 proteins is to prevent the onset of anaphase until all chromosomes have achieved proper attachment and tension on the mitotic spindle.

Mad2 proteins exist in two major conformational states: open (O-Mad2) and closed (C-Mad2). The transition between these two forms plays a critical role in the regulation of the SAC. In response to unattached kinetochores, Mad2 proteins bind to and inhibit the anaphase-promoting complex/cyclosome (APC/C), thereby preventing premature chromosome separation.

There are two main isoforms of Mad2 in humans: Mad2L1 (Mad2A) and Mad2L2 (Mad2B). While both isoforms share similar functions, they exhibit distinct biochemical properties and interact with other SAC components differently. Dysregulation of the Mad2 proteins has been implicated in various diseases, including cancer and neurological disorders.

Peripheral nervous system (PNS) neoplasms refer to tumors that originate in the peripheral nerves, which are the nerves outside the brain and spinal cord. These tumors can be benign or malignant (cancerous). Benign tumors, such as schwannomas and neurofibromas, grow slowly and do not spread to other parts of the body. Malignant tumors, such as malignant peripheral nerve sheath tumors (MPNSTs), can invade nearby tissues and may metastasize (spread) to other organs.

PNS neoplasms can cause various symptoms depending on their location and size. Common symptoms include pain, weakness, numbness, or tingling in the affected area. In some cases, PNS neoplasms may not cause any symptoms until they become quite large. Treatment options for PNS neoplasms depend on several factors, including the type, size, and location of the tumor, as well as the patient's overall health. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Gastrointestinal Stromal Tumors (GISTs) are rare, but potentially aggressive neoplasms that arise from the interstitial cells of Cajal or their precursors in the gastrointestinal tract. These tumors can be found anywhere along the digestive tract, including the stomach, small intestine, colon, and rectum. They are usually characterized by the presence of specific genetic mutations, most commonly involving the KIT (CD117) or PDGFRA genes. GISTs can vary in size and may present with a range of symptoms, such as abdominal pain, bleeding, or obstruction, depending on their location and size. Treatment typically involves surgical resection, and in some cases, targeted therapy with kinase inhibitors.

Carcinoma is a type of cancer that develops from epithelial cells, which are the cells that line the inner and outer surfaces of the body. These cells cover organs, glands, and other structures within the body. Carcinomas can occur in various parts of the body, including the skin, lungs, breasts, prostate, colon, and pancreas. They are often characterized by the uncontrolled growth and division of abnormal cells that can invade surrounding tissues and spread to other parts of the body through a process called metastasis. Carcinomas can be further classified based on their appearance under a microscope, such as adenocarcinoma, squamous cell carcinoma, and basal cell carcinoma.

Hemangioendothelioma is a rare type of vascular tumor, which means it arises from the endothelial cells that line the blood vessels. It can occur in various parts of the body, but it most commonly involves the soft tissues and bones. Hemangioendotheliomas are often classified as borderline malignant tumors because they can behave either indolently (like a benign tumor) or aggressively (like a malignant tumor), depending on their specific type and location.

There are several subtypes of hemangioendothelioma, including:

1. Epithelioid hemangioendothelioma: This subtype typically affects young adults and can involve various organs, such as the liver, lungs, or soft tissues. It tends to have a more indolent course but can metastasize in some cases.
2. Kaposiform hemangioendothelioma: This is an aggressive subtype that usually occurs in infants and children. It often involves the skin and soft tissues, causing local invasion and consumptive coagulopathy (Kasabach-Merritt phenomenon).
3. Retiform hemangioendothelioma: A rare and low-grade malignant tumor that typically affects the skin and subcutaneous tissue of adults. It has a favorable prognosis with a low risk of metastasis.
4. Papillary intralymphatic angioendothelioma (PILA): This is a rare, slow-growing tumor that usually occurs in the head and neck region of children and young adults. It has an excellent prognosis with no reported cases of metastasis or recurrence after complete surgical resection.

Treatment for hemangioendotheliomas typically involves surgical excision when possible. Other treatment options, such as radiation therapy, chemotherapy, or targeted therapies, may be considered depending on the tumor's location, size, and behavior. Regular follow-up is essential to monitor for potential recurrence or metastasis.

A fibroma is a benign (non-cancerous) tumor that consists primarily of fibrous or connective tissue. It can occur in various parts of the body, including the skin, mouth, and internal organs. The term "fibroma" is often used to describe any benign fibrous growth, but there are specific types of fibromas such as dermatofibroma (found in the skin), oral fibroma (found in the mouth), and benign fibrous histiocytoma (found in soft tissues).

It's important to note that while fibromas are generally harmless, they can cause discomfort or problems depending on their size and location. If a fibroma is causing issues or there's concern about its growth or malignancy, it should be evaluated by a healthcare professional for potential removal or further assessment.

A hamartoma is a benign tumor-like growth that is composed of an unusual mixture of cells and tissues that are normally found in the affected area. These growths can occur anywhere in the body, but they are most commonly found in the skin, lungs, and brain. Hamartomas are typically slow growing and do not spread to other parts of the body (metastasize). They are usually harmless, but in some cases, they may cause symptoms or complications depending on their size and location. In general, hamartomas do not require treatment unless they are causing problems.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

I'm sorry for any confusion, but "hair color" is not a term that has a medical definition in the same way that a term like "myocardial infarction" (heart attack) does. Hair color can be described in various ways, such as being a natural hair color (like blonde, brunette, red, or black) or describing a change in hair color due to factors like aging (gray or white hairs) or hair dye usage.

However, it's worth noting that changes in hair color can sometimes be associated with certain medical conditions. For example, premature graying of the hair before the age of 30 can be a feature of certain genetic disorders or vitamin B12 deficiency. Similarly, some skin conditions like alopecia areata or vitiligo can cause patchy changes in hair color. But these associations don't provide a medical definition for 'hair color'.

Conjunctival neoplasms refer to abnormal growths or tumors that develop on the conjunctiva, which is the thin, clear mucous membrane that covers the inner surface of the eyelids and the outer surface of the eye. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign conjunctival neoplasms are typically slow-growing and do not spread to other parts of the body. They may include lesions such as conjunctival cysts, papillomas, or naevi (moles). These growths can usually be removed through simple surgical procedures with a good prognosis.

Malignant conjunctival neoplasms, on the other hand, are cancerous and have the potential to invade surrounding tissues and spread to other parts of the body. The most common type of malignant conjunctival neoplasm is squamous cell carcinoma, which arises from the epithelial cells that line the surface of the conjunctiva. Other less common types include melanoma, lymphoma, and adenocarcinoma.

Malignant conjunctival neoplasms typically require more extensive treatment, such as surgical excision, radiation therapy, or chemotherapy. The prognosis for malignant conjunctival neoplasms depends on the type and stage of the cancer at the time of diagnosis, as well as the patient's overall health and age. Early detection and prompt treatment are key to improving outcomes in patients with these conditions.

Hemangiopericytoma is a rare type of soft tissue sarcoma, which is a cancer that develops from the cells that surround blood vessels. It specifically arises from the pericytes, which are cells that help regulate blood flow in capillaries. Hemangiopericytomas typically form in the membranes surrounding the brain and spinal cord (meninges), but they can also occur in other parts of the body such as the lungs, abdomen, or extremities.

These tumors usually grow slowly, but they can become aggressive and spread to other parts of the body (metastasize). Symptoms depend on the location of the tumor, but may include headaches, seizures, weakness, or numbness in the arms or legs. Diagnosis typically involves imaging tests like MRI or CT scans, followed by a biopsy to confirm the presence of cancer cells. Treatment usually consists of surgical removal of the tumor, often accompanied by radiation therapy and/or chemotherapy to help prevent recurrence or spread of the disease.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

Medical Definition of "Herpesvirus 8, Human" (HHV-8):

Human Herpesvirus 8 (HHV-8), also known as Kaposi's Sarcoma-associated Herpesvirus (KSHV), is a DNA virus from the family of Herpesviridae. It is the causative agent of several malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). HHV-8 is primarily transmitted through saliva, sexual contact, or organ transplantation. In immunocompromised individuals, such as those with HIV/AIDS, the risk of HHV-8-associated malignancies significantly increases. The virus establishes latency in infected cells and can periodically reactivate, causing inflammation and potentially leading to the development of cancer.

Nocodazole is not a medical condition or disease, but rather a pharmacological agent used in medical research and clinical settings. It's a synthetic chemical compound that belongs to the class of drugs known as microtubule inhibitors. Nocodazole works by binding to and disrupting the dynamic assembly and disassembly of microtubules, which are important components of the cell's cytoskeleton and play a critical role in cell division.

Nocodazole is primarily used in research settings as a tool for studying cell biology and mitosis, the process by which cells divide. It can be used to synchronize cells in the cell cycle or to induce mitotic arrest, making it useful for investigating various aspects of cell division and chromosome behavior.

In clinical settings, nocodazole has been used off-label as a component of some cancer treatment regimens, particularly in combination with other chemotherapeutic agents. Its ability to disrupt microtubules can interfere with the proliferation of cancer cells and enhance the effectiveness of certain anti-cancer drugs. However, its use is not widespread due to potential side effects and the availability of alternative treatments.

S100 proteins are a family of calcium-binding proteins that are involved in the regulation of various cellular processes, including cell growth and differentiation, intracellular signaling, and inflammation. They are found in high concentrations in certain types of cells, such as nerve cells (neurons), glial cells (supporting cells in the nervous system), and skin cells (keratinocytes).

The S100 protein family consists of more than 20 members, which are divided into several subfamilies based on their structural similarities. Some of the well-known members of this family include S100A1, S100B, S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9).

Abnormal expression or regulation of S100 proteins has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and inflammatory disorders. For example, increased levels of S100B have been found in the brains of patients with Alzheimer's disease, while overexpression of S100A8 and S100A9 has been associated with the development and progression of certain types of cancer.

Therefore, understanding the functions and regulation of S100 proteins is important for developing new diagnostic and therapeutic strategies for various diseases.

Benign fibrous histiocytoma (BFH) is a common benign tumor of the skin and superficial soft tissues. It primarily affects middle-aged adults and is more prevalent in men than women. The exact cause of BFH is unknown, but it's thought to arise from dermal fibroblasts or histiocytes.

Medical Definition: Benign Fibrous Histiocytoma (BFH) is a benign, slowly growing, solitary cutaneous or subcutaneous nodular tumor predominantly composed of a mixture of fibroblastic and histiocytic-like cells. The tumor typically presents as a well-circumscribed, firm, dome-shaped papule or nodule, ranging in size from a few millimeters to several centimeters. Histologically, BFH is characterized by the proliferation of spindle-shaped fibroblasts and histiocytes arranged in a storiform pattern, along with variable amounts of collagen deposition, multinucleated giant cells, and hemosiderin deposits. The lesion usually has a pushing border with no invasion into the surrounding tissues. BFH generally follows a benign clinical course, with local recurrence being uncommon following complete surgical excision.

Aurora kinases are a family of serine/threonine protein kinases that play crucial roles in the regulation of cell division. There are three members of the Aurora kinase family, designated as Aurora A, Aurora B, and Aurora C. These kinases are involved in the proper separation of chromosomes during mitosis and meiosis, and their dysregulation has been implicated in various types of cancer.

Aurora A is primarily located at the centrosomes and spindle poles during cell division, where it regulates centrosome maturation, bipolar spindle formation, and chromosome segregation. Aurora B, on the other hand, is a component of the chromosomal passenger complex (CPC) that localizes to the centromeres during prophase and moves to the spindle midzone during anaphase. It plays essential roles in kinetochore-microtubule attachment, chromosome alignment, and cytokinesis. Aurora C is most similar to Aurora B and appears to have overlapping functions with it, although its specific roles are less well understood.

Dysregulation of Aurora kinases has been associated with various types of cancer, including breast, ovarian, colon, and lung cancers. Overexpression or amplification of Aurora A is observed in many cancers, leading to chromosomal instability and aneuploidy. Inhibition of Aurora kinases has emerged as a potential therapeutic strategy for cancer treatment, with several small molecule inhibitors currently under investigation in clinical trials.

A "mixed tumor, malignant" is a rare and aggressive type of cancer that contains two or more different types of malignant tissue. It is also known as a "malignant mixed Mullerian tumor" (MMMT) or "carcinosarcoma." This type of tumor most commonly arises in the female reproductive organs, such as the uterus or ovaries, but can also occur in other parts of the body.

The malignant mixed Mullerian tumor is composed of both epithelial and mesenchymal components, which are two different types of tissue. The epithelial component is made up of cancerous glandular or squamous cells, while the mesenchymal component consists of cancerous connective tissue, such as muscle, fat, or bone.

Mixed tumors, malignant can be aggressive and have a high risk of recurrence and metastasis. Treatment typically involves surgical removal of the tumor, followed by radiation therapy and/or chemotherapy to kill any remaining cancer cells. The prognosis for mixed tumors, malignant varies depending on several factors, including the size and location of the tumor, the stage of the disease at diagnosis, and the patient's overall health.

Choroid neoplasms are abnormal growths that develop in the choroid, a layer of blood vessels that lies between the retina and the sclera (the white of the eye). These growths can be benign or malignant (cancerous). Benign choroid neoplasms include choroidal hemangiomas and choroidal osteomas. Malignant choroid neoplasms are typically choroidal melanomas, which are the most common primary eye tumors in adults. Other types of malignant choroid neoplasms include metastatic tumors that have spread to the eye from other parts of the body. Symptoms of choroid neoplasms can vary depending on the size and location of the growth, but may include blurred vision, floaters, or a dark spot in the visual field. Treatment options depend on the type, size, and location of the tumor, as well as the patient's overall health and personal preferences.

A lentigo is a small, sharply defined, pigmented macule (flat spot) on the skin. It's usually tan, brown, or black and can appear on various parts of the body, particularly where the skin has been exposed to the sun. Lentigos are typically harmless and don't require treatment unless they're uncomfortable or for cosmetic reasons. However, some types of lentigines, such as lentigo maligna, can progress into melanoma, a type of skin cancer, so regular self-examinations and professional skin checks are important.

It is essential to differentiate between simple lentigos and lentigo maligna, which is a precancerous lesion. Lentigo maligna tends to occur in older individuals, often on the face, and can appear as a large, irregularly shaped, and darkly pigmented patch. A dermatologist should evaluate any suspicious or changing skin spots for proper diagnosis and treatment.

Nuclear matrix-associated proteins (NMAPs) are a group of structural and functional proteins that are associated with the nuclear matrix, a network of fibers within the nucleus of a eukaryotic cell. The nuclear matrix provides support to the nuclear envelope and plays a role in DNA replication, transcription, and repair. NMAPs can be categorized into several groups based on their functions, including:

1. Scaffold proteins: These proteins provide structural support to the nuclear matrix and help maintain its architecture.
2. Enzymes: These proteins are involved in various biochemical reactions, such as DNA replication and repair, RNA processing, and chromatin remodeling.
3. Transcription factors: These proteins regulate gene expression by binding to specific DNA sequences and interacting with the transcription machinery.
4. Chromatin-associated proteins: These proteins are involved in the organization and regulation of chromatin structure and function.
5. Signal transduction proteins: These proteins transmit signals from the extracellular environment to the nucleus, regulating gene expression and other nuclear functions.

NMAPs have been implicated in various cellular processes, including cell cycle regulation, differentiation, apoptosis, and oncogenesis. Therefore, understanding the structure and function of NMAPs is crucial for elucidating the mechanisms underlying these processes and developing novel therapeutic strategies for various diseases, including cancer.

Amelanotic melanoma is a type of melanoma, which is the most serious and deadly form of skin cancer. While most melanomas contain dark pigments called melanin, amelanotic melanomas lack melanin, giving them a pink, red, or white color. This absence of color can make amelanotic melanomas harder to detect and diagnose at an early stage compared to other types of melanoma.

