A plant genus of the family POACEAE that contains the Phl p 4 allergen.
A plant genus of the family POACEAE that is considered a lawn grass by some and a weed by others. It contains allergen Cyn d 7.
The fertilizing element of plants that contains the male GAMETOPHYTES.
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.
Immunosuppression by the administration of increasing doses of antigen. Though the exact mechanism is not clear, the therapy results in an increase in serum levels of allergen-specific IMMUNOGLOBULIN G, suppression of specific IgE, and an increase in suppressor T-cell activity.
Allergic rhinitis that occurs at the same time every year. It is characterized by acute CONJUNCTIVITIS with lacrimation and ITCHING, and regarded as an allergic condition triggered by specific ALLERGENS.
Antigen-type substances that produce immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Substances found in PLANTS that have antigenic activity.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).

The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. (1/41)

The timothy grass pollen allergen Phl p 7 assembles most of the IgE epitopes of a novel family of 2 EF-hand calcium-binding proteins and therefore represents a diagnostic marker allergen and vaccine candidate for immunotherapy. Here we report the first three-dimensional structure of a representative of the 2 EF-hand allergen family, Phl p 7, in the calcium-bound form. The protein occurs as a novel dimer assembly with unique features: in contrast to well known EF-hand proteins such as calmodulin, parvalbumin or the S100 proteins, Phl p 7 adopts an extended conformation. Two protein monomers assemble in a head-to-tail arrangement with domain-swapped EF-hand pairing. The intertwined dimer adopts a barrel-like structure with an extended hydrophobic cavity providing a ligand-binding site. Calcium binding acts as a conformational switch between an open and a closed dimeric form of Phl p 7. These findings are interesting in the context of lipid- and calcium-dependent pollen tube growth. Furthermore, the structure of Phl p 7 allows for the rational development of vaccine strategies for treatment of sensitized allergic patients.  (+info)

Matua bromegrass hay for mares in gestation and lactation. (2/41)

Matua bromegrass hay (Bromus willdenowii Kunth) is a high quality forage, but its value for mares during gestation and lactation is not well known. Intake, rate of passage, performance, and reproduction by gestating and lactating Quarter Horse mares fed the hay was investigated. In this experiment, 12, 2- to 12-yr-old gravid mares (mean BW = 553 kg, SD = 36) were fed Matua hay (CP = 11.5%) or alfalfa hay (Medicago sativa L.) (CP = 15.4%) for variable days prepartum (mean 59.9 d; SD = 23.5) and for 70 d postpartum. Matua and alfalfa hay were fed as the roughage portion of the diet with a grain supplement. Mares, blocked by age, expected date of foaling, and BW, were assigned randomly within blocks to treatments (six mares per treatment). Forage type did not affect intake, gestation length, birth weight, number of foals, foal weight gain, day of first postpartum ovulation, cycles per conception, or pregnancy rate at 70 d. On d 1, milk from mares fed alfalfa hay contained less (P < 0.03) CP than milk from mares fed Matua hay. Milk CP decreased (P < 0.01) in all mares over time. In a separate experiment, voluntary intake and rate of passage of Matua (CP = 15.5%), alfalfa (CP = 24.9%), and Timothy (Phleum pratense L.) (CP = 4.1%) hays were determined in nine 2-yr-old pregnant mares (mean BW = 447 kg; SD = 21). Diets were 100% forage. Timothy hay did not meet CP requirements for mares. Voluntary intake of alfalfa hay was higher (P < 0.01) than Matua hay. Intake of Timothy hay was lower (P < 0.01) than the mean of alfalfa and Matua hay. Rate of passage offorage was measured by passage of Cr-mordanted fiber. Passage rate and retention time did not differ between Matua and alfalfa hay; however, the retention times of Matua and alfalfa hays were shorter (P < 0.01) than for Timothy hay. Our results indicate that Matua hay is a forage that can be used safely for mares during gestation and early lactation and for their young foals.  (+info)

Diurnal variation in uptake and xylem contents of inorganic and assimilated N under continuous and interrupted N supply to Phleum pratense and Festuca pratensis. (3/41)

