Annual cereal grass of the family POACEAE and its edible starchy grain, rice, which is the staple food of roughly one-half of the world's population.
A plant genus of the family RANUNCULACEAE that contains alpha-hederin, a triterpene saponin in the seeds, and is the source of black seed oil.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
The functional hereditary units of PLANTS.
A plant species of the family FABACEAE widely cultivated for ANIMAL FEED.
The genetic complement of a plant (PLANTS) as represented in its DNA.
A plant species of the family POACEAE that is widely cultivated for its edible seeds.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
A plant species of the genus VICIA, family FABACEAE. The seed is used for food and contains THIOCYANATES such as prunasin, cyanoalanine, cyanogen, and vicine.
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
Deoxyribonucleic acid that makes up the genetic material of plants.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The relationships of groups of organisms as reflected by their genetic makeup.
Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
New immature growth of a plant including stem, leaves, tips of branches, and SEEDLINGS.
Very young plant after GERMINATION of SEEDS.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.
Cultivated plants or agricultural produce such as grain, vegetables, or fruit. (From American Heritage Dictionary, 1982)
A plant genus of the family POACEAE. The grain is used for FOOD and for ANIMAL FEED. This should not be confused with KAFFIR LIME or with KEFIR milk product.
A genus of FUNGI, in the family Magnaporthaceae of uncertain position (incertae sedis). It is best known for its species, M. grisea, which is one of the most popular experimental organisms of all fungal plant pathogens. Its anamorph is PYRICULARIA GRISEA.
The failure of PLANTS to complete fertilization and obtain seed (SEEDS) as a result of defective POLLEN or ovules, or other aberrations. (Dict. of Plant Genet. and Mol. Biol., 1998)
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
The reproductive organs of plants.
A plant genus in the family POACEAE. Brachypodium distachyon is a model species for functional genomics studies.
The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins.
Any of the various plants of the genus Lactuca, especially L. sativa, cultivated for its edible leaves. (From American Heritage Dictionary, 2d ed)
A class of plant growth hormone isolated from cultures of Gibberella fujikuroi, a fungus causing Bakanae disease in rice. There are many different members of the family as well as mixtures of multiple members; all are diterpenoid acids based on the gibberellane skeleton.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Nutritive tissue of the seeds of flowering plants that surrounds the EMBRYOS. It is produced by a parallel process of fertilization in which a second male gamete from the pollen grain fuses with two female nuclei within the embryo sac. The endosperm varies in ploidy and contains reserves of starch, oils, and proteins, making it an important source of human nutrition.
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.
Any method used for determining the location of and relative distances between genes on a chromosome.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
Diseases of plants.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Prolonged dry periods in natural climate cycle. They are slow-onset phenomena caused by rainfall deficit combined with other predisposing factors.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Sudden onset water phenomena with different speed of occurrence. These include flash floods, seasonal river floods, and coastal floods, associated with CYCLONIC STORMS; TIDALWAVES; and storm surges.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Genetic loci associated with a QUANTITATIVE TRAIT.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.
The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions.
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A genus in the family XANTHOMONADACEAE whose cells produce a yellow pigment (Gr. xanthos - yellow). It is pathogenic to plants.
The fertilizing element of plants that contains the male GAMETOPHYTES.
Herbaceous biennial plants and their edible bulbs, belonging to the Liliaceae.
A part of the embryo in a seed plant. The number of cotyledons is an important feature in classifying plants. In seeds without an endosperm, they store food which is used in germination. In some plants, they emerge above the soil surface and become the first photosynthetic leaves. (From Concise Dictionary of Biology, 1990)
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A group of plant cells that are capable of dividing infinitely and whose main function is the production of new growth at the growing tip of a root or stem. (From Concise Dictionary of Biology, 1990)
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
Mapping of the linear order of genes on a chromosome with units indicating their distances by using methods other than genetic recombination. These methods include nucleotide sequencing, overlapping deletions in polytene chromosomes, and electron micrography of heteroduplex DNA. (From King & Stansfield, A Dictionary of Genetics, 5th ed)
Processes occurring in various organisms by which new genes are copied. Gene duplication may result in a MULTIGENE FAMILY; supergenes or PSEUDOGENES.
A genus of RNA plant viruses as yet unassigned to any family. Plant hosts are all in the family Poaceae. Each species is transmitted by a particular species of planthopper. The type species is Rice stripe virus.
A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food.
The parts of plants, including SEEDS.
A highly branched glucan in starch.
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits.
An NAD+ dependent enzyme that catalyzes the oxidation of betain aldehyde to BETAINE.
Seeds from grasses (POACEAE) which are important in the diet.
Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed)
The use of genetic methodologies to improve functional capacities of an organism rather than to treat disease.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived.
A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS.
Parts of plants that usually grow vertically upwards towards the light and support the leaves, buds, and reproductive structures. (From Concise Dictionary of Biology, 1990)
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.
A FLAVOPROTEIN enzyme for AMMONIA assimilation in BACTERIA, microorganisms and PLANTS. It catalyzes the oxidation of 2 molecules of L-GLUTAMATE to generate L-GLUTAMINE and 2-oxoglutarate in the presence of NAD+.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
An enzyme that catalyzes the transfer of glucose from ADPglucose to glucose-containing polysaccharides in 1,4-alpha-linkages. EC 2.4.1.21.
Derivatives of ethylene, a simple organic gas of biological origin with many industrial and biological use.
A ubiquitous sodium salt that is commonly used to season food.
Degree of saltiness, which is largely the OSMOLAR CONCENTRATION of SODIUM CHLORIDE plus any other SALTS present. It is an ecological factor of considerable importance, influencing the types of organisms that live in an ENVIRONMENT.
Genotypic differences observed among individuals in a population.
Members of the group of vascular plants which bear flowers. They are differentiated from GYMNOSPERMS by their production of seeds within a closed chamber (OVARY, PLANT). The Angiosperms division is composed of two classes, the monocotyledons (Liliopsida) and dicotyledons (Magnoliopsida). Angiosperms represent approximately 80% of all known living plants.
The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.
Plant hormones that promote the separation of daughter cells after mitotic division of a parent cell. Frequently they are purine derivatives.
A plant genus of the family POACEAE that is grown mainly as a hay crop.
Plant tissue that carries nutrients, especially sucrose, by turgor pressure. Movement is bidirectional, in contrast to XYLEM where it is only upward. Phloem originates and grows outwards from meristematic cells (MERISTEM) in the vascular cambium. P-proteins, a type of LECTINS, are characteristically found in phloem.
DNA constructs that are composed of, at least, a REPLICATION ORIGIN, for successful replication, propagation to and maintenance as an extra chromosome in bacteria. In addition, they can carry large amounts (about 200 kilobases) of other sequence for a variety of bioengineering purposes.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
The plant genus in the Cannabaceae plant family, Urticales order, Hamamelidae subclass. The flowering tops are called many slang terms including pot, marijuana, hashish, bhang, and ganja. The stem is an important source of hemp fiber.
A plant genus of the family SALICACEAE. Balm of Gilead is a common name used for P. candicans, or P. gileadensis, or P. jackii, and sometimes also used for ABIES BALSAMEA or for COMMIPHORA.
An absence of warmth or heat or a temperature notably below an accustomed norm.
The ability of organisms to sense and adapt to high concentrations of salt in their growth environment.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
The science, art or practice of cultivating soil, producing crops, and raising livestock.
Plants that can grow well in soils that have a high SALINITY.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98.
An unbranched glucan in starch.
Highly repeated sequences, 100-300 bases long, which contain RNA polymerase III promoters. The primate Alu (ALU ELEMENTS) and the rodent B1 SINEs are derived from 7SL RNA, the RNA component of the signal recognition particle. Most other SINEs are derived from tRNAs including the MIRs (mammalian-wide interspersed repeats).
Tops of plants when in flower, including the stems, leaves and blooms.
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)
A plant family of the order Primulales, subclass Dilleniidae, class Magnoliopsida.
The systematic study of the complete DNA sequences (GENOME) of organisms.
The capacity of an organism to defend itself against pathological processes or the agents of those processes. This most often involves innate immunity whereby the organism responds to pathogens in a generic way. The term disease resistance is used most frequently when referring to plants.
A genus of gram-negative aerobic bacteria that occurs free-living in the soil or associated with the roots of cereal crops or grasses (POACEAE).
The state of failure to initiate and complete the process of growth, reproduction, or gemination of otherwise normal plants or vegetative structures thereof.
Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms.
The directional growth of organisms in response to gravity. In plants, the main root is positively gravitropic (growing downwards) and a main stem is negatively gravitropic (growing upwards), irrespective of the positions in which they are placed. Plant gravitropism is thought to be controlled by auxin (AUXINS), a plant growth substance. (From Concise Dictionary of Biology, 1990)
A group of seed storage proteins restricted to the POACEAE family. They are rich in GLUTAMINE and PROLINE.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Membrane proteins that are involved in the active transport of phosphate.
Plant steroids ubiquitously distributed throughout the plant kingdom. They play essential roles in modulating growth and differentiation of cells at nanomolar to micromolar concentrations.
A trace element that constitutes about 27.6% of the earth's crust in the form of SILICON DIOXIDE. It does not occur free in nature. Silicon has the atomic symbol Si, atomic number 14, and atomic weight [28.084; 28.086].
The presence of two or more genetic loci on the same chromosome. Extensions of this original definition refer to the similarity in content and organization between chromosomes, of different species for example.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
In glycogen or amylopectin synthesis, the enzyme that catalyzes the transfer of a segment of a 1,4-alpha-glucan chain to a primary hydroxy group in a similar glucan chain. EC 2.4.1.18.
The time period of daily exposure that an organism receives from daylight or artificial light. It is believed that photoperiodic responses may affect the control of energy balance and thermoregulation.
Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies.
A plant family of the order Fagales subclass Hamamelidae, class Magnoliopsida.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
A strand of primary conductive plant tissue consisting essentially of XYLEM, PHLOEM, and CAMBIUM.
A thin layer of cells forming the outer integument of seed plants and ferns. (Random House Unabridged Dictionary, 2d ed)
An aminopurine factor in plant extracts that induces cell division. (Grant & Hackh's Chemical Dict, 5th ed)
A group of compounds consisting of two aromatic rings separated by seven carbons (HEPTANES) and having various substituents. The best known member is CURCUMIN.
Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
A large order of insects characterized by having the mouth parts adapted to piercing or sucking. It is comprised of four suborders: HETEROPTERA, Auchenorrhyncha, Sternorrhyncha, and Coleorrhyncha.
A plant genus of the family POACEAE. The seed is one of the millets used in EDIBLE GRAIN. It contains vitexin. The common name of buffelgrass is also used for CENCHRUS.
Databases devoted to knowledge about specific genes and gene products.
Elements that are transcribed into RNA, reverse-transcribed into DNA and then inserted into a new site in the genome. Long terminal repeats (LTRs) similar to those from retroviruses are contained in retrotransposons and retrovirus-like elements. Retroposons, such as LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS do not contain LTRs.
Steroidal compounds in which one or more carbon atoms in the steroid ring system have been substituted with non-carbon atoms.
Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.
Total mass of all the organisms of a given type and/or in a given area. (From Concise Dictionary of Biology, 1990) It includes the yield of vegetative mass produced from any given crop.

Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. (1/5127)

The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  (+info)

Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. (2/5127)

The evolutionary dynamics of Ty1-copia group retrotransposons in grass were examined by reverse transcriptase (RT) domain analysis. Twenty-three rice RT sequences were newly determined for this report. Phylogenetic analysis of 177 RT sequences, mostly derived from wheat, rice, and, maize, showed four distinct families, which were designated G1, G2, G3, and G4. Three of these families have elements obtained from distantly related species, indicative of origins prior to the radiation of grass species. Results of Southern hybridization and detailed comparisons between the wheat and rice sequences indicated that each of the families had undergone a distinct pattern of evolution. Multiple families appear to have evolved in parallel in a host species. Analyses of synonymous and nonsynonymous substitutions suggested that there is a low percentage of elements carrying functional RT domains in the G4 family, indicating that the production of new G4 elements has been controlled by a small number of elements carrying functional RT domains.  (+info)

Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. (3/5127)

We completely sequenced 13,936 nucleotides (nt) of a double-stranded RNA (dsRNA) of wild rice (W-dsRNA). A single long open reading frame (13,719 nt) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase was located in the coding strand. The identity between entire nucleotide sequence of W-dsRNA and that of the dsRNA of temperate japonica rice (J-dsRNA, 13,952 nt) was 75.5%. A site-specific discontinuity (nick) was identified at nt 1,197 from the 5' end of the coding strand of W-dsRNA. This nick is also located at nt 1,211 from the 5' end in the coding strand of J-dsRNA. The dsRNA copy number was increased more than 10-fold in pollen grains of both rice plants. This remarkable increase may be responsible for the highly efficient transmission of J-dsRNA via pollen that we already reported. J-dsRNA and W-dsRNA were also efficiently transmitted to interspecific F1 hybrids. Seed-mediated dsRNA transmission to F2 plants was also highly efficient when the maternal parent was wild rice. The efficiency of dsRNA transmission to F2 plants was reduced when the maternal parent was temperate japonica rice; however, the reduced rates in F2 plants were returned to high levels in F3 plants.  (+info)

Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins. (4/5127)

Nuclear magnetic resonance (NMR) spectroscopy was used to determine the three dimensional structure of rice nonspecific lipid transfer protein (ns-LTP), a 91 amino acid residue protein belonging to the broad family of plant ns-LTP. Sequence specific assignment was obtained for all but three HN backbone 1H resonances and for more than 95% of the 1H side-chain resonances using a combination of 1H 2D NOESY; TOCSY and COSY experiments at 293 K. The structure was calculated on the basis of four disulfide bridge restraints, 1259 distance constraints derived from 1H-1H Overhauser effects, 72 phi angle restraints and 32 hydrogen-bond restraints. The final solution structure involves four helices (H1: Cys3-Arg18, H2: Ala25-Ala37, H3: Thr41-Ala54 and H4: Ala66-Cys73) followed by a long C-terminal tail (T) with no observable regular structure. N-capping residues (Thr2, Ser24, Thr40), whose side-chain oxygen atoms are involved in hydrogen bonds with i + 3 amide proton additionally stabilize the N termini of the first three helices. The fourth helix involving Pro residues display a mixture of alpha and 3(10) conformation. The rms deviation of 14 final structures with respect to the average structure is 1.14 +/- 0.16 A for all heavy atoms (C, N, O and S) and 0.72 +/- 0.01 A for the backbone atoms. The global fold of rice ns-LTP is close to the previously published structures of wheat, barley and maize ns-LTPs exhibiting nearly identical pattern of the numerous sequence specific interactions. As reported previously for different four-helix topology proteins, hydrophobic, hydrogen bonding and electrostatic mechanisms of fold stabilization were found for the rice ns-LTP. The sequential alignment of 36 ns-LTP primary structures strongly suggests that there is a uniform pattern of specific long-range interactions (in terms of sequence), which stabilize the fold of all plant ns-LTPs.  (+info)

Expression of novel homeobox genes in early embryogenesis in rice. (5/5127)

We isolated four novel cDNA clones of rice (Oryza sativa L.), which encode predicted proteins with a KN1-like homeodomain. In situ hybridization and RT-PCR analysis with solid cDNA libraries as templates showed that these genes are expressed in distinct patterns during the early stages of rice embryogenesis.  (+info)

Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. (6/5127)

As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  (+info)

Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase in rice (Oryza sativa L.). (7/5127)

We have isolated a cDNA encoding Fe-SOD from rice (Oryza sativa L.). The deduced amino acid sequence consists of a polypeptide with 255 amino acids, including a putative transit peptide (40 a.a.) in amino-terminal residues. This sequence is similar to the known plant Fe-SODs but not classified in the group of known Fe-SODs. The metal analysis and SOD assays of the partial purified recombinant protein expressed in E. coli showed that this cDNA encodes an iron-containing SOD. However this SOD activity was not inhibited by the treatment with hydrogen peroxide, which was expected to inhibit known Fe-SOD activity. mRNA of rice Fe-SOD was detected in all vegetative tissues examined, being especially abundant in calli, and strongly increased by light induction. These results suggested that this cDNA encodes rice Fe-SOD, which is apparently distinct from known plant Fe-SODs.  (+info)

Quality and safety evaluation of genetically engineered rice with soybean glycinin: analyses of the grain composition and digestibility of glycinin in transgenic rice. (8/5127)

The composition of nutritionally and physiologically important molecules in transgenic rice with the soybean glycinin gene was determined and compared with that of a non-transgenic control. Except for the levels of protein, amino acids and moisture, no marked differences were found between the two kinds of rice. The protein content of the transgenic rice was about 20% higher than the control (control, 6.5 g/100 g; transgenic, 8.0 g/100 g) with a concomitantly lower moisture content. This increased protein content mainly resulted from the increased glycinin expressed in the transgenic rice, and the protein was susceptible to gastric and intestinal digestion juices. In parallel with the increased protein content, some important amino acids lacking in quantity in normal rice were replenished.  (+info)

"Oryza sativa" is the scientific name for Asian rice, which is a species of grass and one of the most important food crops in the world. It is a staple food for more than half of the global population, providing a significant source of calories and carbohydrates. There are several varieties of Oryza sativa, including indica and japonica, which differ in their genetic makeup, growth habits, and grain characteristics.

Oryza sativa is an annual plant that grows to a height of 1-2 meters and produces long slender leaves and clusters of flowers at the top of the stem. The grains are enclosed within a tough husk, which must be removed before consumption. Rice is typically grown in flooded fields or paddies, which provide the necessary moisture for germination and growth.

Rice is an important source of nutrition for people around the world, particularly in developing countries where it may be one of the few reliable sources of food. It is rich in carbohydrates, fiber, and various vitamins and minerals, including thiamin, riboflavin, niacin, iron, and magnesium. However, rice can also be a significant source of arsenic, a toxic heavy metal that can accumulate in the grain during growth.

In medical terms, Oryza sativa may be used as a component of nutritional interventions for individuals who are at risk of malnutrition or who have specific dietary needs. It may also be studied in clinical trials to evaluate its potential health benefits or risks.

"Nigella sativa," also known as black cumin, is not a medical term but a botanical name for a plant that has been used in traditional medicine. The seeds of this plant are used as a spice and have been used in various traditional medicinal systems for their potential health benefits. However, it's important to note that while some studies suggest possible health benefits, more research is needed before any definitive medical claims can be made.

The seeds contain thymoquinone, which has been studied for its antioxidant, anti-inflammatory, and potential anticancer properties. However, these studies have primarily been conducted in vitro or on animals, and more research is needed to determine the safety and efficacy of Nigella sativa in humans for these purposes.

Therefore, it's always recommended to consult with a healthcare professional before starting any new supplement regimen, including the use of Nigella sativa seeds or oil.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

'Avena sativa' is the scientific name for a type of grass species known as common oat or cultivated oat. It is widely grown as a crop for its seed, which is used as a food source for both humans and animals. Oats are rich in fiber, vitamins, minerals, and antioxidants, making them a popular choice for breakfast cereals, baked goods, and animal feeds. In addition to their nutritional value, oats have also been used in traditional medicine for various purposes, such as treating skin irritation and promoting hair growth.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

"Vicia sativa" is the scientific name for a type of plant commonly known as "Spring Vetch" or "Garden Vetch." It belongs to the legume family (Fabaceae) and is native to Europe, western Asia, and northwest Africa. The plant can grow up to 1 meter tall and has pinnate leaves with 8-14 oval leaflets. Its pea-like flowers are typically pink or purple.

While "Vicia sativa" has been used in traditional medicine for various purposes, such as treating skin conditions and respiratory issues, it is not commonly recognized as a medical term or treatment in modern Western medicine. As with any plant or herbal remedy, it's essential to consult a healthcare professional before using it for medicinal purposes, especially if you have pre-existing health conditions or are taking medications.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Ribonucleic acid (RNA) in plants refers to the long, single-stranded molecules that are essential for the translation of genetic information from deoxyribonucleic acid (DNA) into proteins. RNA is a nucleic acid, like DNA, and it is composed of a ribose sugar backbone with attached nitrogenous bases (adenine, uracil, guanine, and cytosine).

In plants, there are several types of RNA that play specific roles in the gene expression process:

1. Messenger RNA (mRNA): This type of RNA carries genetic information copied from DNA in the form of a sequence of three-base code units called codons. These codons specify the order of amino acids in a protein.
2. Transfer RNA (tRNA): tRNAs are small RNA molecules that serve as adaptors between the mRNA and the amino acids during protein synthesis. Each tRNA has a specific anticodon sequence that base-pairs with a complementary codon on the mRNA, and it carries a specific amino acid that corresponds to that codon.
3. Ribosomal RNA (rRNA): rRNAs are structural components of ribosomes, which are large macromolecular complexes where protein synthesis occurs. In plants, there are several types of rRNAs, including the 18S, 5.8S, and 25S/28S rRNAs, that form the core of the ribosome and help catalyze peptide bond formation during protein synthesis.
4. Small nuclear RNA (snRNA): These are small RNA molecules that play a role in RNA processing, such as splicing, where introns (non-coding sequences) are removed from pre-mRNA and exons (coding sequences) are joined together to form mature mRNAs.
5. MicroRNA (miRNA): These are small non-coding RNAs that regulate gene expression by binding to complementary sequences in target mRNAs, leading to their degradation or translation inhibition.

Overall, these different types of RNAs play crucial roles in various aspects of RNA metabolism, gene regulation, and protein synthesis in plants.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

A medical definition for "plant shoots" may not be readily available, as the term is primarily used in botany and horticulture. However, I can provide you with a general definition:

Plant shoots refer to the above-ground portion of a plant, which typically includes structures like stems, leaves, flowers, and buds. Shoots originate from the seed or the growing tip of the plant and are responsible for photosynthesis, nutrient absorption, and reproduction. In some contexts, "plant shoots" might also refer to new growth that emerges from an existing plant, such as when a leaf or stem sprouts a new branch or flower.

I'm sorry for any confusion, but "seedling" is not a term that has a specific medical definition. It is an agricultural and horticultural term that refers to a young plant grown from a seed, typically during the early stages of its growth. If you have any questions related to health or medicine, I'd be happy to try to help with those!

Chromosomes in plants are thread-like structures that contain genetic material, DNA, and proteins. They are present in the nucleus of every cell and are inherited from the parent plants during sexual reproduction. Chromosomes come in pairs, with each pair consisting of one chromosome from each parent.

In plants, like in other organisms, chromosomes play a crucial role in inheritance, development, and reproduction. They carry genetic information that determines various traits and characteristics of the plant, such as its physical appearance, growth patterns, and resistance to diseases.

Plant chromosomes are typically much larger than those found in animals, making them easier to study under a microscope. The number of chromosomes varies among different plant species, ranging from as few as 2 in some ferns to over 1000 in certain varieties of wheat.

During cell division, the chromosomes replicate and then separate into two identical sets, ensuring that each new cell receives a complete set of genetic information. This process is critical for the growth and development of the plant, as well as for the production of viable seeds and offspring.

Agricultural crops refer to plants that are grown and harvested for the purpose of human or animal consumption, fiber production, or other uses such as biofuels. These crops can include grains, fruits, vegetables, nuts, seeds, and legumes, among others. They are typically cultivated using various farming practices, including traditional row cropping, companion planting, permaculture, and organic farming methods. The choice of crop and farming method depends on factors such as the local climate, soil conditions, and market demand. Proper management of agricultural crops is essential for ensuring food security, promoting sustainable agriculture, and protecting the environment.

I'm sorry for any confusion, but "Sorghum" is not a medical term. It is actually the name of a genus of various grasses, one species of which is cultivated as a cereal crop. Sorghum is primarily used for food, animal feed, and the production of biofuel. If you have any questions about medical terminology or health-related topics, I'd be happy to help with those instead!

"Magnaporthe" is a genus of fungi that includes several plant pathogens, the most notable of which is "Magnaporthe oryzae," also known as "Pyricularia oryzae." This species is a major pathogen of rice, causing the disease known as rice blast, which can result in significant yield losses. The fungus infects rice plants by producing a specialized structure called an appressorium, which generates a powerful pressure to penetrate the plant's surface and establish infection.

The genus "Magnaporthe" belongs to the family Magnaporthaceae and order Magnaporthales. These fungi are typically found in soil and are capable of infecting various grasses and cereal crops, including wheat, barley, and oats. In addition to their economic importance as plant pathogens, "Magnaporthe" species also serve as valuable models for studying the molecular mechanisms of fungal pathogenesis and host-pathogen interactions.

'Plant infertility' is not a standard medical term, as it is typically used in the context of agriculture and plant biology. However, I can provide you with a general definition related to this context:

Plant infertility refers to the inability of a plant to produce viable seeds, fruits, or propagules due to various factors affecting its reproductive system. These factors may include genetic disorders, environmental stressors (such as extreme temperatures, drought, or nutrient deficiencies), pathogens, pests, or poor pollination. In some cases, assisted reproduction techniques, such as hand-pollination or embryo rescue, might be employed to overcome infertility issues in plants.

'Arabidopsis' is a genus of small flowering plants that are part of the mustard family (Brassicaceae). The most commonly studied species within this genus is 'Arabidopsis thaliana', which is often used as a model organism in plant biology and genetics research. This plant is native to Eurasia and Africa, and it has a small genome that has been fully sequenced. It is known for its short life cycle, self-fertilization, and ease of growth, making it an ideal subject for studying various aspects of plant biology, including development, metabolism, and response to environmental stresses.

I'm sorry for any confusion, but "flowers" is not a term that has a medical definition. The term "flowers" is commonly used to refer to the reproductive structures of flowering plants (angiosperms), which are characterized by having both male and female reproductive organs or separate male and female flowers.

If you have any questions related to medical terminology or health conditions, I would be happy to try to help answer those for you!

'Brachypodium' is a genus of plants in the family Poaceae, also known as grasses. It includes several species of narrow-leafed cool-season grasses that are native to Europe, Asia, and Africa. One of the most commonly studied species is Brachypodium distachyon, which is often used as a model organism in plant research due to its small genome size, ease of cultivation, and short life cycle. The name 'Brachypodium' comes from the Greek words "brachys" meaning short and "podion" meaning little foot, referring to the short spikelets of these grasses.