Amelanotic melanomas may arise from existing moles or develop on their own in normal skin. They can occur anywhere on the body, but they are more common in sun-exposed areas such as the head, neck, and trunk.

Like other forms of melanoma, amelanotic melanoma can spread quickly to other parts of the body if left untreated. Therefore, it is essential to recognize any changes in the skin and consult a healthcare professional for proper evaluation and diagnosis. Treatment typically involves surgical excision, with additional therapies such as radiation therapy, immunotherapy, or targeted therapy recommended depending on the stage and specific features of the cancer.

Chromosomes are thread-like structures that exist in the nucleus of cells, carrying genetic information in the form of genes. They are composed of DNA and proteins, and are typically present in pairs in the nucleus, with one set inherited from each parent. In humans, there are 23 pairs of chromosomes for a total of 46 chromosomes. Chromosomes come in different shapes and forms, including sex chromosomes (X and Y) that determine the biological sex of an individual. Changes or abnormalities in the number or structure of chromosomes can lead to genetic disorders and diseases.

Keratins are a type of fibrous structural proteins that constitute the main component of the integumentary system, which includes the hair, nails, and skin of vertebrates. They are also found in other tissues such as horns, hooves, feathers, and reptilian scales. Keratins are insoluble proteins that provide strength, rigidity, and protection to these structures.

Keratins are classified into two types: soft keratins (Type I) and hard keratins (Type II). Soft keratins are found in the skin and simple epithelial tissues, while hard keratins are present in structures like hair, nails, horns, and hooves.

Keratin proteins have a complex structure consisting of several domains, including an alpha-helical domain, beta-pleated sheet domain, and a non-repetitive domain. These domains provide keratin with its unique properties, such as resistance to heat, chemicals, and mechanical stress.

In summary, keratins are fibrous structural proteins that play a crucial role in providing strength, rigidity, and protection to various tissues in the body.

Fasciitis is a medical condition characterized by inflammation or irritation of the fascia, which are the bands of connective tissue that surround muscles, tendons, and bones in the body. The most common type of fasciitis is plantar fasciitis, which affects the fascia on the bottom of the foot and can cause heel pain. Other types of fasciitis include:

* Achilles tendonitis or Achilles tendinopathy, which affects the fascia that connects the calf muscle to the heel bone
* Shin splints, which affect the fascia that covers the front of the lower leg
* Necrotizing fasciitis, a rare and serious bacterial infection that can cause extensive tissue damage and is potentially life-threatening.

The symptoms of fasciitis may include pain, stiffness, or tenderness in the affected area, especially after prolonged periods of rest or physical activity. Treatment for fasciitis typically involves rest, ice, compression, and elevation (RICE) of the affected area, as well as physical therapy exercises to stretch and strengthen the fascia and surrounding muscles. In some cases, medication or surgery may be necessary to relieve symptoms and promote healing.

Eye neoplasms, also known as ocular tumors or eye cancer, refer to abnormal growths of tissue in the eye. These growths can be benign (non-cancerous) or malignant (cancerous). Eye neoplasms can develop in various parts of the eye, including the eyelid, conjunctiva, cornea, iris, ciliary body, choroid, retina, and optic nerve.

Benign eye neoplasms are typically slow-growing and do not spread to other parts of the body. They may cause symptoms such as vision changes, eye pain, or a noticeable mass in the eye. Treatment options for benign eye neoplasms include monitoring, surgical removal, or radiation therapy.

Malignant eye neoplasms, on the other hand, can grow and spread rapidly to other parts of the body. They may cause symptoms such as vision changes, eye pain, floaters, or flashes of light. Treatment options for malignant eye neoplasms depend on the type and stage of cancer but may include surgery, radiation therapy, chemotherapy, or a combination of these treatments.

It is important to note that early detection and treatment of eye neoplasms can improve outcomes and prevent complications. Regular eye exams with an ophthalmologist are recommended for early detection and prevention of eye diseases, including eye neoplasms.

Mesenchymoma is a very rare type of tumor that contains a mixture of different types of mesenchymal tissues, such as muscle, fat, bone, cartilage, or fibrous tissue. It typically occurs in children and young adults, and can be found in various parts of the body, including the head, neck, retroperitoneum (the area behind the abdominal cavity), and the limbs.

Mesenchymomas are usually slow-growing and may not cause any symptoms until they reach a large size. Treatment typically involves surgical removal of the tumor, but radiation therapy or chemotherapy may also be used in some cases. The prognosis for mesenchymoma depends on several factors, including the location and size of the tumor, the patient's age and overall health, and the specific types of tissue that are present in the tumor.

Multiple primary neoplasms refer to the occurrence of more than one primary malignant tumor in an individual, where each tumor is unrelated to the other and originates from separate cells or organs. This differs from metastatic cancer, where a single malignancy spreads to multiple sites in the body. Multiple primary neoplasms can be synchronous (occurring at the same time) or metachronous (occurring at different times). The risk of developing multiple primary neoplasms increases with age and is associated with certain genetic predispositions, environmental factors, and lifestyle choices such as smoking and alcohol consumption.

Tumor markers are substances that can be found in the body and their presence can indicate the presence of certain types of cancer or other conditions. Biological tumor markers refer to those substances that are produced by cancer cells or by other cells in response to cancer or certain benign (non-cancerous) conditions. These markers can be found in various bodily fluids such as blood, urine, or tissue samples.

Examples of biological tumor markers include:

1. Proteins: Some tumor markers are proteins that are produced by cancer cells or by other cells in response to the presence of cancer. For example, prostate-specific antigen (PSA) is a protein produced by normal prostate cells and in higher amounts by prostate cancer cells.
2. Genetic material: Tumor markers can also include genetic material such as DNA, RNA, or microRNA that are shed by cancer cells into bodily fluids. For example, circulating tumor DNA (ctDNA) is genetic material from cancer cells that can be found in the bloodstream.
3. Metabolites: Tumor markers can also include metabolic products produced by cancer cells or by other cells in response to cancer. For example, lactate dehydrogenase (LDH) is an enzyme that is released into the bloodstream when cancer cells break down glucose for energy.

It's important to note that tumor markers are not specific to cancer and can be elevated in non-cancerous conditions as well. Therefore, they should not be used alone to diagnose cancer but rather as a tool in conjunction with other diagnostic tests and clinical evaluations.

Desmin is a type of intermediate filament protein that is primarily found in the cardiac and skeletal muscle cells, as well as in some types of smooth muscle cells. It is an important component of the cytoskeleton, which provides structural support to the cell and helps maintain its shape. Desmin plays a crucial role in maintaining the integrity of the sarcomere, which is the basic contractile unit of the muscle fiber. Mutations in the desmin gene can lead to various forms of muscular dystrophy and other inherited muscle disorders.

Neoplasms are abnormal growths of cells or tissues in the body that can be benign (non-cancerous) or malignant (cancerous). When referring to "Complex and Mixed Neoplasms," it is typically used in the context of histopathology, where it describes tumors with a mixture of different types of cells or growth patterns.

A complex neoplasm usually contains areas with various architectural patterns, cell types, or both, making its classification challenging. It may require extensive sampling and careful examination to determine its nature and behavior. These neoplasms can be either benign or malignant, depending on the specific characteristics of the tumor cells and their growth pattern.

A mixed neoplasm, on the other hand, is a tumor that contains more than one type of cell or tissue component, often arising from different germ layers (the three primary layers of embryonic development: ectoderm, mesoderm, and endoderm). A common example of a mixed neoplasm is a teratoma, which can contain tissues derived from all three germ layers, such as skin, hair, teeth, bone, and muscle. Mixed neoplasms can also be benign or malignant, depending on the specific components of the tumor.

It's important to note that the classification and behavior of complex and mixed neoplasms can vary significantly based on their location in the body, cellular composition, and other factors. Accurate diagnosis typically requires a thorough examination by an experienced pathologist and may involve additional tests, such as immunohistochemistry or molecular analysis, to determine the appropriate treatment and management strategies.

M Phase cell cycle checkpoints are control mechanisms that ensure the proper completion of the M phase (mitosis or meiosis) of the cell cycle. These checkpoints verify that certain conditions are met before the cell proceeds to the next phase of the cell cycle, thus helping to maintain genomic stability and prevent errors such as chromosomal mutations or aneuploidy.

There are two main M Phase cell cycle checkpoints:

1. The G2/M Checkpoint: This checkpoint is activated at the end of the G2 phase and verifies that all DNA has been replicated accurately, and that there are no DNA damages or other issues that could interfere with mitosis. If any problems are detected, the cell cycle is halted until they can be resolved.
2. The Mitotic Spindle Checkpoint: This checkpoint ensures that all chromosomes have attached properly to the spindle apparatus and that they will be equally distributed to the two resulting daughter cells during mitosis. If any chromosomes are not properly attached or if there is an issue with the spindle apparatus, the cell cycle is paused until these problems are corrected.

These checkpoints play a crucial role in maintaining genomic stability and preventing the development of cancer and other diseases.

Uveal neoplasms refer to tumors that originate in the uveal tract, which is the middle layer of the eye. The uveal tract includes the iris (the colored part of the eye), ciliary body (structures behind the iris that help focus light), and choroid (a layer of blood vessels that provides nutrients to the retina). Uveal neoplasms can be benign or malignant, with malignant uveal melanoma being the most common primary intraocular cancer in adults. These tumors can cause various symptoms, such as visual disturbances, eye pain, or floaters, and may require treatment to preserve vision and prevent metastasis.

There is no medical definition for "dog diseases" as it is too broad a term. However, dogs can suffer from various health conditions and illnesses that are specific to their species or similar to those found in humans. Some common categories of dog diseases include:

1. Infectious Diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include distemper, parvovirus, kennel cough, Lyme disease, and heartworms.
2. Hereditary/Genetic Disorders: Some dogs may inherit certain genetic disorders from their parents. Examples include hip dysplasia, elbow dysplasia, progressive retinal atrophy (PRA), and degenerative myelopathy.
3. Age-Related Diseases: As dogs age, they become more susceptible to various health issues. Common age-related diseases in dogs include arthritis, dental disease, cancer, and cognitive dysfunction syndrome (CDS).
4. Nutritional Disorders: Malnutrition or improper feeding can lead to various health problems in dogs. Examples include obesity, malnutrition, and vitamin deficiencies.
5. Environmental Diseases: These are caused by exposure to environmental factors such as toxins, allergens, or extreme temperatures. Examples include heatstroke, frostbite, and toxicities from ingesting harmful substances.
6. Neurological Disorders: Dogs can suffer from various neurological conditions that affect their nervous system. Examples include epilepsy, intervertebral disc disease (IVDD), and vestibular disease.
7. Behavioral Disorders: Some dogs may develop behavioral issues due to various factors such as anxiety, fear, or aggression. Examples include separation anxiety, noise phobias, and resource guarding.

It's important to note that regular veterinary care, proper nutrition, exercise, and preventative measures can help reduce the risk of many dog diseases.

Angiofibroma is a benign tumor that most commonly occurs in the nasopharynx (the upper part of the throat behind the nose) in adolescents and young adults, particularly males. It is composed of blood vessels and fibrous tissue. Angiofibromas are also known as juvenile nasopharyngeal angiofibromas because they often occur in young people and originate in the nasopharynx.

These tumors can cause symptoms such as nosebleeds, nasal congestion, and difficulty breathing through the nose. In some cases, they may also cause hearing problems or double vision. Angiofibromas are typically treated with surgery to remove the tumor. Radiation therapy may also be used in some cases.

It is important to note that angiofibroma is a specific type of tumor that has distinct characteristics and is treated differently from other types of tumors. If you have any concerns about this condition or if you are experiencing symptoms that you think may be related to an angiofibroma, it is important to consult with a healthcare professional for proper diagnosis and treatment.

Dyneins are a type of motor protein that play an essential role in the movement of cellular components and structures within eukaryotic cells. They are responsible for generating force and motion along microtubules, which are critical components of the cell's cytoskeleton. Dyneins are involved in various cellular processes, including intracellular transport, organelle positioning, and cell division.

There are several types of dyneins, but the two main categories are cytoplasmic dyneins and axonemal dyneins. Cytoplasmic dyneins are responsible for moving various cargoes, such as vesicles, organelles, and mRNA complexes, toward the minus-end of microtubules, which is usually located near the cell center. Axonemal dyneins, on the other hand, are found in cilia and flagella and are responsible for their movement by sliding adjacent microtubules past each other.

Dyneins consist of multiple subunits, including heavy chains, intermediate chains, light-intermediate chains, and light chains. The heavy chains contain the motor domain that binds to microtubules and hydrolyzes ATP to generate force. Dysfunction in dynein proteins has been linked to various human diseases, such as neurodevelopmental disorders, ciliopathies, and cancer.

Liposarcoma is a type of soft tissue sarcoma, which is a cancer that develops in the soft tissues of the body, such as fat, muscle, nerves, blood vessels, and fibrous tissues. Specifically, liposarcoma arises from fat cells (adipocytes) or their precursors.

There are several subtypes of liposarcoma, which differ in their appearance under the microscope, genetic features, and clinical behavior. These include well-differentiated, dedifferentiated, myxoid, round cell, and pleomorphic liposarcomas. The most common sites for liposarcoma are the thigh, retroperitoneum (the area behind the abdominal cavity), and the buttock.

Liposarcomas can grow slowly or rapidly, and they may spread to other parts of the body (metastasize) through the bloodstream or lymphatic system. Treatment typically involves surgical removal of the tumor, often followed by radiation therapy and/or chemotherapy. The prognosis for liposarcoma depends on several factors, including the type and grade of the tumor, its size and location, and whether it has spread to other parts of the body.

Epithelioid cells are a type of cell that can be found in certain types of tissue in the body, including connective tissue and some organs. These cells have a characteristic appearance under a microscope, with an enlarged, oval or round shape and a pale, abundant cytoplasm. They may also have a nucleus that is centrally located and has a uniform, rounded shape.

Epithelioid cells are often seen in the context of inflammation or disease, particularly in relation to granulomatous disorders such as sarcoidosis and tuberculosis. In these conditions, epithelioid cells can form clusters known as granulomas, which are a hallmark of the diseases. The exact function of epithelioid cells is not fully understood, but they are thought to play a role in the immune response and may help to contain and eliminate foreign substances or pathogens from the body.

Myoepithelioma is a very rare, benign (non-cancerous) tumor that arises from the myoepithelial cells, which are found in various glands throughout the body, including salivary glands, sweat glands, and mammary glands. These tumors typically appear as slow-growing, painless masses. While they are usually benign, some myoepitheliomas can become malignant (cancerous) and invasive, leading to more serious health concerns. Treatment for myoepithelioma typically involves surgical removal of the tumor.

Telophase is a phase in the cell division process (mitosis or meiosis) where the chromosomes reach their most condensed form and move to the poles of the cell. The nuclear membrane begins to reform around each set of chromosomes, and the spindle fibers that were used to separate the chromosomes break down. This phase is followed by cytokinesis, where the cytoplasm of the cell divides, resulting in two separate daughter cells. In telophase I of meiosis, crossing over between homologous chromosomes has already occurred during prophase I and sister chromatids remain together until anaphase II.

Adenocarcinoma, mucinous is a type of cancer that begins in the glandular cells that line certain organs and produce mucin, a substance that lubricates and protects tissues. This type of cancer is characterized by the presence of abundant pools of mucin within the tumor. It typically develops in organs such as the colon, rectum, lungs, pancreas, and ovaries.

Mucinous adenocarcinomas tend to have a distinct appearance under the microscope, with large pools of mucin pushing aside the cancer cells. They may also have a different clinical behavior compared to other types of adenocarcinomas, such as being more aggressive or having a worse prognosis in some cases.

