Hereditary diseases that are characterized by the progressive expansion of a large number of tightly packed CYSTS within the KIDNEYS. They include diseases with autosomal dominant and autosomal recessive inheritance.
Kidney disorders with autosomal dominant inheritance and characterized by multiple CYSTS in both KIDNEYS with progressive deterioration of renal function.
A genetic disorder with autosomal recessive inheritance, characterized by multiple CYSTS in both KIDNEYS and associated LIVER lesions. Serious manifestations are usually present at BIRTH with high PERINATAL MORTALITY.
Genes that influence the PHENOTYPE only in the homozygous state.
A subgroup of TRP cation channels that are widely expressed in various cell types. Defects are associated with POLYCYSTIC KIDNEY DISEASES.
A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Any fluid-filled closed cavity or sac that is lined by an EPITHELIUM. Cysts can be of normal, abnormal, non-neoplastic, or neoplastic tissues.
The magnitude of INBREEDING in humans.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed)
A heterogeneous group of hereditary and acquired disorders in which the KIDNEY contains one or more CYSTS unilaterally or bilaterally (KIDNEY, CYSTIC).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
Congenital cystic dilatation of the intrahepatic bile ducts (BILE DUCTS, INTRAHEPATIC). It consists of 2 types: simple Caroli disease is characterized by bile duct dilatation (ectasia) alone; and complex Caroli disease is characterized by bile duct dilatation with extensive hepatic fibrosis and portal hypertension (HYPERTENSION, PORTAL). Benign renal tubular ectasia is associated with both types of Caroli disease.
An individual in which both alleles at a given locus are identical.
Pathological processes of the KIDNEY or its component tissues.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A condition caused by the excessive secretion of ANDROGENS from the ADRENAL CORTEX; the OVARIES; or the TESTES. The clinical significance in males is negligible. In women, the common manifestations are HIRSUTISM and VIRILISM as seen in patients with POLYCYSTIC OVARY SYNDROME and ADRENOCORTICAL HYPERFUNCTION.
Biochemical identification of mutational changes in a nucleotide sequence.
A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.
The transference of a kidney from one human or animal to another.
A characteristic symptom complex.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Any method used for determining the location of and relative distances between genes on a chromosome.
Pathological processes of the LIVER.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A condition observed in WOMEN and CHILDREN when there is excess coarse body hair of an adult male distribution pattern, such as facial and chest areas. It is the result of elevated ANDROGENS from the OVARIES, the ADRENAL GLANDS, or exogenous sources. The concept does not include HYPERTRICHOSIS, which is an androgen-independent excessive hair growth.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
An individual having different alleles at one or more loci regarding a specific character.
'Abnormalities, Multiple' is a broad term referring to the presence of two or more structural or functional anomalies in an individual, which may be genetic or environmental in origin, and can affect various systems and organs of the body.
Liquid material found in epithelial-lined closed cavities or sacs.
The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."
Rats bearing mutant genes which are phenotypically expressed in the animals.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
Two syndromes of oral, facial, and digital malformations. Type I (Papillon-Leage and Psaume syndrome, Gorlin-Psaume syndrome) is inherited as an X-linked dominant trait and is found only in females and XXY males. Type II (Mohr syndrome) is inherited as an autosomal recessive trait.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla.
Abnormally infrequent menstruation.
A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously.
The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
A congenital abnormality in which the CEREBRUM is underdeveloped, the fontanels close prematurely, and, as a result, the head is small. (Desk Reference for Neuroscience, 2nd ed.)
An amino acid-specifying codon that has been converted to a stop codon (CODON, TERMINATOR) by mutation. Its occurance is abnormal causing premature termination of protein translation and results in production of truncated and non-functional proteins. A nonsense mutation is one that converts an amino acid-specific codon to a stop codon.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
Mice bearing mutant genes which are phenotypically expressed in the animals.
Conditions caused by abnormal CILIA movement in the body, usually causing KARTAGENER SYNDROME, chronic respiratory disorders, chronic SINUSITIS, and chronic OTITIS. Abnormal ciliary beating is likely due to defects in any of the 200 plus ciliary proteins, such as missing motor enzyme DYNEIN arms.
Any of several generalized skin disorders characterized by dryness, roughness, and scaliness, due to hypertrophy of the stratum corneum epidermis. Most are genetic, but some are acquired, developing in association with other systemic disease or genetic syndrome.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
Suspension or cessation of OVULATION in animals or humans with follicle-containing ovaries (OVARIAN FOLLICLE). Depending on the etiology, OVULATION may be induced with appropriate therapy.
Presence of less than the normal amount of hair. (Dorland, 27th ed)
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
The measurement of an organ in volume, mass, or heaviness.
Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE.
A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
Designation for several severe forms of ichthyosis, present at birth, that are characterized by hyperkeratotic scaling. Infants may be born encased in a collodion membrane which begins shedding within 24 hours. This is followed in about two weeks by persistent generalized scaling. The forms include bullous (HYPERKERATOSIS, EPIDERMOLYTIC), non-bullous (ICHTHYOSIS, LAMELLAR), wet type, and dry type.
Tumors or cancers of the KIDNEY.
The health status of the family as a unit including the impact of the health of one member of the family on the family as a unit and on individual family members; also, the impact of family organization or disorganization on the health status of its members.
Established cell cultures that have the potential to propagate indefinitely.
Abrupt reduction in kidney function. Acute kidney injury encompasses the entire spectrum of the syndrome including acute kidney failure; ACUTE KIDNEY TUBULAR NECROSIS; and other less severe conditions.