In the context of medical terminology, "germination" is not typically used as a term to describe a physiological process in humans or animals. It is primarily used in the field of botany to refer to the process by which a seed or spore sprouts and begins to grow into a new plant.

However, if you are referring to the concept of germination in the context of bacterial or viral growth, then it could be defined as:

The process by which bacteria, viruses, or other microorganisms become active and start to multiply, often after a period of dormancy or latency. This can occur when the microorganisms encounter favorable conditions, such as moisture, warmth, or nutrients, that allow them to grow and reproduce. In medical contexts, this term is more commonly used in relation to infectious diseases caused by these microorganisms.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Plant growth regulators (PGRs) are natural or synthetic chemical substances that, when present in low concentrations, can influence various physiological and biochemical processes in plants. These processes include cell division, elongation, and differentiation; flowering and fruiting; leaf senescence; and stress responses. PGRs can be classified into several categories based on their mode of action and chemical structure, including auxins, gibberellins, cytokinins, abscisic acid, ethylene, and others. They are widely used in agriculture to improve crop yield and quality, regulate plant growth and development, and enhance stress tolerance.

I'm sorry for any confusion, but "lettuce" is not a medical term. It is a type of vegetable that belongs to the family Asteraceae. It is commonly used in salads and sandwiches due to its crisp leaves and mild flavor. If you have any questions about lettuce or its nutritional value, I would be happy to help with that instead.

Gibberellins (GAs) are a type of plant hormones that regulate various growth and developmental processes, including stem elongation, germination of seeds, leaf expansion, and flowering. They are a large family of diterpenoid compounds that are synthesized from geranylgeranyl pyrophosphate (GGPP) in the plastids and then modified through a series of enzymatic reactions in the endoplasmic reticulum and cytoplasm.

GAs exert their effects by binding to specific receptors, which activate downstream signaling pathways that ultimately lead to changes in gene expression and cellular responses. The biosynthesis and perception of GAs are tightly regulated, and disruptions in these processes can result in various developmental abnormalities and growth disorders in plants.

In addition to their role in plant growth and development, GAs have also been implicated in the regulation of various physiological processes, such as stress tolerance, nutrient uptake, and senescence. They have also attracted interest as potential targets for crop improvement, as modulating GA levels and sensitivity can enhance traits such as yield, disease resistance, and abiotic stress tolerance.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Endosperm is a type of tissue found in the seeds of flowering plants, which provides nutrition to the developing embryo. It is formed from the fusion of one sperm cell with two polar nuclei during double fertilization in angiosperms (flowering plants). The endosperm can be triploid (having three sets of chromosomes) or sometimes diploid (having two sets of chromosomes), depending on the species.

The endosperm can have different forms and functions across various plant species. In some seeds, it serves as a food storage tissue, accumulating starch, proteins, and lipids that are used up by the embryo during germination and early growth. Examples of such seeds include cereal grains like corn, wheat, rice, and barley, where the endosperm makes up a significant portion of the grain.

In other plants, the endosperm may be absorbed by the developing embryo before seed maturation, leaving only a thin layer called the aleurone layer that surrounds the embryo. This aleurone layer is responsible for producing enzymes during germination, which help in breaking down stored nutrients and making them available to the growing embryo.

Overall, endosperm plays a crucial role in the development and survival of angiosperm seeds, acting as a source of nutrition and energy for the embryo.

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

"Drought" is not a medical term. It is a term used in meteorology and environmental science to refer to a prolonged period of abnormally low rainfall, leading to water shortage and scarcity in the affected areas. Droughts can have various impacts on human health, including dehydration, heat-related illnesses, reduced air quality, increased transmission of waterborne diseases, and mental health issues related to stress and displacement. However, drought itself is not a medical condition.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

I believe there may be some confusion in your question. "Floods" is not a medical term, but rather a natural disaster or hydrological phenomenon that occurs when a body of water overflows its banks or normal confines, causing damage to surrounding areas. If you are looking for a medical definition, perhaps you meant to ask about a different term? I would be happy to help if you could clarify your question further.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Quantitative Trait Loci (QTL) are regions of the genome that are associated with variation in quantitative traits, which are traits that vary continuously in a population and are influenced by multiple genes and environmental factors. QTLs can help to explain how genetic variations contribute to differences in complex traits such as height, blood pressure, or disease susceptibility.

Quantitative trait loci are identified through statistical analysis of genetic markers and trait values in experimental crosses between genetically distinct individuals, such as strains of mice or plants. The location of a QTL is inferred based on the pattern of linkage disequilibrium between genetic markers and the trait of interest. Once a QTL has been identified, further analysis can be conducted to identify the specific gene or genes responsible for the variation in the trait.

It's important to note that QTLs are not themselves genes, but rather genomic regions that contain one or more genes that contribute to the variation in a quantitative trait. Additionally, because QTLs are identified through statistical analysis, they represent probabilistic estimates of the location of genetic factors influencing a trait and may encompass large genomic regions containing multiple genes. Therefore, additional research is often required to fine-map and identify the specific genes responsible for the variation in the trait.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

'Zea mays' is the biological name for corn or maize, which is not typically considered a medical term. However, corn or maize can have medical relevance in certain contexts. For example, cornstarch is sometimes used as a diluent for medications and is also a component of some skin products. Corn oil may be found in topical ointments and creams. In addition, some people may have allergic reactions to corn or corn-derived products. But generally speaking, 'Zea mays' itself does not have a specific medical definition.

Physiological stress is a response of the body to a demand or threat that disrupts homeostasis and activates the autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis. This results in the release of stress hormones such as adrenaline, cortisol, and noradrenaline, which prepare the body for a "fight or flight" response. Increased heart rate, rapid breathing, heightened sensory perception, and increased alertness are some of the physiological changes that occur during this response. Chronic stress can have negative effects on various bodily functions, including the immune, cardiovascular, and nervous systems.

Arabidopsis proteins refer to the proteins that are encoded by the genes in the Arabidopsis thaliana plant, which is a model organism commonly used in plant biology research. This small flowering plant has a compact genome and a short life cycle, making it an ideal subject for studying various biological processes in plants.

Arabidopsis proteins play crucial roles in many cellular functions, such as metabolism, signaling, regulation of gene expression, response to environmental stresses, and developmental processes. Research on Arabidopsis proteins has contributed significantly to our understanding of plant biology and has provided valuable insights into the molecular mechanisms underlying various agronomic traits.

Some examples of Arabidopsis proteins include transcription factors, kinases, phosphatases, receptors, enzymes, and structural proteins. These proteins can be studied using a variety of techniques, such as biochemical assays, protein-protein interaction studies, and genetic approaches, to understand their functions and regulatory mechanisms in plants.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Xanthomonas is a genus of Gram-negative, rod-shaped bacteria that are widely distributed in various environments, including water, soil, and plant surfaces. They are known to cause diseases in plants, such as black rot in crucifers, bacterial spot in tomatoes and peppers, and citrus canker in citrus trees. Some species of Xanthomonas can also infect humans, although this is relatively rare. Infections in humans typically occur through contact with contaminated water or soil, and can cause various symptoms such as pneumonia, skin infections, and bloodstream infections. However, it's important to note that Xanthomonas species are not typically associated with human diseases and are mainly known for their impact on plants.

Pollen, in a medical context, refers to the fine powder-like substance produced by the male reproductive organ of seed plants. It contains microscopic grains known as pollen grains, which are transported by various means such as wind, water, or insects to the female reproductive organ of the same or another plant species for fertilization.

Pollen can cause allergic reactions in some individuals, particularly during the spring and summer months when plants release large amounts of pollen into the air. These allergies, also known as hay fever or seasonal allergic rhinitis, can result in symptoms such as sneezing, runny nose, congestion, itchy eyes, and coughing.

It is important to note that while all pollen has the potential to cause allergic reactions, certain types of plants, such as ragweed, grasses, and trees, are more likely to trigger symptoms in sensitive individuals.

I'm sorry for any confusion, but "onions" are not a medical term. They are a type of vegetable, specifically a variety of bulb vegetables, known scientifically as Allium cepa. Onions are widely used in cooking and have been cultivated for centuries for their unique, pungent flavor and potential health benefits. If you have any questions about onions in a culinary or nutritional context, I'd be happy to try to help answer those!

A cotyledon is a seed leaf in plants, which is part of the embryo within the seed. Cotyledons are often referred to as "seed leaves" because they are the first leaves to emerge from the seed during germination and provide nutrients to the developing plant until it can produce its own food through photosynthesis.

In some plants, such as monocotyledons, there is only one cotyledon, while in other plants, such as dicotyledons, there are two cotyledons. The number of cotyledons is a characteristic that is used to classify different types of plants.

Cotyledons serve important functions during the early stages of plant growth, including providing energy and nutrients to the developing plant, protecting the embryo, and helping to anchor the seed in the soil. Once the plant has established its root system and begun to produce true leaves through photosynthesis, the cotyledons may wither or fall off, depending on the species.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A meristem, in the context of plant biology, refers to a type of tissue found in plants that is responsible for their growth. These tissues are composed of cells that have the ability to divide and differentiate into various specialized cell types. Meristems are typically located at the tips of roots and shoots (apical meristems), as well as within the vascular bundles (cambial meristems) and in the cork layers (phellogen meristems). They contribute to the increase in length and girth of plant organs, allowing plants to grow throughout their life.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Physical chromosome mapping, also known as physical mapping or genomic mapping, is the process of determining the location and order of specific genes or DNA sequences along a chromosome based on their physical distance from one another. This is typically done by using various laboratory techniques such as restriction enzyme digestion, fluorescence in situ hybridization (FISH), and chromosome walking to identify the precise location of a particular gene or sequence on a chromosome.

Physical chromosome mapping provides important information about the organization and structure of chromosomes, and it is essential for understanding genetic diseases and disorders. By identifying the specific genes and DNA sequences that are associated with certain conditions, researchers can develop targeted therapies and treatments to improve patient outcomes. Additionally, physical chromosome mapping is an important tool for studying evolution and comparative genomics, as it allows scientists to compare the genetic makeup of different species and identify similarities and differences between them.

Gene duplication, in the context of genetics and genomics, refers to an event where a segment of DNA that contains a gene is copied, resulting in two identical copies of that gene. This can occur through various mechanisms such as unequal crossing over during meiosis, retrotransposition, or whole genome duplication. The duplicate genes are then passed on to the next generation.

Gene duplications can have several consequences. Often, one copy may continue to function normally while the other is free to mutate without affecting the organism's survival, potentially leading to new functions (neofunctionalization) or subfunctionalization where each copy takes on some of the original gene's roles.

Gene duplication plays a significant role in evolution by providing raw material for the creation of novel genes and genetic diversity. However, it can also lead to various genetic disorders if multiple copies of a gene become dysfunctional or if there are too many copies, leading to an overdose effect.

Tenuivirus is a genus of negative-stranded RNA viruses that are transmitted by planthopper insects and cause serious diseases in crops such as rice, maize, and sorghum. The genus Tenuivirus is part of the family Phenuiviridae in the order Bunyavirales.

The virions of Tenuivirus are enveloped and filamentous, with a length of 800-1200 nm and a diameter of 3-4 nm. The genome consists of four single-stranded RNA segments, which are encapsidated in separate nucleocapsids.

Tenuiviruses are known to cause several important diseases in plants, including rice stripe disease, maize stripe disease, and sorghum stripe disease. These diseases can result in significant yield losses and economic damage to agriculture.

The transmission of Tenuivirus occurs through the feeding of infected planthoppers on healthy plants. The viruses replicate in both the insect vector and the plant host, and can be transmitted vertically from parent to offspring in the insect vector. Control measures for Tenuivirus diseases include the use of resistant crop varieties, chemical control of the vector population, and cultural practices such as crop rotation and sanitation.

I'm sorry for any confusion, but "Hordeum" is not a medical term. It is actually the genus name for barley in botany. If you have any medical terms or concepts that you would like me to explain, please let me know!

I'm sorry for any confusion, but "Plant Structures" is not a medical term. It is a term used in the field of botany to refer to the different parts of a plant, such as roots, stems, leaves, flowers, and fruits. Each of these structures has specific functions that contribute to the overall growth, reproduction, and survival of the plant. If you have any questions related to biology or botany, I'd be happy to try and help answer them!

Amylopectin is a type of complex carbohydrate molecule known as a polysaccharide. It is a component of starch, which is found in plants and is a major source of energy for both humans and other animals. Amylopectin is made up of long chains of glucose molecules that are branched together in a bush-like structure.

Amylopectin is composed of two types of glucose chain branches: outer chains, which are made up of shorter, highly branched chains of glucose molecules; and inner chains, which are made up of longer, less branched chains. The branching pattern of amylopectin allows it to be digested and absorbed more slowly than other types of carbohydrates, such as simple sugars. This slower digestion and absorption can help to regulate blood sugar levels and provide sustained energy.

Amylopectin is found in a variety of plant-based foods, including grains, legumes, vegetables, and fruits. It is an important source of calories and energy for humans and other animals that consume these types of plants as part of their diet.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Abscisic acid (ABA) is a plant hormone that plays a crucial role in the regulation of various physiological processes, including seed dormancy, bud dormancy, leaf senescence, and response to abiotic stresses such as drought, salinity, and cold temperatures. It is a sesquiterpene compound that is synthesized in plants primarily in response to environmental stimuli that trigger the onset of stress responses.