It is important to note that while a diagnosis of adenocarcinoma, mucinous can be serious, the prognosis and treatment options may vary depending on several factors, including the location of the cancer, the stage at which it was diagnosed, and the individual's overall health.

Nerve sheath neoplasms are a group of tumors that arise from the cells surrounding and supporting the nerves. These tumors can be benign or malignant and include schwannomas, neurofibromas, and malignant peripheral nerve sheath tumors (MPNSTs). Schwannomas develop from the Schwann cells that produce the myelin sheath of the nerve, while neurofibromas arise from the nerve's supporting cells called fibroblasts. MPNSTs are cancerous tumors that can grow rapidly and invade surrounding tissues. Nerve sheath neoplasms can cause various symptoms depending on their location and size, including pain, numbness, weakness, or paralysis in the affected area.

Metaplasia is a term used in pathology to describe the replacement of one differentiated cell type with another differentiated cell type within a tissue or organ. It is an adaptive response of epithelial cells to chronic irritation, inflammation, or injury and can be reversible if the damaging stimulus is removed. Metaplastic changes are often associated with an increased risk of cancer development in the affected area.

For example, in the case of gastroesophageal reflux disease (GERD), chronic exposure to stomach acid can lead to metaplasia of the esophageal squamous epithelium into columnar epithelium, a condition known as Barrett's esophagus. This metaplastic change is associated with an increased risk of developing esophageal adenocarcinoma.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Hyperpigmentation is a medical term that refers to the darkening of skin areas due to an increase in melanin, the pigment that provides color to our skin. This condition can affect people of all races and ethnicities, but it's more noticeable in those with lighter skin tones.

Hyperpigmentation can be caused by various factors, including excessive sun exposure, hormonal changes (such as during pregnancy), inflammation, certain medications, and underlying medical conditions like Addison's disease or hemochromatosis. It can also result from skin injuries, such as cuts, burns, or acne, which leave dark spots known as post-inflammatory hyperpigmentation.

There are several types of hyperpigmentation, including:

1. Melasma: This is a common form of hyperpigmentation that typically appears as symmetrical, blotchy patches on the face, particularly the forehead, cheeks, and upper lip. It's often triggered by hormonal changes, such as those experienced during pregnancy or while taking birth control pills.
2. Solar lentigos (age spots or liver spots): These are small, darkened areas of skin that appear due to prolonged sun exposure over time. They typically occur on the face, hands, arms, and decolletage.
3. Post-inflammatory hyperpigmentation: This type of hyperpigmentation occurs when an injury or inflammation heals, leaving behind a darkened area of skin. It's more common in people with darker skin tones.

Treatment for hyperpigmentation depends on the underlying cause and may include topical creams, chemical peels, laser therapy, or microdermabrasion. Preventing further sun damage is crucial to managing hyperpigmentation, so wearing sunscreen with a high SPF and protective clothing is recommended.

A neurofibroma is a benign (non-cancerous) tumor that develops from the nerve sheath, which is the protective covering around nerves. These tumors can grow anywhere on the body and can be found under the skin or deep inside the body. Neurofibromas can vary in size, and they may cause symptoms such as pain, numbness, or tingling if they press on nearby nerves.

Neurofibromas are a common feature of neurofibromatosis type 1 (NF1), a genetic disorder that affects approximately 1 in every 3,000 people worldwide. NF1 is characterized by the development of multiple neurofibromas and other tumors, as well as skin changes such as café-au-lait spots and freckling.

It's important to note that while most neurofibromas are benign, they can rarely undergo malignant transformation and become cancerous. If you have a neurofibroma or are concerned about your risk of developing one, it's important to seek medical advice from a healthcare professional who is familiar with this condition.

Cytokinesis is the part of the cell division process (mitosis or meiosis) in which the cytoplasm of a single eukaryotic cell divides into two daughter cells. It usually begins after telophase, and it involves the constriction of a contractile ring composed of actin filaments and myosin motor proteins that forms at the equatorial plane of the cell. This results in the formation of a cleavage furrow, which deepens and eventually leads to the physical separation of the two daughter cells. Cytokinesis is essential for cell reproduction and growth in multicellular organisms, and its failure can lead to various developmental abnormalities or diseases.

I'm sorry for any confusion, but "sunlight" is not a term with a specific medical definition. However, sunlight does have various implications in the field of medicine. It is the light that comes from the sun, which is a star at the center of our solar system. Sunlight is essential for the production of vitamin D in humans, and it can also have effects on mood and sleep patterns due to its influence on circadian rhythms.

In a medical context, sunlight is often discussed in relation to its potential health benefits and risks. For instance, moderate sun exposure can help increase vitamin D levels, which are important for bone health, immune function, and other bodily processes. However, excessive sun exposure can lead to harmful effects, such as sunburn, premature skin aging, and an increased risk of skin cancer.

It's essential to balance the benefits and risks of sunlight exposure by practicing safe sun habits, such as wearing protective clothing, using a broad-spectrum sunscreen with an SPF of at least 30, seeking shade during peak sunlight hours, and avoiding intentional tanning.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Porokeratosis is a skin condition characterized by the development of benign, progressive, and persistent papules or plaques with a ridge-like border called "cornoid lamella." These lesions can appear anywhere on the body but are most commonly found on sun-exposed areas. The condition results from abnormal keratinization and can be inherited or acquired. There are several types of porokeratosis, including porokeratosis of Mibelli, disseminated superficial actinic porokeratosis, punctate porokeratosis, linear porokeratosis, and porokeratosis palmaris et plantaris disseminata. The exact cause is unknown, but genetic mutations, ultraviolet (UV) radiation exposure, immunosuppression, and human papillomavirus (HPV) infection have been implicated in its development. Treatment options include topical therapies, cryotherapy, laser surgery, and photodynamic therapy.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Orbital neoplasms refer to abnormal growths or tumors that develop in the orbit, which is the bony cavity that contains the eyeball, muscles, nerves, fat, and blood vessels. These neoplasms can be benign (non-cancerous) or malignant (cancerous), and they can arise from various types of cells within the orbit.

Orbital neoplasms can cause a variety of symptoms depending on their size, location, and rate of growth. Common symptoms include protrusion or displacement of the eyeball, double vision, limited eye movement, pain, swelling, and numbness in the face. In some cases, orbital neoplasms may not cause any noticeable symptoms, especially if they are small and slow-growing.

There are many different types of orbital neoplasms, including:

1. Optic nerve glioma: a rare tumor that arises from the optic nerve's supportive tissue.
2. Orbital meningioma: a tumor that originates from the membranes covering the brain and extends into the orbit.
3. Lacrimal gland tumors: benign or malignant growths that develop in the lacrimal gland, which produces tears.
4. Orbital lymphangioma: a non-cancerous tumor that arises from the lymphatic vessels in the orbit.
5. Rhabdomyosarcoma: a malignant tumor that develops from the skeletal muscle cells in the orbit.
6. Metastatic tumors: cancerous growths that spread to the orbit from other parts of the body, such as the breast, lung, or prostate.

The diagnosis and treatment of orbital neoplasms depend on several factors, including the type, size, location, and extent of the tumor. Imaging tests, such as CT scans and MRI, are often used to visualize the tumor and determine its extent. A biopsy may also be performed to confirm the diagnosis and determine the tumor's type and grade. Treatment options include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Skin pigmentation is the coloration of the skin that is primarily determined by two types of melanin pigments, eumelanin and pheomelanin. These pigments are produced by melanocytes, which are specialized cells located in the epidermis. Eumelanin is responsible for brown or black coloration, while pheomelanin produces a red or yellow hue.

The amount and distribution of melanin in the skin can vary depending on genetic factors, age, sun exposure, and various other influences. Increased production of melanin in response to UV radiation from the sun helps protect the skin from damage, leading to darkening or tanning of the skin. However, excessive sun exposure can also cause irregular pigmentation, such as sunspots or freckles.

Abnormalities in skin pigmentation can result from various medical conditions, including albinism (lack of melanin production), vitiligo (loss of melanocytes leading to white patches), and melasma (excessive pigmentation often caused by hormonal changes). These conditions may require medical treatment to manage or improve the pigmentation issues.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Gamma motor neurons are a type of motor neuron found in the spinal cord and brainstem. They innervate the intrafusal fibers of muscle spindles, which are specialized sensory receptors that detect changes in muscle length and stretch. Gamma motor neurons help regulate the sensitivity of muscle spindles by adjusting the tension in the intrafusal fibers. This is important for maintaining muscle tone, coordinating movements, and providing feedback to the brain about the position and movement of body parts.

Gamma motor neurons are activated by various signals from the brain, including descending pathways that carry information about planned movements and sensory inputs from other parts of the nervous system. They are also influenced by reflex circuits that help regulate muscle tone and posture. Dysfunction in gamma motor neurons has been implicated in several neurological conditions, including spasticity, dystonia, and some forms of muscle weakness.

Rhabdomyosarcoma is a type of cancer that develops in the body's soft tissues, specifically in the muscle cells. It is a rare and aggressive form of sarcoma, which is a broader category of cancers that affect the connective tissues such as muscles, tendons, cartilages, bones, blood vessels, and fatty tissues.

Rhabdomyosarcomas can occur in various parts of the body, including the head, neck, arms, legs, trunk, and genitourinary system. They are more common in children than adults, with most cases diagnosed before the age of 18. The exact cause of rhabdomyosarcoma is not known, but genetic factors and exposure to radiation or certain chemicals may increase the risk.

There are several subtypes of rhabdomyosarcoma, including embryonal, alveolar, pleomorphic, and spindle cell/sclerosing. The type and stage of the cancer determine the treatment options, which may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Early diagnosis and prompt treatment are crucial for improving the prognosis and long-term survival rates.

A Microtubule-Organizing Center (MTOC) is a cellular structure that organizes and nucleates microtubules, which are important components of the cytoskeleton. MTOCs are involved in various cellular processes such as cell division, intracellular transport, and maintenance of cell shape. The largest and most well-known MTOC is the centrosome, which is typically located near the nucleus of animal cells. However, there are other types of MTOCs, including the basal bodies of cilia and flagella, and the microtubule-organizing centers found in plant cells called plastids. Overall, MTOCs play a crucial role in maintaining the structural integrity and organization of the cell.

A fine-needle biopsy (FNB) is a medical procedure in which a thin, hollow needle is used to obtain a sample of cells or tissue from a suspicious or abnormal area in the body, such as a lump or mass. The needle is typically smaller than that used in a core needle biopsy, and it is guided into place using imaging techniques such as ultrasound, CT scan, or MRI.

The sample obtained during an FNB can be used to diagnose various medical conditions, including cancer, infection, or inflammation. The procedure is generally considered safe and well-tolerated, with minimal risks of complications such as bleeding, infection, or discomfort. However, the accuracy of the diagnosis depends on the skill and experience of the healthcare provider performing the biopsy, as well as the adequacy of the sample obtained.

Overall, FNB is a valuable diagnostic tool that can help healthcare providers make informed decisions about treatment options and improve patient outcomes.

Sunburn is a cutaneous condition characterized by redness, pain, and sometimes swelling of the skin caused by overexposure to ultraviolet (UV) radiation from the sun or other sources such as tanning beds. The skin may also blister and peel in severe cases. Sunburn is essentially a burn to the skin that can have both immediate and long-term consequences, including increased aging of the skin and an increased risk of skin cancer. It is important to protect the skin from excessive sun exposure by using sunscreen, wearing protective clothing, and seeking shade during peak sunlight hours.

Prometaphase is a stage in the cell division process called mitosis, where the nuclear membrane has broken down and the chromosomes are now moved into the center of the cell, also known as the metaphase plate. This movement is facilitated by the mitotic spindle, which attaches to specialized structures on the chromosomes called kinetochores. The prometaphase stage follows prophase and precedes metaphase in the mitosis process. It's characterized by the beginning of chromosome separation and the reorganization of the cell for the upcoming division into two daughter cells.

Eccrine glands are the most numerous type of sweat glands in the human body, found in virtually all skin locations. They play a crucial role in thermoregulation by producing a watery sweat that cools the body when it evaporates on the skin surface. These glands are distributed over the entire body, with a higher concentration on the soles of the feet, palms of the hands, and forehead.

Structurally, eccrine glands consist of two main parts: the coiled secretory portion located in the dermis and the straight duct that extends through the dermis and epidermis to reach the skin surface. The secretory portion is lined with a simple cuboidal epithelium, while the duct is lined with a simple squamous or low cuboidal epithelium.

Eccrine glands are stimulated to produce sweat by the activation of the sympathetic nervous system, particularly through the release of acetylcholine at the neuro-glandular junction. The sweat produced is primarily water with small amounts of electrolytes, such as sodium, chloride, and potassium. This composition helps maintain the body's electrolyte balance while facilitating heat loss during physical exertion or in hot environments.

A hemangioma is a benign (noncancerous) vascular tumor or growth that originates from blood vessels. It is characterized by an overgrowth of endothelial cells, which line the interior surface of blood vessels. Hemangiomas can occur in various parts of the body, but they are most commonly found on the skin and mucous membranes.

Hemangiomas can be classified into two main types:

1. Capillary hemangioma (also known as strawberry hemangioma): This type is more common and typically appears during the first few weeks of life. It grows rapidly for several months before gradually involuting (or shrinking) on its own, usually within the first 5 years of life. Capillary hemangiomas can be superficial, appearing as a bright red, raised lesion on the skin, or deep, forming a bluish, compressible mass beneath the skin.

2. Cavernous hemangioma: This type is less common and typically appears during infancy or early childhood. It consists of large, dilated blood vessels and can occur in various organs, including the skin, liver, brain, and gastrointestinal tract. Cavernous hemangiomas on the skin appear as a rubbery, bluish mass that does not typically involute like capillary hemangiomas.

Most hemangiomas do not require treatment, especially if they are small and not causing any significant problems. However, in cases where hemangiomas interfere with vital functions, impair vision or hearing, or become infected, various treatments may be considered, such as medication (e.g., corticosteroids, propranolol), laser therapy, surgical excision, or embolization.

Pigmentation disorders are conditions that affect the production or distribution of melanin, the pigment responsible for the color of skin, hair, and eyes. These disorders can cause changes in the color of the skin, resulting in areas that are darker (hyperpigmentation) or lighter (hypopigmentation) than normal. Examples of pigmentation disorders include melasma, age spots, albinism, and vitiligo. The causes, symptoms, and treatments for these conditions can vary widely, so it is important to consult a healthcare provider for an accurate diagnosis and treatment plan.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Proto-oncogene proteins c-kit, also known as CD117 or stem cell factor receptor, are transmembrane receptor tyrosine kinases that play crucial roles in various biological processes, including cell survival, proliferation, differentiation, and migration. They are encoded by the c-KIT gene located on human chromosome 4q12.

These proteins consist of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular tyrosine kinase domain. The binding of their ligand, stem cell factor (SCF), leads to receptor dimerization, autophosphorylation, and activation of several downstream signaling pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT.

Abnormal activation or mutation of c-kit proto-oncogene proteins has been implicated in the development and progression of various malignancies, including gastrointestinal stromal tumors (GISTs), acute myeloid leukemia (AML), mast cell diseases, and melanoma. Targeted therapies against c-kit, such as imatinib mesylate (Gleevec), have shown promising results in the treatment of these malignancies.

Maxillary neoplasms refer to abnormal growths or tumors in the maxilla, which is the upper jaw bone. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are slow-growing and do not spread to other parts of the body, while malignant neoplasms can invade surrounding tissues and spread to distant sites.

Maxillary neoplasms can cause various symptoms such as swelling, pain, numbness, loose teeth, or difficulty in chewing or swallowing. They may also cause nasal congestion, nosebleeds, or visual changes if they affect the eye or orbit. The diagnosis of maxillary neoplasms usually involves a combination of clinical examination, imaging studies such as CT or MRI scans, and biopsy to determine the type and extent of the tumor.

