Hereditary diseases that are characterized by the progressive expansion of a large number of tightly packed CYSTS within the KIDNEYS. They include diseases with autosomal dominant and autosomal recessive inheritance.
Kidney disorders with autosomal dominant inheritance and characterized by multiple CYSTS in both KIDNEYS with progressive deterioration of renal function.
A subgroup of TRP cation channels that are widely expressed in various cell types. Defects are associated with POLYCYSTIC KIDNEY DISEASES.
A genetic disorder with autosomal recessive inheritance, characterized by multiple CYSTS in both KIDNEYS and associated LIVER lesions. Serious manifestations are usually present at BIRTH with high PERINATAL MORTALITY.
A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Any fluid-filled closed cavity or sac that is lined by an EPITHELIUM. Cysts can be of normal, abnormal, non-neoplastic, or neoplastic tissues.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed)
A heterogeneous group of hereditary and acquired disorders in which the KIDNEY contains one or more CYSTS unilaterally or bilaterally (KIDNEY, CYSTIC).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
Pathological processes of the KIDNEY or its component tissues.
A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.
A condition caused by the excessive secretion of ANDROGENS from the ADRENAL CORTEX; the OVARIES; or the TESTES. The clinical significance in males is negligible. In women, the common manifestations are HIRSUTISM and VIRILISM as seen in patients with POLYCYSTIC OVARY SYNDROME and ADRENOCORTICAL HYPERFUNCTION.
Congenital cystic dilatation of the intrahepatic bile ducts (BILE DUCTS, INTRAHEPATIC). It consists of 2 types: simple Caroli disease is characterized by bile duct dilatation (ectasia) alone; and complex Caroli disease is characterized by bile duct dilatation with extensive hepatic fibrosis and portal hypertension (HYPERTENSION, PORTAL). Benign renal tubular ectasia is associated with both types of Caroli disease.
The transference of a kidney from one human or animal to another.
The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Liquid material found in epithelial-lined closed cavities or sacs.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Pathological processes of the LIVER.
Biochemical identification of mutational changes in a nucleotide sequence.
A condition observed in WOMEN and CHILDREN when there is excess coarse body hair of an adult male distribution pattern, such as facial and chest areas. It is the result of elevated ANDROGENS from the OVARIES, the ADRENAL GLANDS, or exogenous sources. The concept does not include HYPERTRICHOSIS, which is an androgen-independent excessive hair growth.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
Rats bearing mutant genes which are phenotypically expressed in the animals.
Any method used for determining the location of and relative distances between genes on a chromosome.
Two syndromes of oral, facial, and digital malformations. Type I (Papillon-Leage and Psaume syndrome, Gorlin-Psaume syndrome) is inherited as an X-linked dominant trait and is found only in females and XXY males. Type II (Mohr syndrome) is inherited as an autosomal recessive trait.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL.
Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla.
Abnormally infrequent menstruation.
An individual having different alleles at one or more loci regarding a specific character.
Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Dominant optic atrophy is a hereditary optic neuropathy causing decreased visual acuity, color vision deficits, a centrocecal scotoma, and optic nerve pallor (Hum. Genet. 1998; 102: 79-86). Mutations leading to this condition have been mapped to the OPA1 gene at chromosome 3q28-q29. OPA1 codes for a dynamin-related GTPase that localizes to mitochondria.
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Genes that influence the PHENOTYPE only in the homozygous state.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
A characteristic symptom complex.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Suspension or cessation of OVULATION in animals or humans with follicle-containing ovaries (OVARIAN FOLLICLE). Depending on the etiology, OVULATION may be induced with appropriate therapy.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Presence of blood in the urine.
The measurement of an organ in volume, mass, or heaviness.
A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously.
Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE.
Tumors or cancers of the KIDNEY.
The health status of the family as a unit including the impact of the health of one member of the family on the family as a unit and on individual family members; also, the impact of family organization or disorganization on the health status of its members.
'Abnormalities, Multiple' is a broad term referring to the presence of two or more structural or functional anomalies in an individual, which may be genetic or environmental in origin, and can affect various systems and organs of the body.
A contrast medium in diagnostic radiology with properties similar to those of diatrizoic acid. It is used primarily as its sodium and meglumine (IOTHALAMATE MEGLUMINE) salts.
Established cell cultures that have the potential to propagate indefinitely.
A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
Persistent high BLOOD PRESSURE due to KIDNEY DISEASES, such as those involving the renal parenchyma, the renal vasculature, or tumors that secrete RENIN.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Abrupt reduction in kidney function. Acute kidney injury encompasses the entire spectrum of the syndrome including acute kidney failure; ACUTE KIDNEY TUBULAR NECROSIS; and other less severe conditions.
Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed)
The functional units of the kidney, consisting of the glomerulus and the attached tubule.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A familial, cerebral arteriopathy mapped to chromosome 19q12, and characterized by the presence of granular deposits in small CEREBRAL ARTERIES producing ischemic STROKE; PSEUDOBULBAR PALSY; and multiple subcortical infarcts (CEREBRAL INFARCTION). CADASIL is an acronym for Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. CADASIL differs from BINSWANGER DISEASE by the presence of MIGRAINE WITH AURA and usually by the lack of history of arterial HYPERTENSION. (From Bradley et al, Neurology in Clinical Practice, 2000, p1146)
A triphenyl ethylene stilbene derivative which is an estrogen agonist or antagonist depending on the target tissue. Note that ENCLOMIPHENE and ZUCLOMIPHENE are the (E) and (Z) isomers of Clomiphene respectively.
Mice bearing mutant genes which are phenotypically expressed in the animals.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
A cystic dilation of the EPIDIDYMIS, usually in the head portion (caput epididymis). The cyst fluid contains dead SPERMATOZOA and can be easily differentiated from TESTICULAR HYDROCELE and other testicular lesions.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Excision of kidney.
Conditions caused by abnormal CILIA movement in the body, usually causing KARTAGENER SYNDROME, chronic respiratory disorders, chronic SINUSITIS, and chronic OTITIS. Abnormal ciliary beating is likely due to defects in any of the 200 plus ciliary proteins, such as missing motor enzyme DYNEIN arms.
A specific pair of GROUP B CHROMOSOMES of the human chromosome classification.
A nongenetic defect due to malformation of the KIDNEY which appears as a bunch of grapes with multiple renal cysts but lacking the normal renal bean shape, and the collection drainage system. This condition can be detected in-utero with ULTRASONOGRAPHY.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)
Placement of one of the surgeon's gloved hands into the ABDOMINAL CAVITY to perform manual manipulations that facilitate the laparoscopic procedures.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity.
Variation in a population's DNA sequence that is detected by determining alterations in the conformation of denatured DNA fragments. Denatured DNA fragments are allowed to renature under conditions that prevent the formation of double-stranded DNA and allow secondary structure to form in single stranded fragments. These fragments are then run through polyacrylamide gels to detect variations in the secondary structure that is manifested as an alteration in migration through the gels.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
Diminished or absent ability of a female to achieve conception.
Conditions in which the KIDNEYS perform below the normal level in the ability to remove wastes, concentrate URINE, and maintain ELECTROLYTE BALANCE; BLOOD PRESSURE; and CALCIUM metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of PROTEINURIA) and reduction in GLOMERULAR FILTRATION RATE.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The percent frequency with which a dominant or homozygous recessive gene or gene combination manifests itself in the phenotype of the carriers. (From Glossary of Genetics, 5th ed)
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
A heterogenous group of degenerative syndromes marked by progressive cerebellar dysfunction either in isolation or combined with other neurologic manifestations. Sporadic and inherited subtypes occur. Inheritance patterns include autosomal dominant, autosomal recessive, and X-linked.
Elements of limited time intervals, contributing to particular results or situations.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
An amino acid-specifying codon that has been converted to a stop codon (CODON, TERMINATOR) by mutation. Its occurance is abnormal causing premature termination of protein translation and results in production of truncated and non-functional proteins. A nonsense mutation is one that converts an amino acid-specific codon to a stop codon.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
Creatinine is a waste product that's generated from muscle metabolism, typically filtered through the kidneys and released in urine, with increased levels in blood indicating impaired kidney function.
An individual in which both alleles at a given locus are identical.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The presence of proteins in the urine, an indicator of KIDNEY DISEASES.
Loss of higher cortical functions with retained awareness due to multiple cortical or subcortical CEREBRAL INFARCTION. Memory, judgment, attention span, and impulse control are often impaired, and may be accompanied by PSEUDOBULBAR PALSY; HEMIPARESIS; reflex abnormalities, and other signs of localized neurologic dysfunction. (From Adams et al., Principles of Neurology, 6th ed, p1060)
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
Incoordination of voluntary movements that occur as a manifestation of CEREBELLAR DISEASES. Characteristic features include a tendency for limb movements to overshoot or undershoot a target (dysmetria), a tremor that occurs during attempted movements (intention TREMOR), impaired force and rhythm of diadochokinesis (rapidly alternating movements), and GAIT ATAXIA. (From Adams et al., Principles of Neurology, 6th ed, p90)
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
A glycosyl-phosphatidyl-inositol (GPI) - anchored membrane protein found on the thick ascending limb of the LOOP OF HENLE. The cleaved form of the protein is found abundantly in URINE.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Rare, autosomal dominant syndrome characterized by ACRO-OSTEOLYSIS, generalized OSTEOPOROSIS, and skull deformations.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
A specific pair GROUP C CHROMSOMES of the human chromosome classification.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
Compounds which increase the capacity to conceive in females.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
A group of inherited diseases that share similar phenotypes but are genetically diverse. Different genetic loci for autosomal recessive, autosomal dominant, and x-linked forms of hereditary spastic paraplegia have been identified. Clinically, patients present with slowly progressive distal limb weakness and lower extremity spasticity. Peripheral sensory neurons may be affected in the later stages of the disease. (J Neurol Neurosurg Psychiatry 1998 Jan;64(1):61-6; Curr Opin Neurol 1997 Aug;10(4):313-8)
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.
'Poisonous fishes' are aquatic organisms belonging to the Phylum Chordata and Class Pisces, that contain toxic substances either in their tissues or secretions, which can cause harmful or lethal effects when ingested, touched, or coming into contact with their released toxins.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL.
Compounds with BENZENE fused to AZEPINES.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Alterations or deviations from normal shape or size which result in a disfigurement of the hand occurring at or before birth.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841)
An educational process that provides information and advice to individuals or families about a genetic condition that may affect them. The purpose is to help individuals make informed decisions about marriage, reproduction, and other health management issues based on information about the genetic disease, the available diagnostic tests, and management programs. Psychosocial support is usually offered.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A powder that dissolves in water, which is administered orally, and is used as a diuretic, expectorant, systemic alkalizer, and electrolyte replenisher.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
Liquid components of living organisms.
Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Alterations or deviations from normal shape or size which result in a disfigurement of the foot occurring at or before birth.
A subclass of crystallins that found in the lens (LENS, CRYSTALLINE) of VERTEBRATES. Gamma-crystallins are similar in structure to BETA-CRYSTALLINS in that they both form into a Greek key-like structure. They are composed of monomeric subunits.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
Techniques for the artifical induction of ovulation, the rupture of the follicle and release of the ovum.
An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients.
Variations of menstruation which may be indicative of disease.
Deformities in nail structure or appearance, including hypertrophy, splitting, clubbing, furrowing, etc. Genetic diseases such as PACHYONYCHIA CONGENITA can result in malformed nails.
Deletion of sequences of nucleic acids from the genetic material of an individual.
A metabolite of PROGESTERONE with a hydroxyl group at the 17-alpha position. It serves as an intermediate in the biosynthesis of HYDROCORTISONE and GONADAL STEROID HORMONES.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The acidic subunit of beta-crystallins.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
The circulation of the BLOOD through the vessels of the KIDNEY.
The channels that collect and transport the bile secretion from the BILE CANALICULI, the smallest branch of the BILIARY TRACT in the LIVER, through the bile ductules, the bile ducts out the liver, and to the GALLBLADDER for storage.
Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM.
The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.
A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to IMMUNOPHILINS. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Brain tissue herniation through a congenital or acquired defect in the skull. The majority of congenital encephaloceles occur in the occipital or frontal regions. Clinical features include a protuberant mass that may be pulsatile. The quantity and location of protruding neural tissue determines the type and degree of neurologic deficit. Visual defects, psychomotor developmental delay, and persistent motor deficits frequently occur.
Any detectable and heritable alteration in the lineage of germ cells. Mutations in these cells (i.e., "generative" cells ancestral to the gametes) are transmitted to progeny while those in somatic cells are not.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
A group of dominantly inherited, predominately late-onset, cerebellar ataxias which have been divided into multiple subtypes based on clinical features and genetic mapping. Progressive ataxia is a central feature of these conditions, and in certain subtypes POLYNEUROPATHY; DYSARTHRIA; visual loss; and other disorders may develop. (From Joynt, Clinical Neurology, 1997, Ch65, pp 12-17; J Neuropathol Exp Neurol 1998 Jun;57(6):531-43)
Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Recording of electric potentials in the retina after stimulation by light.
The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
An infant during the first month after birth.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
One of a pair of thick-walled tubes that transports urine from the KIDNEY PELVIS to the URINARY BLADDER.
The amount of the RENAL BLOOD FLOW that is going to the functional renal tissue, i.e., parts of the KIDNEY that are involved in production of URINE.
A group of hereditary disorders involving tissues and structures derived from the embryonic ectoderm. They are characterized by the presence of abnormalities at birth and involvement of both the epidermis and skin appendages. They are generally nonprogressive and diffuse. Various forms exist, including anhidrotic and hidrotic dysplasias, FOCAL DERMAL HYPOPLASIA, and aplasia cutis congenita.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
An agent with anti-androgen and progestational properties. It shows competitive binding with dihydrotestosterone at androgen receptor sites.
A true cyst of the PANCREAS, distinguished from the much more common PANCREATIC PSEUDOCYST by possessing a lining of mucous EPITHELIUM. Pancreatic cysts are categorized as congenital, retention, neoplastic, parasitic, enterogenous, or dermoid. Congenital cysts occur more frequently as solitary cysts but may be multiple. Retention cysts are gross enlargements of PANCREATIC DUCTS secondary to ductal obstruction. (From Bockus Gastroenterology, 4th ed, p4145)
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.

Specific association of the gene product of PKD2 with the TRPC1 channel. (1/653)

The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell-cell or cell-matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2-TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.  (+info)

Long-term follow-up of a family with autosomal dominant polycystic kidney disease type 3. (2/653)

BACKGROUND: Autosomal dominant polycystic kidney disease is one of the most common hereditary diseases in man with an estimated prevalence of 1:1000. At least three genetic loci are responsible for the development of the disease. PKD1 localized to 16p13 is the most common gene, contributing to almost 85% of all cases, is associated with the most severe form. PKD2, localized to 4q21-23, responsible for almost all the remaining cases, is associated with a milder form. Up to now, only five families have been reported unlinked to the two most common genetic defects, and therefore little is known about the clinical findings of the non-PKD1/PKD2 families. METHODS: In this report we describe the clinical findings of 18 patients of a non-PKD1/PKD2 family, with a mean follow-up of 52 months (range 3-133 months) in our outpatient clinic. RESULTS: Of the 10 patients older than 40 years, nine were hypertensive; in this age group eight patients exhibited renal failure (two of them were on dialysis) and six had hepatic cysts. In eight patients younger than 40 years, the only clinical finding was hypertension in two. Considerable variation in the rate of progression to renal failure among members of this family was found; on the other hand, some patients did not exhibit any signs of progression. CONCLUSION: This family exhibits a more aggressive phenotype, in contrast with the majority of the described non-PKD1/non-PKD2 families.  (+info)

Mutational analysis within the 3' region of the PKD1 gene. (3/653)

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases in humans, affecting 1 out of 1000 individuals. At least three different genes are involved in this disease. The search for mutations in PKD1 is complicated because most of the transcript is encoded by a genomic region reiterated more proximally on chromosome 16, and no prevalent mutation has been reported. METHODS: We have screened DNA from exon 43 through exon 46 and intron 40 of the PKD1 sequence by single-stranded conformational polymorphism (SSCP) analysis in 175 ADPKD patients. RESULTS: We have found 25 differences with respect to the reported PKD1 DNA sequence, seven of which are mutations (Q4041X, Q4124X, IVS44-1G-->C, IVS45-1G-->A, 12801del28, R4275W, and Q4224P). We found different phenotypical expressions of the same mutation in the families studied. We have detected several common polymorphisms, and some of them cosegregate, suggesting a common origin of these alleles in PKD1. CONCLUSIONS: The detection of only seven mutations in 175 unrelated ADPKD patients for this region of the PKD1 analyzed suggests that mutations could be widespread throughout all of the gene and that a prevalent mutation is not expected to occur. The identified PKD1 missense mutations may help to refine critical regions of the protein. Until a quicker and more sensitive method for the detection of mutations becomes available, linkage studies will continue to be the basis for the molecular diagnosis of ADPKD families.  (+info)

Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. (4/653)

Autosomal dominant polycystic kidney disease (ADPKD) is caused by germ line mutations in at least three ADPKD genes. Two recently isolated ADPKD genes, PKD1 and PKD2, encode integral membrane proteins of unknown function. We found that PKD2 upregulated AP-1-dependent transcription in human embryonic kidney 293T cells. The PKD2-mediated AP-1 activity was dependent upon activation of the mitogen-activated protein kinases p38 and JNK1 and protein kinase C (PKC) epsilon, a calcium-independent PKC isozyme. Staurosporine, but not the calcium chelator BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N', N'-tetraacetate], inhibited PKD2-mediated signaling, consistent with the involvement of a calcium-independent PKC isozyme. Coexpression of PKD2 with the interacting C terminus of PKD1 dramatically augmented PKD2-mediated AP-1 activation. The synergistic signaling between PKD1 and PKD2 involved the activation of two distinct PKC isozymes, PKC alpha and PKC epsilon, respectively. Our findings are consistent with others that support a functional connection between PKD1 and PKD2 involving multiple signaling pathways that converge to induce AP-1 activity, a transcription factor that regulates different cellular programs such as proliferation, differentiation, and apoptosis. Activation of these signaling cascades may promote the full maturation of developing tubular epithelial cells, while inactivation of these signaling cascades may impair terminal differentiation and facilitate the development of renal tubular cysts.  (+info)

Ambulatory blood pressure and left ventricular mass in normotensive patients with autosomal dominant polycystic kidney disease. (5/653)

Higher left ventricular mass (LVM) has been found in early stages of autosomal dominant polycystic kidney disease (ADPKD). The mechanisms involved in the increase of LVM are unknown. To investigate whether LVM in ADPKD may be influenced by abnormal diurnal BP variations, the 24-h ambulatory BP profile was analyzed in a group of young normotensive ADPKD patients. Ambulatory BP monitoring and two-dimensional echocardiography were performed in 26 young normotensive ADPKD with normal renal function and in 26 healthy control subjects. LVM index was higher in ADPKD patients than in controls (90.8+/-19.6 g/m2 versus 73.9+/-16.1 g/m2, P = 0.001). Average 24-h and daytime systolic, diastolic, and mean BP were similar in both groups. Nighttime diastolic and mean BP, but not systolic BP, were greater in ADPKD patients. The average and percent nocturnal decrease of systolic BP was lower in ADPKD patients than in control subjects (10.0 mm Hg [-3 to 24] versus 15.5 mm Hg [-4 to 31], P = 0.009, and 9.0% [-2 to 22] versus 14.2% [-2 to 25], P = 0.016, respectively). On the basis of their profile BP patterns, 54% of ADPKD subjects and 31% of controls were classified as nondippers (P = 0.092). There were no differences between dippers and nondippers in left ventricular wall thickness, chamber dimensions, and mass indexes. In ADPKD patients, simple regression analysis showed that LVM index was correlated with 24-h, daytime, and nighttime systolic BP. On multiple regression analysis, the 24-h systolic BP was the only variable linked to LVM index. It is concluded that young normotensive ADPKD patients have higher LVM that is closely related to the ambulatory systolic BP. The nocturnal fall in BP is attenuated in these patients, although it is not associated with the higher LVH that they present.  (+info)

Identification of a new locus for medullary cystic disease, on chromosome 16p12. (6/653)