Compensation by dark-period uptake of NH(4)(+) and NO(3)(-) in the grasses Phleum pratense L. and Festuca pratensis Huds. following N deprivation during the preceding light period was investigated in flowing solution culture under an artificial 10/14 h light/dark cycle. N was supplied as either NO(3)(-), NH(4)(+) or NH(4)NO(3) at 20+/-5 mmol m(-3), available continuously or only during the dark period, for 5-10 d. Intermittent N supply did not affect total daily N uptake, growth rate or net partitioning of dry matter. Net uptake and influx of NO(3)(-) varied similarly throughout the diurnal cycle when NO(3)(-) was supplied continuously, with a marginal contribution by NO(3)(-) efflux. Influx was significantly higher and efflux slightly higher following interruption of NO(3)(-) supply during the light period. Nitrate accounted for 80% of N in xylem exudate except between hours 6-9 of the light period when the amino acid concentration increased 3-fold, primarily as glutamine. Diurnal variation in relative NO(3)(-) uptake exhibited five phases of constant acceleration/deceleration, described reasonably well assuming NO(3)(-) influx was subject to metabolic co-regulation by NO(3)(-) and amino acid levels in the cytoplasmic compartment of the roots. Accordingly, influx is determined by variation in root NO(3)(-) levels throughout the dark period and the first half of the light period, but is down-regulated by increased amino acid levels during the second half of the light period. The sharp light/dark transitions affect transpiration rate and hence xylem N flux which, in turn, affect NO(3)(-) levels in the cytoplasmic compartment of the roots and the rate of NO(3)(-) assimilation in the shoot.  (+info)

Hypoallergenic derivatives of major grass pollen allergens for allergy vaccination. (4/41)

Grass pollen-induced hay-fever and allergic asthma represent a major health problem in industrialized countries. Whereas the symptoms of these allergic conditions can be controlled by pharmacotherapy, specific immunotherapy vaccination is the only causative approach towards the treatment of these type 1 allergies. Specific immunotherapy is based on administration of increasing amounts of the disease-causing allergens in the form of allergen-containing extracts. However, the extracts used for immunotherapy consist of allergenic and non-allergenic components and may induce severe anaphylactic side-effects upon therapeutic administration. With recent developments in molecular biology of pollen allergens it has become feasible to produce modified hypoallergenic derivatives of recombinant allergens with abrogated or greatly reduced likelihood of anaphylactic side-effects as compared to extract-based treatments. We have demonstrated this concept through reducing the anaphylactic potential of major rye grass pollen allergens by introducing a few point mutations which leave the overall structural fold of the molecule unaltered. These modified forms are expected to make allergen-specific immunotherapy more widely used in the future.  (+info)

Evaluation of CD4+ T cells proliferating to grass pollen in seasonal allergic subjects by flow cytometry. (5/41)

Our objective was to characterize T-cell responses to Phleum pratense in grass pollen allergic individuals and healthy controls using the fluorescent dye PKH26. Peripheral blood mononuclear cells were stimulated with P. pratense, or with recall antigens, and CD3+/CD4+ and CD3+/CD8+ T-cells that had proliferated were analysed by flow cytometry. In the presence of P. pratense CD4+/CD3+ T-cells proliferated more in grass pollen sensitive atopic patients than in nonallergic controls or in nongrass pollen sensitive atopic subjects. PPD and TT recall antigens elicited uniformly high proliferation in all T-cell subsets. Only half of pollen sensitive patients also had an increased proliferation of CD3+/CD8+ T-cells in response to P. pratense. We determined precursor frequency of CD4+ T cells in the original population that responded to P. pratense and found values ranging from 1 x 10-3 to 0.6 x 10-1, in the same range as those measured for PPD and TT. In conclusion, grass pollen sensitive atopic patients show enhanced CD4+ T-cell reactivity to P. pratense, and this could be related to the presence of elevated numbers of circulating allergen-specific CD4+ T cells. This flow cytometric method should allow the identification of other phenotypic markers such as intracellular cytokines in allergen specific responding CD4+ T cells.  (+info)

Oxygen deficiency affects carbohydrate reserves in overwintering forage crops. (6/41)