Treatment options for maxillary neoplasms depend on several factors, including the type, size, location, and stage of the tumor, as well as the patient's overall health and preferences. Treatment may include surgery, radiation therapy, chemotherapy, or a combination of these modalities. Regular follow-up care is essential to monitor for recurrence or metastasis and ensure optimal outcomes.

Microtubule proteins are a class of structural proteins that make up the microtubules, which are key components of the cytoskeleton in eukaryotic cells. The main microtubule protein is tubulin, which exists in two forms: alpha-tubulin and beta-tubulin. These tubulins polymerize to form heterodimers, which then assemble into protofilaments, which in turn aggregate to form hollow microtubules. Microtubules are dynamic structures that undergo continuous assembly and disassembly, and they play crucial roles in various cellular processes, including intracellular transport, cell division, and maintenance of cell shape. Other microtubule-associated proteins (MAPs) also bind to microtubules and regulate their stability, dynamics, and interactions with other cellular structures.

Neoplasms, adnexal and skin appendage refer to abnormal growths or tumors that develop in the sweat glands, hair follicles, or other structures associated with the skin. These growths can be benign (non-cancerous) or malignant (cancerous), and they can occur anywhere on the body.

Adnexal neoplasms are tumors that arise from the sweat glands or hair follicles, including the sebaceous glands, eccrine glands, and apocrine glands. These tumors can range in size and severity, and they may cause symptoms such as pain, itching, or changes in the appearance of the skin.

Skin appendage neoplasms are similar to adnexal neoplasms, but they specifically refer to tumors that arise from structures such as hair follicles, nails, and sweat glands. Examples of skin appendage neoplasms include pilomatricomas (tumors of the hair follicle), trichilemmomas (tumors of the outer root sheath of the hair follicle), and sebaceous adenomas (tumors of the sebaceous glands).

It is important to note that while many adnexal and skin appendage neoplasms are benign, some can be malignant and may require aggressive treatment. If you notice any unusual growths or changes in your skin, it is important to consult with a healthcare professional for further evaluation and care.

Kidney neoplasms refer to abnormal growths or tumors in the kidney tissues that can be benign (non-cancerous) or malignant (cancerous). These growths can originate from various types of kidney cells, including the renal tubules, glomeruli, and the renal pelvis.

Malignant kidney neoplasms are also known as kidney cancers, with renal cell carcinoma being the most common type. Benign kidney neoplasms include renal adenomas, oncocytomas, and angiomyolipomas. While benign neoplasms are generally not life-threatening, they can still cause problems if they grow large enough to compromise kidney function or if they undergo malignant transformation.

Early detection and appropriate management of kidney neoplasms are crucial for improving patient outcomes and overall prognosis. Regular medical check-ups, imaging studies, and urinalysis can help in the early identification of these growths, allowing for timely intervention and treatment.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

There are many diseases that can affect cats, and the specific medical definitions for these conditions can be quite detailed and complex. However, here are some common categories of feline diseases and examples of each:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include:
* Feline panleukopenia virus (FPV), also known as feline parvovirus, which can cause severe gastrointestinal symptoms and death in kittens.
* Feline calicivirus (FCV), which can cause upper respiratory symptoms such as sneezing and nasal discharge.
* Feline leukemia virus (FeLV), which can suppress the immune system and lead to a variety of secondary infections and diseases.
* Bacterial infections, such as those caused by Pasteurella multocida or Bartonella henselae, which can cause abscesses or other symptoms.
2. Neoplastic diseases: These are cancerous conditions that can affect various organs and tissues in cats. Examples include:
* Lymphoma, which is a common type of cancer in cats that can affect the lymph nodes, spleen, liver, and other organs.
* Fibrosarcoma, which is a type of soft tissue cancer that can arise from fibrous connective tissue.
* Squamous cell carcinoma, which is a type of skin cancer that can be caused by exposure to sunlight or tobacco smoke.
3. Degenerative diseases: These are conditions that result from the normal wear and tear of aging or other factors. Examples include:
* Osteoarthritis, which is a degenerative joint disease that can cause pain and stiffness in older cats.
* Dental disease, which is a common condition in cats that can lead to tooth loss, gum inflammation, and other problems.
* Heart disease, such as hypertrophic cardiomyopathy (HCM), which is a thickening of the heart muscle that can lead to congestive heart failure.
4. Hereditary diseases: These are conditions that are inherited from a cat's parents and are present at birth or develop early in life. Examples include:
* Polycystic kidney disease (PKD), which is a genetic disorder that causes cysts to form in the kidneys and can lead to kidney failure.
* Hypertrophic cardiomyopathy (HCM), which can be inherited as an autosomal dominant trait in some cats.
* Progressive retinal atrophy (PRA), which is a group of genetic disorders that cause degeneration of the retina and can lead to blindness.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Centrioles are small, cylindrical structures found in the centrosome of animal cells. They play a crucial role in organizing the microtubules that make up the cell's cytoskeleton and are also involved in the formation of the spindle apparatus during cell division. A typical centriole is made up of nine sets of triplet microtubules arranged in a ring-like fashion around a central hub or core.

Centrioles have two main functions:

1. Microtubule Organization: Centrioles serve as the primary site for microtubule nucleation and organization within the cell. They help to form the mitotic spindle during cell division, which is responsible for separating replicated chromosomes into two identical sets that are distributed equally between the two daughter cells.

2. Formation of Cilia and Flagella: In specialized cells, centrioles can also function as basal bodies for the formation of cilia and flagella. These hair-like structures protrude from the cell surface and play a role in cell movement and the movement of extracellular fluids over the cell surface.

It is important to note that plants and fungi do not have centrioles, and their cells use alternative mechanisms for microtubule organization and cell division.

Prophase is the first phase of mitosis, the process by which eukaryotic cells divide and reproduce. During prophase, the chromosomes condense and become visible. The nuclear envelope breaks down, allowing the spindle fibers to attach to the centromeres of each chromatid in the chromosome. This is a critical step in preparing for the separation of genetic material during cell division. Prophase is also marked by the movement of the centrosomes to opposite poles of the cell, forming the mitotic spindle.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

Mucinous cystadenocarcinoma is a type of cancer that arises from the mucin-producing cells in the lining of a cyst. It is a subtype of cystadenocarcinoma, which is a malignant tumor that develops within a cyst. Mucinous cystadenocarcinomas are typically found in the ovary or pancreas but can also occur in other organs such as the appendix and the respiratory tract.

These tumors are characterized by the production of large amounts of mucin, a gel-like substance that can accumulate within the cyst and cause it to grow. Mucinous cystadenocarcinomas tend to grow slowly but can become quite large and may eventually spread (metastasize) to other parts of the body if left untreated.

Symptoms of mucinous cystadenocarcinoma depend on the location and size of the tumor, but they may include abdominal pain or discomfort, bloating, changes in bowel movements, or vaginal bleeding. Treatment typically involves surgical removal of the tumor, followed by chemotherapy or radiation therapy to kill any remaining cancer cells. The prognosis for mucinous cystadenocarcinoma depends on several factors, including the stage of the disease at diagnosis and the patient's overall health.

Abdominal fibromatosis, also known as aggressive abdominal wall fibromatosis or desmoid tumors, are rare, non-cancerous (benign) growths that originate from the connective tissue in the abdominal wall. These tumors can be invasive and grow into surrounding tissues, causing discomfort, pain, or complications such as bowel obstruction. They can occur spontaneously or following surgical trauma, pregnancy, or familial adenomatous polyposis (FAP), a genetic disorder that increases the risk of colorectal cancer. Treatment options include surgery, radiation therapy, and medical management with anti-inflammatory drugs or chemotherapeutic agents. Regular follow-up is necessary due to the possibility of recurrence.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

A centromere is a specialized region found on chromosomes that plays a crucial role in the separation of replicated chromosomes during cell division. It is the point where the sister chromatids (the two copies of a chromosome formed during DNA replication) are joined together. The centromere contains highly repeated DNA sequences and proteins that form a complex structure known as the kinetochore, which serves as an attachment site for microtubules of the mitotic spindle during cell division.

During mitosis or meiosis, the kinetochore facilitates the movement of chromosomes by interacting with the microtubules, allowing for the accurate distribution of genetic material to the daughter cells. Centromeres can vary in their position and structure among different species, ranging from being located near the middle of the chromosome (metacentric) to being positioned closer to one end (acrocentric). The precise location and characteristics of centromeres are essential for proper chromosome segregation and maintenance of genomic stability.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

CDC20 proteins are a type of regulatory protein that play a crucial role in the cell cycle, which is the process by which cells grow and divide. Specifically, CDC20 proteins are involved in the transition from metaphase to anaphase during mitosis, the phase of the cell cycle where chromosomes are separated and distributed to two daughter cells.

CDC20 proteins function as part of a larger complex called the anaphase-promoting complex/cyclosome (APC/C), which targets specific proteins for degradation by the proteasome. During metaphase, CDC20 binds to the APC/C and helps to activate it, leading to the degradation of securin and cyclin B, two proteins that are essential for maintaining the proper attachment of chromosomes to the spindle apparatus.

Once these proteins are degraded, the sister chromatids can be separated and moved to opposite poles of the cell, allowing for the completion of mitosis and the formation of two genetically identical daughter cells. In addition to their role in mitosis, CDC20 proteins have also been implicated in other cellular processes, including meiosis, DNA damage repair, and apoptosis.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

A rare disease, also known as an orphan disease, is a health condition that affects fewer than 200,000 people in the United States or fewer than 1 in 2,000 people in Europe. There are over 7,000 rare diseases identified, and many of them are severe, chronic, and often life-threatening. The causes of rare diseases can be genetic, infectious, environmental, or degenerative. Due to their rarity, research on rare diseases is often underfunded, and treatments may not be available or well-studied. Additionally, the diagnosis of rare diseases can be challenging due to a lack of awareness and understanding among healthcare professionals.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Mesoblastic Nephroma is a rare type of kidney tumor that typically occurs in infants and young children. It is usually diagnosed within the first year of life, with most cases occurring in the first three months.

The term "mesoblastic" refers to the origin of the tumor cells, which are thought to arise from the mesenchymal tissue, a type of connective tissue that gives rise to various structures during embryonic development.

Mesoblastic Nephroma is classified into two types: classic and cellular. The classic type is composed of fascicles of spindle-shaped cells with interspersed mature adipose tissue, while the cellular type is made up of sheets of closely packed cells that resemble embryonal rhabdomyosarcoma.

The tumor can be asymptomatic or may present with abdominal distension, palpable mass, hematuria, or hypertension. The diagnosis is usually made by imaging studies such as ultrasound, CT scan, or MRI, followed by a biopsy to confirm the histological type.

Treatment typically involves surgical resection of the tumor, and the prognosis is generally excellent, with a high cure rate. However, close follow-up is necessary to monitor for any signs of recurrence or metastasis.

Nervous system neoplasms are abnormal growths or tumors that occur within the nervous system, which includes the brain, spinal cord, and peripheral nerves. These tumors can be benign (non-cancerous) or malignant (cancerous), and their growth can compress or infiltrate surrounding tissues, leading to various neurological symptoms. The causes of nervous system neoplasms are not fully understood but may involve genetic factors, exposure to certain chemicals or radiation, and certain viral infections. Treatment options depend on the type, location, and size of the tumor and can include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Ran GTP-binding protein, also known as Ran or Ras-related nuclear protein, is a small GTPase that plays a crucial role in the regulation of nucleocytoplasmic transport in eukaryotic cells. It binds to and hydrolyzes guanosine triphosphate (GTP) and acts as a molecular switch that controls various cellular processes, including nuclear import and export, mitotic spindle assembly, and nuclear envelope formation during cell division.

Ran exists in two interconvertible forms: the GTP-bound form, which is active and can bind to importin-β and other transport factors, and the GDP-bound form, which is inactive and localized mainly in the cytoplasm. The RanGAP protein (Ran GTPase-activating protein) catalyzes the hydrolysis of GTP to GDP, while the RanGEF protein (Ran guanine nucleotide exchange factor) facilitates the exchange of GDP for GTP.

The regulation of Ran GTPase activity is critical for maintaining the proper functioning of the nuclear transport machinery and ensuring the integrity of the genome. Dysregulation of Ran GTPase has been implicated in various human diseases, including cancer, neurodegenerative disorders, and viral infections.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

Birefringence is a property of certain materials, such as crystals and some plastics, to split a beam of light into two separate beams with different polarization states and refractive indices when the light passes through the material. This phenomenon arises due to the anisotropic structure of these materials, where their physical properties vary depending on the direction of measurement.

When a unpolarized or partially polarized light beam enters a birefringent material, it gets separated into two orthogonally polarized beams called the ordinary and extraordinary rays. These rays propagate through the material at different speeds due to their distinct refractive indices, resulting in a phase delay between them. Upon exiting the material, the recombination of these two beams can produce various optical effects, such as double refraction or interference patterns, depending on the thickness and orientation of the birefringent material and the polarization state of the incident light.

Birefringence has numerous applications in optics, including waveplates, polarizing filters, stress analysis, and microscopy techniques like phase contrast and differential interference contrast imaging.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Aurora Kinase B is a type of enzyme that plays a crucial role in the regulation of cell division and mitosis. It is a member of the Aurora kinase family, which includes three different isoforms (Aurora A, B, and C). Among these, Aurora Kinase B is specifically involved in the proper alignment and separation of chromosomes during cell division.

During mitosis, Aurora Kinase B forms a complex with other proteins to form the chromosomal passenger complex (CPC), which plays a critical role in ensuring accurate chromosome segregation. The CPC is responsible for regulating various events during mitosis, including the attachment of microtubules to kinetochores (protein structures that connect chromosomes to spindle fibers), the correction of erroneous kinetochore-microtubule attachments, and the regulation of the anaphase promoting complex/cyclosome (APC/C), which targets specific proteins for degradation during mitosis.

Dysregulation of Aurora Kinase B has been implicated in various human diseases, including cancer. Overexpression or amplification of this kinase can lead to chromosomal instability and aneuploidy, contributing to tumorigenesis and cancer progression. As a result, Aurora Kinase B is considered a promising target for the development of anti-cancer therapies, with several inhibitors currently being investigated in preclinical and clinical studies.

Vascular neoplasms are a type of tumor that develops from cells that line the blood vessels or lymphatic vessels. These tumors can be benign (non-cancerous) or malignant (cancerous). Benign vascular neoplasms, such as hemangiomas and lymphangiomas, are usually harmless and may not require treatment unless they cause symptoms or complications. Malignant vascular neoplasms, on the other hand, are known as angiosarcomas and can be aggressive, spreading to other parts of the body and potentially causing serious health problems.

Angiosarcomas can develop in any part of the body but are most commonly found in the skin, particularly in areas exposed to radiation or chronic lymph edema. They can also occur in the breast, liver, spleen, and heart. Treatment for vascular neoplasms depends on the type, location, size, and stage of the tumor, as well as the patient's overall health. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Head and neck neoplasms refer to abnormal growths or tumors in the head and neck region, which can be benign (non-cancerous) or malignant (cancerous). These tumors can develop in various sites, including the oral cavity, nasopharynx, oropharynx, larynx, hypopharynx, paranasal sinuses, salivary glands, and thyroid gland.

Benign neoplasms are slow-growing and generally do not spread to other parts of the body. However, they can still cause problems if they grow large enough to press on surrounding tissues or structures. Malignant neoplasms, on the other hand, can invade nearby tissues and organs and may also metastasize (spread) to other parts of the body.

Head and neck neoplasms can have various symptoms depending on their location and size. Common symptoms include difficulty swallowing, speaking, or breathing; pain in the mouth, throat, or ears; persistent coughing or hoarseness; and swelling or lumps in the neck or face. Early detection and treatment of head and neck neoplasms are crucial for improving outcomes and reducing the risk of complications.