ABA functions by regulating gene expression, cell growth and development, and stomatal closure, which helps prevent water loss from plants under drought conditions. It also plays a role in the regulation of plant metabolism and the activation of defense mechanisms against pathogens and other environmental stressors. Overall, abscisic acid is an essential hormone that enables plants to adapt to changing environmental conditions and optimize their growth and development.

Betaine-aldehyde dehydrogenase (BADH) is an enzyme involved in the metabolic pathway of betaine, a compound that helps protect cells from environmental stress and is important for maintaining cell volume and osmotic balance. The enzyme catalyzes the conversion of betaine aldehyde to betaine, using NAD+ as a cofactor.

Deficiency in BADH has been associated with certain genetic disorders, such as hyperbetalipoproteinemia type I, which is characterized by elevated levels of lipids and lipoproteins in the blood. Additionally, mutations in the BADH gene have been linked to an increased risk of alcoholism and alcohol-related disorders.

Cereals, in a medical context, are not specifically defined. However, cereals are generally understood to be grasses of the family Poaceae that are cultivated for the edible components of their grain (the seed of the grass). The term "cereal" is derived from Ceres, the Roman goddess of agriculture and harvest.

The most widely consumed cereals include:

1. Wheat
2. Rice
3. Corn (Maize)
4. Barley
5. Oats
6. Millet
7. Sorghum
8. Rye

Cereals are a significant part of the human diet, providing energy in the form of carbohydrates, as well as protein, fiber, vitamins, and minerals. They can be consumed in various forms, such as whole grains, flour, flakes, or puffed cereals. Some people may have allergies or intolerances to specific cereals, like celiac disease, an autoimmune disorder that requires a gluten-free diet (wheat, barley, and rye contain gluten).

Indole-3-acetic acid (IAA) is not exactly a medical term, but rather a scientific term used in the field of biochemistry and physiology. It is a type of auxin, which is a plant hormone that regulates various growth and development processes in plants. IAA is the most abundant and best-studied natural auxin.

Medically, indole-3-acetic acid may be mentioned in the context of certain medical conditions or treatments related to plants or plant-derived substances. For example, some research has investigated the potential use of IAA in promoting wound healing in plants or in agricultural applications. However, it is not a substance that is typically used in medical treatment for humans or animals.

Genetic enhancement is not a term that is widely used in the medical community, and its definition can vary depending on the context. However, in general, genetic enhancement refers to the use of genetic engineering technologies to modify or improve certain traits or characteristics beyond their normal range for the purpose of improving an individual's capabilities, performance, or appearance. This may involve altering the genes of embryos, sperm, eggs, or adult cells to create individuals with enhanced physical, cognitive, or behavioral abilities.

It is important to note that genetic enhancement is a controversial topic and is not currently practiced in humans due to ethical concerns and scientific limitations. While some argue that genetic enhancement could lead to significant benefits for society, such as improved health, intelligence, and athletic performance, others worry about the potential risks and negative consequences, including increased inequality, loss of individuality, and unintended health effects.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

Expressed Sequence Tags (ESTs) are short, single-pass DNA sequences that are derived from cDNA libraries. They represent a quick and cost-effective method for large-scale sequencing of gene transcripts and provide an unbiased view of the genes being actively expressed in a particular tissue or developmental stage. ESTs can be used to identify and study new genes, to analyze patterns of gene expression, and to develop molecular markers for genetic mapping and genome analysis.

"Triticum" is the genus name for a group of cereal grains that includes common wheat (T. aestivum), durum wheat (T. durum), and spelt (T. spelta). These grains are important sources of food for humans, providing carbohydrates, proteins, and various nutrients. They are used to make a variety of foods such as bread, pasta, and breakfast cereals. Triticum species are also known as "wheat" in layman's terms.

A plant stem is not typically defined in a medical context, but rather in the field of botany. However, I can certainly provide a general biological definition for you.

In plants, stems are organs that serve primarily as support structures, holding leaves, flowers, and fruits aloft where they can receive sunlight and exchange gases. They also act as conduits, transporting water, nutrients, and sugars made during photosynthesis between the roots and shoots of a plant.

The stem is usually composed of three main tissue systems: dermal, vascular, and ground. The dermal tissue system forms the outermost layer(s) of the stem, providing protection and sometimes participating in gas exchange. The vascular tissue system contains the xylem (which transports water and nutrients upward) and phloem (which transports sugars and other organic compounds downward). The ground tissue system, located between the dermal and vascular tissues, is responsible for food storage and support.

While not a direct medical definition, understanding the structure and function of plant stems can be relevant in fields such as nutrition, agriculture, and environmental science, which have implications for human health.

I'm happy to help! However, it seems there might be a bit of confusion here. Starch is not typically considered a medical term, but rather a nutritional and biochemical concept. Here's a brief explanation:

Starch is a complex carbohydrate that serves as the primary form of energy storage in plants. It is made up of long chains of glucose molecules and can be found in various foods such as grains, legumes, fruits, and vegetables. Amylase, an enzyme present in our saliva and digestive system, helps break down starch into simpler sugars during the digestion process so that our bodies can absorb them for energy.

I hope this clarifies any confusion! If you have any other questions or need further information on a medical topic, please don't hesitate to ask.

Genetic hybridization is a biological process that involves the crossing of two individuals from different populations or species, which can lead to the creation of offspring with new combinations of genetic material. This occurs when the gametes (sex cells) from each parent combine during fertilization, resulting in a zygote with a unique genetic makeup.

In genetics, hybridization can also refer to the process of introducing new genetic material into an organism through various means, such as genetic engineering or selective breeding. This type of hybridization is often used in agriculture and biotechnology to create crops or animals with desirable traits, such as increased disease resistance or higher yields.

It's important to note that the term "hybrid" can refer to both crosses between different populations within a single species (intraspecific hybrids) and crosses between different species (interspecific hybrids). The latter is often more challenging, as significant genetic differences between the two parental species can lead to various reproductive barriers, making it difficult for the hybrid offspring to produce viable offspring of their own.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

Starch synthase is an enzyme involved in the synthesis of starch, which is a complex carbohydrate that serves as an important energy storage molecule in plants. Specifically, starch synthase catalyzes the transfer of glucose from activated donor molecules, such as ADP-glucose, to the non-reducing end of a growing linear chain or branch of an amylopectin molecule, resulting in the formation of starch.

There are several isoforms of starch synthase that have been identified in plants, including granule-bound starch synthase (GBSS), which is responsible for synthesizing the highly branched and crystalline amylose component of starch, and soluble starch synthases (SSI, SSII, SSIII, and SSIV), which contribute to the synthesis of the more branched and less crystalline amylopectin component.

Defects in starch synthase activity have been associated with various genetic disorders in humans, such as glycogen storage disease type II (Pompe disease) and transient infantile hyperammonemia, which are caused by mutations in the genes encoding for the enzymes involved in the synthesis of glycogen and starch, respectively.

I believe there might be a misunderstanding in your question. "Ethylenes" is not a medical term or a medical condition. Ethylene is actually a colorless gas with a sweet and musky odor, which belongs to the class of hydrocarbons called alkenes. It is used widely in industry, including the production of polyethylene, antifreeze, and other chemicals.

However, if you meant something else or need information on a specific medical topic related to ethylene or its derivatives, please provide more context or clarify your question, and I would be happy to help.

Sodium Chloride is defined as the inorganic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is commonly known as table salt or halite, and it is used extensively in food seasoning and preservation due to its ability to enhance flavor and inhibit bacterial growth. In medicine, sodium chloride is used as a balanced electrolyte solution for rehydration and as a topical wound irrigant and antiseptic. It is also an essential component of the human body's fluid balance and nerve impulse transmission.

Salinity is not a term that has a specific medical definition. However, in general terms, salinity refers to the level of salt or sodium content in a substance, usually measured in parts per thousand (ppt). In a medical context, salinity might be discussed in relation to things like the body's fluid balance or the composition of certain bodily fluids, such as sweat or tears.

It is worth noting that in some cases, high salinity levels can have negative effects on health. For example, consuming water with very high salt content can lead to dehydration and electrolyte imbalances, which can be dangerous. Similarly, exposure to high-salinity environments (such as seawater) can cause skin irritation and other problems in some people. However, these are not direct medical definitions of salinity.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Angiosperms, also known as flowering plants, are a group of plants that produce seeds enclosed within an ovary. The term "angiosperm" comes from the Greek words "angeion," meaning "case" or "capsule," and "sperma," meaning "seed." This group includes the majority of plant species, with over 300,000 known species.

Angiosperms are characterized by their reproductive structures, which consist of flowers. The flower contains male and female reproductive organs, including stamens (which produce pollen) and carpels (which contain the ovules). After fertilization, the ovule develops into a seed, while the ovary matures into a fruit, which provides protection and nutrition for the developing embryo.

Angiosperms are further divided into two main groups: monocots and eudicots. Monocots have one cotyledon or embryonic leaf, while eudicots have two. Examples of monocots include grasses, lilies, and orchids, while examples of eudicots include roses, sunflowers, and legumes.

Angiosperms are ecologically and economically important, providing food, shelter, and other resources for many organisms, including humans. They have evolved a wide range of adaptations to different environments, from the desert to the ocean floor, making them one of the most diverse and successful groups of plants on Earth.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

Cytokinins are a type of plant growth hormone that play a crucial role in cell division, differentiation, and growth. They were first discovered in 1950s and named for their ability to promote cytokinesis, the process of cell division. Cytokinins belong to a class of compounds called adenine derivatives, which are structurally similar to nucleotides, the building blocks of DNA and RNA.

Cytokinins are produced in the roots and shoots of plants and are transported throughout the plant via the vascular system. They have been shown to regulate various aspects of plant growth and development, including shoot initiation, leaf expansion, apical dominance, and senescence. Cytokinins also interact with other hormones such as auxins, gibberellins, and abscisic acid to modulate plant responses to environmental stresses.

Cytokinins have been used in horticulture and agriculture to enhance crop yields, improve plant quality, and delay senescence. They are also being studied for their potential role in human health, particularly in the context of cancer research.

'Echinochloa' is not a medical term, but rather a taxonomic genus name in the plant kingdom. It belongs to the family Poaceae and includes several species of annual grasses commonly known as barnyard grass or jointed grass. These plants are often considered weeds in agricultural settings. They have distinctively jointed stems and spike-like inflorescences, and some species can produce both sexual and asexual seeds.

While Echinochloa species may not have direct medical relevance, they can sometimes serve as hosts for crop pests or pathogens that might impact human health indirectly. For instance, certain grassy weeds like Echinochloa spp. can harbor and spread plant viruses, bacteria, or fungi that could potentially affect crops of agricultural importance. However, the medical definition of 'Echinochloa' is not applicable since it does not refer to a human disease, condition, or treatment.

Phloem is the living tissue in vascular plants that transports organic nutrients, particularly sucrose, a sugar, from leaves, where they are produced in photosynthesis, to other parts of the plant such as roots and stems. It also transports amino acids and other substances. Phloem is one of the two types of vascular tissue, the other being xylem; both are found in the vascular bundles of stems and roots. The term "phloem" comes from the Greek word for bark, as it often lies beneath the bark in trees and shrubs.

Artificial bacterial chromosomes (ABCs) are synthetic replicons that are designed to function like natural bacterial chromosomes. They are created through the use of molecular biology techniques, such as recombination and cloning, to construct large DNA molecules that can stably replicate and segregate within a host bacterium.

ABCs are typically much larger than traditional plasmids, which are smaller circular DNA molecules that can also replicate in bacteria but have a limited capacity for carrying genetic information. ABCs can accommodate large DNA inserts, making them useful tools for cloning and studying large genes, gene clusters, or even entire genomes of other organisms.

There are several types of ABCs, including bacterial artificial chromosomes (BACs), P1-derived artificial chromosomes (PACs), and yeast artificial chromosomes (YACs). BACs are the most commonly used type of ABC and can accommodate inserts up to 300 kilobases (kb) in size. They have been widely used in genome sequencing projects, functional genomics studies, and protein production.

Overall, artificial bacterial chromosomes provide a powerful tool for manipulating and studying large DNA molecules in a controlled and stable manner within bacterial hosts.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Cannabis is a plant genus that includes three species: Cannabis sativa, Cannabis indica, and Cannabis ruderalis. It contains psychoactive compounds called cannabinoids, the most notable of which is delta-9-tetrahydrocannabinol (THC), which produces the "high" associated with marijuana use.

Cannabis sativa and Cannabis indica are primarily used for recreational and medicinal purposes, while Cannabis ruderalis has a lower THC content and is mainly used for industrial purposes, such as hemp fiber production.

Medicinally, cannabis is used to treat various conditions, including pain, nausea, and loss of appetite associated with cancer and HIV/AIDS, multiple sclerosis, epilepsy, and post-traumatic stress disorder (PTSD), among others. However, its use remains controversial due to its psychoactive effects and potential for abuse. Its legal status varies widely around the world, ranging from outright prohibition to decriminalization or full legalization for medical and/or recreational purposes.