Autosomal dominant medullary cystic disease (ADMCKD) is an interstitial nephropathy that has morphologic and clinical features similar to autosomal recessive nephronophthisis. The typical renal dysfunction associated with ADMCKD results mainly from a defect in urinary concentration ability, although results of urinalysis are normal. Recently, a locus on chromosome 1 was associated with ADMCKD, in DNA from two large Cypriot families, and genetic heterogeneity was inferred. We describe the genomewide linkage mapping of a new locus for medullary cystic disease, ADMCKD2, on chromosome 16p12 in a four-generation Italian pedigree. The family with ADMCKD2 fulfills the typical diagnostic criteria of ADMCKD, complicated by hyperuricemia and gouty arthritis. Marker D16S3036 shows a maximum two-point LOD score of 3.68, and the defined critical region spans 10.5 cM, between D16S500 and SCNN1B1-2. Candidate genes included in the critical region are discussed.  (+info)

Interaction between RGS7 and polycystin. (7/653)

Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of certain Galpha subunits and thereby modulate a number of G protein-dependent signaling cascades. Currently, little is known about the regulation of RGS proteins themselves. We identified a short-lived RGS protein, RGS7, that is rapidly degraded through the proteasome pathway. The degradation of RGS7 is inhibited by interaction with a C-terminal domain of polycystin, the protein encoded by PKD1, a gene involved in autosomal-dominant polycystic kidney disease. Furthermore, membranous expression of C-terminal polycystin relocalized RGS7. Our results indicate that rapid degradation and interaction with integral membrane proteins are potential means of regulating RGS proteins.  (+info)

Reversal of left ventricular hypertrophy with angiotensin converting enzyme inhibition in hypertensive patients with autosomal dominant polycystic kidney disease. (8/653)

BACKGROUND: Hypertension occurs commonly and early in the natural history of autosomal dominant polycystic kidney disease (ADPKD), affecting both renal and patient outcome. Activation of the renin angiotensin aldosterone system due to cyst expansion and local renal ischaemia plays an important role in the development of ADPKD related hypertension and left ventricular hypertrophy (LVH), a known important risk factor for cardiovascular morbidity and mortality. The aim of this study was to investigate the effects of an angiotensin converting enzyme (ACE) inhibitor, enalapril, on renal function, blood pressure and LVH in hypertensive ADPKD patients. METHODS: Fourteen hypertensive ADPKD patients (11 men, 3 women; mean age: 40 years) were included in the study. All patients had LVH and creatinine clearance (Cer) greater than 50 ml/min/1.73 m2. The patients were followed for 7 years on enalapril therapy. The effects of enalapril on renal function, blood pressure and LVH were investigated. RESULTS: Baseline measurements of mean arterial pressure (MAP), Ccr and left ventricular mass index (LVMI) were 110 +/- 2 mmHg, 84 +/- 6 ml/min/1.73 m2 and 146 +/- 4 g/m2, respectively. After one year of enalapril therapy there was a significant decrease in MAP (94 +/- 3 mmHg, P < 0.005) which remained stable until the end of the study at 7 years (94 +/- 1 mmHg, P < 0.005 vs baseline). There was also a significant decrease in LVMI (131 +/- 6 g/m2, P < 0.05) after year 1 which continued to decrease until the end of the study reaching 98 +/- 6 g/m2 (P < 0.01 vs year 1 and baseline). Although Ccr remained stable after year 1, a significant decrease was observed after 7 years of follow-up (59 +/- 6 ml/min, P < 0.001 vs year 1 and baseline). CONCLUSIONS: ACE inhibition in hypertensive ADPKD patients provided long-term reversal of LVH in association with a mean 3.6 ml/min/year decline of Ccr. These preliminary results have potential important implications for cardiovascular and renal protection in ADPKD.  (+info)

Polycystic Kidney Disease (PKD) is a genetic disorder characterized by the growth of multiple cysts in the kidneys. These cysts are fluid-filled sacs that can vary in size and can multiply, leading to enlarged kidneys. The increased size and number of cysts can result in reduced kidney function, high blood pressure, and eventually kidney failure.

There are two main types of PKD: Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive Polycystic Kidney Disease (ARPKD). ADPKD is the most common form, affecting approximately 1 in every 500 people. It typically develops in adulthood. On the other hand, ARPKD is a rarer form, affecting about 1 in every 20,000 children, and it often presents in infancy or early childhood.

In addition to kidney problems, PKD can also affect other organs, such as the liver and the heart. It's important to note that while there is no cure for PKD, various treatments can help manage symptoms and slow down the progression of the disease.

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder characterized by the growth of multiple cysts in the kidneys. These cysts are fluid-filled sacs that can vary in size and can multiply, leading to enlarged kidneys. The increased size and number of cysts can eventually result in reduced kidney function, high blood pressure, and potentially kidney failure.

ADPKD is an autosomal dominant disorder, meaning it only requires one copy of the altered gene (from either the mother or father) to have the disease. Each child of an affected individual has a 50% chance of inheriting the mutated gene. The two genes most commonly associated with ADPKD are PKD1 and PKD2, located on chromosomes 16 and 4, respectively.

Symptoms can vary widely among individuals with ADPKD, but they often include high blood pressure, back or side pain, headaches, increased abdominal size due to enlarged kidneys, blood in the urine, and kidney failure. Other complications may include cysts in the liver, pancreas, and/or brain (berries aneurysms).

Early diagnosis and management of ADPKD can help slow down disease progression and improve quality of life. Treatment typically includes controlling high blood pressure, managing pain, monitoring kidney function, and addressing complications as they arise. In some cases, dialysis or a kidney transplant may be necessary if kidney failure occurs.

Transient Receptor Potential (TRP) channels are a type of ion channel that play a crucial role in various physiological processes, including sensory perception, cellular signaling, and regulation of intracellular calcium levels. TRPP cation channels, also known as TRPP subfamily or polycystin channels, are a specific subgroup within the TRP channel family.

TRPP channels consist of two members: TRPP1 (also known as PKD1 or polycystin-1) and TRPP2 (also known as PKD2 or polycystin-2). These channels form heterodimers, meaning they are composed of two different subunits that come together to create a functional channel.

TRPP channels are primarily located in the primary cilium, a hair-like structure protruding from the cell surface, and in the endoplasmic reticulum (ER), an intracellular organelle involved in protein folding and calcium storage. They function as mechano- and chemosensors, responding to various stimuli such as mechanical forces, changes in temperature, pH, or chemical ligands.

TRPP channels are particularly important in the context of renal physiology and pathophysiology. Mutations in TRPP1 and TRPP2 have been linked to autosomal dominant polycystic kidney disease (ADPKD), a genetic disorder characterized by the formation of fluid-filled cysts in the kidneys, leading to progressive loss of renal function.

In summary, TRPP cation channels are a subfamily of TRP channels formed by the heterodimerization of TRPP1 and TRPP2 subunits. They play essential roles in sensory perception, cellular signaling, and calcium homeostasis, with particular significance in renal physiology and pathophysiology.

Autosomal recessive polycystic kidney disease (ARPKD) is a rare genetic disorder characterized by the abnormal development and growth of numerous fluid-filled cysts in both kidneys. "Autosomal recessive" indicates that an individual must inherit two copies of the mutated gene, one from each parent, to develop the condition.

The disease primarily affects the renal tubules, which are the tiny structures inside the kidneys responsible for concentrating urine and reabsorbing essential substances back into the bloodstream. In ARPKD, these tubules become dilated and form cysts, leading to progressive kidney enlargement, scarring, and decreased function.

ARPKD is typically diagnosed in infancy or early childhood, and its severity can vary widely among affected individuals. Some may experience mild kidney impairment, while others may develop end-stage renal disease (ESRD) requiring dialysis or a kidney transplant. Additionally, ARPKD often affects the liver, causing congenital hepatic fibrosis and potentially leading to complications such as portal hypertension and liver failure.

The condition is caused by mutations in the PKHD1 gene, which provides instructions for producing a large protein called fibrocystin or polyductin. This protein plays crucial roles in maintaining the structure and function of renal tubules and bile ducts in the liver. When the PKHD1 gene is mutated, it results in the production of an abnormal or nonfunctional fibrocystin/polyductin protein, ultimately leading to the development of cysts and other associated symptoms.

Polycyctic Ovary Syndrome (PCOS) is a complex endocrine-metabolic disorder characterized by the presence of hyperandrogenism (excess male hormones), ovulatory dysfunction, and polycystic ovaries. The Rotterdam criteria are commonly used for diagnosis, which require at least two of the following three features:

1. Oligo- or anovulation (irregular menstrual cycles)
2. Clinical and/or biochemical signs of hyperandrogenism (e.g., hirsutism, acne, or high levels of androgens in the blood)
3. Polycystic ovaries on ultrasound examination (presence of 12 or more follicles measuring 2-9 mm in diameter, or increased ovarian volume >10 mL)

The exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic and environmental factors. Insulin resistance and obesity are common findings in women with PCOS, which can contribute to the development of metabolic complications such as type 2 diabetes, dyslipidemia, and cardiovascular disease.

Management of PCOS typically involves a multidisciplinary approach that includes lifestyle modifications (diet, exercise, weight loss), medications to regulate menstrual cycles and reduce hyperandrogenism (e.g., oral contraceptives, metformin, anti-androgens), and fertility treatments if desired. Regular monitoring of metabolic parameters and long-term follow-up are essential for optimal management and prevention of complications.

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

A cyst is a closed sac, having a distinct membrane and division between the sac and its surrounding tissue, that contains fluid, air, or semisolid material. Cysts can occur in various parts of the body, including the skin, internal organs, and bones. They can be caused by various factors, such as infection, genetic predisposition, or blockage of a duct or gland. Some cysts may cause symptoms, such as pain or discomfort, while others may not cause any symptoms at all. Treatment for cysts depends on the type and location of the cyst, as well as whether it is causing any problems. Some cysts may go away on their own, while others may need to be drained or removed through a surgical procedure.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Cilia are tiny, hair-like structures that protrude from the surface of many types of cells in the body. They are composed of a core bundle of microtubules surrounded by a protein matrix and are covered with a membrane. Cilia are involved in various cellular functions, including movement of fluid or mucus across the cell surface, detection of external stimuli, and regulation of signaling pathways.

There are two types of cilia: motile and non-motile. Motile cilia are able to move in a coordinated manner to propel fluids or particles across a surface, such as those found in the respiratory tract and reproductive organs. Non-motile cilia, also known as primary cilia, are present on most cells in the body and serve as sensory organelles that detect chemical and mechanical signals from the environment.

Defects in cilia structure or function can lead to a variety of diseases, collectively known as ciliopathies. These conditions can affect multiple organs and systems in the body, including the brain, kidneys, liver, and eyes. Examples of ciliopathies include polycystic kidney disease, Bardet-Biedl syndrome, and Meckel-Gruber syndrome.

Cystic kidney diseases are a group of genetic disorders that cause fluid-filled sacs called cysts to form in the kidneys. These cysts can vary in size and can grow over time, which can lead to damage in the kidneys and affect their function. There are two main types of cystic kidney diseases: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD).

ADPKD is the most common type and is characterized by the presence of numerous cysts in both kidneys. It is usually diagnosed in adulthood, but it can also occur in children. The cysts can cause high blood pressure, kidney stones, urinary tract infections, and eventually kidney failure.

ARPKD is a rare, inherited disorder that affects both the kidneys and liver. It is characterized by the presence of numerous cysts in the kidneys and abnormalities in the bile ducts of the liver. ARPKD is usually diagnosed in infancy or early childhood and can cause serious complications such as respiratory distress, kidney failure, and liver fibrosis.

Other types of cystic kidney diseases include nephronophthisis, medullary cystic kidney disease, and glomerulocystic kidney disease. These conditions are also inherited and can cause kidney damage and kidney failure.

Treatment for cystic kidney diseases typically involves managing symptoms such as high blood pressure, pain, and infections. In some cases, surgery may be necessary to remove large cysts or to treat complications such as kidney stones. For individuals with advanced kidney disease, dialysis or a kidney transplant may be necessary.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Genetic linkage is the phenomenon where two or more genetic loci (locations on a chromosome) tend to be inherited together because they are close to each other on the same chromosome. This occurs during the process of sexual reproduction, where homologous chromosomes pair up and exchange genetic material through a process called crossing over.

The closer two loci are to each other on a chromosome, the lower the probability that they will be separated by a crossover event. As a result, they are more likely to be inherited together and are said to be linked. The degree of linkage between two loci can be measured by their recombination frequency, which is the percentage of meiotic events in which a crossover occurs between them.

Linkage analysis is an important tool in genetic research, as it allows researchers to identify and map genes that are associated with specific traits or diseases. By analyzing patterns of linkage between markers (identifiable DNA sequences) and phenotypes (observable traits), researchers can infer the location of genes that contribute to those traits or diseases on chromosomes.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Human chromosome pair 16 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. Chromosome pair 16 contains two homologous chromosomes, which are similar in size, shape, and genetic content but may have slight variations due to differences in the DNA sequences inherited from each parent.

Chromosome pair 16 is one of the 22 autosomal pairs, meaning it contains non-sex chromosomes that are present in both males and females. Chromosome 16 is a medium-sized chromosome, and it contains around 2,800 genes that provide instructions for making proteins and regulating various cellular processes.

Abnormalities in chromosome pair 16 can lead to genetic disorders such as chronic myeloid leukemia, some forms of mental retardation, and other developmental abnormalities.

Hyperandrogenism is a medical condition characterized by excessive levels of androgens (male sex hormones) in the body. This can lead to various symptoms such as hirsutism (excessive hair growth), acne, irregular menstrual periods, and infertility in women. It can be caused by conditions like polycystic ovary syndrome (PCOS), congenital adrenal hyperplasia, and tumors in the ovaries or adrenal glands. Proper diagnosis and management of hyperandrogenism is important to prevent complications and improve quality of life.

Caroli disease is a rare genetic disorder that affects the liver and bile ducts. It is characterized by abnormal dilations or sac-like structures in the intrahepatic bile ducts, which are the ducts that carry bile from the liver to the gallbladder and small intestine. These dilations can lead to recurrent cholangitis (inflammation of the bile ducts), stone formation, and liver damage.

Caroli disease is usually diagnosed in childhood or early adulthood, and it can be associated with other congenital anomalies such as polycystic kidney disease. The exact cause of Caroli disease is not fully understood, but it is believed to be inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the abnormal gene, one from each parent, to develop the condition.

Treatment for Caroli disease may include antibiotics to manage cholangitis, endoscopic procedures to remove stones or dilate strictures, and surgery to bypass or remove affected bile ducts. In severe cases, liver transplantation may be necessary. Regular monitoring of liver function and surveillance for complications are essential in the management of this condition.

Kidney transplantation is a surgical procedure where a healthy kidney from a deceased or living donor is implanted into a patient with end-stage renal disease (ESRD) or permanent kidney failure. The new kidney takes over the functions of filtering waste and excess fluids from the blood, producing urine, and maintaining the body's electrolyte balance.

The transplanted kidney is typically placed in the lower abdomen, with its blood vessels connected to the recipient's iliac artery and vein. The ureter of the new kidney is then attached to the recipient's bladder to ensure proper urine flow. Following the surgery, the patient will require lifelong immunosuppressive therapy to prevent rejection of the transplanted organ by their immune system.

A LOD (Logarithm of Odds) score is not a medical term per se, but rather a statistical concept that is used in genetic research and linkage analysis to determine the likelihood of a gene or genetic marker being linked to a particular disease or trait. The LOD score compares the odds of observing the pattern of inheritance of a genetic marker in a family if the marker is linked to the disease, versus the odds if the marker is not linked. A LOD score of 3 or higher is generally considered evidence for linkage, while a score of -2 or lower is considered evidence against linkage.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Cyst fluid refers to the fluid accumulated within a cyst, which is a closed sac-like or capsular structure, typically filled with liquid or semi-solid material. Cysts can develop in various parts of the body for different reasons, and the composition of cyst fluid may vary depending on the type of cyst and its location.

In some cases, cyst fluid might contain proteins, sugars, hormones, or even cells from the surrounding tissue. Infected cysts may have pus-like fluid, while cancerous or precancerous cysts might contain abnormal cells or tumor markers. The analysis of cyst fluid can help medical professionals diagnose and manage various medical conditions, including infections, inflammatory diseases, genetic disorders, and cancers.

It is important to note that the term 'cyst fluid' generally refers to the liquid content within a cyst, but the specific composition and appearance of this fluid may vary significantly depending on the underlying cause and type of cyst.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

Hirsutism is a medical condition characterized by excessive hair growth in women in areas where hair growth is typically androgen-dependent, such as the face, chest, lower abdomen, and inner thighs. This hair growth is often thick, dark, and coarse, resembling male-pattern hair growth. Hirsutism can be caused by various factors, including hormonal imbalances, certain medications, and genetic conditions. It's essential to consult a healthcare professional if you experience excessive or unwanted hair growth to determine the underlying cause and develop an appropriate treatment plan.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Retinitis pigmentosa (RP) is a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina - a light-sensitive tissue located at the back of the eye. The retina converts light into electrical signals which are then sent to the brain and interpreted as visual images.

In RP, the cells that detect light (rods and cones) degenerate more slowly than other cells in the retina, leading to a progressive loss of vision. Symptoms typically begin in childhood with night blindness (difficulty seeing in low light), followed by a gradual narrowing of the visual field (tunnel vision). Over time, this can lead to significant vision loss and even blindness.

The condition is usually inherited and there are several different genes that have been associated with RP. The diagnosis is typically made based on a combination of genetic testing, family history, and clinical examination. Currently, there is no cure for RP, but researchers are actively working to develop new treatments that may help slow or stop the progression of the disease.

I'm sorry for any confusion, but "Rats, Mutant Strains" is not a recognized medical term or concept. It may be a term used in science fiction, gaming, or other non-medical contexts to refer to genetically modified rats with altered characteristics. However, in the field of medical research, scientists do conduct studies using various strains of lab rats, some of which have been selectively bred or genetically modified to exhibit specific traits, but these are not referred to as "mutant strains." If you have any questions related to medical definitions or concepts, I'd be happy to help with those!

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Orofaciodigital syndromes (OFDS) are a group of rare genetic disorders that primarily affect the development of the face, mouth, and digits. The term "orofaciodigital" describes the specific areas of the body that are impacted: oro (mouth), facio (face), and digital (fingers and toes).

There are several types of OFDS, each with its own set of symptoms and genetic cause. Some common features across various types of OFDS include:

1. Oral manifestations: These may include cleft lip and/or palate, tongue abnormalities, such as a lobulated or bifid tongue, and dental anomalies.
2. Facial manifestations: These can range from mild to severe and may include hypertelorism (widely spaced eyes), broad nasal bridge, low-set ears, and a thin upper lip.
3. Digital manifestations: Abnormalities of the fingers and toes may include brachydactyly (shortened digits), clinodactyily (curved digits), syndactyly (fused digits), or extra digits (polydactyly). Nail abnormalities might also be present.

The different types of OFDS are caused by mutations in various genes, such as OFD1, CCDC8, and TMEM216. The specific genetic cause determines the type of OFDS and its associated symptoms.

It is essential to consult with a medical professional or genetic counselor for an accurate diagnosis and personalized management plan if you suspect or have been diagnosed with an orofaciodigital syndrome.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

The kidney cortex is the outer region of the kidney where most of the functional units called nephrons are located. It plays a crucial role in filtering blood and regulating water, electrolyte, and acid-base balance in the body. The kidney cortex contains the glomeruli, proximal tubules, loop of Henle, and distal tubules, which work together to reabsorb necessary substances and excrete waste products into the urine.

Collecting kidney tubules, also known as collecting ducts, are the final portion of the renal tubule in the nephron of the kidney. They collect filtrate from the distal convoluted tubules and glomeruli and are responsible for the reabsorption of water and electrolytes back into the bloodstream under the influence of antidiuretic hormone (ADH) and aldosterone. The collecting ducts then deliver the remaining filtrate to the ureter, which transports it to the bladder for storage until urination.

Oligomenorrhea is a medical term used to describe infrequent menstrual periods, where the cycle length is more than 35 days but less than 68 days. It's considered a menstrual disorder and can affect people of reproductive age. The causes of oligomenorrhea are varied, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, excessive exercise, significant weight loss or gain, and stress. In some cases, it may not cause any other symptoms, but in others, it can be associated with infertility, hirsutism (excessive hair growth), acne, or obesity. Treatment depends on the underlying cause and may include lifestyle modifications, hormonal medications, or surgery in rare cases.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Kidney function tests (KFTs) are a group of diagnostic tests that evaluate how well your kidneys are functioning by measuring the levels of various substances in the blood and urine. The tests typically assess the glomerular filtration rate (GFR), which is an indicator of how efficiently the kidneys filter waste from the blood, as well as the levels of electrolytes, waste products, and proteins in the body.