The functional units of the kidney, consisting of the glomerulus and the attached tubule.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Presence of blood in the urine.
Variation in a population's DNA sequence that is detected by determining alterations in the conformation of denatured DNA fragments. Denatured DNA fragments are allowed to renature under conditions that prevent the formation of double-stranded DNA and allow secondary structure to form in single stranded fragments. These fragments are then run through polyacrylamide gels to detect variations in the secondary structure that is manifested as an alteration in migration through the gels.
A triphenyl ethylene stilbene derivative which is an estrogen agonist or antagonist depending on the target tissue. Note that ENCLOMIPHENE and ZUCLOMIPHENE are the (E) and (Z) isomers of Clomiphene respectively.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28)
Persistent high BLOOD PRESSURE due to KIDNEY DISEASES, such as those involving the renal parenchyma, the renal vasculature, or tumors that secrete RENIN.
I'm sorry for any confusion, but "Pakistan" is a country located in South Asia and it does not have a medical definition. If you have any medical question or term that you would like me to define, please provide it and I will be happy to help.
A contrast medium in diagnostic radiology with properties similar to those of diatrizoic acid. It is used primarily as its sodium and meglumine (IOTHALAMATE MEGLUMINE) salts.
A nongenetic defect due to malformation of the KIDNEY which appears as a bunch of grapes with multiple renal cysts but lacking the normal renal bean shape, and the collection drainage system. This condition can be detected in-utero with ULTRASONOGRAPHY.
An infant during the first month after birth.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Excision of kidney.
A chronic, congenital ichthyosis inherited as an autosomal recessive trait. Infants are usually born encased in a collodion membrane which sheds within a few weeks. Scaling is generalized and marked with grayish-brown quadrilateral scales, adherent at their centers and free at the edges. In some cases, scales are so thick that they resemble armored plate.
Placement of one of the surgeon's gloved hands into the ABDOMINAL CAVITY to perform manual manipulations that facilitate the laparoscopic procedures.
A general term for the complete loss of the ability to hear from both ears.
Brain tissue herniation through a congenital or acquired defect in the skull. The majority of congenital encephaloceles occur in the occipital or frontal regions. Clinical features include a protuberant mass that may be pulsatile. The quantity and location of protruding neural tissue determines the type and degree of neurologic deficit. Visual defects, psychomotor developmental delay, and persistent motor deficits frequently occur.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height.
Diminished or absent ability of a female to achieve conception.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM.
Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Abnormal development of cartilage and bone.
A phenomenon that is observed when a small subgroup of a larger POPULATION establishes itself as a separate and isolated entity. The subgroup's GENE POOL carries only a fraction of the genetic diversity of the parental population resulting in an increased frequency of certain diseases in the subgroup, especially those diseases known to be autosomal recessive.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
Incoordination of voluntary movements that occur as a manifestation of CEREBELLAR DISEASES. Characteristic features include a tendency for limb movements to overshoot or undershoot a target (dysmetria), a tremor that occurs during attempted movements (intention TREMOR), impaired force and rhythm of diadochokinesis (rapidly alternating movements), and GAIT ATAXIA. (From Adams et al., Principles of Neurology, 6th ed, p90)
A cystic dilation of the EPIDIDYMIS, usually in the head portion (caput epididymis). The cyst fluid contains dead SPERMATOZOA and can be easily differentiated from TESTICULAR HYDROCELE and other testicular lesions.
A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS.
Identification of genetic carriers for a given trait.
A specific pair of GROUP B CHROMOSOMES of the human chromosome classification.
A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity.
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).
Conditions in which the KIDNEYS perform below the normal level in the ability to remove wastes, concentrate URINE, and maintain ELECTROLYTE BALANCE; BLOOD PRESSURE; and CALCIUM metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of PROTEINURIA) and reduction in GLOMERULAR FILTRATION RATE.
Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease.
Creatinine is a waste product that's generated from muscle metabolism, typically filtered through the kidneys and released in urine, with increased levels in blood indicating impaired kidney function.
Deletion of sequences of nucleic acids from the genetic material of an individual.
The presence of proteins in the urine, an indicator of KIDNEY DISEASES.
Elements of limited time intervals, contributing to particular results or situations.
Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY).
Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Developmental bone diseases are a category of skeletal disorders that arise from disturbances in the normal growth and development of bones, including abnormalities in size, shape, structure, or composition, which can lead to various musculoskeletal impairments and deformities.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
That part of the genome that corresponds to the complete complement of EXONS of an organism or cell.
Compounds which increase the capacity to conceive in females.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
'Poisonous fishes' are aquatic organisms belonging to the Phylum Chordata and Class Pisces, that contain toxic substances either in their tissues or secretions, which can cause harmful or lethal effects when ingested, touched, or coming into contact with their released toxins.
Transmission of gene defects or chromosomal aberrations/abnormalities which are expressed in extreme variation in the structure or function of the eye. These may be evident at birth, but may be manifested later with progression of the disorder.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
Errors in metabolic processes resulting from inborn genetic mutations that are inherited or acquired in utero.
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