I'm sorry for any confusion, but "Populus" is not a medical term. It is actually the genus name for a group of trees commonly known as poplars, aspens, and cottonwoods. If you have any medical terms or concepts that you would like me to define or explain, I would be happy to help!

"Cold temperature" is a relative term and its definition can vary depending on the context. In general, it refers to temperatures that are lower than those normally experienced or preferred by humans and other warm-blooded animals. In a medical context, cold temperature is often defined as an environmental temperature that is below 16°C (60.8°F).

Exposure to cold temperatures can have various physiological effects on the human body, such as vasoconstriction of blood vessels near the skin surface, increased heart rate and metabolic rate, and shivering, which helps to generate heat and maintain body temperature. Prolonged exposure to extreme cold temperatures can lead to hypothermia, a potentially life-threatening condition characterized by a drop in core body temperature below 35°C (95°F).

It's worth noting that some people may have different sensitivities to cold temperatures due to factors such as age, health status, and certain medical conditions. For example, older adults, young children, and individuals with circulatory or neurological disorders may be more susceptible to the effects of cold temperatures.

Salt tolerance, in a medical context, refers to the body's ability to maintain normal physiological functions despite high levels of salt (sodium chloride) in the system. While our kidneys usually regulate sodium levels, certain medical conditions such as some forms of kidney disease or heart failure can impair this process, leading to an accumulation of sodium in the body. Some individuals may have a genetic predisposition to better handle higher salt intakes, but generally, a high-salt diet is discouraged due to risks of hypertension and other health issues for most people.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

I apologize for any confusion, but "agriculture" is not a term that has a medical definition. Agriculture refers to the cultivation and breeding of animals, plants, and fungi for food, fiber, biofuel, medicinal plants, and other products used to sustain and enhance human life. It is an important industry and practice that has been developed over thousands of years and continues to play a critical role in global food production and security.

Salt-tolerant plants, also known as halophytes, are plants that can grow and complete their life cycle in saline environments. These plants have specialized adaptations that allow them to survive and reproduce in the presence of high concentrations of salt, particularly sodium chloride (NaCl), which is toxic to most plants.

Salt tolerance in plants is a complex trait that involves various physiological and biochemical mechanisms, such as:

1. Exclusion: Preventing the uptake of excess salt by the roots or excluding it from entering the plant cells.
2. Compartmentalization: Storing excess salt in vacuoles or older leaves that can be shed to reduce the overall salt load.
3. Tissue tolerance: Adapting to high salt concentrations within the plant tissues without experiencing toxicity or osmotic stress.
4. Osmoregulation: Maintaining water balance and cell turgor by synthesizing and accumulating compatible solutes, such as proline and glycine betaine, which help to lower the osmotic potential of the cells.
5. Ion homeostasis: Regulating the uptake and distribution of essential ions, like potassium (K+), while minimizing the accumulation of toxic ions, such as sodium (Na+) and chloride (Cl-).

Examples of salt-tolerant plants include mangroves, sea grasses, cordgrass, glasswort, and certain species of cacti and succulents. These plants have significant ecological and agricultural importance in coastal areas and arid regions, where salinity is a major environmental constraint.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

Amylose is a component of starch, which is a complex carbohydrate found in plants. Amylose is a long, straight chain polymer made up of thousands of glucose molecules linked together by α-1,4 glycosidic bonds. It is less abundant than the other major component of starch, amylopectin, which has branched chains due to α-1,6 glycosidic bonds.

Amylose is relatively resistant to digestion by human enzymes, making it less easily absorbed and providing a slower release of glucose into the bloodstream compared to amylopectin. This property has led to its use in some low-glycemic index foods and as a dietary supplement for people with diabetes.

In addition to its role in food, amylose has industrial applications, such as in the production of adhesives, textiles, and paper. It is also used in medical research as a material for drug delivery and tissue engineering.

Short Interspersed Nucleotide Elements (SINEs) are a type of transposable element in the genome. They are short sequences of DNA, typically around 100-300 base pairs in length, that are interspersed throughout the non-coding regions of the genome. SINEs are derived from small RNA genes, such as tRNAs and 7SL RNA, and are copied and inserted into new locations in the genome through a process called retrotransposition.

SINEs are usually non-coding and do not contain any known functional elements, but they can have regulatory effects on gene expression by affecting chromatin structure and transcription factor binding. They can also contribute to genetic diversity and evolution by creating new mutations and genomic rearrangements. However, the insertion of SINEs into genes or regulatory regions can also cause genetic diseases and cancer.

SINEs are one of the most abundant types of transposable elements in mammalian genomes, accounting for a significant fraction of the non-coding DNA. They are particularly enriched in the brain, suggesting a possible role in neural function and evolution.

I'm sorry for any confusion, but "flowering tops" is not a standard medical term. The term "flowering tops" is commonly used in the context of cannabis cultivation and refers to the top colas or buds of female cannabis plants that are covered in trichomes and are therefore the most potent part of the plant. If you have any questions about medical terminology, I would be happy to help clarify those for you!

Genetic markers are specific segments of DNA that are used in genetic mapping and genotyping to identify specific genetic locations, diseases, or traits. They can be composed of short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or variable number tandem repeats (VNTRs). These markers are useful in various fields such as genetic research, medical diagnostics, forensic science, and breeding programs. They can help to track inheritance patterns, identify genetic predispositions to diseases, and solve crimes by linking biological evidence to suspects or victims.

Photosynthesis is not strictly a medical term, but it is a fundamental biological process with significant implications for medicine, particularly in understanding energy production in cells and the role of oxygen in sustaining life. Here's a general biological definition:

Photosynthesis is a process by which plants, algae, and some bacteria convert light energy, usually from the sun, into chemical energy in the form of organic compounds, such as glucose (or sugar), using water and carbon dioxide. This process primarily takes place in the chloroplasts of plant cells, specifically in structures called thylakoids. The overall reaction can be summarized as:

6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2

In this equation, carbon dioxide (CO2) and water (H2O) are the reactants, while glucose (C6H12O6) and oxygen (O2) are the products. Photosynthesis has two main stages: the light-dependent reactions and the light-independent reactions (Calvin cycle). The light-dependent reactions occur in the thylakoid membrane and involve the conversion of light energy into ATP and NADPH, which are used to power the Calvin cycle. The Calvin cycle takes place in the stroma of chloroplasts and involves the synthesis of glucose from CO2 and water using the ATP and NADPH generated during the light-dependent reactions.

Understanding photosynthesis is crucial for understanding various biological processes, including cellular respiration, plant metabolism, and the global carbon cycle. Additionally, research into artificial photosynthesis has potential applications in renewable energy production and environmental remediation.

I apologize for any confusion, but "Myrsinaceae" is not a medical term. It is a taxonomic category in botany, specifically a family of flowering plants that includes shrubs and small trees. The plants in this family are primarily found in tropical and subtropical regions around the world.

If you have any questions related to medical terminology or health science, I would be happy to help.

Genomics is the scientific study of genes and their functions. It involves the sequencing and analysis of an organism's genome, which is its complete set of DNA, including all of its genes. Genomics also includes the study of how genes interact with each other and with the environment. This field of study can provide important insights into the genetic basis of diseases and can lead to the development of new diagnostic tools and treatments.

Disease resistance, in a medical context, refers to the inherent or acquired ability of an organism to withstand or limit infection by a pathogen, such as bacteria, viruses, fungi, or parasites. This resistance can be due to various factors including the presence of physical barriers (e.g., intact skin), chemical barriers (e.g., stomach acid), and immune responses that recognize and eliminate the pathogen.

Inherited disease resistance is often determined by genetics, where certain genetic variations can make an individual more or less susceptible to a particular infection. For example, some people are naturally resistant to certain diseases due to genetic factors that prevent the pathogen from infecting their cells or replicating within them.

Acquired disease resistance can occur through exposure to a pathogen, which triggers an immune response that confers immunity or resistance to future infections by the same pathogen. This is the basis of vaccination, where a weakened or dead form of a pathogen is introduced into the body to stimulate an immune response without causing disease.

Overall, disease resistance is an important factor in maintaining health and preventing the spread of infectious diseases.

Azospirillum is a genus of free-living nitrogen-fixing bacteria that are commonly found in the soil and associated with the roots of various plants, including cereal crops and grasses. These bacteria have the ability to convert atmospheric nitrogen into ammonia, which can be used by plants as a nutrient.

Azospirillum species are gram-negative rods that are motile by means of one or more flagella. They are chemoorganotrophs, meaning they obtain energy and carbon from organic compounds. Some strains of Azospirillum have been shown to promote plant growth and yield through a variety of mechanisms, including the production of phytohormones, increased nutrient uptake, and improved stress tolerance.

Research is ongoing to better understand the interactions between Azospirillum and plants and to explore their potential as biofertilizers and biostimulants in agriculture.

'Plant dormancy' is not a term that has a direct medical definition, as it is related to the field of botany rather than medicine. However, I can certainly provide a definition for you:

Plant dormancy is a state of suspended growth and development in plants, typically in response to adverse environmental conditions such as cold temperatures, dryness, or short day length. During this period, the plant's metabolic activity slows down, and it becomes less responsive to external stimuli. Dormancy allows the plant to survive periods of environmental stress and conserve energy until more favorable conditions return.

Examples of plant dormancy include the seed coat preventing germination until it is broken down by environmental factors or the buds on deciduous trees not growing during winter months when temperatures are too low for growth. While this term may not have a direct medical application, understanding plant dormancy can be important in areas such as agriculture and horticulture.

Chlorophyll is a green pigment found in the chloroplasts of photosynthetic plants, algae, and some bacteria. It plays an essential role in light-dependent reactions of photosynthesis by absorbing light energy, primarily from the blue and red parts of the electromagnetic spectrum, and converting it into chemical energy to fuel the synthesis of carbohydrates from carbon dioxide and water. The structure of chlorophyll includes a porphyrin ring, which binds a central magnesium ion, and a long phytol tail. There are several types of chlorophyll, including chlorophyll a and chlorophyll b, which have distinct absorption spectra and slightly different structures. Chlorophyll is crucial for the process of photosynthesis, enabling the conversion of sunlight into chemical energy and the release of oxygen as a byproduct.

Gravitropism is the growth or movement of a plant in response to gravity. It is a type of tropism, which is the growth or movement of an organism in response to a stimulus. In gravitropism, plant cells can sense the direction of gravity and grow or bend towards or away from it. Roots typically exhibit positive gravitropism, growing downwards in response to gravity, while shoots exhibit negative gravitropism, growing upwards against gravity. This growth pattern helps plants establish themselves in their environment and optimize their access to resources such as water and light.

Prolamins are a type of protein found in various grains, such as wheat, rye, barley, and oats. They are rich in the amino acid proline and are soluble in alcohol but not water. Prolamins make up about 30-50% of the total protein content in these grains.

In wheat, the main prolamin is gliadin, which is responsible for triggering celiac disease, an autoimmune disorder that affects the small intestine. When people with celiac disease consume gluten (a protein found in wheat, rye, and barley), their immune system reacts to the gliadin component of gluten, causing damage to the lining of the small intestine. This can lead to various symptoms such as diarrhea, bloating, fatigue, and malnutrition.

Therefore, prolamins are important proteins to consider in the context of food intolerances and allergies, particularly for those with celiac disease or non-celiac gluten sensitivity.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Phosphate transport proteins are membrane-bound proteins responsible for the active transport of phosphate ions across cell membranes. They play a crucial role in maintaining appropriate phosphate concentrations within cells and between intracellular compartments, which is essential for various biological processes such as energy metabolism, signal transduction, and bone formation.

These proteins utilize the energy derived from ATP hydrolysis or other sources to move phosphate ions against their concentration gradient, thereby facilitating cellular uptake of phosphate even when extracellular concentrations are low. Phosphate transport proteins can be classified based on their structure, function, and localization into different types, including sodium-dependent and sodium-independent transporters, secondary active transporters, and channels.

Dysregulation of phosphate transport proteins has been implicated in several pathological conditions, such as renal Fanconi syndrome, tumoral calcinosis, and hypophosphatemic rickets. Therefore, understanding the molecular mechanisms underlying phosphate transport protein function is essential for developing targeted therapies to treat these disorders.

Brassinosteroids are a class of steroid hormones found in plants that play crucial roles in various aspects of plant growth and development. They were first discovered in the 1970s and are named after Brassica napus, the rape seed plant from which they were initially isolated. These hormones are involved in regulating processes such as cell division, cell elongation, vascular differentiation, stress tolerance, and photomorphogenesis.

Brassinosteroids function by interacting with specific receptor proteins located on the plasma membrane of plant cells. This interaction triggers a series of intracellular signaling events that ultimately lead to changes in gene expression and various cellular responses. Defects in brassinosteroid biosynthesis or signaling can result in dwarfism, reduced fertility, and other developmental abnormalities in plants.

Some well-known brassinosteroids include brassinolide, castasterone, and typhasterol. These hormones are present in trace amounts in plants but have significant effects on plant growth and development. Brassinosteroids also exhibit various stress tolerance-promoting activities, such as enhancing resistance to drought, salinity, extreme temperatures, and pathogen attacks.