Some common KFTs include:

1. Serum creatinine: A waste product that's produced by normal muscle breakdown and is excreted by the kidneys. Elevated levels may indicate reduced kidney function.
2. Blood urea nitrogen (BUN): Another waste product that's produced when protein is broken down and excreted by the kidneys. Increased BUN levels can suggest impaired kidney function.
3. Estimated glomerular filtration rate (eGFR): A calculation based on serum creatinine, age, sex, and race that estimates the GFR and provides a more precise assessment of kidney function than creatinine alone.
4. Urinalysis: An examination of a urine sample to detect abnormalities such as protein, blood, or bacteria that may indicate kidney disease.
5. Electrolyte levels: Measurement of sodium, potassium, chloride, and bicarbonate in the blood to ensure they're properly balanced, which is essential for normal kidney function.

KFTs are often ordered as part of a routine check-up or when kidney disease is suspected based on symptoms or other diagnostic tests. Regular monitoring of kidney function can help detect and manage kidney disease early, potentially preventing or slowing down its progression.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Autosomal dominant optic atrophy (ADOA) is a genetic disorder that affects the optic nerve, which transmits visual information from the eye to the brain. The term "optic atrophy" refers to degeneration or damage to the optic nerve. In ADOA, this condition is inherited in an autosomal dominant manner, meaning that only one copy of the mutated gene, located on one of the autosomal chromosomes (not a sex chromosome), needs to be present for the individual to develop the disorder.

The most common form of ADOA is caused by mutations in the OPA1 gene, which provides instructions for making a protein involved in the maintenance of mitochondria, the energy-producing structures in cells. The exact role of this protein in optic nerve function is not fully understood, but it is thought to play a critical role in maintaining the health and function of retinal ganglion cells, which are the neurons that make up the optic nerve.

In ADOA, mutations in the OPA1 gene lead to progressive degeneration of retinal ganglion cells and their axons (nerve fibers) within the optic nerve. This results in decreased visual acuity, color vision deficits, and a characteristic visual field defect called centrocecal scotoma, which is an area of blindness near the center of the visual field. The onset and severity of these symptoms can vary widely among individuals with ADOA.

It's important to note that medical definitions may contain complex terminology. In simpler terms, autosomal dominant optic atrophy (ADOA) is a genetic condition affecting the optic nerve, leading to decreased visual acuity and other vision problems due to degeneration of retinal ganglion cells. The disorder is inherited in an autosomal dominant manner, meaning only one copy of the mutated gene is needed for the individual to develop ADOA.

Genetic markers are specific segments of DNA that are used in genetic mapping and genotyping to identify specific genetic locations, diseases, or traits. They can be composed of short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or variable number tandem repeats (VNTRs). These markers are useful in various fields such as genetic research, medical diagnostics, forensic science, and breeding programs. They can help to track inheritance patterns, identify genetic predispositions to diseases, and solve crimes by linking biological evidence to suspects or victims.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes non-cancerous (benign) tumors to grow in many parts of the body. These tumors can affect the brain, skin, heart, kidneys, eyes, and lungs. The signs and symptoms of TSC can vary widely, depending on where the tumors develop and how severely a person is affected.

The condition is caused by mutations in either the TSC1 or TSC2 gene, which regulate a protein that helps control cell growth and division. When these genes are mutated, the protein is not produced correctly, leading to excessive cell growth and the development of tumors.

TSC is typically diagnosed based on clinical symptoms, medical imaging, and genetic testing. Treatment for TSC often involves a multidisciplinary approach, with specialists in neurology, dermatology, cardiology, nephrology, pulmonology, and ophthalmology working together to manage the various symptoms of the condition. Medications, surgery, and other therapies may be used to help control seizures, developmental delays, skin abnormalities, and other complications of TSC.

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working. Specifically, it estimates how much blood passes through the glomeruli each minute. The glomeruli are the tiny fibers in the kidneys that filter waste from the blood. A lower GFR number means that the kidneys aren't working properly and may indicate kidney disease.

The GFR is typically calculated using a formula that takes into account the patient's serum creatinine level, age, sex, and race. The most commonly used formula is the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. A normal GFR is usually above 90 mL/min/1.73m2, but this can vary depending on the individual's age and other factors.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Anovulation is a medical condition in which there is a failure to ovulate, or release a mature egg from the ovaries, during a menstrual cycle. This can occur due to various reasons such as hormonal imbalances, polycystic ovary syndrome (PCOS), premature ovarian failure, excessive exercise, stress, low body weight, or certain medications. Anovulation is common in women with irregular menstrual cycles and can cause infertility if left untreated. In some cases, anovulation may be treated with medication to stimulate ovulation.

A haplotype is a group of genes or DNA sequences that are inherited together from a single parent. It refers to a combination of alleles (variant forms of a gene) that are located on the same chromosome and are usually transmitted as a unit. Haplotypes can be useful in tracing genetic ancestry, understanding the genetic basis of diseases, and developing personalized medical treatments.

In population genetics, haplotypes are often used to study patterns of genetic variation within and between populations. By comparing haplotype frequencies across populations, researchers can infer historical events such as migrations, population expansions, and bottlenecks. Additionally, haplotypes can provide information about the evolutionary history of genes and genomic regions.

In clinical genetics, haplotypes can be used to identify genetic risk factors for diseases or to predict an individual's response to certain medications. For example, specific haplotypes in the HLA gene region have been associated with increased susceptibility to certain autoimmune diseases, while other haplotypes in the CYP450 gene family can affect how individuals metabolize drugs.

Overall, haplotypes provide a powerful tool for understanding the genetic basis of complex traits and diseases, as well as for developing personalized medical treatments based on an individual's genetic makeup.

Vasopressin receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone vasopressin (also known as antidiuretic hormone or ADH). There are two main types of vasopressin receptors, V1 and V2.

V1 receptors are found in various tissues throughout the body, including vascular smooth muscle, heart, liver, and kidney. Activation of V1 receptors leads to vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and release of glycogen from the liver.

V2 receptors are primarily found in the kidney's collecting ducts. When activated, they increase water permeability in the collecting ducts, allowing for the reabsorption of water into the bloodstream and reducing urine production. This helps to regulate fluid balance and maintain normal blood pressure.

Abnormalities in vasopressin receptor function can contribute to various medical conditions, including hypertension, heart failure, and kidney disease.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Hematuria is a medical term that refers to the presence of blood in urine. It can be visible to the naked eye, which is called gross hematuria, or detected only under a microscope, known as microscopic hematuria. The blood in urine may come from any site along the urinary tract, including the kidneys, ureters, bladder, or urethra. Hematuria can be a symptom of various medical conditions, such as urinary tract infections, kidney stones, kidney disease, or cancer of the urinary tract. It is essential to consult a healthcare professional if you notice blood in your urine to determine the underlying cause and receive appropriate treatment.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

A frameshift mutation is a type of genetic mutation that occurs when the addition or deletion of nucleotides in a DNA sequence is not divisible by three. Since DNA is read in groups of three nucleotides (codons), which each specify an amino acid, this can shift the "reading frame," leading to the insertion or deletion of one or more amino acids in the resulting protein. This can cause a protein to be significantly different from the normal protein, often resulting in a nonfunctional protein and potentially causing disease. Frameshift mutations are typically caused by insertions or deletions of nucleotides, but they can also result from more complex genetic rearrangements.

Kidney calculi, also known as kidney stones, are hard deposits made of minerals and salts that form inside your kidneys. They can range in size from a grain of sand to a golf ball. When they're small enough, they can be passed through your urine without causing too much discomfort. However, larger stones may block the flow of urine, causing severe pain and potentially leading to serious complications such as urinary tract infections or kidney damage if left untreated.

The formation of kidney calculi is often associated with factors like dehydration, high levels of certain minerals in your urine, family history, obesity, and certain medical conditions such as gout or inflammatory bowel disease. Symptoms of kidney stones typically include severe pain in the back, side, lower abdomen, or groin; nausea and vomiting; fever and chills if an infection is present; and blood in the urine. Treatment options depend on the size and location of the stone but may include medications to help pass the stone, shock wave lithotripsy to break up the stone, or surgical removal of the stone in severe cases.

Kidney neoplasms refer to abnormal growths or tumors in the kidney tissues that can be benign (non-cancerous) or malignant (cancerous). These growths can originate from various types of kidney cells, including the renal tubules, glomeruli, and the renal pelvis.

Malignant kidney neoplasms are also known as kidney cancers, with renal cell carcinoma being the most common type. Benign kidney neoplasms include renal adenomas, oncocytomas, and angiomyolipomas. While benign neoplasms are generally not life-threatening, they can still cause problems if they grow large enough to compromise kidney function or if they undergo malignant transformation.

Early detection and appropriate management of kidney neoplasms are crucial for improving patient outcomes and overall prognosis. Regular medical check-ups, imaging studies, and urinalysis can help in the early identification of these growths, allowing for timely intervention and treatment.

"Family Health" is not a term that has a single, widely accepted medical definition. However, in the context of healthcare and public health, "family health" often refers to the physical, mental, and social well-being of all members of a family unit. It includes the assessment, promotion, and prevention of health conditions that affect individual family members as well as the family as a whole.

Family health may also encompass interventions and programs that aim to strengthen family relationships, communication, and functioning, as these factors can have a significant impact on overall health outcomes. Additionally, family health may involve addressing social determinants of health, such as poverty, housing, and access to healthcare, which can affect the health of families and communities.

Overall, family health is a holistic approach to healthcare that recognizes the importance of considering the needs and experiences of all family members in promoting and maintaining good health.

'Abnormalities, Multiple' is a broad term that refers to the presence of two or more structural or functional anomalies in an individual. These abnormalities can be present at birth (congenital) or can develop later in life (acquired). They can affect various organs and systems of the body and can vary greatly in severity and impact on a person's health and well-being.

Multiple abnormalities can occur due to genetic factors, environmental influences, or a combination of both. Chromosomal abnormalities, gene mutations, exposure to teratogens (substances that cause birth defects), and maternal infections during pregnancy are some of the common causes of multiple congenital abnormalities.

Examples of multiple congenital abnormalities include Down syndrome, Turner syndrome, and VATER/VACTERL association. Acquired multiple abnormalities can result from conditions such as trauma, infection, degenerative diseases, or cancer.

The medical evaluation and management of individuals with multiple abnormalities depend on the specific abnormalities present and their impact on the individual's health and functioning. A multidisciplinary team of healthcare professionals is often involved in the care of these individuals to address their complex needs.

I'm sorry for any confusion, but "Iothalamic Acid" doesn't appear to be a recognized term in medical or physiological literature. It's possible there may be a spelling error or it could be a highly specialized or obscure term used only in specific research contexts.

If you meant "Iothalamate," that is a compound used as a contrast agent in medical imaging, specifically in radiology for procedures like intravenous pyelograms (IVPs) and computed tomography (CT) scans. Iothalamate is not typically referred to as an acid, though.

Please double-check the term you're looking for, and if there's any chance you meant "Iothalamate," let me know so I can provide a more accurate response!

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Metformin is a type of biguanide antihyperglycemic agent used primarily in the treatment of type 2 diabetes mellitus. It works by decreasing glucose production in the liver, reducing glucose absorption in the gut, and increasing insulin sensitivity in muscle and fat tissue. By lowering both basal and postprandial plasma glucose levels, metformin helps to control blood sugar levels and improve glycemic control. It is also used off-label for various other indications such as polycystic ovary syndrome (PCOS) and gestational diabetes. Common side effects include diarrhea, nausea, vomiting, and abdominal discomfort. Lactic acidosis is a rare but serious side effect that requires immediate medical attention.

Renal hypertension, also known as renovascular hypertension, is a type of secondary hypertension (high blood pressure) that is caused by narrowing or obstruction of the renal arteries or veins, which supply blood to the kidneys. This can lead to decreased blood flow and oxygen delivery to the kidney tissue, activating the renin-angiotensin-aldosterone system (RAAS) and resulting in increased peripheral vascular resistance, sodium retention, and extracellular fluid volume, ultimately causing hypertension.

Renal hypertension can be classified into two types:

1. Renin-dependent renal hypertension: This is caused by a decrease in blood flow to the kidneys, leading to increased renin release from the juxtaglomerular cells of the kidney. Renin converts angiotensinogen to angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin II is a potent vasoconstrictor that causes an increase in peripheral vascular resistance and blood pressure.
2. Renin-independent renal hypertension: This is caused by increased sodium retention and extracellular fluid volume, leading to an increase in blood pressure. This can be due to various factors such as obstructive sleep apnea, primary aldosteronism, or pheochromocytoma.

Renal hypertension is often asymptomatic but can lead to serious complications such as kidney damage, heart failure, and stroke if left untreated. Diagnosis of renal hypertension involves imaging studies such as renal artery duplex ultrasound, CT angiography, or magnetic resonance angiography (MRA) to identify any narrowing or obstruction in the renal arteries or veins. Treatment options include medications such as ACE inhibitors, angiotensin receptor blockers (ARBs), calcium channel blockers, and diuretics, as well as interventions such as angioplasty and stenting to improve blood flow to the kidneys.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Acute kidney injury (AKI), also known as acute renal failure, is a rapid loss of kidney function that occurs over a few hours or days. It is defined as an increase in the serum creatinine level by 0.3 mg/dL within 48 hours or an increase in the creatinine level to more than 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days, or a urine volume of less than 0.5 mL/kg per hour for six hours.

AKI can be caused by a variety of conditions, including decreased blood flow to the kidneys, obstruction of the urinary tract, exposure to toxic substances, and certain medications. Symptoms of AKI may include decreased urine output, fluid retention, electrolyte imbalances, and metabolic acidosis. Treatment typically involves addressing the underlying cause of the injury and providing supportive care, such as dialysis, to help maintain kidney function until the injury resolves.

A cataract is a clouding of the natural lens in the eye that affects vision. This clouding can cause vision to become blurry, faded, or dim, making it difficult to see clearly. Cataracts are a common age-related condition, but they can also be caused by injury, disease, or medication use. In most cases, cataracts develop gradually over time and can be treated with surgery to remove the cloudy lens and replace it with an artificial one.

A nephron is the basic structural and functional unit of the kidney. It is responsible for filtering blood, reabsorbing necessary substances, and excreting waste products into the urine. Each human kidney contains approximately one million nephrons.

The structure of a nephron includes a glomerulus, which is a tuft of capillaries surrounded by Bowman's capsule. The glomerulus filters blood, allowing small molecules like water and solutes to pass through while keeping larger molecules like proteins and blood cells within the capillaries.

The filtrate then passes through the tubular portion of the nephron, which includes the proximal convoluted tubule, loop of Henle, distal convoluted tubule, and collecting duct. The tubular portion reabsorbs necessary substances like water, glucose, amino acids, and electrolytes back into the bloodstream while excreting waste products like urea and creatinine into the urine.

Overall, nephrons play a critical role in maintaining fluid and electrolyte balance, regulating blood pressure, and removing waste products from the body.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a genetic disorder that affects the small blood vessels in the brain. It is caused by mutations in the NOTCH3 gene, which leads to the progressive degeneration of these vessels.

The symptoms of CADASIL typically begin in middle age and include migraine with aura, recurrent strokes or transient ischemic attacks (TIAs), cognitive decline, and psychiatric symptoms such as depression and apathy. The condition can also cause physical disabilities such as difficulty walking and urinary incontinence.

CADASIL is an inherited disorder, meaning that it is passed down from parent to child through a mutated gene. If one parent has the disease, each child has a 50% chance of inheriting the mutated gene and developing the condition. Currently, there is no cure for CADASIL, but treatments can help manage symptoms and improve quality of life.

Clomiphene is a medication that is primarily used to treat infertility in women. It is an ovulatory stimulant, which means that it works by stimulating the development and release of mature eggs from the ovaries (a process known as ovulation). Clomiphene is a selective estrogen receptor modulator (SERM), which means that it binds to estrogen receptors in the body and blocks the effects of estrogen in certain tissues, while enhancing the effects of estrogen in others.

In the ovary, clomiphene works by blocking the negative feedback effect of estrogen on the hypothalamus and pituitary gland, which results in an increase in the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These hormones stimulate the growth and development of ovarian follicles, which contain eggs. As the follicles grow and mature, they produce increasing amounts of estrogen, which eventually triggers a surge in LH that leads to ovulation.

Clomiphene is typically taken orally for 5 days, starting on the 3rd, 4th, or 5th day of the menstrual cycle. The dosage may be adjusted based on the patient's response to treatment. Common side effects of clomiphene include hot flashes, mood changes, breast tenderness, and ovarian hyperstimulation syndrome (OHSS), which is a potentially serious complication characterized by the enlargement of the ovaries and the accumulation of fluid in the abdomen.

It's important to note that clomiphene may not be suitable for everyone, and its use should be carefully monitored by a healthcare provider. Women with certain medical conditions, such as liver disease, thyroid disorders, or uterine fibroids, may not be able to take clomiphene. Additionally, women who become pregnant while taking clomiphene have an increased risk of multiple pregnancies (e.g., twins or triplets), which can pose additional risks to both the mother and the fetuses.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

A spermatocele is a type of cyst that develops in the epididymis, which is a small, coiled tube located on the back surface of the testicle. This cyst typically contains sperm and fluid from the epididymis, and it is usually benign and harmless.

Spermatoceles are often asymptomatic and may be discovered during a routine physical examination or self-examination. In some cases, however, they may cause discomfort or pain, particularly if they become large enough to press on the testicle or surrounding structures.

While spermatoceles do not typically require treatment unless they are causing symptoms, it is important to have them evaluated by a healthcare provider to rule out other potential causes of any symptoms and to ensure that appropriate treatment is provided if necessary.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Nephrectomy is a surgical procedure in which all or part of a kidney is removed. It may be performed due to various reasons such as severe kidney damage, kidney cancer, or living donor transplantation. The type of nephrectomy depends on the reason for the surgery - a simple nephrectomy involves removing only the affected portion of the kidney, while a radical nephrectomy includes removal of the whole kidney along with its surrounding tissues like the adrenal gland and lymph nodes.

Ciliary motility disorders are a group of rare genetic conditions that affect the function of cilia, which are tiny hair-like structures on the surface of cells in the body. Cilia play an important role in moving fluids and particles across the cell surface, including the movement of mucus and other substances in the respiratory system, the movement of eggs and sperm in the reproductive system, and the movement of fluid in the inner ear.

Ciliary motility disorders are caused by mutations in genes that are responsible for the proper functioning of cilia. These mutations can lead to abnormalities in the structure or function of cilia, which can result in a range of symptoms depending on the specific disorder and the parts of the body that are affected.

Some common symptoms of ciliary motility disorders include recurrent respiratory infections, chronic sinusitis, hearing loss, infertility, and situs inversus, a condition in which the major organs are reversed or mirrored from their normal positions. There are several different types of ciliary motility disorders, including primary ciliary dyskinesia, Kartagener syndrome, and immotile cilia syndrome.

Treatment for ciliary motility disorders typically involves addressing the specific symptoms and underlying causes of the disorder. This may include antibiotics to treat respiratory infections, surgery to correct structural abnormalities, or assisted reproductive technologies to help with infertility.

Human chromosome pair 4 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and they are identical or very similar in length and gene content. Chromosomes are made up of DNA, which contains genetic information, and proteins that package and organize the DNA.

Human chromosomes are numbered from 1 to 22, with chromosome pair 4 being one of the autosomal pairs, meaning it is not a sex chromosome (X or Y). Chromosome pair 4 is a medium-sized pair and contains an estimated 1,800-2,000 genes. These genes provide instructions for making proteins that are essential for various functions in the body, such as development, growth, and metabolism.

Abnormalities in chromosome pair 4 can lead to genetic disorders, including Wolf-Hirschhorn syndrome, which is caused by a deletion of part of the short arm of chromosome 4, and 4p16.3 microdeletion syndrome, which is caused by a deletion of a specific region on the short arm of chromosome 4. These conditions can result in developmental delays, intellectual disability, physical abnormalities, and other health problems.

Multicystic Dysplastic Kidney (MCDK) is a congenital kidney disorder, which means it is present at birth. It occurs when the kidney doesn't develop properly and forms one or more non-functioning cysts. The kidney with MCDK is usually small and has abnormally shaped cysts that can be seen on an ultrasound.

In a normal kidney, the renal pelvis (the central part of the kidney where urine collects) and the calyces (the smaller cups that receive urine from the renal tubules) are shaped like funnels to help direct urine into the ureter and then to the bladder. However, in a dysplastic kidney, these structures don't form correctly and instead develop as cysts of various sizes.