A specific pair GROUP C CHROMSOMES of the human chromosome classification.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Determination of the nature of a pathological condition or disease in the postimplantation EMBRYO; FETUS; or pregnant female before birth.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
Members of a Semitic people inhabiting the Arabian peninsula or other countries of the Middle East and North Africa. The term may be used with reference to ancient, medieval, or modern ethnic or cultural groups. (From Random House Unabridged Dictionary, 2d ed)
A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL.
Heterogeneous group of autosomal recessive disorders comprising at least four recognized types, all having in common varying degrees of hypopigmentation of the skin, hair, and eyes. The two most common are the tyrosinase-positive and tyrosinase-negative types.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Deformities in nail structure or appearance, including hypertrophy, splitting, clubbing, furrowing, etc. Genetic diseases such as PACHYONYCHIA CONGENITA can result in malformed nails.
An educational process that provides information and advice to individuals or families about a genetic condition that may affect them. The purpose is to help individuals make informed decisions about marriage, reproduction, and other health management issues based on information about the genetic disease, the available diagnostic tests, and management programs. Psychosocial support is usually offered.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A hereditary motor and sensory neuropathy transmitted most often as an autosomal dominant trait and characterized by progressive distal wasting and loss of reflexes in the muscles of the legs (and occasionally involving the arms). Onset is usually in the second to fourth decade of life. This condition has been divided into two subtypes, hereditary motor and sensory neuropathy (HMSN) types I and II. HMSN I is associated with abnormal nerve conduction velocities and nerve hypertrophy, features not seen in HMSN II. (Adams et al., Principles of Neurology, 6th ed, p1343)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A powder that dissolves in water, which is administered orally, and is used as a diuretic, expectorant, systemic alkalizer, and electrolyte replenisher.
Congenital absence of or defects in structures of the mouth.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A family of transmembrane dystrophin-associated proteins that play a role in the membrane association of the DYSTROPHIN-ASSOCIATED PROTEIN COMPLEX.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
Aquaporin 2 is a water-specific channel protein that is expressed in KIDNEY COLLECTING DUCTS. The translocation of aquaporin 2 to the apical PLASMA MEMBRANE is regulated by VASOPRESSIN, and MUTATIONS in AQP2 have been implicated in a variety of kidney disorders including DIABETES INSIPIDUS.
Variations of menstruation which may be indicative of disease.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
The channels that collect and transport the bile secretion from the BILE CANALICULI, the smallest branch of the BILIARY TRACT in the LIVER, through the bile ductules, the bile ducts out the liver, and to the GALLBLADDER for storage.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
A metabolite of PROGESTERONE with a hydroxyl group at the 17-alpha position. It serves as an intermediate in the biosynthesis of HYDROCORTISONE and GONADAL STEROID HORMONES.
Transport proteins that carry specific substances in the blood or across cell membranes.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
An autosomal recessive disease, usually of childhood onset, characterized pathologically by degeneration of the spinocerebellar tracts, posterior columns, and to a lesser extent the corticospinal tracts. Clinical manifestations include GAIT ATAXIA, pes cavus, speech impairment, lateral curvature of spine, rhythmic head tremor, kyphoscoliosis, congestive heart failure (secondary to a cardiomyopathy), and lower extremity weakness. Most forms of this condition are associated with a mutation in a gene on chromosome 9, at band q13, which codes for the mitochondrial protein frataxin. (From Adams et al., Principles of Neurology, 6th ed, p1081; N Engl J Med 1996 Oct 17;335(16):1169-75) The severity of Friedreich ataxia associated with expansion of GAA repeats in the first intron of the frataxin gene correlates with the number of trinucleotide repeats. (From Durr et al, N Engl J Med 1996 Oct 17;335(16):1169-75)
Compounds with BENZENE fused to AZEPINES.
A group of hereditary disorders involving tissues and structures derived from the embryonic ectoderm. They are characterized by the presence of abnormalities at birth and involvement of both the epidermis and skin appendages. They are generally nonprogressive and diffuse. Various forms exist, including anhidrotic and hidrotic dysplasias, FOCAL DERMAL HYPOPLASIA, and aplasia cutis congenita.
Techniques for the artifical induction of ovulation, the rupture of the follicle and release of the ovum.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
A metabolic disease characterized by the defective transport of CYSTINE across the lysosomal membrane due to mutation of a membrane protein cystinosin. This results in cystine accumulation and crystallization in the cells causing widespread tissue damage. In the KIDNEY, nephropathic cystinosis is a common cause of RENAL FANCONI SYNDROME.
A group of disorders marked by progressive degeneration of motor neurons in the spinal cord resulting in weakness and muscular atrophy, usually without evidence of injury to the corticospinal tracts. Diseases in this category include Werdnig-Hoffmann disease and later onset SPINAL MUSCULAR ATROPHIES OF CHILDHOOD, most of which are hereditary. (Adams et al., Principles of Neurology, 6th ed, p1089)
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Rare, autosomal dominant syndrome characterized by ACRO-OSTEOLYSIS, generalized OSTEOPOROSIS, and skull deformations.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A group of connective tissue diseases in which skin hangs in loose pendulous folds. It is believed to be associated with decreased elastic tissue formation as well as an abnormality in elastin formation. Cutis laxa is usually a genetic disease, but acquired cases have been reported. (From Dorland, 27th ed)
Defective bone formation involving individual bones, singly or in combination.
Recording of electric potentials in the retina after stimulation by light.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.
A general term for the complete or partial loss of the ability to hear from one or both ears.
A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304)
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.