Anaerobic conditions developing under an ice cover affect winter survival and spring regrowth of economically important perennial crops. The objective was to compare, during a prolonged period of low (<2%) O2 at low temperature, the concentration of carbohydrates of four plant species contrasting in their resistance to oxygen deficiency. Four perennial forage species, lucerne (Medicago sativa L.), red clover (Trifolium pratense L.), timothy (Phleum pratense L.), and cocksfoot (Dactylis glomerata L.) were subjected to a progressively developing oxygen deficiency stress by enclosing potted plants in gas-tight bags in late autumn for overwintering in an unheated greenhouse. Timothy was previously reported to be more resistant to oxygen deficiency than the three other species. Non-structural carbohydrates increased and remained at a higher concentration in timothy than in the other three species under low O2 concentration. Concentrations of sucrose, fructose, glucose, and fructans increased in response to oxygen deficiency in timothy, whereas the concentration of soluble sugars decreased under the same conditions in lucerne, red clover, and cocksfoot. The gene expression of glyceraldehyde-3-phosphate dehydrogenase increased in response to low oxygen concentration in oxygen deficiency-sensitive lucerne while it remained unchanged in the oxygen deficiency-resistant timothy. It is concluded that timothy maintains higher carbohydrate reserves under oxygen deficiency, a specific feature that could favour its winter survival and spring regrowth.  (+info)

Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. (7/41)

T regulatory cells and IL-10 have been implicated in the mechanism of immunotherapy in patients with systemic anaphylaxis following bee stings. We studied the role of IL-10 in the induction of clinical, cellular, and humoral tolerance during immunotherapy for local mucosal allergy in subjects with seasonal pollinosis. Local and systemic IL-10 responses and serum Ab concentrations were measured before/after a double-blind trial of grass pollen (Phleum pratense, Phl P) immunotherapy. We observed local increases in IL-10 mRNA-positive cells in the nasal mucosa after 2 years of immunotherapy, but only during the pollen season. IL-10 protein-positive cells were also increased and correlated with IL-10 mRNA(+) cells. These changes were not observed in placebo-treated subjects or in healthy controls. Fifteen and 35% of IL-10 mRNA signals were colocalized to CD3(+) T cells and CD68(+) macrophages, respectively, whereas only 1-2% of total CD3(+) cells and 4% of macrophages expressed IL-10. Following immunotherapy, peripheral T cells cultured in the presence of grass pollen extract also produced IL-10. Immunotherapy resulted in blunting of seasonal increases in serum allergen Phl p 5-specific IgE, 60- to 80-fold increases in Phl p 5-specific IgG, and 100-fold increases in Phl p 5-specific IgG4. Post-immunotherapy serum exhibited inhibitory activity, which coeluted with IgG4, and blocked IgE-facilitated binding of allergen-IgE complexes to B cells. Both the increases in IgG and the IgG "blocking" activity correlated with the patients' overall assessment of improvement. Thus, grass pollen immunotherapy may induce allergen-specific, IL-10-dependent "protective" IgG4 responses.  (+info)

Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7. (8/41)

The grass pollen allergen, Phl p 7, belongs to a family of highly cross-reactive calcium-binding pollen allergens. Because Phl p 7 contains most of the disease-eliciting epitopes of pollen-derived calcium-binding allergens, hypoallergenic variants were engineered according to the x-ray crystal structure of Phl p 7 for allergy vaccination. In three recombinant variants, amino acids essential for calcium binding were mutated, and two peptides comprising the N- and C-terminal half were obtained by synthetic peptide chemistry. As determined by circular dichroism analysis and size exclusion chromatography coupled to mass spectrometry, recombinant mutants showed altered structural fold and lacked calcium-binding capacity, whereas the two synthetic peptides had completely lost their structural fold. Allergic patients' IgE Ab binding was strongest reduced to the variant containing two mutations in each of the two calcium-binding sites and to the peptides. Basophil histamine release and skin test experiments in allergic patients identified the peptides as the vaccine candidates with lowest allergenic activity. Immunization of rabbits with the peptides induced IgG Abs that blocked allergic patients' IgE binding to Phl p 7 and inhibited allergen-induced basophil degranulation. Our results indicate that disruption of an allergen's three-dimensional structure represents a general strategy for the generation of hypoallergenic allergy vaccines, and demonstrate the importance of allergen-specific IgG Abs for the inhibition of immediate allergic symptoms.  (+info)

"Phleum" is the genus name for a group of plants commonly known as Timothy-grass or Cat's-tail. It is a type of grass that is widely used in agriculture and gardening. I believe you might be looking for a medical term related to "phleum," so let me clarify:

In medical terminology, the term "phleum" is not commonly used. However, if you are referring to "phlebothrombosis," it is a term that could be relevant. Phlebothrombosis refers to the formation of a blood clot (thrombus) within a vein, which can occur due to various medical conditions or situations, such as immobility, surgery, or certain diseases. The term "phlebo-" means vein, and "-thrombosis" refers to the formation of a thrombus or blood clot.