MCDK is usually unilateral (occurring in one kidney), but it can be bilateral (occurring in both kidneys), which is a more serious condition because it can lead to kidney failure. Most cases of MCDK are discovered prenatally during routine ultrasounds, and if the other kidney is normal, no treatment is necessary. The affected kidney will shrink over time and may disappear entirely. However, regular follow-ups with a healthcare provider are essential to monitor kidney function and overall health.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Genetic heterogeneity is a phenomenon in genetics where different genetic variations or mutations in various genes can result in the same or similar phenotypic characteristics, disorders, or diseases. This means that multiple genetic alterations can lead to the same clinical presentation, making it challenging to identify the specific genetic cause based on the observed symptoms alone.

There are two main types of genetic heterogeneity:

1. Allelic heterogeneity: Different mutations in the same gene can cause the same or similar disorders. For example, various mutations in the CFTR gene can lead to cystic fibrosis, a genetic disorder affecting the respiratory and digestive systems.
2. Locus heterogeneity: Mutations in different genes can result in the same or similar disorders. For instance, mutations in several genes, such as BRCA1, BRCA2, and PALB2, are associated with an increased risk of developing breast cancer.

Genetic heterogeneity is essential to consider when diagnosing genetic conditions, evaluating recurrence risks, and providing genetic counseling. It highlights the importance of comprehensive genetic testing and interpretation for accurate diagnosis and appropriate management of genetic disorders.

Hand-assisted laparoscopy (HAL) is a surgical technique that combines the principles of traditional open surgery and minimally invasive laparoscopic surgery. In HAL, a small incision is made, typically in the abdomen, through which the surgeon's hand can be introduced into the abdominal cavity while maintaining a pneumoperitoneum (insufflation of carbon dioxide gas to create a working space). This approach allows the surgeon to use their hands to perform complex surgical procedures with the aid of laparoscopic instruments, which are inserted through other small incisions.

The hand-assisted technique provides several advantages over traditional laparoscopy, including improved tactile feedback, enhanced dexterity, and more precise dissection and manipulation of tissues. This approach is often used in complex urological, gynecological, and general surgical procedures, such as nephrectomy (removal of the kidney), colectomy (removal of part of the colon), and gastrectomy (removal of part of the stomach).

Hand-assisted laparoscopy offers several benefits over traditional open surgery, including smaller incisions, reduced postoperative pain, shorter hospital stays, quicker recovery times, and improved cosmetic outcomes. However, HAL still requires general anesthesia and carries the risks associated with any surgical procedure, such as infection, bleeding, and injury to surrounding tissues or organs.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

TOR (Target Of Rapamycin) Serine-Threonine Kinases are a family of conserved protein kinases that play crucial roles in the regulation of cell growth, proliferation, and metabolism in response to various environmental cues such as nutrients, growth factors, and energy status. They are named after their ability to phosphorylate serine and threonine residues on target proteins.

Mammalian cells express two distinct TOR kinases, mTORC1 and mTORC2, which have different protein compositions and functions. mTORC1 is rapamycin-sensitive and regulates cell growth, proliferation, and metabolism by phosphorylating downstream targets such as p70S6 kinase and 4E-BP1, thereby controlling protein synthesis, autophagy, and lysosome biogenesis. mTORC2 is rapamycin-insensitive and regulates cell survival, cytoskeleton organization, and metabolism by phosphorylating AGC kinases such as AKT and PKCα.

Dysregulation of TOR Serine-Threonine Kinases has been implicated in various human diseases, including cancer, diabetes, and neurological disorders. Therefore, targeting TOR kinases has emerged as a promising therapeutic strategy for the treatment of these diseases.

Single-Stranded Conformational Polymorphism (SSCP) is not a medical condition but rather a laboratory technique used in molecular biology and genetics. It refers to the phenomenon where a single-stranded DNA or RNA molecule can adopt different conformations or shapes based on its nucleotide sequence, even if the difference in the sequence is as small as a single base pair change. This property is used in SSCP analysis to detect mutations or variations in DNA or RNA sequences.

In SSCP analysis, the denatured single-stranded DNA or RNA sample is subjected to electrophoresis on a non-denaturing polyacrylamide gel. The different conformations of the single-stranded molecules migrate at different rates in the gel, creating multiple bands that can be visualized by staining or other detection methods. The presence of additional bands or shifts in band patterns can indicate the presence of a sequence variant or mutation.

SSCP analysis is often used as a screening tool for genetic diseases, cancer, and infectious diseases to identify genetic variations associated with these conditions. However, it has largely been replaced by more sensitive and accurate methods such as next-generation sequencing.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

Female infertility is a condition characterized by the inability to conceive after 12 months or more of regular, unprotected sexual intercourse or the inability to carry a pregnancy to a live birth. The causes of female infertility can be multifactorial and may include issues with ovulation, damage to the fallopian tubes or uterus, endometriosis, hormonal imbalances, age-related factors, and other medical conditions.

Some common causes of female infertility include:

1. Ovulation disorders: Conditions such as polycystic ovary syndrome (PCOS), thyroid disorders, premature ovarian failure, and hyperprolactinemia can affect ovulation and lead to infertility.
2. Damage to the fallopian tubes: Pelvic inflammatory disease, endometriosis, or previous surgeries can cause scarring and blockages in the fallopian tubes, preventing the egg and sperm from meeting.
3. Uterine abnormalities: Structural issues with the uterus, such as fibroids, polyps, or congenital defects, can interfere with implantation and pregnancy.
4. Age-related factors: As women age, their fertility declines due to a decrease in the number and quality of eggs.
5. Other medical conditions: Certain medical conditions, such as diabetes, celiac disease, and autoimmune disorders, can contribute to infertility.

In some cases, female infertility can be treated with medications, surgery, or assisted reproductive technologies (ART) like in vitro fertilization (IVF). A thorough evaluation by a healthcare professional is necessary to determine the underlying cause and develop an appropriate treatment plan.

Renal insufficiency, also known as kidney failure, is a medical condition in which the kidneys are unable to properly filter waste products and excess fluids from the blood. This results in a buildup of these substances in the body, which can cause a variety of symptoms such as weakness, shortness of breath, and fluid retention. Renal insufficiency can be acute, meaning it comes on suddenly, or chronic, meaning it develops over time. It is typically diagnosed through blood tests, urine tests, and imaging studies. Treatment may include medications to control symptoms, dietary changes, and in severe cases, dialysis or a kidney transplant.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Penetrance, in medical genetics, refers to the proportion of individuals with a particular genetic variant or mutation who exhibit clinical features or symptoms of a resulting disease. It is often expressed as a percentage, with complete penetrance indicating that all individuals with the genetic change will develop the disease, and reduced or incomplete penetrance suggesting that not all individuals with the genetic change will necessarily develop the disease, even if they express some of its characteristics.

Penetrance can vary depending on various factors such as age, sex, environmental influences, and interactions with other genes. Incomplete penetrance is common in many genetic disorders, making it challenging to predict who will develop symptoms based solely on their genotype.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Spinocerebellar degenerations (SCDs) are a group of genetic disorders that primarily affect the cerebellum, the part of the brain responsible for coordinating muscle movements, and the spinal cord. These conditions are characterized by progressive degeneration or loss of nerve cells in the cerebellum and/or spinal cord, leading to various neurological symptoms.

SCDs are often inherited in an autosomal dominant manner, meaning that only one copy of the altered gene from either parent is enough to cause the disorder. The most common type of SCD is spinocerebellar ataxia (SCA), which includes several subtypes (SCA1, SCA2, SCA3, etc.) differentiated by their genetic causes and specific clinical features.

Symptoms of spinocerebellar degenerations may include:

1. Progressive ataxia (loss of coordination and balance)
2. Dysarthria (speech difficulty)
3. Nystagmus (involuntary eye movements)
4. Oculomotor abnormalities (problems with eye movement control)
5. Tremors or other involuntary muscle movements
6. Muscle weakness and spasticity
7. Sensory disturbances, such as numbness or tingling sensations
8. Dysphagia (difficulty swallowing)
9. Cognitive impairment in some cases

The age of onset, severity, and progression of symptoms can vary significantly among different SCD subtypes and individuals. Currently, there is no cure for spinocerebellar degenerations, but various supportive treatments and therapies can help manage symptoms and improve quality of life.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A nonsense codon is a sequence of three nucleotides in DNA or RNA that does not code for an amino acid. Instead, it signals the end of the protein-coding region of a gene and triggers the termination of translation, the process by which the genetic code is translated into a protein.

In DNA, the nonsense codons are UAA, UAG, and UGA, which are also known as "stop codons." When these codons are encountered during translation, they cause the release of the newly synthesized polypeptide chain from the ribosome, bringing the process of protein synthesis to a halt.

Nonsense mutations are changes in the DNA sequence that result in the appearance of a nonsense codon where an amino acid-coding codon used to be. These types of mutations can lead to premature termination of translation and the production of truncated, nonfunctional proteins, which can cause genetic diseases or contribute to cancer development.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Proteinuria is a medical term that refers to the presence of excess proteins, particularly albumin, in the urine. Under normal circumstances, only small amounts of proteins should be found in the urine because the majority of proteins are too large to pass through the glomeruli, which are the filtering units of the kidneys.

However, when the glomeruli become damaged or diseased, they may allow larger molecules such as proteins to leak into the urine. Persistent proteinuria is often a sign of kidney disease and can indicate damage to the glomeruli. It is usually detected through a routine urinalysis and may be confirmed with further testing.

The severity of proteinuria can vary, and it can be a symptom of various underlying conditions such as diabetes, hypertension, glomerulonephritis, and other kidney diseases. Treatment for proteinuria depends on the underlying cause and may include medications to control blood pressure, manage diabetes, or reduce protein loss in the urine.

Multi-infarct dementia (MID) is a specific type of dementia that is caused by multiple small strokes or mini-strokes (known as transient ischemic attacks or TIAs) in the brain. Also known as vascular dementia, multi-infarct dementia results from the interruption of blood flow to parts of the brain, leading to damage and death of brain tissue.

The term 'multi-infarct' refers to multiple areas (or infarcts) of damaged or dead tissue in the brain due to the lack of oxygen and nutrients caused by these small strokes. Over time, as more areas of the brain are affected, cognitive decline becomes apparent, leading to symptoms such as memory loss, difficulty with problem-solving, disorientation, language problems, and changes in mood or behavior.

Multi-infarct dementia is typically a progressive condition, meaning that symptoms worsen over time. However, the rate of progression can vary depending on factors such as the number and severity of strokes, underlying medical conditions, and lifestyle factors. It's important to note that multi-infarct dementia can be prevented or delayed by controlling risk factors for stroke, such as high blood pressure, diabetes, smoking, and high cholesterol.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Cerebellar ataxia is a type of ataxia, which refers to a group of disorders that cause difficulties with coordination and movement. Cerebellar ataxia specifically involves the cerebellum, which is the part of the brain responsible for maintaining balance, coordinating muscle movements, and regulating speech and eye movements.

The symptoms of cerebellar ataxia may include:

* Unsteady gait or difficulty walking
* Poor coordination of limb movements
* Tremors or shakiness, especially in the hands
* Slurred or irregular speech
* Abnormal eye movements, such as nystagmus (rapid, involuntary movement of the eyes)
* Difficulty with fine motor tasks, such as writing or buttoning a shirt

Cerebellar ataxia can be caused by a variety of underlying conditions, including:

* Genetic disorders, such as spinocerebellar ataxia or Friedreich's ataxia
* Brain injury or trauma
* Stroke or brain hemorrhage
* Infections, such as meningitis or encephalitis
* Exposure to toxins, such as alcohol or certain medications
* Tumors or other growths in the brain

Treatment for cerebellar ataxia depends on the underlying cause. In some cases, there may be no cure, and treatment is focused on managing symptoms and improving quality of life. Physical therapy, occupational therapy, and speech therapy can help improve coordination, balance, and communication skills. Medications may also be used to treat specific symptoms, such as tremors or muscle spasticity. In some cases, surgery may be recommended to remove tumors or repair damage to the brain.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

Uromodulin, also known as Tamm-Horsfall protein, is a glycoprotein that is primarily produced in the thick ascending limb of the loop of Henle in the kidney. It is the most abundant protein found in normal urine. Uromodulin plays a role in the protection of the urinary tract by preventing the formation of calcium oxalate and brushite crystals, which can lead to kidney stones. Additionally, it has been implicated in various renal diseases, including chronic kidney disease and kidney transplant rejection.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Hajdu-Cheney Syndrome (HCS) is a rare genetic disorder characterized by skeletal abnormalities, distinctive facial features, and potential complications involving other organ systems. The syndrome is caused by mutations in the NOTCH2 gene, which plays a crucial role in bone development and maintenance.

The main features of Hajdu-Cheney Syndrome include:

1. Acroosteolysis: Progressive destruction and resorption of the distal phalanges (the bones at the ends of fingers and toes) leading to shortened, deformed fingers and toes.
2. Osteoporosis: Generalized bone loss resulting in increased fracture risk and bone deformities.
3. Widened cranial sutures: The fibrous joints between the bones in the skull remain open longer than usual, leading to a wide appearance of the forehead and other facial features.
4. Facial abnormalities: Include a prominent forehead (frontal bossing), widely spaced eyes (hypertelorism), down-slanting palpebral fissures (the openings for the eyes), a flat nasal bridge, and a pointed chin.
5. Dental anomalies: Including widely spaced teeth, irregular tooth enamel, and an increased risk of periodontal disease.
6. Neurological issues: Some individuals with HCS may experience hearing loss, cognitive impairment, or cerebrovascular complications (such as strokes).
7. Cardiovascular abnormalities: Including mitral valve prolapse and aortic root dilation.
8. Increased cancer risk: There is an increased incidence of various types of cancers in individuals with HCS, particularly gastrointestinal malignancies.

Due to the rarity of this condition, its diagnosis often requires genetic testing for mutations in the NOTCH2 gene and a multidisciplinary approach to management, involving specialists such as clinical geneticists, orthopedic surgeons, neurologists, dentists, and other healthcare professionals.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

Human chromosome pair 6 consists of two rod-shaped structures present in the nucleus of each human cell. They are identical in size and shape and contain genetic material, made up of DNA and proteins, that is essential for the development and function of the human body.

Chromosome pair 6 is one of the 23 pairs of chromosomes found in humans, with one chromosome inherited from each parent. Each chromosome contains thousands of genes that provide instructions for the production of proteins and regulate various cellular processes.

Chromosome pair 6 contains several important genes, including those involved in the development and function of the immune system, such as the major histocompatibility complex (MHC) genes. It also contains genes associated with certain genetic disorders, such as hereditary neuropathy with liability to pressure palsies (HNPP), a condition that affects the nerves, and Waardenburg syndrome, a disorder that affects pigmentation and hearing.

Abnormalities in chromosome pair 6 can lead to various genetic disorders, including numerical abnormalities such as trisomy 6 (three copies of chromosome 6) or monosomy 6 (only one copy of chromosome 6), as well as structural abnormalities such as deletions, duplications, or translocations of parts of the chromosome.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Female fertility agents are medications or treatments that are used to enhance or restore female fertility. They can work in various ways such as stimulating ovulation, improving the quality of eggs, facilitating the implantation of a fertilized egg in the uterus, or addressing issues related to the reproductive system.

Some examples of female fertility agents include:

1. Clomiphene citrate (Clomid, Serophene): This medication stimulates ovulation by causing the pituitary gland to release more follicle-stimulating hormone (FSH) and luteinizing hormone (LH).
2. Gonadotropins: These are hormonal medications that contain FSH and LH, which stimulate the ovaries to produce mature eggs. Examples include human menopausal gonadotropin (hMG) and follicle-stimulating hormone (FSH).
3. Letrozole (Femara): This medication is an aromatase inhibitor that can be used off-label to stimulate ovulation in women who do not respond to clomiphene citrate.
4. Metformin (Glucophage): This medication is primarily used to treat type 2 diabetes, but it can also improve fertility in women with polycystic ovary syndrome (PCOS) by regulating insulin levels and promoting ovulation.
5. Bromocriptine (Parlodel): This medication is used to treat infertility caused by hyperprolactinemia, a condition characterized by high levels of prolactin in the blood.
6. Assisted reproductive technologies (ART): These include procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and gamete intrafallopian transfer (GIFT). They involve manipulating eggs and sperm outside the body to facilitate fertilization and implantation.

It is important to consult with a healthcare provider or reproductive endocrinologist to determine the most appropriate fertility agent for individual needs, as these medications can have side effects and potential risks.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Hereditary Spastic Paraplegia (HSP) is a group of genetic disorders that affect the long motor neurons in the spinal cord, leading to lower limb spasticity and weakness. It is characterized by progressive stiffness and contraction of the leg muscles, resulting in difficulty with walking and balance.

The symptoms of HSP typically begin in childhood or early adulthood and worsen over time. The severity of the condition can vary widely, even within the same family, depending on the specific genetic mutation involved. In addition to lower limb spasticity, some individuals with HSP may also experience bladder dysfunction, sensory loss, or other neurological symptoms.

HSP is inherited in an autosomal dominant or autosomal recessive pattern, depending on the specific genetic mutation involved. There are over 70 different genes that have been identified as causing HSP, and genetic testing can be used to confirm the diagnosis and identify the specific genetic mutation responsible.

Treatment for HSP is focused on managing symptoms and maintaining mobility. Physical therapy, orthotics, and medications such as baclofen or tizanidine may be used to help reduce muscle spasticity and improve mobility. In some cases, surgery may be necessary to relieve muscle contractures or other complications.

Human chromosome pair 2 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each member of the pair contains thousands of genes and other genetic material, encoded in the form of DNA molecules. Chromosomes are the physical carriers of inheritance, and human cells typically contain 23 pairs of chromosomes for a total of 46 chromosomes.

Chromosome pair 2 is one of the autosomal pairs, meaning that it is not a sex chromosome (X or Y). Each member of chromosome pair 2 is approximately 247 million base pairs in length and contains an estimated 1,000-1,300 genes. These genes play crucial roles in various biological processes, including development, metabolism, and response to environmental stimuli.

Abnormalities in chromosome pair 2 can lead to genetic disorders, such as cat-eye syndrome (CES), which is characterized by iris abnormalities, anal atresia, hearing loss, and intellectual disability. This disorder arises from the presence of an extra copy of a small region on chromosome 2, resulting in partial trisomy of this region. Other genetic conditions associated with chromosome pair 2 include proximal 2q13.3 microdeletion syndrome and Potocki-Lupski syndrome (PTLS).

Human chromosome pair 19 refers to a group of 19 identical chromosomes that are present in every cell of the human body, except for the sperm and egg cells which contain only 23 chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of DNA (deoxyribonucleic acid) molecules.

Each chromosome is made up of two arms, a shorter p arm and a longer q arm, separated by a centromere. Human chromosome pair 19 is an acrocentric chromosome, which means that the centromere is located very close to the end of the short arm (p arm).

Chromosome pair 19 contains approximately 58 million base pairs of DNA and encodes for around 1,400 genes. It is one of the most gene-dense chromosomes in the human genome, with many genes involved in important biological processes such as metabolism, immunity, and neurological function.

Abnormalities in chromosome pair 19 have been associated with various genetic disorders, including Sotos syndrome, which is characterized by overgrowth, developmental delay, and distinctive facial features, and Smith-Magenis syndrome, which is marked by intellectual disability, behavioral problems, and distinct physical features.

'Poisonous fishes' are species of fish that contain toxic substances in their bodies, which can cause harm or injury to other organisms, including humans. These toxins can be present in various parts of the fish, such as the flesh, skin, organs, or even in the form of venomous spines.

There are several types of poisonous fishes, including:

1. Pufferfish (Fugu): These fish contain a potent neurotoxin called tetrodotoxin (TTX) in their organs, especially the liver and ovaries. TTX is highly toxic and can cause paralysis and death if ingested in even small amounts.
2. Stonefish: Stonefishes are venomous fishes that have sharp, spiny dorsal fins that can inject a painful toxin into the skin when stepped on or touched. The venom can cause severe pain, swelling, and tissue damage, and in some cases, it can lead to respiratory failure and death.
3. Blue-ringed octopuses: While not technically fish, blue-ringed octopuses are often included in discussions of poisonous marine life. They have venom glands that produce a powerful neurotoxin called tetrodotoxin (TTX), which can cause paralysis and death if it enters the bloodstream.
4. Cone snails: Cone snails are predatory mollusks that use a harpoon-like tooth to inject venom into their prey. Some species of cone snail have venom that contains powerful neurotoxins, which can cause paralysis and death in humans.
5. Lionfish: Lionfish are venomous fishes that have spines on their dorsal, pelvic, and anal fins that can inject a painful toxin into the skin when touched or stepped on. The venom can cause pain, swelling, and other symptoms, but it is rarely fatal to humans.