High-resolution physical and genetic mapping of the critical region for Meckel syndrome and Mulibrey Nanism on chromosome 17q22-q23. (1/110)

Previously, we assigned the genes for two autosomal recessive disorders, Meckel syndrome (MKS; MIM 249000) and Mulibrey Nanism [MUL (muscle-liver-brain-eye Nanism); MIM 253250] that are enriched in the Finnish population, to overlapping genomic regions on chromosome 17q. Now, we report the construction of a bacterial clone contig over the critical region for both disorders. Several novel CA-repeat markers were isolated from these clones, which allowed refined mapping of the MKS and MUL loci using haplotype and linkage disequilibrium analysis. The localization of the MKS locus was narrowed to <1 cM between markers D17S1290 and 132-CA, within an approximately 800-kb region. The MUL locus was refined into an approximately 1400-kb interval between markers D17S1290 and 52-CA. The whole MKS region falls within the MUL region. In the common critical region, the conserved haplotypes were different in MKS and MUL patients. A trancript map was constructed by assigning expressed sequence tags (ESTs) and genes, derived from the human gene map, to the bacterial clone contig. Altogether, four genes and a total of 20 ESTs were precisely localized. These data provide the molecular tools for the final identification of the MKS and the MUL genes.  (+info)

Multiple intracranial aneurysms in a patient with autosomal recessive polycystic kidney disease. (2/110)

Autosomal recessive polycystic kidney disease (ARPKD) is usually characterized by early onset chronic renal failure due to innumerable dilated collecting ducts. Hepatic fibrosis is an obligate sign. Here, for the first time, we report a 31-year-old female with ARPKD who was diagnosed with symptomatic multiple intracranial aneurysms, a manifestation previously only known to be associated with autosomal dominant polycystic kidney disease (ADPKD).  (+info)

Pulmonary hypertension in a child with juvenile-type autosomal recessive polycystic kidney disease. (3/110)

An 11 year-old girl, whose condition was diagnosed as juvenile-type autosomal recessive polycystic kidney disease (ARPKD) at five years of age, presented with chest pain and dyspnea that had developed suddenly two months previously. Two-dimensional echocardiography, Doppler study and cardiac catheterization confirmed pulmonary hypertension. The underlying mechanism of the diagnosis was not defined. Two and a half months after the onset of symptoms, the patient died of pulmonary hypertensive crisis. Careful regular checks of cardiopulmonary status using two-dimensional echocardiography and Doppler should be considered for the early detection of pulmonary hypertension even in an asymptomatic patient with juvenile-type ARPKD.  (+info)

Exclusion of the candidate genes ACE and Bcl-2 for six families with nephronophthisis not linked to the NPH1 locus. (4/110)