In summary, brassinosteroids are a class of steroid hormones that play essential roles in regulating plant growth, development, and stress responses. They interact with specific receptor proteins on the plasma membrane, triggering intracellular signaling events leading to changes in gene expression and various cellular responses.

I'm sorry for any confusion, but "Silicon" does not have a specific medical definition. Silicon is a chemical element with the symbol Si and atomic number 14. It is a metalloid, which means it has properties of both metals and nonmetals. In the human body, silicon is not considered an essential nutrient, although it is found in trace amounts in various tissues. Some research suggests that silicon might play a role in collagen synthesis and bone health, but more studies are needed to confirm these findings and establish recommended intake levels.

Synteny, in the context of genetics and genomics, refers to the presence of two or more genetic loci (regions) on the same chromosome, in the same relative order and orientation. This term is often used to describe conserved gene organization between different species, indicating a common ancestry.

It's important to note that synteny should not be confused with "colinearity," which refers to the conservation of gene content and order within a genome or between genomes of closely related species. Synteny is a broader concept that can also include conserved gene order across more distantly related species, even if some genes have been lost or gained in the process.

In medical research, synteny analysis can be useful for identifying conserved genetic elements and regulatory regions that may play important roles in disease susceptibility or other biological processes.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

1,4-Alpha-Glucan Branching Enzyme (GBE) is an enzyme that plays a crucial role in the synthesis of glycogen, a complex carbohydrate that serves as the primary form of energy storage in animals and fungi. GBE catalyzes the transfer of a segment of a linear glucose chain (alpha-1,4 linkage) to an alpha-1,6 position on another chain, creating branches in the glucan molecule. This branching process enhances the solubility and compactness of glycogen, allowing it to be stored more efficiently within cells.

Defects in GBE are associated with a group of genetic disorders known as glycogen storage diseases type IV (GSD IV), also called Andersen's disease. This autosomal recessive disorder is characterized by the accumulation of abnormally structured glycogen in various tissues, particularly in the liver and muscles, leading to progressive liver failure, muscle weakness, cardiac complications, and sometimes neurological symptoms.

Photoperiod is a term used in chronobiology, which is the study of biological rhythms and their synchronization with environmental cycles. In medicine, photoperiod specifically refers to the duration of light and darkness in a 24-hour period, which can significantly impact various physiological processes in living organisms, including humans.

In human medicine, photoperiod is often considered in relation to circadian rhythms, which are internal biological clocks that regulate several functions such as sleep-wake cycles, hormone secretion, and metabolism. The length of the photoperiod can influence these rhythms and contribute to the development or management of certain medical conditions, like mood disorders, sleep disturbances, and metabolic disorders.

For instance, exposure to natural daylight or artificial light sources with specific intensities and wavelengths during particular times of the day can help regulate circadian rhythms and improve overall health. Conversely, disruptions in the photoperiod due to factors like shift work, jet lag, or artificial lighting can lead to desynchronization of circadian rhythms and related health issues.

Plastids are membrane-bound organelles found in the cells of plants and algae. They are responsible for various cellular functions, including photosynthesis, storage of starch, lipids, and proteins, and the production of pigments that give plants their color. The most common types of plastids are chloroplasts (which contain chlorophyll and are involved in photosynthesis), chromoplasts (which contain pigments such as carotenoids and are responsible for the yellow, orange, and red colors of fruits and flowers), and leucoplasts (which do not contain pigments and serve mainly as storage organelles). Plastids have their own DNA and can replicate themselves within the cell.

Fagaceae is a family of plants that includes beeches, oaks, and chestnuts. It is a group of woody trees and shrubs that are widely distributed in the Northern Hemisphere, with some species also found in South America and Southeast Asia. The family is characterized by simple, lobed leaves and hard, durable woods. Many species in this family produce nuts that are an important food source for both wildlife and humans. In a medical context, Fagaceae may be mentioned in relation to allergies or other health effects associated with exposure to the pollen, leaves, or nuts of these plants.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

A plant vascular bundle is not a medical term, but rather a term used in botany to describe the arrangement of specialized tissues that transport water, nutrients, and sugars within plants. Here's a brief overview of its anatomy:

A vascular bundle typically consists of two types of conducting tissues: xylem and phloem. Xylem is responsible for water transportation from the roots to other parts of the plant, while phloem translocates sugars and other organic nutrients throughout the plant. These tissues are encased in a protective sheath called the bundle sheath, which may contain additional supportive cells.

In some plants, vascular bundles can also include meristematic tissue (cambium) that facilitates secondary growth by producing new xylem and phloem cells. The arrangement of these tissues within a vascular bundle varies among plant species, but the primary function remains consistent: to provide structural support and enable long-distance transport of essential resources for plant survival and growth.

I apologize for the confusion, but "Plant Epidermis" is not a medical term. Instead, it is a term used in botany to describe the outermost layer of cells in plant tissues. The epidermis serves as a protective barrier for the plant, regulating gas exchange and water loss through stomata, and producing cutin, a waxy substance that helps prevent water loss.

In summary, "Plant Epidermis" is a term related to plant biology and not medicine.

Zeatin is not a medical term per se, but it is a significant compound in the field of plant biology and agriculture. It is a type of cytokinin, which is a class of hormones that play crucial roles in plant growth and development. Specifically, zeatin is involved in cell division, differentiation, and delaying senescence (aging) in plants.

In a broader biological context, understanding the functions of phytohormones like zeatin can have implications for agricultural practices and crop management, which may indirectly impact human health through improved food production and quality.

Diarylheptanoids are a type of organic compound characterized by a chemical structure consisting of two aromatic rings (diaryl) linked by a seven-carbon chain (heptane). They are commonly found in various plants and have been reported to exhibit a range of biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Some well-known diarylheptanoids include curcumin, a component of turmeric, and gingerol, a compound found in ginger. Medical professionals may refer to diarylheptanoids when discussing the potential therapeutic benefits of these compounds for various health conditions.

Terminal repeat sequences (TRS) are repetitive DNA sequences that are located at the termini or ends of chromosomes, plasmids, and viral genomes. They play a significant role in various biological processes such as genome replication, packaging, and integration. In eukaryotic cells, telomeres are the most well-known TRS, which protect the chromosome ends from degradation, fusion, and other forms of DNA damage.

Telomeres consist of repetitive DNA sequences (5'-TTAGGG-3' in vertebrates) that are several kilobases long, associated with a set of shelterin proteins that protect them from being recognized as double-strand breaks by the DNA repair machinery. With each cell division, telomeres progressively shorten due to the end replication problem, which can ultimately lead to cellular senescence or apoptosis.

In contrast, prokaryotic TRS are often found at the ends of plasmids and phages and are involved in DNA replication, packaging, and integration into host genomes. For example, the attP and attB sites in bacteriophage lambda are TRS that facilitate site-specific recombination during integration and excision from the host genome.

Overall, terminal repeat sequences are essential for maintaining genome stability and integrity in various organisms, and their dysfunction can lead to genomic instability, disease, and aging.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

I'm sorry for any confusion, but "Hemiptera" is not a medical term. It is a taxonomic order in the classification of living things, also known as "true bugs." This group includes species such as cicadas, aphids, and bedbugs. If you have a medical term in mind, please provide it so I can give you an accurate definition.

I'm sorry for any confusion, but "Pennisetum" is not a medical term. It is the name of a genus of plants in the grass family, also known as fountain grasses or feather grasses. They are often used in ornamental landscaping. If you have any questions about a medical term or concept, I'd be happy to help clarify!

A genetic database is a type of biomedical or health informatics database that stores and organizes genetic data, such as DNA sequences, gene maps, genotypes, haplotypes, and phenotype information. These databases can be used for various purposes, including research, clinical diagnosis, and personalized medicine.

There are different types of genetic databases, including:

1. Genomic databases: These databases store whole genome sequences, gene expression data, and other genomic information. Examples include the National Center for Biotechnology Information's (NCBI) GenBank, the European Nucleotide Archive (ENA), and the DNA Data Bank of Japan (DDBJ).
2. Gene databases: These databases contain information about specific genes, including their location, function, regulation, and evolution. Examples include the Online Mendelian Inheritance in Man (OMIM) database, the Universal Protein Resource (UniProt), and the Gene Ontology (GO) database.
3. Variant databases: These databases store information about genetic variants, such as single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), and copy number variations (CNVs). Examples include the Database of Single Nucleotide Polymorphisms (dbSNP), the Catalogue of Somatic Mutations in Cancer (COSMIC), and the International HapMap Project.
4. Clinical databases: These databases contain genetic and clinical information about patients, such as their genotype, phenotype, family history, and response to treatments. Examples include the ClinVar database, the Pharmacogenomics Knowledgebase (PharmGKB), and the Genetic Testing Registry (GTR).
5. Population databases: These databases store genetic information about different populations, including their ancestry, demographics, and genetic diversity. Examples include the 1000 Genomes Project, the Human Genome Diversity Project (HGDP), and the Allele Frequency Net Database (AFND).

Genetic databases can be publicly accessible or restricted to authorized users, depending on their purpose and content. They play a crucial role in advancing our understanding of genetics and genomics, as well as improving healthcare and personalized medicine.

Retroelements are a type of mobile genetic element that can move within a host genome by reverse transcription of an RNA intermediate. They are called "retro" because they replicate through a retrotransposition process, which involves the reverse transcription of their RNA into DNA, and then integration of the resulting cDNA into a new location in the genome.

Retroelements are typically divided into two main categories: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. LTR retrotransposons have direct repeats of several hundred base pairs at their ends, similar to retroviruses, while non-LTR retrotransposons lack these repeats.

Retroelements are widespread in eukaryotic genomes and can make up a significant fraction of the DNA content. They are thought to play important roles in genome evolution, including the creation of new genes and the regulation of gene expression. However, they can also cause genetic instability and disease when they insert into or near functional genes.

Heterocyclic steroids refer to a class of steroidal compounds that contain one or more heteroatoms such as nitrogen, oxygen, or sulfur in their ring structure. These molecules are characterized by having at least one carbon atom in the ring replaced by a heteroatom, which can affect the chemical and physical properties of the compound compared to typical steroids.

Steroids are a type of organic compound that contains a characteristic arrangement of four fused rings, three of them six-membered (cyclohexane) and one five-membered (cyclopentane) ring. The heterocyclic steroids can have various biological activities, including hormonal, anti-inflammatory, and immunomodulatory effects. They are used in the pharmaceutical industry to develop drugs for treating several medical conditions, such as hormone replacement therapy, autoimmune disorders, and cancer.

Examples of heterocyclic steroids include cortisol (a natural glucocorticoid with a heterocyclic side chain), estradiol (a natural estrogen containing a phenolic A-ring), and various synthetic steroids like anabolic-androgenic steroids, which may contain heterocyclic structures to enhance their biological activity or pharmacokinetic properties.

Alpha-amylases are a type of enzyme that breaks down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, maltotriose, and glucose. These enzymes catalyze the hydrolysis of alpha-1,4 glycosidic bonds in these complex carbohydrates, making them more easily digestible.

Alpha-amylases are produced by various organisms, including humans, animals, plants, and microorganisms such as bacteria and fungi. In humans, alpha-amylases are primarily produced by the salivary glands and pancreas, and they play an essential role in the digestion of dietary carbohydrates.

Deficiency or malfunction of alpha-amylases can lead to various medical conditions, such as diabetes, kidney disease, and genetic disorders like congenital sucrase-isomaltase deficiency. On the other hand, excessive production of alpha-amylases can contribute to dental caries and other oral health issues.

Biomass is defined in the medical field as a renewable energy source derived from organic materials, primarily plant matter, that can be burned or converted into fuel. This includes materials such as wood, agricultural waste, and even methane gas produced by landfills. Biomass is often used as a source of heat, electricity, or transportation fuels, and its use can help reduce greenhouse gas emissions and dependence on fossil fuels.

In the context of human health, biomass burning can have both positive and negative impacts. On one hand, biomass can provide a source of heat and energy for cooking and heating, which can improve living standards and reduce exposure to harmful pollutants from traditional cooking methods such as open fires. On the other hand, biomass burning can also produce air pollution, including particulate matter and toxic chemicals, that can have negative effects on respiratory health and contribute to climate change.

Therefore, while biomass has the potential to be a sustainable and low-carbon source of energy, it is important to consider the potential health and environmental impacts of its use and implement appropriate measures to minimize any negative effects.