"Xenopus proteins" refer to the proteins that are expressed or isolated from the Xenopus species, which are primarily used as model organisms in biological and biomedical research. The most commonly used Xenopus species for research are the African clawed frogs, Xenopus laevis and Xenopus tropicalis. These proteins play crucial roles in various cellular processes and functions, and they serve as valuable tools to study different aspects of molecular biology, developmental biology, genetics, and biochemistry.

Some examples of Xenopus proteins that are widely studied include:

1. Xenopus Histones: These are the proteins that package DNA into nucleosomes, which are the fundamental units of chromatin in eukaryotic cells. They play a significant role in gene regulation and epigenetic modifications.
2. Xenopus Cyclins and Cyclin-dependent kinases (CDKs): These proteins regulate the cell cycle and control cell division, differentiation, and apoptosis.
3. Xenopus Transcription factors: These proteins bind to specific DNA sequences and regulate gene expression during development and in response to various stimuli.
4. Xenopus Signaling molecules: These proteins are involved in intracellular signaling pathways that control various cellular processes, such as cell growth, differentiation, migration, and survival.
5. Xenopus Cytoskeletal proteins: These proteins provide structural support to the cells and regulate their shape, motility, and organization.
6. Xenopus Enzymes: These proteins catalyze various biochemical reactions in the cell, such as metabolic pathways, DNA replication, transcription, and translation.

Overall, Xenopus proteins are essential tools for understanding fundamental biological processes and have contributed significantly to our current knowledge of molecular biology, genetics, and developmental biology.

Sturge-Weber syndrome is a rare neurocutaneous disorder characterized by the combination of a facial port-wine birthmark and neurological abnormalities. The facial birthmark, which is typically located on one side of the face, occurs due to the malformation of small blood vessels (capillaries) in the skin and eye.

Neurological features often include seizures that begin in infancy, muscle weakness or paralysis on one side of the body (hemiparesis), developmental delay, and intellectual disability. These neurological symptoms are caused by abnormal blood vessel formation in the brain (leptomeningeal angiomatosis) leading to increased pressure, reduced blood flow, and potential damage to the brain tissue.

Sturge-Weber syndrome can also affect the eyes, with glaucoma being a common occurrence due to increased pressure within the eye. Early diagnosis and appropriate management of this condition are crucial for improving the quality of life and reducing potential complications.

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Dermatofibrosarcoma protuberans (DFSP) is a rare type of skin cancer that begins in the middle layer of the skin known as the dermis. It often appears as a scar or bruise that does not go away and may grow slowly over time, sometimes spreading to deeper tissues and other parts of the body. DFSP can be difficult to treat if it has spread, but when caught early, it is usually curable with surgery.

DFSP is characterized by the growth of abnormal fibroblasts, which are cells that produce collagen, a protein that helps make up connective tissues in the body. The exact cause of DFSP is not known, but it has been linked to genetic mutations and previous injuries or surgeries to the skin.

Treatment for DFSP typically involves surgical removal of the tumor, along with a margin of healthy tissue around it. In some cases, radiation therapy or targeted therapy may also be used to help ensure that all cancer cells have been removed. Regular follow-up care is important to monitor for any signs of recurrence or spread of the disease.

Fibrosarcoma is a type of soft tissue cancer that develops in the fibrous (or connective) tissue found throughout the body, including tendons, ligaments, and muscles. It is characterized by the malignant proliferation of fibroblasts, which are the cells responsible for producing collagen, a structural protein found in connective tissue.

The tumor typically presents as a painless, firm mass that grows slowly over time. Fibrosarcomas can occur at any age but are more common in adults between 30 and 60 years old. The exact cause of fibrosarcoma is not well understood, but it has been linked to radiation exposure, certain chemicals, and genetic factors.

There are several subtypes of fibrosarcoma, including adult-type fibrosarcoma, infantile fibrosarcoma, and dedifferentiated fibrosarcoma. Treatment usually involves surgical removal of the tumor, often followed by radiation therapy and/or chemotherapy to reduce the risk of recurrence. The prognosis for patients with fibrosarcoma depends on several factors, including the size and location of the tumor, the patient's age and overall health, and the presence or absence of metastasis (spread of cancer to other parts of the body).

Eye color is a characteristic determined by variations in a person's genes. The color of the eyes depends on the amount and type of pigment called melanin found in the eye's iris.

There are three main types of eye colors: brown, blue, and green. Brown eyes have the most melanin, while blue eyes have the least. Green eyes have a moderate amount of melanin combined with a golden tint that reflects light to give them their unique color.

Eye color is a polygenic trait, which means it is influenced by multiple genes. The two main genes responsible for eye color are OCA2 and HERC2, both located on chromosome 15. These genes control the production, transport, and storage of melanin in the iris.

It's important to note that eye color can change during infancy and early childhood due to the development of melanin in the iris. Additionally, some medications or medical conditions may also cause changes in eye color over time.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Mandibular neoplasms refer to abnormal growths or tumors that develop in the mandible, which is the lower jawbone. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow-growing and rarely spread to other parts of the body, while malignant neoplasms can invade surrounding tissues and may metastasize (spread) to distant sites.

Mandibular neoplasms can have various causes, including genetic mutations, exposure to certain chemicals or radiation, and infection with certain viruses. The symptoms of mandibular neoplasms may include swelling or pain in the jaw, difficulty chewing or speaking, numbness in the lower lip or chin, loose teeth, and/or a lump or mass in the mouth or neck.

The diagnosis of mandibular neoplasms typically involves a thorough clinical examination, imaging studies such as X-rays, CT scans, or MRI scans, and sometimes a biopsy to confirm the type and extent of the tumor. Treatment options depend on the type, stage, and location of the neoplasm, and may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence or metastasis.

Muscle neoplasms are abnormal growths or tumors that develop in the muscle tissue. They can be benign (non-cancerous) or malignant (cancerous). Benign muscle neoplasms are typically slow-growing and do not spread to other parts of the body, while malignant muscle neoplasms, also known as soft tissue sarcomas, can grow quickly, invade nearby tissues, and metastasize (spread) to distant parts of the body.

Soft tissue sarcomas can arise from any of the muscles in the body, including the skeletal muscles (voluntary muscles that attach to bones and help with movement), smooth muscles (involuntary muscles found in the walls of blood vessels, digestive tract, and other organs), or cardiac muscle (the specialized muscle found in the heart).

There are many different types of soft tissue sarcomas, each with its own set of characteristics and prognosis. Treatment for muscle neoplasms typically involves a combination of surgery, radiation therapy, and chemotherapy, depending on the type, size, location, and stage of the tumor.

Scleral diseases refer to conditions that affect the sclera, which is the tough, white outer coating of the eye. The sclera helps to maintain the shape of the eye and provides protection for the internal structures. Scleral diseases can cause inflammation, degeneration, or thinning of the sclera, leading to potential vision loss or other complications. Some examples of scleral diseases include:

1. Scleritis: an inflammatory condition that causes pain, redness, and sensitivity in the affected area of the sclera. It can be associated with autoimmune disorders, infections, or trauma.
2. Episcleritis: a less severe form of inflammation that affects only the episclera, a thin layer of tissue overlying the sclera. Symptoms include redness and mild discomfort but typically no pain.
3. Pinguecula: a yellowish, raised deposit of protein and fat that forms on the conjunctiva, the clear membrane covering the sclera. While not a disease itself, a pinguecula can cause irritation or discomfort and may progress to a more severe condition called a pterygium.
4. Pterygium: a fleshy growth that extends from the conjunctiva onto the cornea, potentially obstructing vision. It is often associated with prolonged sun exposure and can be removed surgically if it becomes problematic.
5. Scleral thinning or melting: a rare but serious condition where the sclera degenerates or liquefies, leading to potential perforation of the eye. This can occur due to autoimmune disorders, infections, or as a complication of certain surgical procedures.
6. Ocular histoplasmosis syndrome (OHS): a condition caused by the Histoplasma capsulatum fungus, which can lead to scarring and vision loss if it involves the macula, the central part of the retina responsible for sharp, detailed vision.

It is essential to consult an ophthalmologist or eye care professional if you experience any symptoms related to scleral diseases to receive proper diagnosis and treatment.

Carcinoma, basal cell is a type of skin cancer that arises from the basal cells, which are located in the lower part of the epidermis (the outermost layer of the skin). It is also known as basal cell carcinoma (BCC) and is the most common form of skin cancer.

BCC typically appears as a small, shiny, pearly bump or nodule on the skin, often in sun-exposed areas such as the face, ears, neck, hands, and arms. It may also appear as a scar-like area that is white, yellow, or waxy. BCCs are usually slow growing and rarely spread (metastasize) to other parts of the body. However, they can be locally invasive and destroy surrounding tissue if left untreated.

The exact cause of BCC is not known, but it is thought to be related to a combination of genetic and environmental factors, including exposure to ultraviolet (UV) radiation from the sun or tanning beds. People with fair skin, light hair, and blue or green eyes are at increased risk of developing BCC.

Treatment for BCC typically involves surgical removal of the tumor, along with a margin of healthy tissue. Other treatment options may include radiation therapy, topical chemotherapy, or photodynamic therapy. Prevention measures include protecting your skin from UV radiation by wearing protective clothing, using sunscreen, and avoiding tanning beds.

I'm happy to help! However, I believe there may be a slight mistake in your question. The abbreviation "cdc" is not typically associated with genetics or genes in the context of medical definitions.

If you meant to ask for a definition of "genes," here it is:

Genes are segments of DNA (deoxyribonucleic acid) that contain the instructions for the development, function, and reproduction of all living organisms. They are the basic units of heredity, passed down from one generation to the next. Genes encode specific proteins or RNA molecules that play critical roles in the structure, function, and regulation of the body's cells, tissues, and organs.

If you had a different term in mind, please let me know, and I will be happy to provide a definition for it!

Chromosomal proteins, non-histone, are a diverse group of proteins that are associated with chromatin, the complex of DNA and histone proteins, but do not have the characteristic structure of histones. These proteins play important roles in various nuclear processes such as DNA replication, transcription, repair, recombination, and chromosome condensation and segregation during cell division. They can be broadly classified into several categories based on their functions, including architectural proteins, enzymes, transcription factors, and structural proteins. Examples of non-histone chromosomal proteins include high mobility group (HMG) proteins, poly(ADP-ribose) polymerases (PARPs), and condensins.

Spermatocytes are a type of cell that is involved in the process of spermatogenesis, which is the formation of sperm in the testes. Specifically, spermatocytes are the cells that undergo meiosis, a special type of cell division that results in the production of four haploid daughter cells, each containing half the number of chromosomes as the parent cell.

There are two types of spermatocytes: primary and secondary. Primary spermatocytes are diploid cells that contain 46 chromosomes (23 pairs). During meiosis I, these cells undergo a process called crossing over, in which genetic material is exchanged between homologous chromosomes. After crossing over, the primary spermatocytes divide into two secondary spermatocytes, each containing 23 chromosomes (but still with 23 pairs).

Secondary spermatocytes then undergo meiosis II, which results in the formation of four haploid spermatids. Each spermatid contains 23 single chromosomes and will eventually develop into a mature sperm cell through a process called spermiogenesis.

It's worth noting that spermatocytes are only found in males, as they are specific to the male reproductive system.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Proteus Syndrome is a rare genetic disorder characterized by progressive overgrowth of skin, bones, muscles, and other tissues. It is caused by a mutation in the AKT1 gene, which regulates cell growth and division. The disorder is named after the Greek sea-god Proteus, who could change his shape at will, as people with this condition often have highly variable and asymmetric features.

The symptoms of Proteus Syndrome can vary widely from person to person, but may include:

1. Overgrowth of skin, which can lead to the formation of thickened, rough, or irregular areas of skin (known as "cerebriform" skin) and deep creases or folds.
2. Asymmetric overgrowth of bones, muscles, and other tissues, leading to differences in size and shape between the two sides of the body.
3. The formation of benign tumors (such as lipomas and lymphangiomas) and abnormal blood vessels.
4. Abnormalities of the brain, eyes, and other organs.
5. Increased risk of developing certain types of cancer.

Proteus Syndrome is typically diagnosed based on a combination of clinical features, medical imaging, and genetic testing. There is no cure for the disorder, but treatment is focused on managing symptoms and preventing complications. This may involve surgery to remove tumors or correct bone deformities, physical therapy to improve mobility and strength, and medications to control pain and other symptoms.

A neoplasm is a tumor or growth that is formed by an abnormal and excessive proliferation of cells, which can be benign or malignant. Neoplasm proteins are therefore any proteins that are expressed or produced in these neoplastic cells. These proteins can play various roles in the development, progression, and maintenance of neoplasms.

Some neoplasm proteins may contribute to the uncontrolled cell growth and division seen in cancer, such as oncogenic proteins that promote cell cycle progression or inhibit apoptosis (programmed cell death). Others may help the neoplastic cells evade the immune system, allowing them to proliferate undetected. Still others may be involved in angiogenesis, the formation of new blood vessels that supply the tumor with nutrients and oxygen.

Neoplasm proteins can also serve as biomarkers for cancer diagnosis, prognosis, or treatment response. For example, the presence or level of certain neoplasm proteins in biological samples such as blood or tissue may indicate the presence of a specific type of cancer, help predict the likelihood of cancer recurrence, or suggest whether a particular therapy will be effective.

Overall, understanding the roles and behaviors of neoplasm proteins can provide valuable insights into the biology of cancer and inform the development of new diagnostic and therapeutic strategies.

I apologize for any confusion, but "Schizosaccharomyces" is not a medical term. It is a genus name in the field of microbiology and genetics, referring to a group of budding, tear-shaped yeasts that are widely used as model organisms in scientific research. The most well-known species within this genus is Schizosaccharomyces pombe, which has been extensively studied for its cell cycle regulation, DNA repair mechanisms, and other fundamental biological processes.

If you have any questions related to medical terminology or health-related topics, I would be happy to help.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Abdominal radiography, also known as a KUB (kidneys, ureters, bladder) X-ray, is a medical imaging technique used to examine the abdominal cavity. It involves using ionizing radiation to produce images of the internal structures of the abdomen, including the bones, organs, and soft tissues.

The procedure typically involves the patient lying down on a table while a specialized X-ray machine captures images of the abdomen from different angles. The images produced can help doctors diagnose and monitor a variety of conditions, such as kidney stones, intestinal obstructions, and abnormalities in the spine or other bones.

Abdominal radiography is a quick, painless, and non-invasive procedure that requires little preparation on the part of the patient. However, it does involve exposure to radiation, so it is typically only used when necessary and when other imaging techniques are not appropriate.

Thymoma is a type of tumor that originates from the thymus gland, which is a part of the immune system located in the chest behind the breastbone. Thymomas are typically slow-growing and often do not cause any symptoms until they have grown quite large or spread to other parts of the body.

Thymomas can be classified into different types based on their appearance under a microscope, such as type A, AB, B1, B2, and B3. These classifications are important because they can help predict how aggressive the tumor is likely to be and how it should be treated.

Symptoms of thymoma may include cough, chest pain, difficulty breathing, or swelling in the face or neck. Thymomas can also be associated with autoimmune disorders such as myasthenia gravis, which affects muscle strength and mobility. Treatment for thymoma typically involves surgical removal of the tumor, often followed by radiation therapy or chemotherapy to help prevent recurrence.

Cell nucleus division, also known as nuclear division, is the process by which the genetic material within the cell nucleus, referred to as chromosomes, is separated into two equal sets in preparation for cell division. This process results in the formation of two daughter nuclei, each with a complete set of chromosomes.

There are two types of nuclear division: mitosis and meiosis.