BACKGROUND: Nephronophthisis (NPH) is an autosomal recessively transmitted kidney disease, characterized by cyst formation at the cortico-medullary junction, and a sclerosing tubulointerstitial nephropathy. Juvenile nephronophthisis (NPH1) is the most common genetic cause of renal failure in children and maps to chromosome 2q12-q13. The responsible gene NPHP1 has been identified and encodes for nephrocystin. Not all families with NPH demonstrate linkage to that locus. METHODS: We studied six families with NPH without linkage to the NPH1 locus. In order to attempt identification of a new causative gene, the candidate genes ACE (angiotensin converting enzyme) and Bcl-2 (B cell leukaemia/lymphoma 2 gene) originating from mouse models, were examined. For the six families highly polymorphic microsatellites covering the whole candidate gene regions were haplotyped and linkage analysis was performed. RESULTS: Haplotype analyses of all families examined were incompatible with linkage of the disease status to ACE or Bcl-2. Linkage analysis excluded both candidate gene regions with a LOD-score of < -2. CONCLUSIONS: This study excluded the candidate genes ACE and Bcl-2 for NPH. Additional linkage studies need to be performed in order to identify further genes responsible for nephronophthisis.  (+info)

Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. (5/110)

Patients with inherited cystic kidney diseases have progressive cystic dilation of nephrons with concomitant loss of functional renal parenchyma and renal failure. Animal models of inherited cystic kidney disease are useful for study of the pathogenesis and molecular basis of cystic renal diseases. This article describes the clinical and pathologic features in two spontaneously occurring murine models of inherited polycystic kidney disease due to independent allelic mutations on mouse chromosome 8. The mutations, designated kat and kat2J, affect a chromosomal segment homologous to a region of human chromosome 4q35; the altered gene has not yet been identified. An allelism test showed that the mutations are at the same locus. The phenotype, inherited as an autosomal recessive, is more severe in kat2J/kat2J mice. Their kidneys are morphologically normal at birth, but by 3 mo of age, cysts affect all levels of the nephron. Adult males have testicular hypoplasia and they are sterile. A few of the oldest kat2J/kat2J mice have focal portal bile duct proliferation and dilation. kat2J/kat2J mice develop anemia and uremia and die before 1 yr of age. In kat/kat mice, the renal cystic disease progresses more slowly but is morphologically similar to that of kat2J/kat2J mice. The progressive cystic transformation of the kidneys in these allelic murine models resembles that seen in humans with autosomal dominant polycystic kidney disease.  (+info)

Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. (6/110)

The murine cpk mouse develops a rapid-onset polycystic kidney disease (PKD) with many similarities to human PKD. During kidney development, the transcription factor Pax2 is required for the specification and differentiation of the renal epithelium. In humans, Pax2 is also expressed in juvenile cystic kidneys where it correlates with cell proliferation. In this report, Pax2 expression is demonstrated in the cystic epithelium of the mouse cpk kidneys. To assess the role of Pax2 during the development of polycystic kidney disease, the progression of renal cysts was examined in cpk mutants carrying one or two alleles of Pax2. Reduced Pax2 gene dosage resulted in a significant inhibition of renal cyst growth while maintaining more normal renal structures. The inhibition of cyst growth was not due to reduced proliferation of the cystic epithelium, rather to increased cell death in the Pax2 heterozygotes. Increased apoptosis with reduced Pax2 gene dosage was also observed in normal developing kidneys. Thus, increased cell death is an integral part of the Pax2 heterozygous phenotype and may be the underlying cause of Pax gene haploinsufficiency. That the cystic epithelium requires Pax2 for continued expansion underscores the embryonic nature of the renal cystic cells and may provide new insights toward growth suppression strategies.  (+info)

Proximal tubular cysts in fetal human autosomal recessive polycystic kidney disease. (7/110)

Standard texts describe human autosomal recessive polycystic kidney disease (ARPKD) as a cystic kidney disease in which lesions are localized to collecting tubules. Murine models of ARPKD consistently demonstrate an early phase of proximal tubular (PT) cystic involvement, which disappears shortly after birth. This is followed by a phase of collecting tubular (CT) cyst formation and progressive enlargement leading to compromise of renal function and death. Because the description of cystic lesions in human ARPKD has been largely based on postnatal specimens, PT cyst formation was hypothesized to be a characteristic feature of fetal human, as well as murine, ARPKD. This study examines nephron segment-specific cyst localization histochemically by lectin binding in 11 human ARPKD specimens obtained at different fetal and postnatal ages. PT cysts were found in human fetal specimens from gestational age 14 wk to 26 wk. The percentage of cysts involving PT segments ranged from 2 to 41%. The cystic index of PT cysts ranged from 2 to 5. In all specimens in which PT cysts were found, both the percentage of CT cysts and their cystic index were equal to or greater than the percentage of PT cysts and the associated PT cystic index. PT cysts were absent in all kidney specimens older than 34 wk gestational age. It is concluded that human ARPKD, like murine ARPKD, has a transient phase of PT cyst formation during early fetal development.  (+info)