It's important to note that many species of fish can become toxic if they consume harmful algae blooms (HABs) or other contaminants in their environment. These "toxic fishes" are not considered poisonous by definition, as their toxicity is not inherent to their biology.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Androstenedione is a steroid hormone produced by the adrenal glands, ovaries, and testes. It is a precursor to both male and female sex hormones, including testosterone and estrogen. In the adrenal glands, it is produced from cholesterol through a series of biochemical reactions involving several enzymes. Androstenedione can also be converted into other steroid hormones, such as dehydroepiandrosterone (DHEA) and estrone.

In the body, androstenedione plays an important role in the development and maintenance of secondary sexual characteristics, such as facial hair and a deep voice in men, and breast development and menstrual cycles in women. It also contributes to bone density, muscle mass, and overall physical strength.

Androstenedione is available as a dietary supplement and has been marketed as a way to boost athletic performance and increase muscle mass. However, its effectiveness for these purposes is not supported by scientific evidence, and it may have harmful side effects when taken in high doses or for extended periods of time. Additionally, the use of androstenedione as a dietary supplement is banned by many sports organizations, including the International Olympic Committee and the National Collegiate Athletic Association.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Congenital hand deformities refer to physical abnormalities or malformations of the hand, wrist, and/or digits (fingers) that are present at birth. These deformities can result from genetic factors, environmental influences during pregnancy, or a combination of both. They may affect the bones, muscles, tendons, joints, and other structures in the hand, leading to varying degrees of impairment in function and appearance.

There are numerous types of congenital hand deformities, some of which include:

1. Polydactyly: The presence of extra digits on the hand, which can be fully formed or rudimentary.
2. Syndactyly: Webbing or fusion of two or more fingers, which may involve soft tissue only or bone as well.
3. Clinodactyly: A curved finger due to a sideways deviation of the fingertip, often affecting the little finger.
4. Camptodactyly: Permanent flexion or bending of one or more fingers, typically involving the proximal interphalangeal joint.
5. Trigger Finger/Thumb: A condition where a finger or thumb becomes locked in a bent position due to thickening and narrowing of the tendon sheath.
6. Radial Club Hand (Radial Ray Deficiency): Underdevelopment or absence of the radius bone, resulting in a short, curved forearm and hand deformity.
7. Ulnar Club Hand (Ulnar Ray Deficiency): Underdevelopment or absence of the ulna bone, leading to a short, curved forearm and hand deformity.
8. Cleidocranial Dysplasia: A genetic disorder affecting bone growth, resulting in underdeveloped or absent collarbones, dental abnormalities, and occasionally hand deformities.
9. Apert Syndrome: A rare genetic disorder characterized by the fusion of fingers and toes (syndactyly) and other skeletal abnormalities.
10. Holt-Oram Syndrome: A genetic disorder involving heart defects and upper limb deformities, such as radial ray deficiency or thumb anomalies.

Treatment for hand deformities varies depending on the specific condition and severity. Options may include physical therapy, bracing, splinting, medications, or surgical intervention.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Microsatellite repeats, also known as short tandem repeats (STRs), are repetitive DNA sequences made up of units of 1-6 base pairs that are repeated in a head-to-tail manner. These repeats are spread throughout the human genome and are highly polymorphic, meaning they can have different numbers of repeat units in different individuals.

Microsatellites are useful as genetic markers because of their high degree of variability. They are commonly used in forensic science to identify individuals, in genealogy to trace ancestry, and in medical research to study genetic diseases and disorders. Mutations in microsatellite repeats have been associated with various neurological conditions, including Huntington's disease and fragile X syndrome.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

Genetic counseling is a process of communication and education between a healthcare professional and an individual or family, aimed at understanding, adapting to, and managing the medical, psychological, and familial implications of genetic contributions to disease. This includes providing information about the risk of inherited conditions, explaining the implications of test results, discussing reproductive options, and offering support and resources for coping with a genetic condition. Genetic counselors are trained healthcare professionals who specialize in helping people understand genetic information and its impact on their health and lives.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Chromosome disorders are a group of genetic conditions caused by abnormalities in the number or structure of chromosomes. Chromosomes are thread-like structures located in the nucleus of cells that contain most of the body's genetic material, which is composed of DNA and proteins. Normally, humans have 23 pairs of chromosomes, for a total of 46 chromosomes.

Chromosome disorders can result from changes in the number of chromosomes (aneuploidy) or structural abnormalities in one or more chromosomes. Some common examples of chromosome disorders include:

1. Down syndrome: a condition caused by an extra copy of chromosome 21, resulting in intellectual disability, developmental delays, and distinctive physical features.
2. Turner syndrome: a condition that affects only females and is caused by the absence of all or part of one X chromosome, resulting in short stature, lack of sexual development, and other symptoms.
3. Klinefelter syndrome: a condition that affects only males and is caused by an extra copy of the X chromosome, resulting in tall stature, infertility, and other symptoms.
4. Cri-du-chat syndrome: a condition caused by a deletion of part of the short arm of chromosome 5, resulting in intellectual disability, developmental delays, and a distinctive cat-like cry.
5. Fragile X syndrome: a condition caused by a mutation in the FMR1 gene on the X chromosome, resulting in intellectual disability, behavioral problems, and physical symptoms.

Chromosome disorders can be diagnosed through various genetic tests, such as karyotyping, chromosomal microarray analysis (CMA), or fluorescence in situ hybridization (FISH). Treatment for these conditions depends on the specific disorder and its associated symptoms and may include medical interventions, therapies, and educational support.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Potassium citrate is a medication and dietary supplement that contains potassium and citrate. Medically, it is used to treat and prevent kidney stones, as well as to manage metabolic acidosis in people with chronic kidney disease. Potassium citrate works by increasing the pH of urine, making it less acidic, which can help to dissolve certain types of kidney stones and prevent new ones from forming. It is also used as an alkalizing agent in the treatment of various conditions that cause acidosis.

In addition to its medical uses, potassium citrate is also found naturally in some fruits and vegetables, such as oranges, grapefruits, lemons, limes, and spinach. It is often used as a food additive and preservative, and can be found in a variety of processed foods and beverages.

It's important to note that taking too much potassium citrate can lead to high levels of potassium in the blood, which can be dangerous. Therefore, it is important to follow the dosage instructions carefully and talk to your doctor before taking this medication if you have any medical conditions or are taking any other medications.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Tumor suppressor proteins are a type of regulatory protein that helps control the cell cycle and prevent cells from dividing and growing in an uncontrolled manner. They work to inhibit tumor growth by preventing the formation of tumors or slowing down their progression. These proteins can repair damaged DNA, regulate gene expression, and initiate programmed cell death (apoptosis) if the damage is too severe for repair.

Mutations in tumor suppressor genes, which provide the code for these proteins, can lead to a decrease or loss of function in the resulting protein. This can result in uncontrolled cell growth and division, leading to the formation of tumors and cancer. Examples of tumor suppressor proteins include p53, Rb (retinoblastoma), and BRCA1/2.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Congenital foot deformities refer to abnormal structural changes in the foot that are present at birth. These deformities can vary from mild to severe and may affect the shape, position, or function of one or both feet. Common examples include clubfoot (talipes equinovarus), congenital vertical talus, and cavus foot. Congenital foot deformities can be caused by genetic factors, environmental influences during fetal development, or a combination of both. Treatment options may include stretching, casting, surgery, or a combination of these approaches, depending on the severity and type of the deformity.

Gamma-crystallins are a type of structural protein found in the lens of the eye. They are part of the crystallin family, which also includes alpha- and beta-crystallins. These proteins are responsible for maintaining the transparency and refractive properties of the lens, allowing light to pass through and focus on the retina. Mutations in the genes that encode gamma-crystallins have been associated with various forms of cataracts, which are clouding of the lens that can impair vision. Gamma-crystallins are primarily expressed during embryonic development and decrease in expression after birth.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Ovulation induction is a medical procedure that involves the stimulation of ovulation (the release of an egg from the ovaries) in women who have difficulties conceiving due to ovulatory disorders. This is typically achieved through the use of medications such as clomiphene citrate or gonadotropins, which promote the development and maturation of follicles in the ovaries containing eggs. The process is closely monitored through regular ultrasounds and hormone tests to ensure appropriate response and minimize the risk of complications like multiple pregnancies. Ovulation induction may be used as a standalone treatment or in conjunction with other assisted reproductive technologies (ART), such as intrauterine insemination (IUI) or in vitro fertilization (IVF).

Sodium-Potassium-Exchanging ATPase (also known as Na+/K+ ATPase) is a type of active transporter found in the cell membrane of many types of cells. It plays a crucial role in maintaining the electrochemical gradient and membrane potential of animal cells by pumping sodium ions (Na+) out of the cell and potassium ions (K+) into the cell, using energy derived from ATP hydrolysis.

This transporter is composed of two main subunits: a catalytic α-subunit that contains the binding sites for Na+, K+, and ATP, and a regulatory β-subunit that helps in the proper targeting and functioning of the pump. The Na+/K+ ATPase plays a critical role in various physiological processes, including nerve impulse transmission, muscle contraction, and kidney function.

In summary, Sodium-Potassium-Exchanging ATPase is an essential membrane protein that uses energy from ATP to transport sodium and potassium ions across the cell membrane, thereby maintaining ionic gradients and membrane potentials necessary for normal cellular function.

Menstruation disturbances, also known as menstrual disorders, refer to any irregularities or abnormalities in a woman's menstrual cycle. These disturbances can manifest in various ways, including:

1. Amenorrhea: The absence of menstrual periods for three consecutive cycles or more in women of reproductive age.
2. Oligomenorrhea: Infrequent or light menstrual periods that occur at intervals greater than 35 days.
3. Dysmenorrhea: Painful menstruation, often accompanied by cramping, pelvic pain, and other symptoms that can interfere with daily activities.
4. Menorrhagia: Heavy or prolonged menstrual periods that last longer than seven days or result in excessive blood loss, leading to anemia or other health complications.
5. Polymenorrhea: Abnormally frequent menstrual periods that occur at intervals of 21 days or less.
6. Metrorrhagia: Irregular and unpredictable vaginal bleeding between expected menstrual periods, which can be caused by various factors such as hormonal imbalances, infections, or structural abnormalities.

Menstruation disturbances can have significant impacts on a woman's quality of life, fertility, and overall health. They may result from various underlying conditions, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, uterine fibroids, endometriosis, or sexually transmitted infections. Proper diagnosis and treatment of the underlying cause are essential for managing menstruation disturbances effectively.

Medical definitions of "malformed nails" may vary, but generally, it refers to a condition where the nails are abnormally formed or shaped. This can include various deformities such as:

1. Koilonychia: Also known as "spoon nails," where the nails appear scooped out and concave.
2. Pterygium: A condition where skin grows over the nail, causing it to adhere to the finger.
3. Onychogryphosis: Also known as "ram's horn nails," where the nails become thick, curved, and overgrown.
4. Brachyonychia: Shortened nails that do not grow normally.
5. Onychauxis: Thickening of the nails.
6. Leukonychia: White spots or lines on the nails.
7. Beau's lines: Indentations across the nails, often caused by a previous illness or injury.
8. Pitting: Small depressions or holes in the nails.
9. Cracking or splitting of the nails.

These nail abnormalities can be caused by various factors such as genetics, fungal infections, trauma, nutritional deficiencies, and underlying medical conditions.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

17-α-Hydroxyprogesterone is a naturally occurring hormone produced by the adrenal glands and, in smaller amounts, by the ovaries and testes. It is an intermediate in the biosynthesis of steroid hormones, including cortisol, aldosterone, and sex hormones such as testosterone and estrogen.

In a medical context, 17-α-Hydroxyprogesterone may also refer to a synthetic form of this hormone that is used in the treatment of certain medical conditions. For example, a medication called 17-alpha-hydroxyprogesterone caproate (17-OHP) is used to reduce the risk of preterm birth in women who have previously given birth prematurely. It works by suppressing uterine contractions and promoting fetal lung maturity.

It's important to note that 17-alpha-Hydroxyprogesterone should only be used under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Beta-crystallin A chain is a protein that is a component of the beta-crystallin complex, which is a major structural element of the vertebrate eye lens. The beta-crystallins are organized into two subfamilies, called beta-A and beta-B, based on their primary structures.

The beta-crystallin A chain is a polypeptide chain that contains approximately 100 amino acids and has a molecular weight of around 12 kilodaltons. It is encoded by the CRYBA1 gene in humans. The protein is characterized by four conserved domains, called Greek key motifs, which are involved in the formation of the quaternary structure of the beta-crystallin complex.

Mutations in the CRYBA1 gene have been associated with various forms of congenital cataracts, which are clouding of the eye lens that can lead to visual impairment or blindness. The precise function of beta-crystallins is not fully understood, but they are thought to play a role in maintaining the transparency and refractive properties of the eye lens.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

Renal circulation refers to the blood flow specifically dedicated to the kidneys. The main function of the kidneys is to filter waste and excess fluids from the blood, which then get excreted as urine. To perform this function efficiently, the kidneys receive a substantial amount of the body's total blood supply - about 20-25% in a resting state.

The renal circulation process begins when deoxygenated blood from the rest of the body returns to the right side of the heart and is pumped into the lungs for oxygenation. Oxygen-rich blood then leaves the left side of the heart through the aorta, the largest artery in the body.

A portion of this oxygen-rich blood moves into the renal arteries, which branch directly from the aorta and supply each kidney with blood. Within the kidneys, these arteries divide further into smaller vessels called afferent arterioles, which feed into a network of tiny capillaries called the glomerulus within each nephron (the functional unit of the kidney).

The filtration process occurs in the glomeruli, where waste materials and excess fluids are separated from the blood. The resulting filtrate then moves through another set of capillaries, the peritubular capillaries, which surround the renal tubules (the part of the nephron that reabsorbs necessary substances back into the bloodstream).

The now-deoxygenated blood from the kidneys' capillary network coalesces into venules and then merges into the renal veins, which ultimately drain into the inferior vena cava and return the blood to the right side of the heart. This highly specialized circulation system allows the kidneys to efficiently filter waste while maintaining appropriate blood volume and composition.

Bile ducts are tubular structures that carry bile from the liver to the gallbladder for storage or directly to the small intestine to aid in digestion. There are two types of bile ducts: intrahepatic and extrahepatic. Intrahepatic bile ducts are located within the liver and drain bile from liver cells, while extrahepatic bile ducts are outside the liver and include the common hepatic duct, cystic duct, and common bile duct. These ducts can become obstructed or inflamed, leading to various medical conditions such as cholestasis, cholecystitis, and gallstones.

Sensorineural hearing loss (SNHL) is a type of hearing impairment that occurs due to damage to the inner ear (cochlea) or to the nerve pathways from the inner ear to the brain. It can be caused by various factors such as aging, exposure to loud noises, genetics, certain medical conditions (like diabetes and heart disease), and ototoxic medications.

SNHL affects the ability of the hair cells in the cochlea to convert sound waves into electrical signals that are sent to the brain via the auditory nerve. As a result, sounds may be perceived as muffled, faint, or distorted, making it difficult to understand speech, especially in noisy environments.

SNHL is typically permanent and cannot be corrected with medication or surgery, but hearing aids or cochlear implants can help improve communication and quality of life for those affected.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

Sirolimus is a medication that belongs to a class of drugs called immunosuppressants. It is also known as rapamycin. Sirolimus works by inhibiting the mammalian target of rapamycin (mTOR), which is a protein that plays a key role in cell growth and division.

Sirolimus is primarily used to prevent rejection of transplanted organs, such as kidneys, livers, and hearts. It works by suppressing the activity of the immune system, which can help to reduce the risk of the body rejecting the transplanted organ. Sirolimus is often used in combination with other immunosuppressive drugs, such as corticosteroids and calcineurin inhibitors.

Sirolimus is also being studied for its potential therapeutic benefits in a variety of other conditions, including cancer, tuberous sclerosis complex, and lymphangioleiomyomatosis. However, more research is needed to fully understand the safety and efficacy of sirolimus in these contexts.

It's important to note that sirolimus can have significant side effects, including increased risk of infections, mouth sores, high blood pressure, and kidney damage. Therefore, it should only be used under the close supervision of a healthcare provider.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

An Encephalocele is a type of neural tube defect that occurs when the bones of the skull do not close completely during fetal development. This results in a sac-like protrusion of the brain and the membranes that cover it through an opening in the skull. The sac may be visible on the scalp, forehead, or back of the head, and can vary in size. Encephaloceles can cause a range of symptoms, including developmental delays, intellectual disabilities, vision problems, and seizures, depending on the severity and location of the defect. Treatment typically involves surgical repair of the encephalocele soon after birth to prevent further damage to the brain and improve outcomes.

A germ-line mutation is a genetic change that occurs in the egg or sperm cells (gametes), and thus can be passed down from parents to their offspring. These mutations are present throughout the entire body of the offspring, as they are incorporated into the DNA of every cell during embryonic development.

Germ-line mutations differ from somatic mutations, which occur in other cells of the body that are not involved in reproduction. While somatic mutations can contribute to the development of cancer and other diseases within an individual, they are not passed down to future generations.

It's important to note that germ-line mutations can have significant implications for medical genetics and inherited diseases. For example, if a parent has a germ-line mutation in a gene associated with a particular disease, their offspring may have an increased risk of developing that disease as well.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Human chromosome pair 1 refers to the first pair of chromosomes in a set of 23 pairs found in the cells of the human body, excluding sex cells (sperm and eggs). Each cell in the human body, except for the gametes, contains 46 chromosomes arranged in 23 pairs. These chromosomes are rod-shaped structures that contain genetic information in the form of DNA.

Chromosome pair 1 is the largest pair, making up about 8% of the total DNA in a cell. Each chromosome in the pair consists of two arms - a shorter p arm and a longer q arm - connected at a centromere. Chromosome 1 carries an estimated 2,000-2,500 genes, which are segments of DNA that contain instructions for making proteins or regulating gene expression.

Defects or mutations in the genes located on chromosome 1 can lead to various genetic disorders and diseases, such as Charcot-Marie-Tooth disease type 1A, Huntington's disease, and certain types of cancer.

Spinocerebellar ataxias (SCAs) are a group of genetic disorders that affect the cerebellum, which is the part of the brain responsible for coordinating muscle movements. SCAs are characterized by progressive problems with balance, speech, and coordination. They are caused by mutations in various genes that result in the production of abnormal proteins that accumulate in neurons, leading to their degeneration.

There are over 40 different types of SCAs, each caused by a different genetic mutation. Some of the more common types include SCA1, SCA2, SCA3, SCA6, and SCA7. The symptoms and age of onset can vary widely depending on the type of SCA.

In addition to problems with coordination and balance, people with SCAs may also experience muscle weakness, stiffness, tremors, spasticity, and difficulty swallowing or speaking. Some types of SCAs can also cause visual disturbances, hearing loss, and cognitive impairment. Currently, there is no cure for SCAs, but treatments such as physical therapy, speech therapy, and medications can help manage the symptoms.

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Electroretinography (ERG) is a medical test used to evaluate the functioning of the retina, which is the light-sensitive tissue located at the back of the eye. The test measures the electrical responses of the retina to light stimulation.

During the procedure, a special contact lens or electrode is placed on the surface of the eye to record the electrical activity generated by the retina's light-sensitive cells (rods and cones) and other cells in the retina. The test typically involves presenting different levels of flashes of light to the eye while the electrical responses are recorded.

The resulting ERG waveform provides information about the overall health and function of the retina, including the condition of the photoreceptors, the integrity of the inner retinal layers, and the health of the retinal ganglion cells. This test is often used to diagnose and monitor various retinal disorders, such as retinitis pigmentosa, macular degeneration, and diabetic retinopathy.

Blood Urea Nitrogen (BUN) is a laboratory value that measures the amount of urea nitrogen in the blood. Urea nitrogen is a waste product that is formed when proteins are broken down in the liver. The kidneys filter urea nitrogen from the blood and excrete it as urine.

A high BUN level may indicate impaired kidney function, as the kidneys are not effectively removing urea nitrogen from the blood. However, BUN levels can also be affected by other factors such as dehydration, heart failure, or gastrointestinal bleeding. Therefore, BUN should be interpreted in conjunction with other laboratory values and clinical findings.

The normal range for BUN is typically between 7-20 mg/dL (milligrams per deciliter) or 2.5-7.1 mmol/L (millimoles per liter), but the reference range may vary depending on the laboratory.