Wikispecies has information related to Oryza sativa. Wikimedia Commons has media related to Oryza sativa. (Articles with short ... Oryza sativa belongs to the genus Oryza of the grass family Poaceae. With a genome consisting of 430 Mbp across 12 chromosomes ... "oryza". Merriam-Webster Dictionary. "sativa". Lexico UK English Dictionary. Oxford University Press. n.d. "sativa". Merriam- ... Oryza sativa, also known as rice, is the plant species most commonly referred to in English as rice. It is the type of farmed ...
Oryza sativa) baka - Philippine cow; Bos taurus Baboy ihás - baboy damó; wild boar; Sus scrofa bóngcaras - sea cow; Dugong ... Oryza sativa; palay kana (Bis.) - Cardiospermum halicacabum; Heart Pea; Balloon Vine kanding-kanding - Stachytarpheta ... watermelon - Curcubita citrullus Linn.; also Citrullus vulgaris Schrad.; pakwan (INTRODUCED) ahos - Garlic; Allium sativum; ... bottle gourd Corindrium sativum - coriander leaf adelfa - Oleander; South sea rose; Nerium indicum Mill.; Neroum oleander ...
Nigella sativa, a flower whose edible seeds are sometimes known as "black cumin" or "black caraway". Oryza sativa, rice. ... Look up sativa, sativum, or sativus in Wiktionary, the free dictionary. Sativa, sativus, and sativum are Latin botanical ... Avena sativa, the common oat. Cannabis sativa, one of three forms of cannabis. Castanea sativa, sweet chestnut. Crocus sativus ... Pisum sativum, pea plant. 8 Foot Sativa, a New Zealand-based metal band Sativa (Jhené Aiko song) Sativanorte and Sativasur, ...
Most rice varieties of Oryza sativa japonica and Oryza sativa indica are susceptible to RRSV though several resistant varieties ... especially Oryza sativa). The virus, first described by Hibino, Ling and Shikata, is also less commonly known as rice ... RRSV, vectored by the brown planthopper (BPH) (Delphacidae: Nilaparvata lugens), causes ragged stunt disease of rice (Oryza spp ...
"Oryza sativa Germplasm "Pokkali"". Archive.gramene.org. Retrieved 27 February 2019. "Assessment of Soil Quality in the Post ...
"Oryza sativa tropical japonica subgroup". www.uniprot.org. "Oryza sativa aromatic subgroup". www.uniprot.org. 松尾 弌之. (2009)."「 ... Japonica rice (Oryza sativa subsp. japonica), sometimes called sinica rice, is one of the two major domestic types of Asian ... "Oryza sativa temperate japonica subgroup". www.uniprot.org. "javanica rice". International Rice Research Institute. Retrieved ... Oryza sativa subsp. javanica [ja]), and 'aromatic'. Temperate japonica is cultivated in East Asia (China, Japan, Korea, Vietnam ...
Glutinous rice (Oryza sativa var. glutinosa; also called "sticky rice", "sweet rice", or "waxy rice" Thai people call it "Khao ...
... (Oryza sativa var. glutinosa; also called sticky rice, sweet rice or waxy rice) is a type of rice grown mainly ...
Bhutan is located at the intersection of the origins of both the subspecies of Oryza sativa (rice), Oryza sativa ssp. japonica ... and Oryza sativa Indica Group. In conjunction to the traditional rituals associated with rice, it can be viewed as an ancient ...
The larvae feed on Oryza sativa. Nuss, Matthias; Landry, Bernard; Vegliante, Francesca; Tränkner, Andreas; Mally, Richard; ...
The larvae feed on Oryza sativa. Nuss, Matthias; Landry, Bernard; Vegliante, Francesca; Tränkner, Andreas; Mally, Richard; ...
The larvae feed on Oryza sativa. Nuss, Matthias; Landry, Bernard; Vegliante, Francesca; Tränkner, Andreas; Mally, Richard; ...
in rice (Oryza sativa L.) fields". Crop Protection. 65: 1. Retrieved 10 October 2015. Jepson Manual Treatment USDA Plants ...
... sativa/latest_assembly_versions/GCF_001433935.1_IRGSP-1.0". ftp.ncbi.nih.gov. Retrieved 2020-12-01. "Oryza sativa (ID 10) - ... "Cannabis sativa (ID 11681) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-12-01. "Index of /genomes/refseq/plant/ ... "Index of /genomes/refseq/plant/Cannabis_sativa/latest_assembly_versions/GCF_900626175.2_cs10". ftp.ncbi.nih.gov. Retrieved 2020 ...
The larvae feed on Oryza sativa. Australian Faunal Directory "GlobIZ search". Global Information System on Pyraloidea. ...
The larvae feed on Oryza sativa. Nuss, Matthias; Landry, Bernard; Vegliante, Francesca; Tränkner, Andreas; Mally, Richard; ...
Oryza sativa Rani, N. Shobha (1998). "The rice situation in Iran". International Rice Commission Newsletter (47). Yeh, W. H. ( ... 1986). "Assessment of partial resistance to Pyricularia oryzae in six rice cultivars". Plant Pathology. Wiley Online Library. ...
The larvae feed on Oryza sativa. Nuss, Matthias; Landry, Bernard; Vegliante, Francesca; Tränkner, Andreas; Mally, Richard; ...
The larvae feed on Oryza sativa. It is considered as a major rice pest throughout India, Sri Lanka as well as in various parts ...
Oryza sativa). It has been localized to the chloroplast stroma in peas (Pisum sativum) and wheat (Triticum aestivum). The ... Rice (Oryza sativa) has two distinct ent-copalyl diphosphate synthases, which participate in distinct metabolic pathways. Only ...
Rice (Oryza sativa) is a classic example. Rice is a staple food throughout the world, especially in China and India. Rice ...
"Oryza sativa - planted about 800-900 AD, to West Africa. The final penetration of Oryza sativa into ... Starch made from broken ... Oryza sativa, commonly known as Asian rice or paddy rice, produces around 50% whole rice then approximately 16% broken rice, 20 ... African rice, Oryza glaberrima, has more brittle grains, and breakage is higher.[citation needed] Due to the different size and ... G. Elzebroek, Koop Wind Guide to Cultivated Plants 2008 - Page 346 "In West Africa, a hybrid between O. sativa and O. ...
Oryza sativa, Cynodon dactylon, and Isachne aristatum. Scientific investigation of O. sativa resistance against O. oryzae began ... Orseolia oryzae, also called the Asian rice gall midge, is a species of small fly in the family Cecidomyiidae. It is a major ... in India in 1948, and O. oryzae virulence against these O. sativa cultivars was first observed in 1969. The larvae of the Asian ... The English zoologist James Wood-Mason identified the insect as a midge, called it Cecidomyia oryzae, and wrote about it in the ...
oryzae is pathogenic on rice (Oryza sativa). Pseudomonas coronafaciens pv. porri infects the leek (Allium ampeloprasum var. ... coronafaciens causes halo blight on oat (Avena sativa). Pseudomonas coronafaciens pv. garcae infects the coffee plant Coffea ... striafaciens causes bacterial stripe blight on oat (Avena sativa). Pseudomonas coronafaciens pv. zizaniae causes bacterial leaf ...
Chakravorty, A. K. (September 1948). "Anatomical Variation in Rice Oryza Sativa Linn". Journal of the Royal Microscopical ...
Oryza sativa and Oryza glaberrima) and Their Close Wild Relatives". In Ahuja, M.R.; Jain, S. Mohan (eds.). Genetic Diversity ... Datta, Karabi; Datta, Swapan Kumar (2006). Indica rice (Oryza sativa, BR29 and IR64). Methods in Molecular Biology. Vol. 343. ... Jones, Monty P.; Dingkuhn, Michael; Alukosnm, Gabriel K.; Semon, Mandé (1997-03-01). "Interspecific Oryza Sativa L. × O. ... A Powerful Tool for the Introgression of Valuable Genes from Oryza Wild Species into Cultivated Rice (O. sativa)". Rice. ...
Yang, Xue-Fang; Li, Lei-Lei; Xu, You; Kong, Chui-Hua (October 2018). "Kin recognition in rice ( Oryza sativa) lines". New ... The root exudate allantoin produced by rice plants, Oryza sativa, has been documented to be in greater production when growing ... This is mainly not observed in Oryza Sativa when surrounded by kin, invoking altruistic behaviors to promote inclusive fitness ...
... is a variety of Oryza sativa. Jasmine rice is grown primarily in Thailand (Thai hom mali or Thai fragrant rice), ... Ambemohar Basmati rice Glutinous rice List of rice varieties Oryza sativa Riceberry: A Thai rice variety that is a cross-breed ... The grains cling and are somewhat sticky when cooked, though less sticky than glutinous rice (Oryza sativa var. glutinosa), as ... Glutinous rice is grown in Laos, and regular Oryza sativa predominates in Vietnam.[citation needed] Thai jasmine rice from ...
Phomopsis oryzae Punith. (1975) Phomopsis oryzae-sativae Punith. (1980) Phomopsis osmanthi Dzhalag. (1965) Phomopsis osyridis ...
Curvularia oryzae Bugnic. (1950) Curvularia oryzae-sativae Sivan. (1987) Curvularia ovariicola (Alcorn) Manamgoda, L. Cai & K.D ... oryzae (S. Ito & Ishiy.) Hara (1959) = Brachysporium oryzae, Trichosphaeriaceae C. papendorfii Aa (1967) = Bipolaris ... Nakataea oryzae, Magnaporthaceae C. leonensis M.B. Ellis (1966) = Curvularia pallescens C. lunata var. aeria (Bat., J.A. Lima ... Nakataea oryzae, Magnaporthaceae C. tetramera (McKinney) Boedijn ex J.C. Gilman (1945) = Curvularia spicifera C. trifolii f. ...
Wikispecies has information related to Oryza sativa. Wikimedia Commons has media related to Oryza sativa. (Articles with short ... Oryza sativa belongs to the genus Oryza of the grass family Poaceae. With a genome consisting of 430 Mbp across 12 chromosomes ... "oryza". Merriam-Webster Dictionary. "sativa". Lexico UK English Dictionary. Oxford University Press. n.d. "sativa". Merriam- ... Oryza sativa, also known as rice, is the plant species most commonly referred to in English as rice. It is the type of farmed ...
Oryza Sativa (Rice) Germ Oil is an oil obtained by the expression of germs of rice, Oryzasativa. ... Oryza Sativa (Rice) Germ Oil. *Products with the EWG VERIFIED mark have met the programs impurity and use restrictions based ...
Nomenclature: Glufosinate; Oryza nivara L.; Oryza rufipogon L.; Oryza sativa L. ORYSA, red rice; Oryza sativa L., rice. ... Oryza sativa ssp. indica-like red rice and O. rufipogon-like red rice have been found within a single 9-m2 collection site. ... Is all red rice found in commercial rice really Oryza sativa?. L. Kelly Vaughan, Brian V. Ottis, Ann M. Prazak-Havey, Concetta ... All red rice found in commercial rice in the United States has traditionally been classified as Oryza sativa ssp. indica. This ...
Solution structure of C-terminal domain of NifU-like protein from Oryza sativa ... Solution structure of C-terminal domain of NifU-like protein from Oryza sativa. *PDB DOI: https://doi.org/10.2210/pdb1TH5/pdb ...
Oryza sativa) grain using Response surface methodology , Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine that is ... The presence of melatonin in plants has been identified in a range of species including rice (Oryza sativa). Hence, a suitable ... Optimization of the ultrasound-assisted extraction of melatonin from red rice (Oryza sativa) grains.... May 2015 · Applied ... Optimization of ultrasound-assisted extraction of melatonin from red rice (Oryza sativa) grain using Response surface ...
Oryza sativa Japonica Group(Japanese rice). Definition Oryza sativa Japonica Group guanine nucleotide-binding protein subunit ... Oryza sativa Japonica Group(Japanese rice). Definition Oryza sativa Japonica Group guanine nucleotide-binding protein subunit ... LOC4324115 ( XM_015765435.1 ) cDNA ORF clone, Oryza sativa Japonica Group(Japanese rice) -, XP_015620921.1 Oryza sativa ... LOC4324115 ( XM_015765435.2 ) cDNA ORF clone, Oryza sativa Japonica Group(Japanese rice) -, XP_015620921.1 Oryza sativa ...
... ... Phytotoxic Effects of Tithonia diversifolia on Germination and Growth of Oryza sativa . Research Journal of Botany, 2: 23-32. ... The effects of the aqueous extracts prepared from the shoots and roots of T. diversifolia on Oryza sativa were obtained by ... Results showed that the growth parameters and fresh and dry matter production of Oryza sativa were retarded by all the four ...
Home / All Projects / Projects / Drought and salinity tolerance in rice (Oryza sativa L.): cell biology (...) ... Drought and salinity tolerance in rice (Oryza sativa L.): cell biology ap-proaches. ...
Development and demographic parameters of Fall Armyworm (Spodoptera frugiperda J.E. Smith) when feeding on rice (Oryza sativa) ... We studied the developmental and demographic parameters of the maize (Zea mays) strain of FAW on rice (Oryza sativa), and ...
... in enz peroxidase isozymes between oryza perennis m oryza sativa m and oryza breviligulata m oryza glaberrima m series of oryza ... Oryza sativa) and interspecific (Oryza sativa x Oryza glaberrima) rice under field conditions using agro-morphological markers ... Cyto genetic studies on the genus oryza part 11 alien addition lines of oryza sativa with single chromosomes of oryza ... Yabuno, T. 1981: The transfer of a gene for glutinous endosperm to oryza glaberrima from a japonica variety of oryza sativa ...
Oryza sativa var. sylvatica). #. Country. Country. StateName. FirstYear. Situation. Active Ingredients. CountryID. Site of ... Oryza sativa var. sylvatica. Red Rice. 18170. 3 Costa Rica. Costa Rica. 2010. Rice imazapic, and imazapyr 11. Inhibition of ... Oryza sativa var. sylvatica. Red Rice. 5372. 2 Colombia. Colombia. 2018. Rice imazamox, and imazapyr 10. Inhibition of ... Oryza sativa var. sylvatica. Red Rice. 7885. 4 Greece. Greece. 2013. Rice imazamox, and imazethapyr 19. Inhibition of ...
Rice (Oryza sativa L.) is an important grain that is consume by over half of the world population. (Maclean et al., 2002). In ... Musa S, Ikhajiagbe B (2021) The growth response of rice (Oryza sativa L. var. FARO 44) in vitro after inoculation with ... Ikhajiagbe B, Igiebor F, Ogwu M (2021) Growth and yield performances of rice (Oryza sativa var. nerica) after exposure to ... Rhizo-inoculation of phosphate solubilizing bacteria strains to improve rice (Oryza sativa L. var. FARO 44) growth under ...