Genomic structure of the gene for the human P1 protein (MCM3) and its exclusion as a candidate for autosomal recessive polycystic kidney disease. (8/110)

The locus PKHD1 (polycystic kidney and hepatic disease 1) has been linked to all typical forms of the autosomal recessive polycystic kidney disease (ARPKD) and maps to chromosome 6p21.1-p12. We previously defined its genetic interval by the flanking markers D6S1714 and D6S1024. In our current work, we have fine-mapped the gene for the human P1 protein (MCM3), thought to be involved in the DNA replication process, to this critical region. We have also established its genomic structure. Mutation analyses using SSCP were performed in ARPKD patients' cDNA samples, leading to the exclusion of this gene as a candidate for this disorder. We also identified two intragenic polymorphisms that allowed families with critical recombination events to be evaluated. Although neither marker was informative in these individuals, they are the closest yet described for PKHD1 and may help to refine the candidate region.  (+info)

Polycystic Kidney Disease (PKD) is a genetic disorder characterized by the growth of multiple cysts in the kidneys. These cysts are fluid-filled sacs that can vary in size and can multiply, leading to enlarged kidneys. The increased size and number of cysts can result in reduced kidney function, high blood pressure, and eventually kidney failure.

There are two main types of PKD: Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive Polycystic Kidney Disease (ARPKD). ADPKD is the most common form, affecting approximately 1 in every 500 people. It typically develops in adulthood. On the other hand, ARPKD is a rarer form, affecting about 1 in every 20,000 children, and it often presents in infancy or early childhood.

In addition to kidney problems, PKD can also affect other organs, such as the liver and the heart. It's important to note that while there is no cure for PKD, various treatments can help manage symptoms and slow down the progression of the disease.

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder characterized by the growth of multiple cysts in the kidneys. These cysts are fluid-filled sacs that can vary in size and can multiply, leading to enlarged kidneys. The increased size and number of cysts can eventually result in reduced kidney function, high blood pressure, and potentially kidney failure.

ADPKD is an autosomal dominant disorder, meaning it only requires one copy of the altered gene (from either the mother or father) to have the disease. Each child of an affected individual has a 50% chance of inheriting the mutated gene. The two genes most commonly associated with ADPKD are PKD1 and PKD2, located on chromosomes 16 and 4, respectively.

Symptoms can vary widely among individuals with ADPKD, but they often include high blood pressure, back or side pain, headaches, increased abdominal size due to enlarged kidneys, blood in the urine, and kidney failure. Other complications may include cysts in the liver, pancreas, and/or brain (berries aneurysms).

Early diagnosis and management of ADPKD can help slow down disease progression and improve quality of life. Treatment typically includes controlling high blood pressure, managing pain, monitoring kidney function, and addressing complications as they arise. In some cases, dialysis or a kidney transplant may be necessary if kidney failure occurs.

Autosomal recessive polycystic kidney disease (ARPKD) is a rare genetic disorder characterized by the abnormal development and growth of numerous fluid-filled cysts in both kidneys. "Autosomal recessive" indicates that an individual must inherit two copies of the mutated gene, one from each parent, to develop the condition.

The disease primarily affects the renal tubules, which are the tiny structures inside the kidneys responsible for concentrating urine and reabsorbing essential substances back into the bloodstream. In ARPKD, these tubules become dilated and form cysts, leading to progressive kidney enlargement, scarring, and decreased function.

ARPKD is typically diagnosed in infancy or early childhood, and its severity can vary widely among affected individuals. Some may experience mild kidney impairment, while others may develop end-stage renal disease (ESRD) requiring dialysis or a kidney transplant. Additionally, ARPKD often affects the liver, causing congenital hepatic fibrosis and potentially leading to complications such as portal hypertension and liver failure.

The condition is caused by mutations in the PKHD1 gene, which provides instructions for producing a large protein called fibrocystin or polyductin. This protein plays crucial roles in maintaining the structure and function of renal tubules and bile ducts in the liver. When the PKHD1 gene is mutated, it results in the production of an abnormal or nonfunctional fibrocystin/polyductin protein, ultimately leading to the development of cysts and other associated symptoms.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

Transient Receptor Potential (TRP) channels are a type of ion channel that play a crucial role in various physiological processes, including sensory perception, cellular signaling, and regulation of intracellular calcium levels. TRPP cation channels, also known as TRPP subfamily or polycystin channels, are a specific subgroup within the TRP channel family.