Mitosis is the type of nuclear division that occurs in somatic cells (cells other than sex cells) during growth, repair, and maintenance of tissues. It results in the formation of two genetically identical daughter nuclei. The process of mitosis can be divided into several stages: prophase, prometaphase, metaphase, anaphase, and telophase.

Meiosis, on the other hand, is the type of nuclear division that occurs in sex cells (sperm and egg cells) during sexual reproduction. It results in the formation of four genetically unique daughter nuclei, each with half the number of chromosomes as the parent cell. Meiosis consists of two consecutive divisions: meiosis I and meiosis II.

Both types of nuclear division are essential for the growth, development, and reproduction of living organisms.

Keratoacanthoma is a rapidly growing, dome-shaped, skin tumor that typically arises on sun-exposed areas such as the face, arms, and legs. It is considered a low-grade squamous cell carcinoma (a type of skin cancer) because it shares some characteristics with both benign and malignant tumors.

Keratoacanthomas usually develop over a period of several weeks to months, growing rapidly in size before eventually stabilizing and then gradually regressing on their own within a few months to a year. However, the regression process can take years, and some lesions may not regress completely, leading to cosmetic concerns or even local invasion.

Histologically, keratoacanthomas are characterized by a central keratin-filled crater surrounded by a well-differentiated layer of squamous epithelial cells. The tumor's growth pattern and histological features can make it difficult to distinguish from other types of skin cancer, such as squamous cell carcinoma.

Treatment options for keratoacanthomas include surgical excision, cryosurgery, curettage and electrodesiccation, and topical therapies like imiquimod or 5-fluorouracil. The choice of treatment depends on various factors such as the size, location, and number of lesions, as well as patient preferences and overall health status.

Histiocytes are a type of immune cell that are part of the mononuclear phagocyte system. They originate from monocytes, which are derived from hematopoietic stem cells in the bone marrow. Histiocytes play an important role in the immune system by engulfing and destroying foreign substances, such as bacteria and viruses, as well as removing dead cells and other debris from the body. They can be found in various tissues throughout the body, including the skin, lymph nodes, spleen, and liver.

Histiocytes include several different types of cells, such as macrophages, dendritic cells, and Langerhans cells. These cells have different functions but all play a role in the immune response. For example, macrophages are involved in inflammation and tissue repair, while dendritic cells are important for presenting antigens to T cells and initiating an immune response.

Abnormal accumulations or dysfunction of histiocytes can lead to various diseases, such as histiocytosis, which is a group of disorders characterized by the abnormal proliferation and accumulation of histiocytes in various tissues.

A chordoma is a rare, slow-growing tumor that typically develops in the bones of the spine or skull. These tumors originate from remnants of the notochord, a structure that forms during embryonic development and eventually becomes part of the spinal cord. Chordomas are usually low-grade malignancies but can be aggressive and locally invasive, potentially causing pain, neurological symptoms, or structural damage to the spine or skull. Treatment typically involves surgical resection, often combined with radiation therapy.

Skin diseases, also known as dermatological conditions, refer to any medical condition that affects the skin, which is the largest organ of the human body. These diseases can affect the skin's function, appearance, or overall health. They can be caused by various factors, including genetics, infections, allergies, environmental factors, and aging.

Skin diseases can present in many different forms, such as rashes, blisters, sores, discolorations, growths, or changes in texture. Some common examples of skin diseases include acne, eczema, psoriasis, dermatitis, fungal infections, viral infections, bacterial infections, and skin cancer.

The symptoms and severity of skin diseases can vary widely depending on the specific condition and individual factors. Some skin diseases are mild and can be treated with over-the-counter medications or topical creams, while others may require more intensive treatments such as prescription medications, light therapy, or even surgery.

It is important to seek medical attention if you experience any unusual or persistent changes in your skin, as some skin diseases can be serious or indicative of other underlying health conditions. A dermatologist is a medical doctor who specializes in the diagnosis and treatment of skin diseases.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

I'm sorry for any confusion, but "Schizosaccharomyces pombe proteins" is not a medical term or concept. Schizosaccharomyces pombe is a type of single-celled microorganism called a yeast, which is often used as a model organism in scientific research. Proteins are complex molecules that do most of the work in cells and are necessary for the structure, function, and regulation of the body's tissues and organs.

In the context of scientific research, "Schizosaccharomyces pombe proteins" would refer to the specific proteins found in or studied using this particular type of yeast. These proteins may have similarities to human proteins and can be used to help understand basic biological processes, as well as diseases that occur in humans. However, it is important to note that while research using model organisms like Schizosaccharomyces pombe has led to many important discoveries, the findings may not always translate directly to humans.

Follicular dendritic cells (FDCs) are a specialized type of dendritic cell that reside in the germinal centers of secondary lymphoid organs, such as the spleen, lymph nodes, and Peyer's patches. They play a critical role in the adaptive immune response by presenting antigens to B cells and helping to regulate their activation, differentiation, and survival.

FDCs are characterized by their extensive network of dendrites, which can trap and retain antigens on their surface for extended periods. They also express a variety of surface receptors that allow them to interact with other immune cells, including complement receptors, Fc receptors, and cytokine receptors.

FDCs are derived from mesenchymal stem cells and are distinct from classical dendritic cells, which are derived from hematopoietic stem cells. They are long-lived cells that can survive for months or even years in the body, making them important players in the maintenance of immune memory.

Overall, follicular dendritic cells play a critical role in the adaptive immune response by helping to regulate B cell activation and differentiation, and by contributing to the development of immune memory.

Vulvar neoplasms refer to abnormal growths or tumors in the vulvar region, which is the exterior female genital area including the mons pubis, labia majora, labia minora, clitoris, and the vaginal vestibule. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign vulvar neoplasms may include conditions such as vulvar cysts, fibromas, lipomas, or condylomas (genital warts). They are typically slow-growing and less likely to spread or invade surrounding tissues.

Malignant vulvar neoplasms, on the other hand, are cancers that can invade nearby tissues and potentially metastasize (spread) to distant parts of the body. The most common types of malignant vulvar neoplasms are squamous cell carcinoma, vulvar melanoma, and adenocarcinoma.

Early detection and treatment of vulvar neoplasms are essential for improving prognosis and reducing the risk of complications or recurrence. Regular gynecological examinations, self-examinations, and prompt attention to any unusual symptoms or changes in the vulvar area can help ensure timely diagnosis and management.

Cell extracts refer to the mixture of cellular components that result from disrupting or breaking open cells. The process of obtaining cell extracts is called cell lysis. Cell extracts can contain various types of molecules, such as proteins, nucleic acids (DNA and RNA), carbohydrates, lipids, and metabolites, depending on the methods used for cell disruption and extraction.

Cell extracts are widely used in biochemical and molecular biology research to study various cellular processes and pathways. For example, cell extracts can be used to measure enzyme activities, analyze protein-protein interactions, characterize gene expression patterns, and investigate metabolic pathways. In some cases, specific cellular components can be purified from the cell extracts for further analysis or application, such as isolating pure proteins or nucleic acids.

It is important to note that the composition of cell extracts may vary depending on the type of cells, the growth conditions, and the methods used for cell disruption and extraction. Therefore, it is essential to optimize the experimental conditions to obtain representative and meaningful results from cell extract studies.

Molecular motor proteins are a type of protein that convert chemical energy into mechanical work at the molecular level. They play a crucial role in various cellular processes, such as cell division, muscle contraction, and intracellular transport. There are several types of molecular motor proteins, including myosin, kinesin, and dynein.

Myosin is responsible for muscle contraction and movement along actin filaments in the cytoplasm. Kinesin and dynein are involved in intracellular transport along microtubules, moving cargo such as vesicles, organelles, and mRNA to various destinations within the cell.

These motor proteins move in a stepwise fashion, with each step driven by the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). The directionality and speed of movement are determined by the structure and regulation of the motor proteins, as well as the properties of the tracks along which they move.

Cyclin B is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. Cyclin B binds and activates cyclin-dependent kinase 1 (CDK1), forming the complex known as M-phase promoting factor (MPF). This complex triggers the events leading to cell division, such as chromosome condensation, nuclear envelope breakdown, and spindle formation. The levels of cyclin B increase during the G2 phase and are degraded by the anaphase-promoting complex/cyclosome (APC/C) at the onset of anaphase, allowing the cell cycle to progress into the next phase.

In the context of human anatomy, the thigh is the part of the lower limb that extends from the hip to the knee. It is the upper and largest portion of the leg and is primarily composed of the femur bone, which is the longest and strongest bone in the human body, as well as several muscles including the quadriceps femoris (front thigh), hamstrings (back thigh), and adductors (inner thigh). The major blood vessels and nerves that supply the lower limb also pass through the thigh.

Ubiquitin-Protein Ligase Complexes, also known as E3 ubiquitin ligases, are a group of enzymes that play a crucial role in the ubiquitination process. Ubiquitination is a post-translational modification where ubiquitin molecules are attached to specific target proteins, marking them for degradation by the proteasome or altering their function, localization, or interaction with other proteins.

The ubiquitination process involves three main steps:

1. Ubiquitin activation: Ubiquitin is activated by an E1 ubiquitin-activating enzyme in an ATP-dependent reaction.
2. Ubiquitin conjugation: The activated ubiquitin is then transferred to an E2 ubiquitin-conjugating enzyme.
3. Ubiquitin ligation: Finally, the E2 ubiquitin-conjugating enzyme interacts with a specific E3 ubiquitin ligase complex, which facilitates the transfer and ligation of ubiquitin to the target protein.

Ubiquitin-Protein Ligase Complexes are responsible for recognizing and binding to specific substrate proteins, ensuring that ubiquitination occurs on the correct targets. They can be divided into three main categories based on their structural features and mechanisms of action:

1. Really Interesting New Gene (RING) finger E3 ligases: These E3 ligases contain a RING finger domain, which directly interacts with both the E2 ubiquitin-conjugating enzyme and the substrate protein. They facilitate the transfer of ubiquitin from the E2 to the target protein by bringing them into close proximity.
2. Homologous to E6-AP C terminus (HECT) E3 ligases: These E3 ligases contain a HECT domain, which interacts with the E2 ubiquitin-conjugating enzyme and forms a thioester bond with ubiquitin before transferring it to the substrate protein.
3. RING-between-RING (RBR) E3 ligases: These E3 ligases contain both RING finger and HECT-like domains, which allow them to function similarly to both RING finger and HECT E3 ligases. They first form a thioester bond with ubiquitin using their RING1 domain before transferring it to the substrate protein via their RING2 domain.

Dysregulation of Ubiquitin-Protein Ligase Complexes has been implicated in various diseases, including cancer and neurodegenerative disorders. Understanding their mechanisms and functions can provide valuable insights into disease pathogenesis and potential therapeutic strategies.

Iris diseases refer to a variety of conditions that affect the iris, which is the colored part of the eye that regulates the amount of light reaching the retina by adjusting the size of the pupil. Some common iris diseases include:

1. Iritis: This is an inflammation of the iris and the adjacent tissues in the eye. It can cause pain, redness, photophobia (sensitivity to light), and blurred vision.
2. Aniridia: A congenital condition characterized by the absence or underdevelopment of the iris. This can lead to decreased visual acuity, sensitivity to light, and an increased risk of glaucoma.
3. Iris cysts: These are fluid-filled sacs that form on the iris. They are usually benign but can cause vision problems if they grow too large or interfere with the function of the eye.
4. Iris melanoma: A rare type of eye cancer that develops in the pigmented cells of the iris. It can cause symptoms such as blurred vision, floaters, and changes in the appearance of the iris.
5. Iridocorneal endothelial syndrome (ICE): A group of rare eye conditions that affect the cornea and the iris. They are characterized by the growth of abnormal tissue on the back surface of the cornea and can lead to vision loss.

It is important to seek medical attention if you experience any symptoms of iris diseases, as early diagnosis and treatment can help prevent complications and preserve your vision.

'Hyalin' is not a medical condition or disease, but rather a histological term used to describe a particular type of tissue structure. Hyalin refers to the homogeneous, translucent, and eosinophilic (pink) appearance of a tissue under a microscope due to the accumulation of an amorphous, acellular, and protein-rich matrix.

Hyalinization can occur in various tissues, including blood vessels, cardiac valves, cartilage, and other connective tissues. It is often associated with aging, injury, inflammation, or degenerative changes, such as those seen in hyaline membrane disease (a respiratory disorder in premature infants) or hypertrophic cardiomyopathy (thickening of the heart muscle).

In summary, Hyalin is a histological term used to describe the appearance of tissue under a microscope due to the accumulation of an amorphous, acellular, and protein-rich matrix.

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a large E3 ubiquitin ligase complex that plays a crucial role in the regulation of the cell cycle. It is responsible for targeting specific proteins for degradation by the proteasome, which is a multi-subunit protein complex that mediates the controlled breakdown of ubiquitinated proteins.

During anaphase, the final stage of mitosis, the APC/C becomes active and triggers the degradation of several key regulatory proteins, including securin and cyclin B. The destruction of these proteins allows for the separation of chromosomes and the completion of cell division.

The APC/C is composed of multiple subunits, including a catalytic core that binds to ubiquitin-conjugating enzymes (E2s) and several coactivators that regulate its activity. The activation of the APC/C requires the binding of one of two coactivators, Cdc20 or CDH1, which recognize specific substrates for degradation.

Dysregulation of the APC/C has been implicated in various human diseases, including cancer and neurodegenerative disorders. Therefore, understanding the mechanisms that regulate its activity is an important area of research with potential therapeutic implications.

Hemangiosarcoma is a type of cancer that arises from the cells that line the blood vessels (endothelial cells). It most commonly affects middle-aged to older dogs, but it can also occur in cats and other animals, as well as rarely in humans.

This cancer can develop in various parts of the body, including the skin, heart, spleen, liver, and lungs. Hemangiosarcomas of the skin tend to be more benign and have a better prognosis than those that arise internally.

Hemangiosarcomas are highly invasive and often metastasize (spread) to other organs, making them difficult to treat. The exact cause of hemangiosarcoma is not known, but exposure to certain chemicals, radiation, and viruses may increase the risk of developing this cancer. Treatment options typically include surgery, chemotherapy, and/or radiation therapy, depending on the location and stage of the tumor.

The Ki-67 antigen is a cellular protein that is expressed in all active phases of the cell cycle (G1, S, G2, and M), but not in the resting phase (G0). It is often used as a marker for cell proliferation and can be found in high concentrations in rapidly dividing cells. Immunohistochemical staining for Ki-67 can help to determine the growth fraction of a group of cells, which can be useful in the diagnosis and prognosis of various malignancies, including cancer. The level of Ki-67 expression is often associated with the aggressiveness of the tumor and its response to treatment.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

Adenoma of the bile duct is a benign (noncancerous) tumor that develops in the bile ducts, which are tiny tubes that carry bile from the liver to the gallbladder and small intestine. Bile is a digestive fluid produced by the liver.

Bile duct adenomas are rare and usually do not cause any symptoms. However, if they grow large enough, they may obstruct the flow of bile and cause jaundice (yellowing of the skin and whites of the eyes), abdominal pain, or itching. In some cases, bile duct adenomas may become cancerous and develop into bile duct carcinomas.

The exact cause of bile duct adenomas is not known, but they are more common in people with certain genetic disorders, such as Gardner's syndrome and von Hippel-Lindau disease. Treatment for bile duct adenomas typically involves surgical removal of the tumor.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Hutchinson's melanotic freckle, also known as Hutchinson's melanotic macule or naevus, is a type of pigmented lesion that can be a precursor to malignant melanoma, a serious form of skin cancer. It is typically characterized by the presence of darkly pigmented, irregularly shaped patches on the skin, often found on the face or neck.

The lesions are usually brown or black in color and may have an uneven border or surface. They can vary in size from a few millimeters to several centimeters in diameter. Hutchinson's melanotic freckles are typically larger, darker, and more irregularly shaped than common freckles.