If this is not the term you were looking for, please provide more context or clarify your question so I can give you a more accurate answer.

"Cynodon" is a term used in the field of veterinary medicine, specifically in the identification and classification of various species. It refers to a genus of warm-season, perennial grasses that are native to tropical and temperate regions around the world. The name "Cynodon" comes from the Greek words "kyon," meaning dog, and "odous," meaning tooth, which is a reference to the sharp, tooth-like spikes found on some of the species' leaves.

One of the most well-known species in this genus is Cynodon dactylon, also known as Bermuda grass. This hardy and adaptable grass is commonly used for lawns, golf courses, and other landscaping purposes due to its ability to withstand heavy foot traffic and maintain a lush, green appearance even in hot and dry conditions.

While "Cynodon" itself is not a medical term, it is important for veterinarians and other animal health professionals to be familiar with this genus of grasses, as they can have an impact on the health and well-being of animals that come into contact with them. For example, some species of Cynodon can cause skin irritation or allergic reactions in certain animals, while others may contain toxic compounds that can be harmful if ingested.

Overall, "Cynodon" is a term that is primarily used by veterinarians and other professionals in the field of animal health and care, rather than by medical doctors who treat humans.

Pollen, in a medical context, refers to the fine powder-like substance produced by the male reproductive organ of seed plants. It contains microscopic grains known as pollen grains, which are transported by various means such as wind, water, or insects to the female reproductive organ of the same or another plant species for fertilization.

Pollen can cause allergic reactions in some individuals, particularly during the spring and summer months when plants release large amounts of pollen into the air. These allergies, also known as hay fever or seasonal allergic rhinitis, can result in symptoms such as sneezing, runny nose, congestion, itchy eyes, and coughing.

It is important to note that while all pollen has the potential to cause allergic reactions, certain types of plants, such as ragweed, grasses, and trees, are more likely to trigger symptoms in sensitive individuals.

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

Desensitization, Immunologic is a medical procedure that aims to decrease the immune system's response to an allergen. This is achieved through the controlled exposure of the patient to gradually increasing amounts of the allergen, ultimately leading to a reduction in the severity of allergic reactions upon subsequent exposures. The process typically involves administering carefully measured and incrementally larger doses of the allergen, either orally, sublingually (under the tongue), or by injection, under medical supervision. Over time, this repeated exposure can help the immune system become less sensitive to the allergen, thereby alleviating allergic symptoms.

The specific desensitization protocol and administration method may vary depending on the type of allergen and individual patient factors. Immunologic desensitization is most commonly used for environmental allergens like pollen, dust mites, or pet dander, as well as insect venoms such as bee or wasp stings. It is important to note that this procedure should only be performed under the close supervision of a qualified healthcare professional, as there are potential risks involved, including anaphylaxis (a severe and life-threatening allergic reaction).

Allergic rhinitis, seasonal (also known as hay fever) is a type of inflammation in the nose which occurs when an individual breathes in allergens such as pollen or mold spores. The immune system identifies these substances as harmful and releases histamine and other chemicals, causing symptoms such as sneezing, runny or stuffy nose, red, watery, and itchy eyes, cough, and fatigue. Unlike perennial allergic rhinitis, seasonal allergic rhinitis is worse during specific times of the year when certain plants pollinate.

An allergen is a substance that can cause an allergic reaction in some people. These substances are typically harmless to most people, but for those with allergies, the immune system mistakenly identifies them as threats and overreacts, leading to the release of histamines and other chemicals that cause symptoms such as itching, sneezing, runny nose, rashes, hives, and difficulty breathing. Common allergens include pollen, dust mites, mold spores, pet dander, insect venom, and certain foods or medications. When a person comes into contact with an allergen, they may experience symptoms that range from mild to severe, depending on the individual's sensitivity to the substance and the amount of exposure.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In plants, antigens are typically found on the surface of plant cells and may be derived from various sources such as:

1. Pathogens: Plant pathogens like bacteria, viruses, fungi, and oomycetes have unique molecules on their surfaces that can serve as antigens for the plant's immune system. These antigens are recognized by plant pattern recognition receptors (PRRs) and trigger an immune response.
2. Endogenous proteins: Some plant proteins, when expressed in abnormal locations or quantities, can be recognized as foreign by the plant's immune system and elicit an immune response. These proteins may serve as antigens and are involved in self/non-self recognition.
3. Glycoproteins: Plant cell surface glycoproteins, which contain carbohydrate moieties, can also act as antigens. They play a role in plant-microbe interactions and may be recognized by both the plant's immune system and pathogens.
4. Allergens: Certain plant proteins can cause allergic reactions in humans and animals when ingested or inhaled. These proteins, known as allergens, can also serve as antigens for the human immune system, leading to the production of IgE antibodies and triggering an allergic response.
5. Transgenic proteins: In genetically modified plants, new proteins introduced through genetic engineering may be recognized as foreign by the plant's immune system or even by the human immune system in some cases. These transgenic proteins can serve as antigens and have been a subject of concern in relation to food safety and potential allergies.

Understanding plant antigens is crucial for developing effective strategies for plant disease management, vaccine development, and improving food safety and allergy prevention.

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

Caucasus Phleum iranicum - Iran Phleum montanum - from Balkans to Iran Phleum paniculatum - from Spain to Japan Phleum ... Phleum arenarium - western + southern Europe; Mediterranean Phleum bertolonii - Europe, Middle East Phleum boissieri - ... Cyprus Phleum echinatum - Italy, Greece, Balkans, Crimea Phleum exaratum - from Italy to Uzbekistan Phleum gibbum - Turkey ... "Plants Profile for Phleum (timothy)". www.plants.usda.gov. Retrieved 2018-10-15. Wikimedia Commons has media related to Phleum ...
Phleum pratense is a PERENNIAL growing to 1 m (3ft 3in). See above for USDA hardiness. It is hardy to UK zone 5. It is in ... Phleum pratense is a PERENNIAL growing to 1 m (3ft 3in). See above for USDA hardiness. It is hardy to UK zone 5. It is in ...
Please enter a valid date format DD-MM-YYYY i.e. 20-04-2021 ...
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience ...
Phleum pratense Research Information. Common Timothy allergy information and photos, Thomas county, Nebraska ... Common Timothy (Phleum pratense). Home « Nebraska « Thomas « Phleum « Phleum pratense Family: POACEAE Genus: Phleum Species: ... Allergenicity: Common Timothy (Phleum pratense) is a severe allergen.. Pollination: Occurs in following seasons depending on ... More Common Timothy (Phleum pratense) imagesby Jessie M. Harris from BONAP ...
Phleum pratense var. nodosum herbarium specimen from Aberdaron, VC49 Caernarvonshire in 1961 by June Wilding. ... Herbarium specimen: Phleum pratense var. nodosum. Taxon:. Phleum pratense var. nodosum ("Timothy"). ...
1: Phleum nodosum \ Knolliges Lieschgras, Bertolonis Wiesen-Lieschgras / Smaller Cats-Tail D Odenwald, Erbach 24.8.2013. ... 2: Phleum nodosum \ Knolliges Lieschgras, Bertolonis Wiesen-Lieschgras / Smaller Cats-Tail D Odenwald, Erbach 24.8.2013. ... 3: Phleum nodosum \ Knolliges Lieschgras, Bertolonis Wiesen-Lieschgras / Smaller Cats-Tail D Odenwald, Erbach 24.8.2013. ... 4: Phleum nodosum \ Knolliges Lieschgras, Bertolonis Wiesen-Lieschgras / Smaller Cats-Tail D Odenwald, Erbach 24.8.2013. ...
... Antigen. Phl p 6 is a recombinant ... Recombinant purified allergen 2 of timothy grass pollen, Phleum pratense, isoform Phl p 2202 ... Recombinant purified allergen 1 of timothy grass pollen, Phleum pratense, Isoform Phl p 1102 ... Recombinant purified allergen 5of timothy grass pollen, phleum pratense, Isoform Phl p 5101 ...