TRPP channels consist of two members: TRPP1 (also known as PKD1 or polycystin-1) and TRPP2 (also known as PKD2 or polycystin-2). These channels form heterodimers, meaning they are composed of two different subunits that come together to create a functional channel.

TRPP channels are primarily located in the primary cilium, a hair-like structure protruding from the cell surface, and in the endoplasmic reticulum (ER), an intracellular organelle involved in protein folding and calcium storage. They function as mechano- and chemosensors, responding to various stimuli such as mechanical forces, changes in temperature, pH, or chemical ligands.

TRPP channels are particularly important in the context of renal physiology and pathophysiology. Mutations in TRPP1 and TRPP2 have been linked to autosomal dominant polycystic kidney disease (ADPKD), a genetic disorder characterized by the formation of fluid-filled cysts in the kidneys, leading to progressive loss of renal function.

In summary, TRPP cation channels are a subfamily of TRP channels formed by the heterodimerization of TRPP1 and TRPP2 subunits. They play essential roles in sensory perception, cellular signaling, and calcium homeostasis, with particular significance in renal physiology and pathophysiology.

Polycyctic Ovary Syndrome (PCOS) is a complex endocrine-metabolic disorder characterized by the presence of hyperandrogenism (excess male hormones), ovulatory dysfunction, and polycystic ovaries. The Rotterdam criteria are commonly used for diagnosis, which require at least two of the following three features:

1. Oligo- or anovulation (irregular menstrual cycles)
2. Clinical and/or biochemical signs of hyperandrogenism (e.g., hirsutism, acne, or high levels of androgens in the blood)
3. Polycystic ovaries on ultrasound examination (presence of 12 or more follicles measuring 2-9 mm in diameter, or increased ovarian volume >10 mL)

The exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic and environmental factors. Insulin resistance and obesity are common findings in women with PCOS, which can contribute to the development of metabolic complications such as type 2 diabetes, dyslipidemia, and cardiovascular disease.

Management of PCOS typically involves a multidisciplinary approach that includes lifestyle modifications (diet, exercise, weight loss), medications to regulate menstrual cycles and reduce hyperandrogenism (e.g., oral contraceptives, metformin, anti-androgens), and fertility treatments if desired. Regular monitoring of metabolic parameters and long-term follow-up are essential for optimal management and prevention of complications.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

A cyst is a closed sac, having a distinct membrane and division between the sac and its surrounding tissue, that contains fluid, air, or semisolid material. Cysts can occur in various parts of the body, including the skin, internal organs, and bones. They can be caused by various factors, such as infection, genetic predisposition, or blockage of a duct or gland. Some cysts may cause symptoms, such as pain or discomfort, while others may not cause any symptoms at all. Treatment for cysts depends on the type and location of the cyst, as well as whether it is causing any problems. Some cysts may go away on their own, while others may need to be drained or removed through a surgical procedure.

Consanguinity is a medical and genetic term that refers to the degree of genetic relationship between two individuals who share common ancestors. Consanguineous relationships exist when people are related by blood, through a common ancestor or siblings who have children together. The closer the relationship between the two individuals, the higher the degree of consanguinity.

The degree of consanguinity is typically expressed as a percentage or fraction, with higher values indicating a closer genetic relationship. For example, first-degree relatives, such as parents and children or full siblings, share approximately 50% of their genes and have a consanguinity coefficient of 0.25 (or 25%).

Consanguinity can increase the risk of certain genetic disorders and birth defects in offspring due to the increased likelihood of sharing harmful recessive genes. The risks depend on the degree of consanguinity, with closer relationships carrying higher risks. It is important for individuals who are planning to have children and have a history of consanguinity to consider genetic counseling and testing to assess their risk of passing on genetic disorders.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Cilia are tiny, hair-like structures that protrude from the surface of many types of cells in the body. They are composed of a core bundle of microtubules surrounded by a protein matrix and are covered with a membrane. Cilia are involved in various cellular functions, including movement of fluid or mucus across the cell surface, detection of external stimuli, and regulation of signaling pathways.

There are two types of cilia: motile and non-motile. Motile cilia are able to move in a coordinated manner to propel fluids or particles across a surface, such as those found in the respiratory tract and reproductive organs. Non-motile cilia, also known as primary cilia, are present on most cells in the body and serve as sensory organelles that detect chemical and mechanical signals from the environment.

Defects in cilia structure or function can lead to a variety of diseases, collectively known as ciliopathies. These conditions can affect multiple organs and systems in the body, including the brain, kidneys, liver, and eyes. Examples of ciliopathies include polycystic kidney disease, Bardet-Biedl syndrome, and Meckel-Gruber syndrome.

Cystic kidney diseases are a group of genetic disorders that cause fluid-filled sacs called cysts to form in the kidneys. These cysts can vary in size and can grow over time, which can lead to damage in the kidneys and affect their function. There are two main types of cystic kidney diseases: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD).