These lesions are named after Sir Jonathan Hutchinson, an English surgeon and pathologist who first described them in the late 19th century. It is important to note that while Hutchinson's melanotic freckles can be a sign of increased risk for developing melanoma, not all such lesions will become cancerous. However, any changes in size, shape, or color of these lesions should be evaluated by a healthcare professional as soon as possible.

Chromatids are defined as the individual strands that make up a duplicated chromosome. They are formed during the S phase of the cell cycle, when replication occurs and each chromosome is copied, resulting in two identical sister chromatids. These chromatids are connected at a region called the centromere and are held together by cohesin protein complexes until they are separated during mitosis or meiosis.

During mitosis, the sister chromatids are pulled apart by the mitotic spindle apparatus and distributed equally to each daughter cell. In meiosis, which is a type of cell division that occurs in the production of gametes (sex cells), homologous chromosomes pair up and exchange genetic material through a process called crossing over. After crossing over, each homologous chromosome consists of two recombinant chromatids that are separated during meiosis I, and then sister chromatids are separated during meiosis II.

Chromatids play an essential role in the faithful transmission of genetic information from one generation to the next, ensuring that each daughter cell or gamete receives a complete set of chromosomes with intact and functional genes.

An ovum is the female reproductive cell, or gamete, produced in the ovaries. It is also known as an egg cell and is released from the ovary during ovulation. When fertilized by a sperm, it becomes a zygote, which can develop into a fetus. The ovum contains half the genetic material necessary to create a new individual.

Lip neoplasms refer to abnormal growths or tumors that occur in the lip tissue. These growths can be benign (non-cancerous) or malignant (cancerous). Benign lip neoplasms include conditions such as papillomas, fibromas, and mucocele, while malignant lip neoplasms are typically squamous cell carcinomas.

Squamous cell carcinoma of the lip is the most common type of lip cancer, accounting for about 90% of all lip cancers. It usually develops on the lower lip, and is often associated with prolonged sun exposure, smoking, and alcohol consumption. Symptoms may include a sore or lump on the lip that does not heal, bleeding, pain, numbness, or difficulty moving the lips.

It's important to note that any abnormal growth or change in the lips should be evaluated by a healthcare professional for proper diagnosis and treatment.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

I believe you are looking for a medical condition or term related to the state of Colorado, but there is no specific medical definition for "Colorado." However, Colorado is known for its high altitude and lower oxygen levels, which can sometimes affect visitors who are not acclimated to the elevation. This can result in symptoms such as shortness of breath, fatigue, and headaches, a condition sometimes referred to as "altitude sickness" or "mountain sickness." But again, this is not a medical definition for Colorado itself.

Tubulin modulators are a class of drugs that target and alter the function or structure of tubulin, which is a key component of microtubules in cells. These drugs can either stabilize or destabilize microtubules by interacting with tubulin, leading to various effects on cell division and other processes that rely on microtubule dynamics.

There are two main types of tubulin modulators:

1. Microtubule stabilizers: These drugs promote the assembly and stability of microtubules by binding to tubulin, preventing its disassembly. Examples include taxanes (e.g., paclitaxel) and vinca alkaloids (e.g., vinblastine). They are primarily used as anticancer agents because they interfere with the division of cancer cells.
2. Microtubule destabilizers: These drugs inhibit the formation and stability of microtubules by binding to tubulin, promoting its disassembly. Examples include colchicine, vinca alkaloids (e.g., vinorelbine), and combretastatins. They can also be used as anticancer agents because they disrupt the mitotic spindle during cell division, leading to cancer cell death.

Tubulin modulators have various other effects on cells beyond their impact on microtubules, such as interfering with intracellular transport and signaling pathways. These diverse actions contribute to their therapeutic potential in treating diseases like cancer, but they can also lead to side effects that limit their clinical use.

"Mycobacterium haemophilum" is a slow-growing, gram-positive, acid-fast bacterium that is a member of the Mycobacteriaceae family. It is an opportunistic pathogen that primarily causes skin and soft tissue infections in immunocompromised individuals, such as those with HIV/AIDS or organ transplant recipients. The bacterium requires enriched media containing hemoglobin or hemin for growth, which is why it is named "haemophilum." Infections caused by this bacterium can be difficult to diagnose and treat due to its slow growth rate and resistance to many first-line anti-tuberculosis drugs.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

The term "back" is a common word used to describe the large posterior part of the body of a human or an animal, which extends from the neck to the pelvis and contains the spine, spinal cord, ribs, muscles, and other various tissues. In medical terms, the back is also known as the dorsal region. It provides support, protection, and mobility for the body, allowing us to stand upright, bend, twist, and perform various physical activities. The back is susceptible to various injuries, disorders, and conditions, such as back pain, strains, sprains, herniated discs, scoliosis, and arthritis, among others.

Granulation tissue is the pinkish, bumpy material that forms on the surface of a healing wound. It's composed of tiny blood vessels (capillaries), white blood cells, and fibroblasts - cells that produce collagen, which is a protein that helps to strengthen and support the tissue.

Granulation tissue plays a crucial role in the wound healing process by filling in the wound space, contracting the wound, and providing a foundation for the growth of new skin cells (epithelialization). It's typically formed within 3-5 days after an injury and continues to develop until the wound is fully healed.

It's important to note that while granulation tissue is a normal part of the healing process, excessive or overgrowth of granulation tissue can lead to complications such as delayed healing, infection, or the formation of hypertrophic scars or keloids. In these cases, medical intervention may be necessary to manage the excess tissue and promote proper healing.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

The term "DNA, neoplasm" is not a standard medical term or concept. DNA refers to deoxyribonucleic acid, which is the genetic material present in the cells of living organisms. A neoplasm, on the other hand, is a tumor or growth of abnormal tissue that can be benign (non-cancerous) or malignant (cancerous).

In some contexts, "DNA, neoplasm" may refer to genetic alterations found in cancer cells. These genetic changes can include mutations, amplifications, deletions, or rearrangements of DNA sequences that contribute to the development and progression of cancer. Identifying these genetic abnormalities can help doctors diagnose and treat certain types of cancer more effectively.

However, it's important to note that "DNA, neoplasm" is not a term that would typically be used in medical reports or research papers without further clarification. If you have any specific questions about DNA changes in cancer cells or neoplasms, I would recommend consulting with a healthcare professional or conducting further research on the topic.

Adenocarcinoma, papillary is a type of cancer that begins in the glandular cells and grows in a finger-like projection (called a papilla). This type of cancer can occur in various organs, including the lungs, pancreas, thyroid, and female reproductive system. The prognosis and treatment options for papillary adenocarcinoma depend on several factors, such as the location and stage of the tumor, as well as the patient's overall health. It is important to consult with a healthcare professional for an accurate diagnosis and personalized treatment plan.

A splenic rupture is a medical condition characterized by a tear or complete breakage in the spleen, leading to the release of blood into the abdominal cavity. The spleen is a soft, fist-shaped organ located in the upper left part of the abdomen, which plays an essential role in filtering the blood and fighting infections.

Splenic rupture can occur as a result of trauma, such as a car accident or a direct blow to the abdomen, or it may develop spontaneously due to underlying medical conditions, such as cancer, infection, or inflammatory diseases. The severity of the rupture can vary from a small tear to a complete shattering of the spleen, leading to significant bleeding and potentially life-threatening complications.

Symptoms of splenic rupture may include sudden, severe pain in the left upper abdomen or shoulder, lightheadedness, dizziness, shortness of breath, rapid heartbeat, and decreased blood pressure. If left untreated, a splenic rupture can lead to shock, organ failure, and even death. Treatment typically involves surgery to remove the spleen (splenectomy) or repair the damage, followed by close monitoring and supportive care to manage any complications.

Demecolcine is a medication that belongs to the class of drugs called anticholinergics. It is derived from the plant alkaloid colchicine and has been used in medical research for its ability to arrest cells in metaphase, a specific stage of cell division. This property makes demecolcine useful in various laboratory procedures such as chromosome analysis and the production of cultured cell lines.

In clinical settings, demecolcine is not commonly used due to its narrow therapeutic index and potential for toxicity. However, it has been used off-label in some cases to treat conditions associated with uncontrolled cell division, such as certain types of cancer. Its use in these situations is typically reserved for when other treatments have failed or are not well tolerated.

It's important to note that demecolcine should only be administered under the close supervision of a healthcare professional and its use is generally avoided in pregnant women due to the risk of fetal harm.

Splenic neoplasms refer to abnormal growths or tumors in the spleen, which can be benign (non-cancerous) or malignant (cancerous). These growths can arise from various cell types present within the spleen, including hematopoietic cells (red and white blood cells, platelets), stromal cells (supporting tissue), or lymphoid cells (part of the immune system).

There are several types of splenic neoplasms:

1. Hematologic malignancies: These are cancers that affect the blood and bone marrow, such as leukemias, lymphomas, and multiple myeloma. They often involve the spleen, causing enlargement (splenomegaly) and neoplastic infiltration of splenic tissue.
2. Primary splenic tumors: These are rare and include benign lesions like hemangiomas, lymphangiomas, and hamartomas, as well as malignant tumors such as angiosarcoma, littoral cell angiosarcoma, and primary splenic lymphoma.
3. Metastatic splenic tumors: These occur when cancer cells from other primary sites spread (metastasize) to the spleen. Common sources of metastasis include lung, breast, colon, and ovarian cancers, as well as melanomas and sarcomas.

Symptoms of splenic neoplasms may vary depending on the type and extent of the disease but often include abdominal pain or discomfort, fatigue, weight loss, and anemia. Diagnosis typically involves imaging studies (such as ultrasound, CT, or MRI scans) and sometimes requires a biopsy for confirmation. Treatment options depend on the type of neoplasm and may include surgery, chemotherapy, radiation therapy, targeted therapy, or immunotherapy.

Chromosomes in fungi are thread-like structures that contain genetic material, composed of DNA and proteins, present in the nucleus of a cell. Unlike humans and other eukaryotes that have a diploid number of chromosomes in their somatic cells, fungal chromosome numbers can vary widely between and within species.

Fungal chromosomes are typically smaller and fewer in number compared to those found in plants and animals. The chromosomal organization in fungi is also different from other eukaryotes. In many fungi, the chromosomes are condensed throughout the cell cycle, whereas in other eukaryotes, chromosomes are only condensed during cell division.

Fungi can have linear or circular chromosomes, depending on the species. For example, the model organism Saccharomyces cerevisiae (budding yeast) has a set of 16 small circular chromosomes, while other fungi like Neurospora crassa (red bread mold) and Aspergillus nidulans (a filamentous fungus) have linear chromosomes.

Fungal chromosomes play an essential role in the growth, development, reproduction, and survival of fungi. They carry genetic information that determines various traits such as morphology, metabolism, pathogenicity, and resistance to environmental stresses. Advances in genomic technologies have facilitated the study of fungal chromosomes, leading to a better understanding of their structure, function, and evolution.

Sleep stages are distinct patterns of brain activity that occur during sleep, as measured by an electroencephalogram (EEG). They are part of the sleep cycle and are used to describe the different types of sleep that humans go through during a normal night's rest. The sleep cycle includes several repeating stages:

1. Stage 1 (N1): This is the lightest stage of sleep, where you transition from wakefulness to sleep. During this stage, muscle activity and brain waves begin to slow down.
2. Stage 2 (N2): In this stage, your heart rate slows, body temperature decreases, and eye movements stop. Brain wave activity becomes slower, with occasional bursts of electrical activity called sleep spindles.
3. Stage 3 (N3): Also known as deep non-REM sleep, this stage is characterized by slow delta waves. It is during this stage that the body undergoes restorative processes such as tissue repair, growth, and immune function enhancement.
4. REM (Rapid Eye Movement) sleep: This is the stage where dreaming typically occurs. Your eyes move rapidly beneath closed eyelids, heart rate and respiration become irregular, and brain wave activity increases to levels similar to wakefulness. REM sleep is important for memory consolidation and learning.

The sleep cycle progresses through these stages multiple times during the night, with REM sleep periods becoming longer towards morning. Understanding sleep stages is crucial in diagnosing and treating various sleep disorders.

Spindle poles are specialized structures that form during cell division, specifically during mitosis and meiosis. They are the organizing centers for the microtubules of the spindle apparatus, which is responsible for separating replicated chromosomes into two identical sets in each new daughter cell.

The spindle poles are composed of two centrosomes, which consist of a pair of centrioles surrounded by a protein matrix called the pericentriolar material (PCM). The PCM provides a platform for the nucleation and organization of microtubules, which extend outward from the centrosomes to form the spindle fibers.

During cell division, the duplicated centrosomes separate and move to opposite ends of the cell, forming the two spindle poles. The microtubules that emanate from each spindle pole then attach to the kinetochores, which are protein structures on the centromeres of each chromosome.

The interaction between the microtubules and kinetochores generates forces that move the chromosomes toward the metaphase plate, where they align in the middle of the cell. Once aligned, the sister chromatids separate and move toward opposite spindle poles during anaphase, eventually leading to the formation of two genetically identical daughter cells.

In summary, spindle poles are the microtubule-organizing centers that orchestrate the movement of chromosomes during cell division, ensuring equal distribution of genetic material to each new cell.

Mucin-1, also known as MUC1, is a type of protein called a transmembrane mucin. It is heavily glycosylated and found on the surface of many types of epithelial cells, including those that line the respiratory, gastrointestinal, and urogenital tracts.

Mucin-1 has several functions, including:

* Protecting the underlying epithelial cells from damage caused by friction, chemicals, and microorganisms
* Helping to maintain the integrity of the mucosal barrier
* Acting as a receptor for various signaling molecules
* Participating in immune responses

In cancer, MUC1 can be overexpressed or aberrantly glycosylated, which can contribute to tumor growth and metastasis. As a result, MUC1 has been studied as a potential target for cancer immunotherapy.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Malignant fibrous histiocytoma (MFH) is not a specific type of histiocytoma; rather, it is a type of soft tissue sarcoma. Histiocytomas are benign tumors that arise from cells called histiocytes, which are part of the immune system. MFH, on the other hand, is a malignant (cancerous) tumor that can arise in various types of soft tissues, such as muscle, fat, tendons, and ligaments.

MFH was once thought to originate from histiocytes, but more recent research suggests that it may actually arise from undifferentiated mesenchymal cells, which are capable of developing into a variety of different cell types. MFH is the most common type of soft tissue sarcoma in adults over the age of 50 and typically presents as a painless mass in the extremities or retroperitoneum (the area in the back of the abdomen).

The tumor is characterized by the presence of fibroblastic and histiocytic-like cells, which can be quite pleomorphic (varied in shape and size) and may contain numerous mitotic figures (indicating rapid cell division). Treatment typically involves surgical excision, often followed by radiation therapy and/or chemotherapy. The prognosis for MFH depends on several factors, including the tumor's location, size, grade (degree of differentiation), and the patient's age and overall health.

Polarized light microscopy is a type of microscopy that uses polarized light to enhance contrast and reveal unique optical properties in specimens. In this technique, a polarizing filter is placed under the light source, which polarizes the light as it passes through. The specimen is then illuminated with this linearly polarized light. As the light travels through the specimen, its plane of polarization may be altered due to birefringence, a property of certain materials that causes the light to split into two separate rays with different refractive indices.

A second polarizing filter, called an analyzer, is placed in the light path between the objective and the eyepiece. The orientation of this filter can be adjusted to either allow or block the transmission of light through the microscope. When the polarizer and analyzer are aligned perpendicularly, no light will pass through if the specimen does not exhibit birefringence. However, if the specimen has birefringent properties, it will cause the plane of polarization to rotate, allowing some light to pass through the analyzer and create a contrasting image.