Oryza sativa Japonica Group (IRGSP-1.0) ▼ Favourite species. *Arabidopsis thaliana. *Oryza sativa Japonica Group ...
Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution CC BY Licence.. ...
Avaliação de genótipos de arroz (Oryza sativa L.) no Estado de Rondônia - safra 1999/2000. ...
General information about Phomopsis oryzae-sativae (PHOPOS) ...
The information provided is for educational purposes only for the benefit of the general public and health professionals. It is not intended to take the place of either the written law or regulations. Since some parts of plants could be toxic, might induce side effects, or might have interactions with certain drugs, anyone intending to use them or their products must first consult with a physician or another qualified health care professional. TRAMIL has no responsibility whatsoever towards the user for any decision, action or omission made in relation to the information contained in this Pharmacopoeia.. ...
... moreOryza glutinosa Lour., Oryza rubribarbis (Desv.) Steud., Oryza sativa var. elongata Desv., Oryza sativa var. rubribarbis ...
Oryza sativa - RPL17A. Organism. Oryza sativa. Gene Name. RPL17A. Product. ribosomal protein L22. ...
Rice (Oryza sativa L.) is an important cash crop in Honduras. The availability of inexpensive irrigation in the study area ( ... Soil moisture, field-scale toposequential position, and slope effects on yields in irrigated rice (Oryza sativa L.) fields in ... Oryza, 26, 252-257. * Bouman, B.A.M, Lampayan, R.M. and Tuong, T.P. (2007) Water management in irrigated rice: Coping with ...
This miRNA sequence is 21 nucleotides long and is found in Oryza sativa. Annotated by 1 database (miRBase). ...
Oryza sativa (rice) bran oil Oryza Sativa (Rice) Bran Oil Rice bran oil is used for two properties:. - nourishing: it helps ...
Oryza sativa. Plants of the World Online: Oryza sativa. Tropicos: Oryza sativa. Wikipedia: Oryza sativa Home. ,. List of ... iNaturalist: Oryza sativa. IPNI (International Plant Names Index): Oryza sativa. JSTOR Plant Science: Oryza sativa. Mansfeld ... Oryza sativa. EOL (Encyclopedia of Life): Oryza sativa. GBIF (Global Biodiversity Information Facility): Oryza sativa. Google: ... Flora of Zimbabwe: Oryza sativa. Flora of Zimbabwe: cultivated Oryza sativa. External websites:. African Plants: A Photo Guide ...
Categorizing rice deletion mutants by re-sequencing; Sample collected from ...
The present study was conducted to improve rice (Oryza sativa L.) cultivars considering the features related to tolerance in ... Improvement of Abiotic Stress Tolerant Rice (Oryza Sativa L.) Through Biotechnological Techniques  ...
These seeds were collected from Oryza sativa black, also known as Black Madras, Asian Rice, and Common Rice. This annual likes ... These seeds were collected from Oryza sativa black, also known as Black Madras, Asian Rice, and Common Rice. This annual likes ...
Reddy PRR, Sreeramulu C (1982) Heterosis and combining ability for yield and its components in rice (Oryza sativa L.). Oryza 36 ... Singh TP, Singh KB (1974) Component of genetic variance pattern of some quantitative traits in rice (Oryza sativa L.). Oryza 71 ... Swindell RE, Poehlman JM (1978) Inheritance of submergence response in rice (Oryza sativa L.). Oryza 27:325-333 ... Singh TP, Singh KB (1972) Mode of inheritance and gene action for yield and its component in Oryza sativa L. Can J Genet Cytol ...
The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). In: Applied Soil Ecology. 2009 ; Vol ... Dive into the research topics of The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). ... The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). / Prakamhang, Janpen; Minamisawa, ... The population of viable endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L. cultivar KDML-105) was ...
The megasporogenesis and structure of the embryo sac in Oryza sativa L. and Rhynchoryza subulata (Nees)Baill. (syn. Oryza ... 1978). Megasporogenesis in Oryza sativa L. and Rhynchoryza subulata (Nees) Baill. indicating some taxonomic significance. Acta ... Megasporogenesis in Oryza sativa L. and Rhynchoryza subulata (Nees) Baill. indicating some taxonomic significance. Publication ...
  • Oryza sativa, also known as rice, is the plant species most commonly referred to in English as rice. (wikipedia.org)
  • Oryza sativa contains two major subspecies: the sticky, short-grained japonica or sinica variety, and the nonsticky, long-grained indica [zh] [ja] rice variety. (wikipedia.org)
  • With the availability of rice genome sequence, coupled with a large collection of publicly available genetic resources, it is of interest to develop a population-based framework for the molecular analysis of diversity in O. sativa. (nih.gov)
  • Is all red rice found in commercial rice really Oryza sativa? (bioone.org)
  • All red rice found in commercial rice in the United States has traditionally been classified as Oryza sativa ssp. (bioone.org)
  • Some red rice is closely related to O. sativa ssp. (bioone.org)
  • Most importantly, some red rice samples collected from Arkansas, Louisiana, Mississippi, and Texas form a distinct group that includes a number of Oryza nivara and Oryza rufipogon accessions from the National Small Grains Center. (bioone.org)
  • While the classification of red rice as O. sativa ssp. (bioone.org)
  • 2010. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. (nih.gov)
  • The origin and evolution of fragrance in rice (Oryza sativa L.). Proceedings of the National Academy of Sciences U.S.A. 106(34): 14444-9. (nih.gov)
  • Field experiments to determine the influence of supplementary hoe weeding on the efficacy of ButaForceïƒ' (N-(butoxymethyl)-2-chloro-N-2,6-dimethyl acetanilide) for low land rice (Oryza sativa L.) weed management was conducted at the Faculty of Agriculture Teaching and Research Farm of the University of Port Harcourt during the early cropping seasons of 2018 and 2019. (academicjournals.org)
  • Rice ( Oryza sativa L.) belongs to the family of Poaceae and is a staple cereal crop in Nigeria. (academicjournals.org)
  • The effects of different doses of gamma radiation on the thermoanalytical, structural and pasting properties of black rice (Oryza sativa L.) flour were studied using thermogravimetry and derivative thermogravimetry (TG-DTG), differential scanning calorimetry, X-ray diffraction (XRD), field emission gun-scanning electron microscopy (FEG-SEM) and pasting properties (RVA) analysis. (unesp.br)
  • These seeds were collected from Oryza sativa black, also known as Black Madras, Asian Rice, and Common Rice. (buy-rare-seeds.com)
  • Rice bran (Oryza sativa) beads provide natural exfoliation while protecting skin from future damage. (buyithealthy.com)
  • Rice ( Oryza sativa L.) is an important staple food worldwide. (springeropen.com)
  • The effects of salicylic acid (SA) on germination, seedling and adult plant of rice (Oryza sativa L.) were investigated. (envirobiotechjournals.com)
  • Effects of Inorganic and Organic Nitrogen Nutrients on Drought Resistance of Rice (Oryza sativa L. (zhangqiaokeyan.com)
  • Using hydroponic culture method, the effects of inorganic and organic nitrogen nutrients on drought resistance of rice (Oryza sativa L.) grown under drought stressful conditions induced by polyethylene glycol (PEG) were studied. (zhangqiaokeyan.com)
  • The purpose of this study is to analyzed the effects of acute toxicity of liquid smoke rice hull sativa) on mice (Mus musculus). (unair.ac.id)
  • BAU-Biofungicide ( Trichoderma based preparation) and Bavistin DF (Carbandazim) and Potent 250 EC (Propiconazole) were tested in laboratory and field conditions for eco-friendly management of diseases of rice (Oryza sativa, L.) cv BRRI dhan28. (scitechnol.com)
  • Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L. (ac.ke)
  • In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H + -ATPase 1 ( OSA1 ), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. (nature.com)
  • In this study, we examined the involvement of PM H + -ATPase in NH 4 + uptake by rice roots and stomatal opening for CO 2 uptake and photosynthesis in rice leaves, with the aim of developing a new strategy to improve rice yield and N use efficiency (NUE) via the overexpression of a single gene, Oryza sativa PM H + -ATPase 1 ( OSA1 ). (nature.com)
  • Bio-functionalized nickel-silica nanoparticles suppress bacterial leaf blight disease in rice ( Oryza sativa L. (bvsalud.org)
  • oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. (bvsalud.org)
  • This dataset originates from research carried out in 2016, published in the paper "Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice ( Oryza sativa ) coleoptiles under anoxia and re-oxygenation. (edu.au)
  • Rice ( Oryza sativa L.) is the most important cereal grown in Thailand. (eeer.org)
  • The effect of kaolin on arsenic accumulation in rice plants (Oryza Sativa L.) grown in arsenic contaminated soils was investigated. (eeer.org)
  • In vitro and in vivo anti-hyperglycemic activities of taxifolin and its derivatives isolated from pigmented rice ( Oryzae sativa L. cv. (cabi.org)
  • Black rice ( Oryza sativa L.) reduces obesity and improves lipid metabolism in C57BL/6J mice fed a high-fat diet. (cabi.org)
  • Effects of high-fiber rice Dodamssal ( Oryza sativa L.) on glucose and lipid metabolism in mice fed a high-fat diet. (cabi.org)
  • We investigated the effects of high amylose rice variety, Dodamssal (DO) ( Oryza sativa L.), on glucose homeostasis and lipid metabolism in mice. (cabi.org)
  • 13. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. (nih.gov)
  • 17. A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. (nih.gov)
  • 18. Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. (nih.gov)
  • A clomazone immunoassay to study the environmental fate of the herbicide in rice (Oryza sativa) agricultur e. (cdc.gov)
  • The TG- and free fatty acid-lowering action as well as the anti-adiposity effects induced by rice protein (extracted from Oryza sativa L. ) is attributed to the upregulation of lipolysis and downregulation of lipogenesis. (medscape.com)
  • Read the article A Clomazone Immunoassay To Study the Environmental Fate of the Herbicide in Rice (Oryza sativa) Agriculture from the March 19, 2010 issue of the Journal of Agricultural and Food Chemistry . (nih.gov)
  • 2004) used simple sequence repeats to sort O. sativa into five groups: temperate japonica, tropical japonica and aromatic comprise the japonica varieties, while indica and aus comprise the indica varieties. (wikipedia.org)
  • Within Oryza sativa, there is an ancient and well-established divergence between the two major subspecies, indica and japonica, but finer levels of genetic structure are suggested by the breeding history. (nih.gov)
  • putative receptor-like kinase (with alternative splicing) [Oryza sativa (japonica cultivar. (cornell.edu)
  • 8. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. (nih.gov)
  • Oryza sativa belongs to the genus Oryza of the grass family Poaceae. (wikipedia.org)
  • 2014. Both abscisic acid and salicylic acid are employed by O. sativa in its regulation of its own immune responses. (wikipedia.org)
  • O. sativa has a large number of insect resistance genes specifically for the Brown planthopper. (wikipedia.org)
  • The RNA-seq data generated provides a detailed molecular profile of Oryza sativa enabling the identification of differentially expressed genes and uncovers the essential features for germination and early seedling growth under anoxic conditions.The data provide insights into the molecular responses to oxygen deprivation. (edu.au)
  • The RNA-seq data generated provides a detailed molecular profile of Oryza sativa enabling the identification of differentially expressed genes and uncovers the essential features for germination and early seedling growth under anoxic conditions. (edu.au)
  • SEVERIN-2: a putative non-autonomous DNA transposon from Oryza sativa. (girinst.org)
  • BAUBiofungicide (2%) was found to have profound effect in inhibiting the mycelial growth of Bipolaris oryzae (brown spot), Cercospora oryzae (narrow brown leaf spot) and Rhizoctonia solani (sheath blight) in vitro and marked reduction of disease incidence of brown spot, narrow brown leaf spot and sheath blight in the field. (scitechnol.com)
  • It was noted that significantly low incidence of narrow brown leaf spot and sheath blight disease was observed in plots sprayed with Carbendazim (0.1%) in the field as well as mycelial growth inhibition of Cercospora oryzae and Rhizoctonia solani was found in Carbendazim (0.1%) under laboratory condition. (scitechnol.com)
  • 9. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. (nih.gov)
  • During this study, a nanocomposite of two important elements , nickel and silicon , was biosynthesized using extraction of saffron stigmas ( Crocus sativus L.). Characterization of obtained nickel - silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy ( FTIR ), X-ray diffraction (XRD), Transmission / Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). (bvsalud.org)
  • Solution: Vitamin C & Oryza sativa Gentle Scrub is formulated to provide gentle, effective exfoliation of damaged skin cells to help restore a more even skin tone and healty complexion. (buyithealthy.com)