Rhodopsin, also known as visual purple, is a light-sensitive pigment found in the rods of the vertebrate retina. It is a complex protein molecule made up of two major components: an opsin protein and retinal, a form of vitamin A. When light hits the retinal in rhodopsin, it changes shape, which initiates a series of chemical reactions leading to the activation of the visual pathway and ultimately results in vision. This process is known as phototransduction. Rhodopsin plays a crucial role in low-light vision or scotopic vision.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

A ureter is a thin, muscular tube that transports urine from the kidney to the bladder. In humans, there are two ureters, one for each kidney, and they are typically about 10-12 inches long. The ureters are lined with a special type of cells called transitional epithelium that can stretch and expand as urine passes through them. They are located in the retroperitoneal space, which is the area behind the peritoneum, the membrane that lines the abdominal cavity. The ureters play a critical role in the urinary system by ensuring that urine flows from the kidneys to the bladder for storage and eventual elimination from the body.

Renal blood flow (RBF) is the total volume of blood that flows through the kidneys per unit time. Effective renal plasma flow (ERPF) is the portion of the renal plasma flow that reaches and perfuses the functional units of the kidney, the nephrons. It is called "effective" because it is the fraction of the renal plasma flow that effectively takes part in the filtration process, ultimately forming urine. ERPF can be measured by determining the clearance of a substance that is freely filtered by the glomeruli and neither secreted nor absorbed by the tubules, such as para-aminohippuric acid (PAH). The normal ERPF in humans is approximately 625-675 mL/min per 1.73 m².

Ectodermal dysplasia (ED) is a group of genetic disorders that affect the development and formation of ectodermal tissues, which include the skin, hair, nails, teeth, and sweat glands. The condition is usually present at birth or appears in early infancy.

The symptoms of ED can vary widely depending on the specific type and severity of the disorder. Common features may include:

* Sparse or absent hair
* Thin, wrinkled, or rough skin
* Abnormal or missing teeth
* Nail abnormalities
* Absent or reduced sweat glands, leading to heat intolerance and problems regulating body temperature
* Ear abnormalities, which can result in hearing loss
* Eye abnormalities

ED is caused by mutations in genes that are involved in the development of ectodermal tissues. Most cases of ED are inherited in an autosomal dominant or autosomal recessive pattern, meaning that a child can inherit the disorder even if only one parent (dominant) or both parents (recessive) carry the mutated gene.

There is no cure for ED, but treatment is focused on managing the symptoms and improving quality of life. This may include measures to maintain body temperature, such as cooling vests or frequent cool baths; dental treatments to replace missing teeth; hearing aids for hearing loss; and skin care regimens to prevent dryness and irritation.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Cyproterone acetate is a synthetic steroid hormone with anti-androgen and progestogenic properties. It works by blocking the action of androgens (male sex hormones) in the body, which helps to reduce symptoms associated with excessive androgen production such as severe acne or hirsutism (excessive hair growth).

Cyproterone acetate is used in the treatment of conditions such as prostate cancer, where it can help to slow the growth of cancer cells by reducing the levels of androgens in the body. It is also used in the treatment of sexual deviations, such as pedophilia or exhibitionism, as it can reduce sexual desire.

In addition, cyproterone acetate is sometimes used in combination with estrogen in hormone replacement therapy for transgender women to suppress the production of testosterone and promote feminization.

It's important to note that cyproterone acetate can have significant side effects and its use should be under the close supervision of a healthcare professional.

A pancreatic cyst is a fluid-filled sac that forms in the pancreas, a gland located behind the stomach that produces enzymes to help with digestion and hormones to regulate blood sugar levels. Pancreatic cysts can be classified into several types, including congenital (present at birth), retention (formed due to blockage of pancreatic ducts), and pseudocysts (formed as a result of injury or inflammation).

While some pancreatic cysts may not cause any symptoms, others can lead to abdominal pain, bloating, nausea, vomiting, or jaundice. Some cysts may also have the potential to become cancerous over time. Therefore, it is essential to monitor and evaluate pancreatic cysts through imaging tests such as ultrasound, CT scan, or MRI, and in some cases, endoscopic ultrasound (EUS) with fine-needle aspiration (FNA) may be necessary for further evaluation.

Treatment options for pancreatic cysts depend on the type, size, location, and symptoms of the cyst, as well as the patient's overall health condition. Some cysts may require surgical removal, while others can be managed with regular monitoring and follow-up care. It is essential to consult a healthcare provider for proper evaluation and management of pancreatic cysts.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Dehydroepiandrosterone sulfate (DHEA-S) is a steroid hormone that is produced by the adrenal glands. It is a modified form of dehydroepiandrosterone (DHEA), which is converted to DHEA-S in the body for storage and later conversion back to DHEA or other steroid hormones, such as testosterone and estrogen. DHEA-S is often measured in the blood as a marker of adrenal function. It is also available as a dietary supplement, although its effectiveness for any medical purpose is not well established.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Keratoderma, palmoplantar is a medical term that refers to a group of skin conditions characterized by thickening and hardening (hyperkeratosis) of the skin on the palms of the hands and soles of the feet. This condition can affect people of all ages, but it's most commonly seen in children.

The thickening of the skin is caused by an overproduction of keratin, a protein that helps to form the tough, outer layer of the skin. In palmoplantar keratoderma, this excess keratin accumulates in the stratum corneum, the outermost layer of the epidermis, leading to the formation of rough, scaly, and thickened patches on the palms and soles.

There are several different types of palmoplantar keratoderma, each with its own specific symptoms and causes. Some forms of the condition are inherited and present at birth or develop in early childhood, while others may be acquired later in life as a result of an underlying medical condition, such as atopic dermatitis, lichen planus, or psoriasis.

Treatment for palmoplantar keratoderma typically involves the use of emollients and keratolytic agents to help soften and remove the thickened skin. In some cases, oral retinoids or other systemic medications may be necessary to manage more severe symptoms. It's important to consult with a healthcare provider for an accurate diagnosis and treatment plan.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

The descending colon is a part of the large intestine in the human digestive system. It is called "descending" because it is located inferiorly and posteriorly to the transverse colon, and its direction goes downward as it continues toward the rectum. The descending colon receives digested food material from the transverse colon via the splenic flexure, also known as the left colic flexure.

The primary function of the descending colon is to absorb water, electrolytes, and any remaining nutrients from the undigested food materials that have passed through the small intestine. The descending colon also stores this waste material temporarily before it moves into the rectum for eventual elimination from the body.

The descending colon's wall contains a layer of smooth muscle, which helps propel the waste material along the gastrointestinal tract via peristalsis. Additionally, the inner mucosal lining of the descending colon contains numerous goblet cells that produce and secrete mucus to lubricate the passage of stool and protect the intestinal wall from irritation or damage caused by waste materials.

In summary, the medical definition of 'Colon, Descending' refers to a section of the large intestine responsible for absorbing water and electrolytes while storing and eliminating waste materials through peristaltic movements and mucus secretion.

The Renin-Angiotensin System (RAS) is a complex hormonal system that regulates blood pressure, fluid and electrolyte balance, and vascular resistance. It plays a crucial role in the pathophysiology of hypertension, heart failure, and kidney diseases.

Here's a brief overview of how it works:

1. Renin is an enzyme that is released by the juxtaglomerular cells in the kidneys in response to decreased blood pressure or reduced salt delivery to the distal tubules.
2. Renin acts on a protein called angiotensinogen, which is produced by the liver, converting it into angiotensin I.
3. Angiotensin-converting enzyme (ACE), found in the lungs and other tissues, then converts angiotensin I into angiotensin II, a potent vasoconstrictor that narrows blood vessels and increases blood pressure.
4. Angiotensin II also stimulates the release of aldosterone from the adrenal glands, which promotes sodium and water reabsorption in the kidneys, further increasing blood volume and blood pressure.
5. Additionally, angiotensin II has direct effects on the heart, promoting hypertrophy and remodeling, which can contribute to heart failure.
6. The RAS can be modulated by various medications, such as ACE inhibitors, angiotensin receptor blockers (ARBs), and aldosterone antagonists, which are commonly used to treat hypertension, heart failure, and kidney diseases.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Hereditary eye diseases refer to conditions that affect the eyes and are passed down from parents to their offspring through genetics. These diseases are caused by mutations or changes in an individual's DNA that are inherited from their parents. The mutations can occur in any of the genes associated with eye development, function, or health.

There are many different types of hereditary eye diseases, some of which include:

1. Retinitis Pigmentosa - a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina.
2. Macular Degeneration - a progressive disease that damages the central portion of the retina, impairing vision.
3. Glaucoma - a group of eye conditions that damage the optic nerve, often caused by an increase in pressure inside the eye.
4. Cataracts - clouding of the lens inside the eye, which can lead to blurry vision and blindness.
5. Keratoconus - a progressive eye disease that causes the cornea to thin and bulge outward into a cone shape.
6. Color Blindness - a condition where an individual has difficulty distinguishing between certain colors.
7. Optic Neuropathy - damage to the optic nerve, which can result in vision loss.

The symptoms and severity of hereditary eye diseases can vary widely depending on the specific condition and the individual's genetic makeup. Some conditions may be present at birth or develop in early childhood, while others may not appear until later in life. Treatment options for these conditions may include medication, surgery, or lifestyle changes, and are often most effective when started early.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Mouth abnormalities, also known as oral or orofacial anomalies, refer to structural or functional differences or defects in the mouth and surrounding structures, including the lips, teeth, gums, palate, tongue, and salivary glands. These abnormalities can be present at birth (congenital) or acquired later in life due to injury, disease, or surgery. They can range from minor variations in size, shape, or position of oral structures to more significant anomalies that may affect speech, swallowing, chewing, breathing, and overall quality of life.

Examples of mouth abnormalities include cleft lip and palate, macroglossia (enlarged tongue), microglossia (small tongue), ankyloglossia (tongue-tie), high or narrow palate, bifid uvula (split uvula), dental malocclusion (misaligned teeth), supernumerary teeth (extra teeth), missing teeth, and various oral tumors or cysts. Some mouth abnormalities may require medical intervention, such as surgery, orthodontic treatment, or speech therapy, while others may not necessitate any treatment.

Acne vulgaris is a common skin condition characterized by the formation of various types of blemishes on the skin, such as blackheads, whiteheads, papules, pustules, and cysts or nodules. These lesions typically appear on areas of the body that have a high concentration of sebaceous glands, including the face, neck, chest, back, and shoulders.

Acne vulgaris occurs when hair follicles become clogged with dead skin cells and excess oil (sebum) produced by the sebaceous glands. This blockage provides an ideal environment for bacteria, particularly Propionibacterium acnes, to multiply, leading to inflammation and infection. The severity of acne vulgaris can range from mild with only a few scattered comedones (blackheads or whiteheads) to severe cystic acne, which can cause significant scarring and emotional distress.

The exact causes of acne vulgaris are not fully understood, but several factors contribute to its development, including:

1. Hormonal changes during puberty, menstruation, pregnancy, or due to conditions like polycystic ovary syndrome (PCOS)
2. Genetic predisposition
3. Use of certain medications, such as corticosteroids and lithium
4. Excessive production of sebum due to overactive sebaceous glands
5. Accumulation of dead skin cells that clog pores
6. Bacterial infection (particularly Propionibacterium acnes)
7. Inflammation caused by the body's immune response to bacterial infection and clogged pores

Treatment for acne vulgaris depends on its severity and can include over-the-counter or prescription topical treatments, oral medications, chemical peels, light therapies, or even hormonal therapies in some cases. It is essential to seek professional medical advice from a dermatologist or healthcare provider to determine the most appropriate treatment plan for individual needs.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Charcot-Marie-Tooth disease (CMT) is a group of inherited disorders that cause nerve damage, primarily affecting the peripheral nerves. These are the nerves that transmit signals between the brain and spinal cord to the rest of the body. CMT affects both motor and sensory nerves, leading to muscle weakness and atrophy, as well as numbness or tingling in the hands and feet.

The disease is named after the three physicians who first described it: Jean-Martin Charcot, Pierre Marie, and Howard Henry Tooth. CMT is characterized by its progressive nature, meaning symptoms typically worsen over time, although the rate of progression can vary significantly among individuals.

There are several types of CMT, classified based on their genetic causes and patterns of inheritance. The two most common forms are CMT1 and CMT2:

1. CMT1: This form is caused by mutations in the genes responsible for the myelin sheath, which insulates peripheral nerves and allows for efficient signal transmission. As a result, demyelination occurs, slowing down nerve impulses and causing muscle weakness, particularly in the lower limbs. Symptoms usually begin in childhood or adolescence and include foot drop, high arches, and hammertoes.
2. CMT2: This form is caused by mutations in the genes responsible for the axons, the nerve fibers that transmit signals within peripheral nerves. As a result, axonal degeneration occurs, leading to muscle weakness and atrophy. Symptoms usually begin in early adulthood and progress more slowly than CMT1. They primarily affect the lower limbs but can also involve the hands and arms.

Diagnosis of CMT typically involves a combination of clinical evaluation, family history, nerve conduction studies, and genetic testing. While there is no cure for CMT, treatment focuses on managing symptoms and maintaining mobility and function through physical therapy, bracing, orthopedic surgery, and pain management.

Syndactyly is a congenital condition where two or more digits (fingers or toes) are fused together. It can occur in either the hand or foot, and it can involve fingers or toes on both sides of the hand or foot. The fusion can be partial, where only the skin is connected, or complete, where the bones are also connected. Syndactyly is usually noticed at birth and can be associated with other genetic conditions or syndromes. Surgical intervention may be required to separate the digits and improve function and appearance.

Ovulation is the medical term for the release of a mature egg from an ovary during a woman's menstrual cycle. The released egg travels through the fallopian tube where it may be fertilized by sperm if sexual intercourse has occurred recently. If the egg is not fertilized, it will break down and leave the body along with the uterine lining during menstruation. Ovulation typically occurs around day 14 of a 28-day menstrual cycle, but the timing can vary widely from woman to woman and even from cycle to cycle in the same woman.

During ovulation, there are several physical changes that may occur in a woman's body, such as an increase in basal body temperature, changes in cervical mucus, and mild cramping or discomfort on one side of the lower abdomen (known as mittelschmerz). These symptoms can be used to help predict ovulation and improve the chances of conception.

It's worth noting that some medical conditions, such as polycystic ovary syndrome (PCOS) or premature ovarian failure, may affect ovulation and make it difficult for a woman to become pregnant. In these cases, medical intervention may be necessary to help promote ovulation and increase the chances of conception.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Albuminuria is a medical condition that refers to the presence of albumin in the urine. Albumin is a type of protein normally found in the blood, but not in the urine. When the kidneys are functioning properly, they prevent large proteins like albumin from passing through into the urine. However, when the kidneys are damaged or not working correctly, such as in nephrotic syndrome or other kidney diseases, small amounts of albumin can leak into the urine.

The amount of albumin in the urine is often measured in milligrams per liter (mg/L) or in a spot urine sample, as the albumin-to-creatinine ratio (ACR). A small amount of albumin in the urine is called microalbuminuria, while a larger amount is called macroalbuminuria or proteinuria. The presence of albuminuria can indicate kidney damage and may be a sign of underlying medical conditions such as diabetes or high blood pressure. It is important to monitor and manage albuminuria to prevent further kidney damage and potential complications.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Amenorrhea is a medical condition characterized by the absence or cessation of menstrual periods in women of reproductive age. It can be categorized as primary amenorrhea, when a woman who has not yet had her first period at the expected age (usually around 16 years old), or secondary amenorrhea, when a woman who has previously had regular periods stops getting them for six months or more.

There are various causes of amenorrhea, including hormonal imbalances, pregnancy, breastfeeding, menopause, extreme weight loss or gain, eating disorders, intense exercise, stress, chronic illness, tumors, and certain medications or medical treatments. In some cases, amenorrhea may indicate an underlying medical condition that requires further evaluation and treatment.

Amenorrhea can have significant impacts on a woman's health and quality of life, including infertility, bone loss, and emotional distress. Therefore, it is essential to consult with a healthcare provider if you experience amenorrhea or missed periods to determine the underlying cause and develop an appropriate treatment plan.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Human chromosome pair 12 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. In humans, there are 23 pairs of chromosomes, for a total of 46 chromosomes in each cell. Chromosome pair 12 is the 12th pair of autosomal chromosomes, meaning they are not sex chromosomes (X or Y).

Chromosome 12 is a medium-sized chromosome and contains an estimated 130 million base pairs of DNA. It contains around 1,200 genes that provide instructions for making proteins and regulating various cellular processes. Some of the genes located on chromosome 12 include those involved in metabolism, development, and response to environmental stimuli.

Abnormalities in chromosome 12 can lead to genetic disorders, such as partial trisomy 12q, which is characterized by an extra copy of the long arm of chromosome 12, and Jacobsen syndrome, which is caused by a deletion of the distal end of the long arm of chromosome 12.

Satellite DNA is a type of DNA sequence that is repeated in a tandem arrangement in the genome. These repeats are usually relatively short, ranging from 2 to 10 base pairs, and are often present in thousands to millions of copies arranged in head-to-tail fashion. Satellite DNA can be found in centromeric and pericentromeric regions of chromosomes, as well as at telomeres and other heterochromatic regions of the genome.

Due to their repetitive nature, satellite DNAs are often excluded from the main part of the genome during DNA sequencing projects, and therefore have been referred to as "satellite" DNA. However, recent studies suggest that satellite DNA may play important roles in chromosome structure, function, and evolution.

It's worth noting that not all repetitive DNA sequences are considered satellite DNA. For example, microsatellites and minisatellites are also repetitive DNA sequences, but they have different repeat lengths and arrangements than satellite DNA.

Frontal lobe epilepsy is a type of focal epilepsy, which means that the seizures originate from a specific area in the brain called the frontal lobe. The frontal lobe is located at the front part of the brain and is responsible for various functions such as motor function, problem-solving, decision making, emotional expression, and social behavior.

In frontal lobe epilepsy, seizures can be quite varied in their presentation, but they often occur during sleep or wakefulness and may include symptoms such as:

* Brief staring spells or automatisms (such as lip smacking, chewing, or fumbling movements)
* Sudden and frequent falls or drops
* Vocalizations or sounds
* Complex behaviors, such as agitation, aggression, or sexual arousal
* Auras or warning sensations before the seizure

Frontal lobe epilepsy can be difficult to diagnose due to the varied nature of the seizures and their occurrence during sleep. Diagnostic tests such as electroencephalogram (EEG) and imaging studies like magnetic resonance imaging (MRI) may be used to help confirm the diagnosis. Treatment typically involves medication, but in some cases, surgery may be recommended if medications are not effective or cause significant side effects.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Aquaporin 2 (AQP2) is a type of aquaporin, which is a water channel protein found in the membranes of cells. Specifically, AQP2 is located in the principal cells of the collecting ducts in the kidneys. It plays a crucial role in regulating water reabsorption and urine concentration by facilitating the movement of water across the cell membrane in response to the hormone vasopressin (also known as antidiuretic hormone). When vasopressin binds to receptors on the cell surface, it triggers a cascade of intracellular signals that lead to the translocation of AQP2 water channels from intracellular vesicles to the apical membrane. This increases the permeability of the apical membrane to water, allowing for efficient reabsorption of water and concentration of urine. Dysfunction in AQP2 has been implicated in various kidney disorders, such as nephrogenic diabetes insipidus.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Peripherins are a family of neuron-specific type III intermediate filament proteins that are expressed in the peripheral nervous system. They play crucial roles in maintaining the structural integrity and stability of nerve cells, particularly during development and regeneration. Peripherins have also been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Charcot-Marie-Tooth disease (CMT). There are several isoforms of peripherins, with peripherin 2 being the most widely studied. Mutations in the gene encoding peripherin 2 have been linked to certain forms of CMT.

Hereditary Hemorrhagic Telangiectasia (HHT) is a rare genetic disorder that affects the blood vessels. It is also known as Osler-Weber-Rendu syndrome. This condition is characterized by the formation of abnormal blood vessels called telangiectases, which are small red spots or tiny bulges that can be found in the skin, mucous membranes (like those inside the nose, mouth, and GI tract), and sometimes in vital organs like the lungs and brain.

These telangiectases have a tendency to bleed easily, leading to potentially serious complications such as anemia due to chronic blood loss, and in some cases, strokes or brain abscesses if the telangiectases in the brain rupture. HHT is typically inherited in an autosomal dominant pattern, meaning that a child has a 50% chance of inheriting the gene from an affected parent. There are several genes associated with HHT, the most common being ACVRL1, ENG, and SMAD4.