Polarized light microscopy is particularly useful for observing structures in minerals, crystals, and certain biological materials like collagen fibers, muscle proteins, and starch granules. It can also be used to study stress patterns in plastics and other synthetic materials.

A Mongolian spot is not a medical condition, but rather a benign and common birthmark that appears as a flat, blue-gray or greenish-black patch on the skin. It is most frequently found on newborns and infants of Asian, Native American, African, and Hispanic descent, although it can be found in people of any race.

Mongolian spots are caused by the collection of melanocytes (the cells that produce pigment) in the dermis, which become trapped in the skin during fetal development. They typically appear at birth or within the first few weeks of life and can vary in size, shape, and color.

While Mongolian spots may resemble bruises, they are not painful or harmful to the child's health. In most cases, these spots fade on their own over time, often disappearing completely by the time the child reaches school age. However, in some cases, they may persist into adulthood.

It is important to note that while Mongolian spots are common and harmless, any new or changing skin lesions should be evaluated by a healthcare provider to ensure they are not indicative of a more serious condition.

Viroids are the smallest known pathogens that can infect plants. They are similar to viruses in that they consist of nucleic acid, but unlike viruses, viroids do not contain protein and are not encapsidated within a protective coat. Instead, viroids are simply small, naked circles of RNA that can replicate inside plant cells by using the host's enzymes.

Viroids can cause various diseases in plants, such as stunting, leaf distortion, and reduced yield. They can be transmitted through seed, vegetative propagation, or mechanical means, such as grafting or pruning tools. Because of their small size and simple structure, viroids are difficult to detect and control, making them a significant challenge in plant pathology.

Leiomyoma is a benign (non-cancerous) tumor that originates from the smooth muscle cells. It most commonly occurs in the uterus, where it is also known as a fibroid, but can also develop in other parts of the body such as the skin, gastrointestinal tract, and genitourinary system. Leiomyomas are typically slow-growing and often cause no symptoms, although they can lead to various complications depending on their size and location. Treatment options for leiomyomas include surveillance, medication, or surgical removal.

Hereditary mucosal leukokeratosis is a rare genetic condition characterized by the abnormal growth of white, thickened, and slightly raised lesions or plaques on the mucous membranes. These lesions are primarily composed of keratin, a protein found in the outer layer of the skin, and consist of leukoplakia (white patches) and/or keratosis (thickening of the skin).

The condition typically affects mucous membranes in various parts of the body, such as the mouth, nose, throat, larynx, esophagus, genitals, and anus. The onset usually occurs during infancy or early childhood, and it can cause discomfort, pain, and difficulty with speaking, swallowing, or breathing, depending on the location of the lesions.

Hereditary mucosal leukokeratosis is caused by mutations in the MUC5B gene, which provides instructions for producing a specific type of mucin, a glycoprotein that helps maintain the moistness and integrity of mucous membranes. Inheritance follows an autosomal dominant pattern, meaning that only one copy of the altered gene is sufficient to cause the condition.

Management of hereditary mucosal leukokeratosis often involves regular monitoring and removal of the lesions through various methods such as surgical excision, laser therapy, or chemical cauterization. The prognosis for individuals with this condition varies, but many will experience recurring lesions throughout their lives.

Heart neoplasms are abnormal growths or tumors that develop within the heart tissue. They can be benign (noncancerous) or malignant (cancerous). Benign tumors, such as myxomas and rhabdomyomas, are typically slower growing and less likely to spread, but they can still cause serious complications if they obstruct blood flow or damage heart valves. Malignant tumors, such as angiosarcomas and rhabdomyosarcomas, are fast-growing and have a higher risk of spreading to other parts of the body. Symptoms of heart neoplasms can include shortness of breath, chest pain, fatigue, and irregular heart rhythms. Treatment options depend on the type, size, and location of the tumor, and may include surgery, radiation therapy, or chemotherapy.

Organoids are 3D tissue cultures grown from stem cells that mimic the structure and function of specific organs. They are used in research to study development, disease, and potential treatments. The term "organoid" refers to the fact that these cultures can organize themselves into structures that resemble rudimentary organs, with differentiated cell types arranged in a pattern similar to their counterparts in the body. Organoids can be derived from various sources, including embryonic stem cells, induced pluripotent stem cells (iPSCs), or adult stem cells, and they provide a valuable tool for studying complex biological processes in a controlled laboratory setting.

Desmoplakins are important proteins that play a crucial role in the structural integrity and function of certain types of cell-to-cell junctions called desmosomes. Desmosomes are specialized structures that connect adjacent cells in tissues that undergo significant mechanical stress, such as the skin, heart, and gut.

Desmoplakins are large proteins that are composed of several domains, including a plakin domain, which interacts with other desmosomal components, and a spectrin-like repeat domain, which binds to intermediate filaments. By linking desmosomes to the intermediate filament network, desmoplakins help to provide mechanical strength and stability to tissues.

Mutations in the genes that encode desmoplakins have been associated with several human genetic disorders, including arrhythmogenic right ventricular cardiomyopathy (ARVC), a heart condition characterized by abnormal heart rhythms and structural changes in the heart muscle, and epidermolysis bullosa simplex (EBS), a skin disorder characterized by blistering and fragility of the skin.

A Phyllodes tumor is a rare type of breast tumor that originates from the connective tissue (stroma) that supports the breast lobules and ducts. These tumors can be benign, borderline, or malignant, depending on their level of invasiveness and cellular atypia.

Phyllodes tumors are typically large, firm, and well-circumscribed masses with a leaf-like (phyllode) internal architecture. They can grow quickly and may cause symptoms such as pain, swelling, or a palpable lump in the breast. Surgical excision is the primary treatment for Phyllodes tumors, and the extent of surgery depends on the tumor's size, grade, and margins. Regular follow-up is necessary to monitor for recurrence.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Endometrial stromal sarcoma is a rare type of cancer that arises from the connective tissue cells (stromal cells) of the endometrium, which is the inner lining of the uterus. This type of sarcoma is typically low-grade and slow-growing, but it can still metastasize or spread to other parts of the body.

Endometrial stromal sarcomas are usually diagnosed in postmenopausal women, although they can also occur in younger women. The most common symptom is abnormal vaginal bleeding, especially if it occurs after menopause. Other symptoms may include pelvic pain or a mass that can be felt during a physical examination.

The diagnosis of endometrial stromal sarcoma typically involves a combination of imaging studies, such as ultrasound, MRI, or CT scan, and a biopsy to confirm the presence of cancer cells. Treatment usually involves surgery to remove the uterus and surrounding tissues, followed by hormone therapy, radiation therapy, or chemotherapy, depending on the stage and grade of the tumor. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

A Granular Cell Tumor (GCT) is a rare, usually benign neoplasm that can occur in various parts of the body. These tumors are typically composed of large polygonal cells with abundant eosinophilic granular cytoplasm, which contain numerous mitochondria. They often involve the skin and subcutaneous tissues, but they can also arise in the oral cavity, gastrointestinal tract, respiratory system, and other visceral organs.

Granular Cell Tumors are thought to originate from Schwann cells, which are nerve sheath cells, although their exact origin is still a matter of debate. They usually present as solitary, slow-growing nodules or masses that are often painless, but they can become symptomatic if they involve sensitive areas or if they undergo malignant transformation, which occurs in about 1-2% of cases.

The diagnosis of Granular Cell Tumors is usually made based on histopathological examination of a biopsy specimen. Immunohistochemical staining can be used to confirm the Schwann cell origin of these tumors, as they typically express S-100 protein and other markers of neural differentiation.

Treatment options for Granular Cell Tumors depend on their location, size, and behavior. Solitary, benign tumors can often be excised surgically with a wide margin to reduce the risk of recurrence. However, malignant tumors or those that cannot be completely removed may require more aggressive treatment, such as radiation therapy or chemotherapy. Regular follow-up is recommended to monitor for recurrence or metastasis.

A pigmented spindle cell nevus is a skin condition characterized by a dark brown to black macule or papule, usually less than 6 ... v t e (Articles with short description, Short description is different from Wikidata, Melanocytic nevi and neoplasms, All stub ... Partial unilateral lentiginosis List of cutaneous conditions Spitz nevus Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph ... Jun 1975). "Common and uncommon melanocytic nevi and borderline melanomas". Semin Oncol. 2 (2): 119-47. PMID 1234372. ...
A type of melanocytic nevus, it affects the epidermis and dermis. It is also known as an epithelioid and spindle-cell nevus, ... Spitz nevi characteristically have vertically arranged nests of nevus cells that have both a spindled and an epithelioid ... The main histologic differential diagnoses are pigmented spindle cell nevus and malignant melanoma. Surgical removal is usually ... Genetic studies of Spitz nevi have shown that most cells have the normal number of chromosomes, however a minority (25%) of ...
... does not react well against intradermal nevi, normal adult melanocytes, spindle cell melanomas and desmoplastic ... The antibody also reacts positively against junctional nevus cells and fetal melanocytes. Despite this relatively high ... "Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with ... clear cell sarcoma) or tumors associated with tuberous sclerosis complex (angiomyolipoma and lymphangiomyoma). HMB-45 should be ...
... spider nevus, vascular spider) Spindle cell hemangioendothelioma (spindle cell hemangioma) Spindle cell lipoma Sternal cleft ... Peutz-Jeghers syndrome Pigmented spindle cell nevus (pigmented spindle cell tumor of Reed, pigmented variant of Spitz nevus) ... melanocytic nevus with intraepidermal ascent of cells) Amelanotic blue nevus (hypomelanotic blue nevus) Balloon cell nevus ... Solitary trichoepithelioma Spindle cell squamous cell carcinoma (spindle cell carcinoma) Spiradenoma Squamous cell carcinoma ...
Pigmented spindle cell nevus Spitz nevus Zosteriform lentiginous nevus Congenital melanocytic nevus These nevi are often ... Basal cell nevus syndrome Blue rubber bleb nevus syndrome Dysplastic nevus syndrome Epidermal nevus syndrome Linear nevus ... Melanocytic nevus Melanocytic nevi can be categorized based on the location of melanocytic cells Junctional: epidermis ... Becker's nevus Blue nevus (rarely congenital): A classic blue nevus is usually smaller than 1 cm, flat, and blue-black in color ...
... a melanocytic nevus Epithelioid sarcoma-like hemangioendothelioma, a group of vascular neoplasms Epithelioid and spindle-cell ... Epithelioid may refer to: Epithelioid cell, a cell that resembles epithelial cells Epithelioid sarcoma, a soft tissue tumour ... nevus, a benign melanocytic lesion affecting the epidermis and dermis Epithelioid hemangioma Epithelioid cell histiocytoma, a ... Epithelioid hemangioendothelioma, a vascular tumour occurring in the lining of blood vessels Epithelioid blue nevus, ...
... spindle cells). The nuclei are uniform, blunt-ended and cigar-shaped with only occasional mitoses. Special stains that may be ... including blue rubber bleb nevus, leiomyoma, eccrine spiradenoma, neuroma, dermatofibroma, angiolipoma, neurilemmoma, ... It predisposes for renal cell cancer, an association denominated hereditary leiomyomatosis and renal cell cancer, and it is ... "An Antioxidant Response Phenotype Shared between Hereditary and Sporadic Type 2 Papillary Renal Cell Carcinoma". Cancer Cell. ...
... furcula fusiform gyrus gag reflex galea aponeurotica gall bladder gamma motoneurons ganglion ganglion cell ganglion cell of the ... endplate motor neuron motor unit mouth mucoperiosteum mucosa mucous membranes multifidus muscle muscle fascicle muscle spindle ... neural tube neural neuroectoderm neuroglia neurohypophysis neurolemma neurology neuromuscular junction neuron neuropil nevus ... sartorius satellite cells scala media scala tympani scala vestibuli scalp scaphoid scaphoid fossa scapula scar Schwann cell ...
... nevus, spindle cell MeSH C04.557.665.560.615.625.585 - nevus, epithelioid and spindle cell MeSH C04.557.695.065 - ameloblastoma ... basal cell MeSH C04.557.470.565.165 - carcinoma, basal cell MeSH C04.557.470.565.165.150 - basal cell nevus syndrome MeSH ... basal cell MeSH C04.557.470.200.165.150 - basal cell nevus syndrome MeSH C04.557.470.200.170 - carcinoma, basosquamous MeSH ... b-cell, acute MeSH C04.557.337.428.500.125 - leukemia, B-Cell, chronic MeSH C04.557.337.428.500.500 - leukemia, pre-b-cell MeSH ...
... nevus M8770/0 Epithelioid and spindle cell nevus Juvenile nevus Juvenile melanoma Spitz nevus Pigmented spindle cell nevus of ... and spindle cell melanoma M8771/0 Epithelioid cell nevus M8771/3 Epithelioid cell melanoma M8772/0 spindle cell nevus, NOS ... small cell, nonkeratinizing M8074/3 Squamous cell carcinoma, spindle cell Epidermoid carcinoma, spindle cell Squamous cell ... NOS M8773/3 Spindle cell melanoma, type A M8774/3 Spindle cell melanoma, type B M8780/0 Blue nevus, NOS Jadassohn blue nevus ...
Nevus • New York State Dental Association • New York University College of Dentistry • Nicotine stomatitis • Nikolsky's sign • ... Giant cell fibroma • Gigantiform cementoma • Gingiva • Gingival and periodontal pockets • Gingival cyst of the adult • Gingival ... Enamel spindles • Enamel tufts • Enamelin • Endodontic therapy • Endodontics • Epulis fissuratum • Er:YAG laser • Erosion • ... White sponge nevus • Whitening strips • Wilbur Wonka • William Donald Kelley • William Duff • William Gibson • William Samuel ...
Self-Organization and Priming Phosphorylation of HsCYK-4 at the Spindle Midzone Regulate the Onset of Division in Human Cells ... 2000). "A glutamine insertion in the 1A alpha helical domain of the keratin 4 gene in a familial case of white sponge nevus". J ... Cell Genet. 54 (3-4): 148-50. doi:10.1159/000132979. PMID 1702379. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, ... Cell Genet. 48 (3): 148-51. doi:10.1159/000132612. PMID 2466616. v t e (Genes on human chromosome 12, Keratins, All stub ...
... spindle cell tumors, sebaceous carcinomas, microcystic adnexal carcinoma, Paget's disease of the breast, atypical fibroxanthoma ... Some genetic syndromes including congenital melanocytic nevi syndrome which is characterized by the presence of nevi ( ... Of nonmelanoma skin cancers, about 80% are basal-cell cancers and 20% squamous-cell skin cancers. Basal-cell and squamous-cell ... basal-cell carcinoma) (BCC), squamous-cell skin cancer (squamous-cell carcinoma) (SCC) and malignant melanoma. Basal-cell ...
Balloon cell nevus List of cutaneous conditions Vyas, Ritva; Keller, Jesse J.; Honda, Kord; Cooper, Kevin D.; Gerstenblith, Meg ... Animal-type melanoma is a rare subtype of melanoma that is characterized by heavily pigmented dermal epithelioid and spindled ... UVA and UVB rays are wavelengths expressed by the sun and absorbed by skin cell DNA that results in DNA damage. Exposure to ... This is used as a prognostic factor in melanoma and provides a description of how deeply tumor cells have invaded. Melanoma ...
... specific immune cell - SPECT - SPF - spiculated mass - spindle cell cancer - spindle cell sarcoma - spiral CT scan - ... basal cell - basal cell carcinoma - basal cell nevus syndrome - basophil - batimastat - BAY 12-9566 - BAY 43-9006 - BAY 56-3722 ... cell - cell differentiation - cell motility - cell proliferation - cell respiration - cell adhesion - cellular adoptive ... systemic therapy T cell - T-3 - T-cell depletion - T-cell lymphoma - T138067 - T4N5 liposomal lotion - T900607 - TAC-101 - ...

No FAQ available that match "nevus spindle cell"

No images available that match "nevus spindle cell"