For each species, lists of natural communities were derived from review of the nearly 6,500 element occurrences in the MNFI database, in addition to herbarium label data for some taxa. In most cases, at least one specimen record exists for each listed natural community. For certain taxa, especially poorly collected or extirpated species of prairie and savanna habitats, natural community lists were derived from inferences from collection sites and habitat preferences in immediately adjacent states (particularly Indiana and Illinois). Natural communities are not listed for those species documented only from altered or ruderal habitats in Michigan, especially for taxa that occur in a variety of habitats outside of the state.. Natural communities are not listed in order of frequency of occurrence, but are rather derived from the full set of natural communities, organized by Ecological Group. In many cases, the general habitat descriptions should provide greater clarity and direction to the surveyor. ...
Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution CC BY Licence.. ...
This project was made possible in part by the Institute of Museum and Library Services [MG-70-19-0057-19 ...
... Crioflowers your warehouse of preserved, dried or artificial flowers and plants. Fast delivery. ... Bleached Phleum Pratensis are for those who prefer the rustic atmosphere. There is a certain charm that comes with the delicacy ... You take care of Indigo Purple Phleum Pratensis?. Take care of the dried flowers and plants is quite simple. The main factor ... Can you enjoy Indigo Purple Phleum Pratensis?. Dried flowers partially maintain the quality of natural flowers. However, dried ...
1. For any mistake in identification or for becoming efloraofindia e-group member (for contributing towards building of efloraofindia or otherwise), pl. mail to [email protected] or [email protected] 2. For better viewing of species pages, colour scheme & formatting is being followed as: Description of the species, Details of other flora species on the same page, Uses/ harms, Distribution, Abundance/ Location/ Flowering time & date, Habit & habitat, Etymology & pronunciation, Other interesting information, stories etc., Others, Botanical names, Common names, Main point of discussion below, Discussion about Botanical names.. ...
Provides authoritative information on the flora of Western Australia
... dc.contributor.advisor. Kulman, Bellis, juhendaja. ...
A beautiful bunch of Natural colour Phleum Flowers. A stylish home accessory or the perfect gift. Use as a single arrangement ...
Phleum Pratense COLOR: Green PLANT SEEDS: Outdoors after frost / Indoors weeks before last frost PLANT HEIGHT: 18 - 24 PLANT ... 500 DERBY TIMOTHY GRASS Ornamental Phleum Pratense Seeds. 500 DERBY TIMOTHY GRASS Ornamental Phleum Pratense Seeds ... Decrease quantity for 500 DERBY TIMOTHY GRASS Ornamental Phleum Pratense Seeds Increase quantity for 500 DERBY TIMOTHY GRASS ...
Molecular characterization ofPhl pII, a major timothy grass (Phleum pratense) pollen allergen Share Share Share ... Molecular characterization ofPhl pII, a major timothy grass (Phleum pratense) pollen allergen ...
Prima paginăAlergologie IgE specific alergeni recombinati Phleum pratense (Timoftica) - rPhl p 7, rPhl p 12 (CG214). Produs ... IgE specific alergeni recombinati Phleum pratense (Timoftica) - rPhl p 7, rPhl p 12 (CG214). 133,00 lei. ...
viciaefolia, Phleum pretense, Trifolium. pretense, Dactylis glomerata, and Medicago sativa. The effects of different community ...
Phleum pratense. 5. Poa sp. 6. Sporobolus cryptandrus. 1. Back to the Fact Sheet ...
PHLEUM PRATENSE POLLEN (UNII: 65M88RW2EG) (PHLEUM PRATENSE POLLEN - UNII:65M88RW2EG) PHLEUM PRATENSE POLLEN. 30 [hp_X] in 1 mL ...
Label: GRASTEK- phleum pratense pollen tablet. Available at http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=1d7f3e56- ...
Phleum. Liguster. Ligustrum*. Likiangfichte. Picea Lilie. Lilium. Liliengewächse. Liliiflorae - Melanthiaceae. Liliengewächse. ...
Phleum pratense Perennial grass. Up to 3. A popular perennial hay species that produces good yields, resists lodging and is ...
Phleum, locust bean gum (carob), Houseflies, Cynodon, Pyrus, Fragaria, Ribes, Cynara scolymus, zinc dibutyldithiocarbamate, ...
Through the support of many individuals, NPSO, and OSU Extension, we now have funding to operate at half-capacity through June 2024. Well continue to seek support to fully fund our program, so we can keep providing our resources. Thank you - your donations are greatly appreciated! ...

No FAQ available that match "phleum"

No images available that match "phleum"