Alpha-globulins are a group of proteins present in blood plasma, which are classified based on their electrophoretic mobility. They migrate between albumin and beta-globulins during electrophoresis. Alpha-globulins include several proteins, such as alpha-1 antitrypsin, alpha-1 acid glycoprotein, and haptoglobin. These proteins play various roles in the body, including transporting and regulating other molecules, participating in immune responses, and maintaining oncotic pressure in blood vessels.

Molecular diagnostic techniques are a group of laboratory methods used to analyze biological markers in DNA, RNA, and proteins to identify specific health conditions or diseases at the molecular level. These techniques include various methods such as polymerase chain reaction (PCR), DNA sequencing, gene expression analysis, fluorescence in situ hybridization (FISH), and mass spectrometry.

Molecular diagnostic techniques are used to detect genetic mutations, chromosomal abnormalities, viral and bacterial infections, and other molecular changes associated with various diseases, including cancer, genetic disorders, infectious diseases, and neurological disorders. These techniques provide valuable information for disease diagnosis, prognosis, treatment planning, and monitoring of treatment response.

Compared to traditional diagnostic methods, molecular diagnostic techniques offer several advantages, such as higher sensitivity, specificity, and speed. They can detect small amounts of genetic material or proteins, even in early stages of the disease, and provide accurate results with a lower risk of false positives or negatives. Additionally, molecular diagnostic techniques can be automated, standardized, and performed in high-throughput formats, making them suitable for large-scale screening and research applications.

Sex Hormone-Binding Globulin (SHBG) is a protein produced mainly in the liver that plays a crucial role in regulating the active forms of the sex hormones, testosterone and estradiol, in the body. SHBG binds to these hormones in the bloodstream, creating a reservoir of bound hormones. Only the unbound (or "free") fraction of testosterone and estradiol is considered biologically active and can easily enter cells to exert its effects.

By binding to sex hormones, SHBG helps control their availability and transport in the body. Factors such as age, sex, infection with certain viruses (like hepatitis or HIV), liver disease, obesity, and various medications can influence SHBG levels and, consequently, impact the amount of free testosterone and estradiol in circulation.

SHBG is an essential factor in maintaining hormonal balance and has implications for several physiological processes, including sexual development, reproduction, bone health, muscle mass, and overall well-being. Abnormal SHBG levels can contribute to various medical conditions, such as hypogonadism (low testosterone levels), polycystic ovary syndrome (PCOS), and certain types of cancer.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

The term "family" in a medical context often refers to a group of individuals who are related by blood, marriage, or adoption and who consider themselves to be a single household. This can include spouses, parents, children, siblings, grandparents, and other extended family members. In some cases, the term may also be used more broadly to refer to any close-knit group of people who provide emotional and social support for one another, regardless of their biological or legal relationship.

In healthcare settings, understanding a patient's family dynamics can be important for providing effective care. Family members may be involved in decision-making about medical treatments, providing care and support at home, and communicating with healthcare providers. Additionally, cultural beliefs and values within families can influence health behaviors and attitudes towards medical care, making it essential for healthcare professionals to take a culturally sensitive approach when working with patients and their families.

Adult polycystic kidney Diagram of autosomal dominant polycystic disease with a normal kidney inset for comparison Abdominal CT ... February 2008). "Variation in age at ESRD in autosomal dominant polycystic kidney disease". American Journal of Kidney Diseases ... Torres VE, Harris PC (July 2009). "Autosomal dominant polycystic kidney disease: the last 3 years". Kidney International. 76 (2 ... June 2015). "Peritoneal Dialysis is Limited by Kidney and Liver Volume in Autosomal Dominant Polycystic Kidney Disease". ...
... is a protein that in humans is encoded by the PKD3 gene. Polycystic kidney ... It is known as 'polycystic kidneys'. Polycystic kidney disease (PKD3) is an autosomal dominant inheritance that leads to renal ... "Entrez Gene: Polycystic kidney disease 3 (autosomal dominant)". Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer ... 2016). "Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease ...
PKD1 polycystic kidney disease 1 (autosomal dominant)". GeneReviews/NIH/NCBI/UW entry on Polycystic Kidney Disease, Autosomal ... Mutations of PKD1 are associated with most cases of autosomal dominant polycystic kidney disease, a severe hereditary disorder ... Torres VE, Harris PC, Pirson Y (April 2007). "Autosomal dominant polycystic kidney disease". Lancet. 369 (9569): 1287-301. doi: ... "Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease ...
"Entrez Gene: PKD2 polycystic kidney disease 2 (autosomal dominant)". Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP ( ... Mutations in this gene have been associated with autosomal dominant polycystic kidney disease. Polycystin 2 has been shown to ... Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S (December 1993). "Autosomal dominant polycystic kidney ... September 1997). "A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2)". American ...
"Intracranial cysts in autosomal dominant polycystic kidney disease". J. Neurosurg. 83 (6): 1004-7. doi:10.3171/jns.1995.83. ...
"Autosomal Dominant Polycystic Kidney Disease-More Than a Renal Disease". American Journal of Kidney Diseases. 16 (5): 403-413. ... They go on to say "Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disease, affecting a half ... Gabow 1990 talks about Autosomal Dominant Polycystic Kidney disease and how this disease is genetic. ... the complete loss of kidney function. Kidney failure is known as the end-stage of kidney disease, where dialysis or a kidney ...
... autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). Autosomal ... autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). The abnormal ... "Polycystic kidney disease". MedlinePlus Medical Encyclopedia. Retrieved 2015-07-30. "Autosomal Dominant Polycystic Kidney ... Both autosomal dominant and autosomal recessive polycystic kidney disease cyst formation are tied to abnormal cilia-mediated ...
"Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease". Journal of the American Society of ... Sjögren syndrome Post-infectious glomerulonephritis Living kidney donor Polycystic kidney disease Amyloidosis Pre-malignant ... Thereafter, kidneys retain or reabsorb the filtered proteins and return them to the circulating blood while removing wastes by ... Whenever the kidney is compromised, their ability to filter the blood by differentiating protein from the waste, or retaining ...
Autosomal dominant polycystic kidney disease (ADPKD), a hereditary kidney condition, is known to be associated with cerebral ... "Follow-up of intracranial aneurysms in autosomal-dominant polycystic kidney disease". Kidney International. 65 (5): 1621-7. doi ...
Both autosomal dominant and autosomal recessive polycystic kidney disease can cause nephromegaly.[citation needed] " ... Nephromegaly is the process whereby a kidney or both kidneys become enlarged. ... Kidney diseases, All stub articles, Disease stubs, Genitourinary system stubs). ...
"Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2)". Eur. J. Hum. Genet. 7 (8): 860-72 ... Polycystic kidney disease 2-like 2 protein (PKD2L2) also known as transient receptor potential polycystic 5 (TRPP5) is a ... Stayner C, Zhou J (2001). "Polycystin channels and kidney disease". Trends Pharmacol. Sci. 22 (11): 543-6. doi:10.1016/S0165- ...
2000). "Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2)". Eur. J. Hum. Genet. 7 (8 ... Polycystic kidney disease 2-like 1 protein also known as transient receptor potential polycystic 2 (TRPP2; formerly TRPP3) is a ... a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects". J. ... "Entrez Gene: PKD2L1 polycystic kidney disease 2-like 1". Li Q, Liu Y, Shen PY, Dai XQ, Wang S, Smillie LB, Sandford R, Chen XZ ...
Polycystic kidney disease (PKD) and Bull Terrier hereditary nephritis (BTHN) are autosomal dominant diseases. PKD is diagnosed ...
"A transducin-like gene maps to the autosomal dominant polycystic kidney disease gene region". Genomics. 18 (3): 709-11. doi: ...
... has recently been implicated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). NEDD9 ... expression is elevated in human autosomal dominant polycystic kidney disease (ADPKD) and in mouse ADPKD models, and ADPKD-prone ... Overexpression of p28 in cells causes cellular rounding and detachment, and induces apoptosis, probably because of a dominant- ... and kidney cancer, gastrointestinal stromal tumors, glioblastoma, and neuroblastoma. Nedd9 expression may be important for ...
... a Phase 2 Clinical Study with Lixivaptan in Patients with Autosomal Dominant Polycystic Kidney Disease. ASN Kidney Week 2019 ... November 2017). "Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease". The New England Journal of Medicine. ... November 2015). "Clinical Pattern of Tolvaptan-Associated Liver Injury in Subjects with Autosomal Dominant Polycystic Kidney ... First Treatment to Slow Kidney Function Decline in Adults at Risk of Rapidly Progressing Autosomal Dominant Polycystic Kidney ...
"The gene for autosomal dominant polycystic kidney disease lies in a 750-kb CpG-rich region". Genomics. 13 (1): 144-51. doi: ...
"Novel method for genomic analysis of PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease". Human Mutation. ... Voskarides, Konstantinos; Deltas, Constantinos (2009-07-01). "Screening for mutations in kidney-related genes using SURVEYOR ... and mutations associated with kidney disease. Surveyor nuclease assay has been used to detect somatic mutations in various ...
Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) are more likely to be subject to dolichoectasias. ...
Chapman AB (May 2007). "Autosomal dominant polycystic kidney disease: time for a change?". Journal of the American Society of ... It can be autosomal dominant or autosomal recessive, with the autosomal dominant form being more common and characterized by ... Chapman AB (July 2008). "Approaches to testing new treatments in autosomal dominant polycystic kidney disease: insights from ... "Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease". Nature Reviews Nephrology. 5 (4): 221-28. doi: ...
Full scale therapeutic trials of V2RAs in patients with autosomal dominant polycystic kidney disease are currently ongoing. ... Studies in several animal models of polycystic kidney disease have shown a reduction in kidney size and cyst volume after ... Inhibition by somatostatin of the vasopressin-stimulated adenylate cyclase in a kidney-derived line of cells grown in defined ... Demeclocycline, a tetracycline antibiotic, is sometimes used to block the action of vasopressin in the kidney in hyponatremia ...
His research contributions center on autosomal dominant polycystic kidney disease, and pathogenesis of acute fluid volume in ... He was the editor of Diseases of the Kidney and Urinary Tract, Renal and Electrolyte Disorders, Manual of Nephrology and ... Schrier received awards from the American College of Physicians (John Phillips Award); the National Kidney Foundation (David ... the National Kidney Foundation; and the International Society of Nephrology. Schrier was a Master of the American College of ...
GCKD can be associated with autosomal dominant polycystic kidney disease. It can also be found in a number of patients with the ... recessive polycystic disease it is found there is abnormal medullary pyramids in autosomal recessive polycystic kidney disease ... and hypertension/high blood pressure Glomerulocystic kidney disease can be inherited by autosomal dominant inheritance, develop ... Glomerulocystic kidney disease (GCKD) is a cystic disorder of the kidneys. GCKD involves cystic dilation of Bowman's capsule. ...
... maps to the autosomal dominant polycystic kidney disease gene region". Genomics. 37 (2): 172-6. doi:10.1006/geno.1996.0538. ...
Opportunities for Mining Therapeutic Targets for Autosomal Dominant Polycystic Kidney Disease". Molecular & Cellular Proteomics ...
TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right ... Two members of the PCC family (polycystin 1 and 2; PKD1 and 2) are mutated in human autosomal dominant polycystic kidney ... autosomal-dominant polycystic kidney disease). Besides modulating channel activity and related signaling events, the CRDs (C- ... Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor- ...
... autosomal dominant polycystic kidney disease (with kidney cysts) and autosomal dominant polycystic liver disease (liver cysts ... part of autosomal dominant polycystic kidney disease (ADPKD), or autosomal recessive polycystic kidney disease (ARPKD). Many ... The much rarer autosomal-dominant polycystic liver disease will progress without any kidney involvement. Associations with ... PLD is commonly seen in association with autosomal-dominant polycystic kidney disease, with a prevalence of 1 in 400 to 1000, ...
... is indicated for slow kidney-function decline in adults at risk of rapidly progressing autosomal dominant polycystic kidney ... The FDA granted Jynarque an orphan drug designation in April 2012, for the treatment of autosomal dominant polycystic kidney ... granted tolvaptan a fast track designation for clinical trials investigating its use for the treatment of polycystic kidney ...
Marfan syndrome, Ehlers-Danlos syndrome, and autosomal dominant polycystic kidney disease are the three most common connective ...
... are especially prone to autosomal dominant polycystic kidney disease (ADPKD). Cysts develop and grow in the kidney over time, ... "Polycystic kidney disease , International Cat Care". icatcare.org. Retrieved July 8, 2016. "Polycystic Kidney Disease". www.vet ... Polycystic kidney disease (PKD) which causes kidney failure in affected adult cats has an incidence rate of 36-49% in the ... replacing kidney tissues and enlarging the kidney. Kidney failure develops later in life, at an average age of 7 years old ( ...
Adult polycystic kidney Diagram of autosomal dominant polycystic disease with a normal kidney inset for comparison Abdominal CT ... February 2008). "Variation in age at ESRD in autosomal dominant polycystic kidney disease". American Journal of Kidney Diseases ... Torres VE, Harris PC (July 2009). "Autosomal dominant polycystic kidney disease: the last 3 years". Kidney International. 76 (2 ... June 2015). "Peritoneal Dialysis is Limited by Kidney and Liver Volume in Autosomal Dominant Polycystic Kidney Disease". ...
... is transmitted as an autosomal dominant trait. Cysts arise from the nephrons and collecting tubules; microdissection reveals ... Adult polycystic kidney disease, which affects approximately 1 in 1000 people, ... Autosomal Dominant Polycystic Kidney Disease (ADPKD) Imaging * Sections Autosomal Dominant Polycystic Kidney Disease (ADPKD) ... encoded search term (Autosomal Dominant Polycystic Kidney Disease (ADPKD) Imaging) and Autosomal Dominant Polycystic Kidney ...
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive ... this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant ... Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. Katharina Hopp, … , Vicente E. ... Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. *Text ...
... is increasingly used in autosomal dominant polycystic kidney disease (ADPKD) for diagnosis, classification, assessment of ... MRI in autosomal dominant polycystic kidney disease J Magn Reson Imaging. 2019 Jul;50(1):41-51. doi: 10.1002/jmri.26627. Epub ... Magnetic resonance imaging (MRI) is increasingly used in autosomal dominant polycystic kidney disease (ADPKD) for diagnosis, ... Autosomal Dominant / complications * Polycystic Kidney, Autosomal Dominant / diagnostic imaging* * Polycystic Kidney, Autosomal ...
... frequently leads to end-stage renal disease. Dr Neera K. Dahl discusses underlying ... Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder in which clusters of cysts develop within the ... Although benign, these cysts over time can cause kidney enlargement and loss of renal function. Eventually, approximately half ... End-stage renal disease due to ADPKD is a common indication for kidney transplant. ...
... an investigational drug for the treatment of autosomal dominant polycystic kidney disease (ADPKD). ... Phase 3 Trial Update of Tolvaptan for Autosomal Dominant Polycystic Kidney Disease. November 5, 2012 ... These findings are from the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease ... Close more info about Phase 3 Trial Update of Tolvaptan for Autosomal Dominant Polycystic Kidney Disease ...
Critical Path Institute Secures Regulatory Support For Autosomal Dominant Polycystic Kidney Disease (ADPKD) Biomarker ... Kidney Disease Outcomes Consortium Secures FDA Qualification for Enrichment Biomarker in Autosomal Dominant Polycystic Kidney ... Kidney Disease Outcomes Consortium Secures FDA Qualification for Enrichment Biomarker in Autosomal Dominant Polycystic Kidney ... Kidney Disease Outcomes Consortium Secures FDA Qualification for Enrichment Biomarker in Autosomal Dominant Polycystic Kidney ...
Autosomal dominant polycystic kidney disease tag sponsored by:. Top 25+ Autosomal dominant polycystic kidney disease products ... Regulus reports positive Phase Ib data for kidney disease treatment. clinicaltrialsarena.com , 5 hours ago. , Article Details ... Northeast Ohio Families Reunited And Ready To Walk To End Life-Threatening Genetic Kidney Disease , Nordonia Hills News. ...
... which have severe infantile polycystic kidney disease, have also been characterised. The full length transcript of PKD1 ( ... Using a positional cloning approach the major autosomal dominant polycystic kidney disease (ADPKD) gene (PKD1) has been ... Using a positional cloning approach the major autosomal dominant polycystic kidney disease (ADPKD) gene (PKD1) has been ... Polycystic Kidney, Autosomal Dominant, Proteins, TRPP Cation Channels, Translocation, Genetic ...
All posts tagged "Autosomal dominant polycystic kidney". * Health4 years ago In A Rare Case, Kidneys Weighing 7 Kgs and 5.8 Kgs ... The 41-year-old man from Goa suffered from Autosomal dominant polycystic kidney disease (ADPKD) ~ Mumbai: Surgeons have cut ...
... prevention and outcomes of autosomal dominant polycystic disease in cats, including:Cause - autosomal dominant inherited ... Develop your knowledge and understanding of autosomal dominant polycystic disease in cats. This is a one-part course. This ... Kidney: Autosomal Dominant Polycystic Disease £15.00 not including VAT Click here to be notified by email when Kidney: ... prevention and outcomes of autosomal dominant polycystic disease in cats, including:. Cause - autosomal dominant inherited ...
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder in nephrology. Two genes have been ... Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. Kidney Int. 2003; 63: 678-685. ... Kidney Int. 2014; 85: 383-392.. 4. Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. ... Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO ...
Childhood manifestation of autosomal dominant polycystic kidney disease: no evidence for genetic heterogeneity. In: Clinical ... N2 - Autosomal dominant polycystic kidney disease (ADPKD) usually becomes symptomatic between the third and fifth decades. We ... AB - Autosomal dominant polycystic kidney disease (ADPKD) usually becomes symptomatic between the third and fifth decades. We ... Childhood manifestation of autosomal dominant polycystic kidney disease: no evidence for genetic heterogeneity. / Gal, Andreas ...
... Sep 6, 2019. Slideshow ... In the slides below we highlight research from recent meetings and the literature on:â Prevalence of chronic kidney disease ( ... Empagliflozin is approved to lower the risk of sustained decline in eGFR, end-stage kidney disease, CV death, and ... Comorbidites seen with chronic kidney disease can be devastating. ...
Peripheral blood in EDTA tube (3 to 6mL); stable for 48h at room temperature (RT) or 72h ...
... emotional burden of autosomal dominant polycystic kidney disease (ADPKD). ... Genetic Testing In Autosomal Dominant Polycystic Kidney Disease (ADPKD). *Overview Of Autosomal Dominant Polycystic Kidney ... Overview Of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Live Event September 15 from 6:00 pm to 8:00 pm CDT ... Overview Of Autosomal Dominant Polycystic Kidney Disease (ADPKD). This presentation will discuss the pathophysiology, disease ...
... genetic disease in which fluid-filled cysts grow in the kidneys, leading to kidney failure. Learn more. ... What are the causes of Pediatric Polycystic Kidney Disease (PKD)?. Autosomal dominant PKD is caused by a gene defect that is ... What are the signs and symptoms of Pediatric Polycystic Kidney Disease (PKD)?. Symptoms of autosomal dominant PKD. Symptoms of ... Polycystic kidney disease (PKD) is a rare, genetic disease that causes damage to the kidneys and can lead to kidney failure. ...
... is transmitted as an autosomal dominant trait. Cysts arise from the nephrons and collecting tubules; microdissection reveals ... Adult polycystic kidney disease, which affects approximately 1 in 1000 people, ... Imaging in Autosomal Dominant Polycystic Kidney Disease) and Imaging in Autosomal Dominant Polycystic Kidney Disease What to ... Sonogram of the right kidney in a patient with autosomal dominant polycystic kidney disease. The scan shows numerous cysts of ...
Cyst decompression surgery for autosomal dominant polycystic kidney disease. Lawrence W. Elzinga, John M. Barry, Vicente E. ... Cyst decompression surgery for autosomal dominant polycystic kidney disease. In: Journal of the American Society of Nephrology ... Cyst decompression surgery for autosomal dominant polycystic kidney disease. / Elzinga, Lawrence W.; Barry, John M.; Torres, ... Cyst decompression surgery for autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology. ...
Autosomal Dominant Polycystic Kidney Disease (ADPKD) - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from ... In contrast, autosomal recessive polycystic kidney disease Autosomal recessive polycystic kidney disease The urinary tract is a ... Fibroblast growth factor 23 and kidney disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc ... 1. Torres VE, Chapman AB, Devuyst O: Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367( ...
... in underrepresented and underserved communities and the effects of social determinants of health on patients living with kidney ... This presentation will discuss the impact of chronic kidney disease ... This presentation focuses on the impact of kidney disease and autosomal dominant polycystic kidney disease (ADPKD) in Black and ... Metabolic Acidosis In Chronic Kidney Disease (CKD). *Increasing Awareness Of Autosomal Dominant Polycystic Kidney Disease ( ...
Survey on the Management of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Steven Soroka, MD, MSc, CHE, Professor, ...
Dive into the research topics of Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease ... Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. ...
Successful peritoneal dialysis after renal transcatheter arterial embolization in autosomal dominant polycystic kidney disease. ... Successful peritoneal dialysis after renal transcatheter arterial embolization in autosomal dominant polycystic kidney disease ... Successful peritoneal dialysis after renal transcatheter arterial embolization in autosomal dominant polycystic kidney disease ... T1 - Successful peritoneal dialysis after renal transcatheter arterial embolization in autosomal dominant polycystic kidney ...
Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. Clin J Am Soc Nephrol. 2009 Mar; ... Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. ... Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. ...
Autosomal Dominant Polycystic Kidney Disease With Idiopathic Membranous Nephropathy: An Unusual Association? ... Nephrotic syndrome; Autosomal dominant polycystic kidney disease; Idiopathic membranous nephropathy; Kidney biopsy ... Autosomal dominant polycystic kidney disease (ADPKD) is usually characterized by proteinuria less than 1 g/24 hours and only ... Autosomal Dominant Polycystic Kidney Disease With Idiopathic Membranous Nephropathy: An Unusual Association?. ...
... known to play the major role in the development of hypertension and renal progression in autosomal dominant polycystic kidney ... in addition to Imaging Classification in the Prediction of Renal Outcome in Autosomal Dominant Polycystic Kidney Disease. ... a total of 207 subjects in chronic kidney disease stage 1-4 with baseline urinary AGT and total kidney volume and subsequent ... Baseline eGFR was 79.0 ± 28.4 mL/min/1.73 m² and median height-adjusted total kidney volume was 788.2 (471.2; 1,205.2) mL/m. ...
Managing Pain in Autosomal Dominant Polycystic Kidney Disease Publish Date May 12, 2015 ... Chronic pain is common in individuals with kidney disease, and in some patients this is associated with improper use of pain ... Because chronic pain in patients with chronic kidney disease (CKD) is… ...
... map described here provide an improved framework for attempts to clone the PKD1 region and to identify polycystic kidney ... The major site for mutations leading to autosomal dominant polycystic kidney disease (ADPKD) is at the PKD1 locus, previously ... The major site for mutations leading to autosomal dominant polycystic kidney disease (ADPKD) is at the PKD1 locus, previously ... Identification of a locus which shows no genetic recombination with the autosomal dominant polycystic kidney disease gene on ...
Recurrent Acute Pancreatitis and Cholangitis in a Patient with Autosomal Dominant Polycystic Kidney Disease ...
  • Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, life-threatening inherited human disorders and the most common hereditary kidney disease. (wikipedia.org)
  • Over 50% of patients with ADPKD eventually develop end stage kidney disease and require dialysis or kidney transplantation. (wikipedia.org)
  • ADPKD is estimated to affect at least one in every 1000 individuals worldwide, making this disease the most common inherited kidney disorder with a diagnosed prevalence of 1:2000 and incidence of 1:3000-1:8000 in a global scale. (wikipedia.org)
  • Among the clinical presentation are:[citation needed] Acute loin pain Blood in the urine Ballotable kidneys Subarachnoid hemorrhage (berry aneurysm) Hypertension Associated liver cysts Uremia due to kidney failure Anemia due to chronic kidney disease Increase RBC or erythropoietin secretion Signs and symptoms of ADPKD often develop between 30 and 40 years of age. (wikipedia.org)
  • In many patients with ADPKD, kidney dysfunction is not clinically apparent until 30 or 40 years of life. (wikipedia.org)
  • Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder. (medscape.com)
  • Plain radiographic findings are normal in the early stages of ADPKD, but with enlargement of the kidneys, soft-tissue masses displace the intra-abdominal organs. (medscape.com)
  • Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. (jci.org)
  • Magnetic resonance imaging (MRI) is increasingly used in autosomal dominant polycystic kidney disease (ADPKD) for diagnosis, classification, assessment of disease progression and treatment response, and for identifying complications. (nih.gov)
  • We show how MRI-derived total kidney volume is a biomarker for assessing ADPKD severity and predicting decline in renal function. (nih.gov)
  • Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder in which clusters of cysts develop within the kidneys. (medscape.com)
  • End-stage renal disease due to ADPKD is a common indication for kidney transplant. (medscape.com)
  • Otsuka announced Phase 3 clinical trial results for tolvaptan, an investigational drug for the treatment of autosomal dominant polycystic kidney disease (ADPKD). (empr.com)
  • The key secondary endpoint was a composite of events of ADPKD progression including worsening kidney function, incidence of significant kidney pain, worsening of hypertension and worsening albuminuria (or protein in urine) and a measure of kidney function (change in slope of the reciprocal of serum creatinine levels). (empr.com)
  • Tolvaptan is a selective V 2 vasopressin receptor antagonist, which had been hypothesized to slow the progression of ADPKD by reducing the development and growth of kidney cysts, which are characteristic of the disease and often associated with pain, hypertension and kidney failure. (empr.com)
  • TKV is a measurement of the impact of ADPKD on the size of the kidneys and is considered to be predictive of a future decline in kidney function. (c-path.org)
  • Using a positional cloning approach the major autosomal dominant polycystic kidney disease (ADPKD) gene (PKD1) has been identified on chromosome 16: a disease associated chromosome translocation was instrumental in its identification. (ox.ac.uk)
  • The 41-year-old man from Goa suffered from Autosomal dominant polycystic kidney disease (ADPKD) ~ Mumbai: Surgeons have cut kidneys weighing 7 kgs and 5.8 kgs out. (mtinews.in)
  • Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder in nephrology. (jscimedcentral.com)
  • Autosomal dominant polycystic kidney disease (ADPKD) usually becomes symptomatic between the third and fifth decades. (uni-luebeck.de)
  • This presentation will discuss the pathophysiology, disease progression, and the physical & emotional burden of autosomal dominant polycystic kidney disease (ADPKD). (nephu.org)
  • Autosomal dominant polycystic kidney disease (ADPKD) is uncommon in children and is rarely seen in neonates. (medscape.com)
  • A prospective study was undertaken to evaluate the efficacy of surgical cyst decompression for retarding the progression of renal failure and for the management of chronic pain associated with autosomal dominant polycystic kidney disease (ADPKD). (elsevierpure.com)
  • Background: The automatic segmentation of kidneys in medical images is not a trivial task when the subjects undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). (uniba.it)
  • Autosomal dominant polycystic kidney disease (ADPKD) may increase the risk of dementia, and intracranial aneurysms are more prevalent in ADPKD patients. (qxmd.com)
  • This presentation focuses on the impact of kidney disease and autosomal dominant polycystic kidney disease (ADPKD) in Black and Hispanic/Latino communities and the effects of social determinants of health on patients living with kidney disease. (nephu.org)
  • Autosomal dominant polycystic kidney disease (ADPKD) is usually characterized by proteinuria less than 1 g/24 hours and only anecdotal cases of associated nephrotic syndrome have been reported. (journalmc.org)
  • Our case confirmed the importance of kidney biopsy even in patients with ADPKD and nephrotic syndrome, in order to demonstrate any coexisting glomerular disease, make an accurate diagnosis and plan appropriate treatment. (journalmc.org)
  • Intrarenal renin-angiotensin system ( RAS ) is known to play the major role in the development of hypertension and renal progression in autosomal dominant polycystic kidney disease ( ADPKD ). (bvsalud.org)
  • From 2011 to 2016, a total of 364 ADPKD patients were enrolled in the prospective cohort called the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD). (bvsalud.org)
  • The major site for mutations leading to autosomal dominant polycystic kidney disease (ADPKD) is at the PKD1 locus, previously mapped to 16p13. (ox.ac.uk)
  • BACKGROUND/AIMS: Adult polycystic kidney disease (ADPKD) has a predictable natural history and the relative lack of co-morbidity allows a relatively unconfounded assessment of survival. (ox.ac.uk)
  • METHODS: We conducted a retrospective cohort study of all patients with ADPKD who received RRT between 1971 and 2000 at the Oxford Kidney Unit. (ox.ac.uk)
  • Mutations in PKD1 or PKD2 genes lead to autosomal dominant polycystic kidney disease (ADPKD) that is the most frequent family inherited renal disorder. (sciety.org)
  • Purpose: Total kidney volume (TKV) measurement is crucial for selecting treatment candidates in autosomal dominant polycystic kidney disease (ADPKD). (ewha.ac.kr)
  • Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end-stage renal failure (ESRF). (ncl.ac.uk)
  • Our most recent work is focused on the novel role of RNA binding proteins (RBPs) in the development of Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the commonest genetic form of renal failure. (sheffield.ac.uk)
  • Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a monogenic, multi-organ disease affecting both the kidneys and the vasculature, currently remaining without a cure. (sheffield.ac.uk)
  • Autosomal dominant polycystic kidney disease (ADPKD) is a rare, hereditary disorder that is characterized by the silent, progressive growth of multiple bilateral renal cysts. (medscape.com)
  • Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of PKD. (stanfordchildrens.org)
  • Symptoms of autosomal recessive PKD are usually detected before birth during an ultrasound. (childrens.com)
  • Autosomal recessive PKD is caused by a gene defect that must be inherited from both parents. (childrens.com)
  • Congenital disorders may be inherited as autosomal dominant disorders or autosomal recessive disorders or have other causes (eg, sporadic. (msdmanuals.com)
  • Autosomal recessive polycystic kidney disease The urinary tract is a common location for congenital anomalies of varying significance. (msdmanuals.com)
  • Autosomal recessive PKD (ARPKD) is a rare form of PKD. (stanfordchildrens.org)
  • 9 Interestingly, CFTR does appear to have a role in the pathophysiology of autosomal recessive polycystic kidney disease, where fluid secretion into the cysts appears to be mediated through CFTR. (bmj.com)
  • Cystic fibrosis (CF) is an autosomal recessive condition caused by the mutation of the cystic fibrosis trans-membrane regulator gene (CFTR) on chromosome 7. (who.int)
  • Cerebrovascular Pulsatility Index is Reduced in Autosomal Dominant Polycystic Kidney Disease. (qxmd.com)
  • Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing. (jci.org)
  • American Journal of Kidney Diseases , 58 (5), 860-861. (elsevierpure.com)
  • Toyohara, T , Hayami, N & Ubara, Y 2011, ' Successful peritoneal dialysis after renal transcatheter arterial embolization in autosomal dominant polycystic kidney disease ', American Journal of Kidney Diseases , vol. 58, no. 5, pp. 860-861. (elsevierpure.com)
  • To create a world without kidney diseases, the ASN Alliance for Kidney Health elevates care by educating and informing, driving breakthroughs and innovation, and advocating for policies that create transformative changes in kidney medicine throughout the world. (asn-online.org)
  • These patients may require urgent dialysis and kidney transplantation. (medscape.com)
  • In 1997, Filler was the principal investigator of the first published randomized controlled clinical trial in pediatric kidney transplantation . (medscape.com)
  • Most PKD1 mutations have so far been detected in the single copy, 3' end of the gene, but a group of patients with deletion of PKD1 and the adjacent TSC2 gene, which have severe infantile polycystic kidney disease, have also been characterised. (ox.ac.uk)
  • The new markers and physical map described here provide an improved framework for attempts to clone the PKD1 region and to identify polycystic kidney disease mutations. (ox.ac.uk)
  • An autosomal dominant point mutation in the PKD1 gene has been identified as the most common genetic mutation for the disease. (wisdompanel.com)
  • Feline polycystic kidney disease mutation identified in PKD1. (wisdompanel.com)
  • Abdominal ultrasound examination showed both enlarged liver and kidneys, both with multiple cysts of varying sizes. (journalmc.org)
  • Clinical hallmarks of VHL disease include the development of retinal and central nervous system (CNS) hemangioblastomas (blood vessel tumors), pheochromocytomas , multiple cysts in the pancreas and kidneys, and an increased risk for malignant transformation of renal cysts into renal cell carcinoma. (medscape.com)
  • These findings are from the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3:4 Study, a Phase 3, multi-center, randomized, double-blind, placebo-controlled, parallel-arm trial involving more than 1,400 patients. (empr.com)
  • The primary efficacy endpoint was annual rate of change in TKV (a measurement of kidney cyst growth) of tolvaptan vs. placebo. (empr.com)
  • For the key secondary endpoint, tolvaptan showed a statistically significant reduction in the risk of multiple events of worsening kidney function, kidney pain, hypertension or albuminuria (hazard ratio=0.87, 95% CI: 0.78-0.97, P =0.0095). (empr.com)
  • Sonogram of the kidney in a patient with polycystic kidney disease shows numerous cysts of varying sizes. (medscape.com)
  • Sonogram of the kidney in a newborn with polycystic kidney disease shows numerous cysts of varying sizes, predominantly situated in the periphery. (medscape.com)
  • Symptoms of autosomal dominant PKD often do not develop until a person is an adult, but can begin in childhood. (childrens.com)
  • Adult polycystic kidney disease, which affects approximately 1 in 1000 people, is transmitted as an autosomal dominant trait. (medscape.com)
  • It used to be called adult polycystic kidney disease. (stanfordchildrens.org)
  • Polycystic kidney disease (PKD) is a rare disease in which fluid-filled cysts grow in the kidneys. (childrens.com)
  • It causes many cysts filled with fluid to grow in the kidneys. (stanfordchildrens.org)
  • Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. (uchicago.edu)
  • Autosomal dominant PKD is caused by a gene defect that is inherited from one parent. (childrens.com)
  • Identification of a locus which shows no genetic recombination with the autosomal dominant polycystic kidney disease gene on chromosome 16. (ox.ac.uk)
  • The CFTR gene is expressed abundantly in the kidney, particularly in the nephron, but CFTR appears to be functionally redundant at this site. (bmj.com)
  • Empagliflozin is approved to lower the risk of sustained decline in eGFR, end-stage kidney disease, CV death, and hospitalization in adults with CKD at risk of progression. (patientcareonline.com)
  • Polycystic kidney disease (PKD) is a hereditary disorder of renal cyst formation causing gradual enlargement of both kidneys, sometimes with progression to renal failure. (msdmanuals.com)
  • Cite this: Slowing Progression of Autosomal Dominant Polycystic Kidney Disease - Medscape - Feb 25, 2022. (medscape.com)
  • The kidneys are enlarged with multiple curvilinear and ringlike calcifications arising from the renal cyst. (medscape.com)
  • Diagnosis often includes ultrasound imaging of the fetus or newborn to reveal cysts in the kidneys. (stanfordchildrens.org)
  • An ultrasound exam of kidneys of relatives may also be helpful. (stanfordchildrens.org)
  • Introduction to Urinary Tract Infections (UTIs) Urinary tract infections (UTIs) can be divided into upper tract infections, which involve the kidneys ( pyelonephritis), and lower tract infections, which involve the bladder ( cystitis), urethra. (msdmanuals.com)
  • Acute pyelonephritis Bacterial urinary tract infections (UTIs) can involve the urethra, prostate, bladder, or kidneys. (msdmanuals.com)
  • The sponsor calculated the prevalence of autosomal dominant polycystic kidney disease on the basis of a limited number of publications, and the methodology used to estimate the prevalence was not adequately justified. (europa.eu)
  • microRNAs are involved in the pathology of polycystic kidney disease, which is also a condition characterized by increased proliferation and elevated JAK/STAT signalling. (sheffield.ac.uk)
  • 4, 5 The impact of CFTR dysfunction on pancreatic function and architecture results in significant hypoinsulinaemia (CF-related diabetes) in a significant proportion of older patients with CF, again posing a challenge to fluid balance and the long-term possibility of diabetic kidney disease. (bmj.com)
  • Given the apparent pivotal role of CFTR in other organs, the lack of impact of CFTR dysfunction on the kidney is remarkable. (bmj.com)
  • In an attempt to isolate candidate genes for autosomal dominant polycystic kidney disease, a number of CpG-rich islands have been identified from a region defined genetically as the site of disease mutations. (johnshopkins.edu)
  • The disease causes the formation of fluid-filled cysts in the kidneys that can lead to kidney failure. (wisdompanel.com)
  • Polycystic Kidney Disease (PKD), also named autosomal dominant PKD, is characterized by variously sized, fluid-filled cysts in the renal cortex and medulla with hepatic and pancreatic cysts also possible. (wisdompanel.com)
  • Polycystic kidney disease (PKD) is a rare, genetic disease that causes damage to the kidneys and can lead to kidney failure . (childrens.com)
  • These cysts cause problems that reduce the function of the kidneys and can lead to kidney failure . (childrens.com)
  • It can lead to kidney failure. (stanfordchildrens.org)
  • Background - Autosomal dominant polycystic kidney disease, the most frequent inherited polycystic disease, is a systemic disorder characterised by the development of numerous and bilateral kidney cysts leading to chronic renal failure. (biu.ac.il)
  • Polycystic kidney disease (PKD) is a rare genetic disorder. (stanfordchildrens.org)
  • Approximately 29-73% of patients with autosomal dominant polycystic kidney disease have cysts in the liver. (medscape.com)
  • In patients who underwent unilateral surgery, split function isotope scans showed no change in function of the operated kidney when compared with the nonoperated kidney. (elsevierpure.com)
  • Overview of Renal Replacement Therapy Renal replacement therapy (RRT) replaces nonendocrine kidney function in patients with renal failure and is occasionally used for some forms of poisoning. (msdmanuals.com)
  • Survival after starting renal replacement treatment in patients with autosomal dominant polycystic kidney disease: a single-centre 40-year study. (ox.ac.uk)
  • Chronic pain is common in individuals with kidney disease, and in some patients this is associated with improper use of pain medications. (renalandurologynews.com)
  • As the symptoms are similar to patients with feline chronic kidney disease, therapy is guided towards the same supportive care methods such as special diets, fluid therapy, medications to reduce nausea and to block absorption of phosphorus, along with other support options for feline kidney failure. (wisdompanel.com)
  • The concentration of sodium in skin correlates with risk for cardiovascular disease, and sodium accumulates faster in patients with impaired kidney function. (medscape.com)
  • For autosomal dominant disorders, cats with one or two copies of the disease variant are at risk of developing the condition. (wisdompanel.com)
  • Although benign, these cysts over time can cause kidney enlargement and loss of renal function. (medscape.com)
  • It is characterized by progressive enlargement of the kidneys due to the formation and growth of cysts. (c-path.org)
  • Excretory 5-minute urographic image in a young male patient with bilateral polycystic disease. (medscape.com)
  • Aortogram in a young male patient with bilateral polycystic disease demonstrates stretching of the intrarenal arterial branches, seen best in the upper pole of the right kidney. (medscape.com)
  • Vasopressin promotes cell growth and fluid secretion via the cyclic AMP pathway, which leads to increase in the size and number of cysts in polycystic kidney disease. (msdmanuals.com)
  • Sonogram of the liver in a newborn with polycystic kidney disease shows numerous tiny cysts affecting both lobes of the liver. (medscape.com)
  • The 20-year survival rates were 86.1% for kidney recipients, 58.5% for liver recipients, and 61.4% for heart recipients. (medscape.com)
  • What are the signs and symptoms of Pediatric Polycystic Kidney Disease (PKD)? (childrens.com)
  • Urinary Angiotensinogen in addition to Imaging Classification in the Prediction of Renal Outcome in Autosomal Dominant Polycystic Kidney Disease. (bvsalud.org)
  • Using imaging tests to find cysts on the kidney and other organs. (stanfordchildrens.org)
  • In Kwong's research, she uses advanced statistical methods to better define mechanisms of acute kidney injury. (ucsfhealth.org)
  • This disease is autosomal dominant meaning that one copy of the mutation is needed for disease signs to occur. (wisdompanel.com)
  • Plain radiograph of the kidney, ureters, and bladder in a 50-year-old woman with autosomal dominant polycystic kidney disease. (medscape.com)
  • Among them, a total of 207 subjects in chronic kidney disease stage 1-4 with baseline urinary AGT and total kidney volume and subsequent renal function follow-up data over more than 1 year were included in the analysis . (bvsalud.org)
  • Other researchers have shown that if the kidney shows no signs of cysts or parenchymal abnormality in a patient by age 19 years, that individual is extremely unlikely to be affected. (medscape.com)
  • Overview of Cystic Kidney Disease Cystic kidney disease may be congenital or acquired. (msdmanuals.com)
  • Autosomal dominant polycystic kidney disease: molecular analysis. (ox.ac.uk)
  • My goal is to understand the molecular and cellular mechanisms that cause chronic kidney and vascular disease (CKD / CVD). (sheffield.ac.uk)