ADPKD is the most common type and is characterized by the presence of numerous cysts in both kidneys. It is usually diagnosed in adulthood, but it can also occur in children. The cysts can cause high blood pressure, kidney stones, urinary tract infections, and eventually kidney failure.

ARPKD is a rare, inherited disorder that affects both the kidneys and liver. It is characterized by the presence of numerous cysts in the kidneys and abnormalities in the bile ducts of the liver. ARPKD is usually diagnosed in infancy or early childhood and can cause serious complications such as respiratory distress, kidney failure, and liver fibrosis.

Other types of cystic kidney diseases include nephronophthisis, medullary cystic kidney disease, and glomerulocystic kidney disease. These conditions are also inherited and can cause kidney damage and kidney failure.

Treatment for cystic kidney diseases typically involves managing symptoms such as high blood pressure, pain, and infections. In some cases, surgery may be necessary to remove large cysts or to treat complications such as kidney stones. For individuals with advanced kidney disease, dialysis or a kidney transplant may be necessary.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Caroli disease is a rare genetic disorder that affects the liver and bile ducts. It is characterized by abnormal dilations or sac-like structures in the intrahepatic bile ducts, which are the ducts that carry bile from the liver to the gallbladder and small intestine. These dilations can lead to recurrent cholangitis (inflammation of the bile ducts), stone formation, and liver damage.

Caroli disease is usually diagnosed in childhood or early adulthood, and it can be associated with other congenital anomalies such as polycystic kidney disease. The exact cause of Caroli disease is not fully understood, but it is believed to be inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the abnormal gene, one from each parent, to develop the condition.

Treatment for Caroli disease may include antibiotics to manage cholangitis, endoscopic procedures to remove stones or dilate strictures, and surgery to bypass or remove affected bile ducts. In severe cases, liver transplantation may be necessary. Regular monitoring of liver function and surveillance for complications are essential in the management of this condition.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Genetic linkage is the phenomenon where two or more genetic loci (locations on a chromosome) tend to be inherited together because they are close to each other on the same chromosome. This occurs during the process of sexual reproduction, where homologous chromosomes pair up and exchange genetic material through a process called crossing over.

The closer two loci are to each other on a chromosome, the lower the probability that they will be separated by a crossover event. As a result, they are more likely to be inherited together and are said to be linked. The degree of linkage between two loci can be measured by their recombination frequency, which is the percentage of meiotic events in which a crossover occurs between them.

Linkage analysis is an important tool in genetic research, as it allows researchers to identify and map genes that are associated with specific traits or diseases. By analyzing patterns of linkage between markers (identifiable DNA sequences) and phenotypes (observable traits), researchers can infer the location of genes that contribute to those traits or diseases on chromosomes.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Hyperandrogenism is a medical condition characterized by excessive levels of androgens (male sex hormones) in the body. This can lead to various symptoms such as hirsutism (excessive hair growth), acne, irregular menstrual periods, and infertility in women. It can be caused by conditions like polycystic ovary syndrome (PCOS), congenital adrenal hyperplasia, and tumors in the ovaries or adrenal glands. Proper diagnosis and management of hyperandrogenism is important to prevent complications and improve quality of life.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

Human chromosome pair 16 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure called a chromatin.

Chromosomes come in pairs, with one chromosome inherited from each parent. Chromosome pair 16 contains two homologous chromosomes, which are similar in size, shape, and genetic content but may have slight variations due to differences in the DNA sequences inherited from each parent.

Chromosome pair 16 is one of the 22 autosomal pairs, meaning it contains non-sex chromosomes that are present in both males and females. Chromosome 16 is a medium-sized chromosome, and it contains around 2,800 genes that provide instructions for making proteins and regulating various cellular processes.

Abnormalities in chromosome pair 16 can lead to genetic disorders such as chronic myeloid leukemia, some forms of mental retardation, and other developmental abnormalities.

Kidney transplantation is a surgical procedure where a healthy kidney from a deceased or living donor is implanted into a patient with end-stage renal disease (ESRD) or permanent kidney failure. The new kidney takes over the functions of filtering waste and excess fluids from the blood, producing urine, and maintaining the body's electrolyte balance.

The transplanted kidney is typically placed in the lower abdomen, with its blood vessels connected to the recipient's iliac artery and vein. The ureter of the new kidney is then attached to the recipient's bladder to ensure proper urine flow. Following the surgery, the patient will require lifelong immunosuppressive therapy to prevent rejection of the transplanted organ by their immune system.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Hirsutism is a medical condition characterized by excessive hair growth in women in areas where hair growth is typically androgen-dependent, such as the face, chest, lower abdomen, and inner thighs. This hair growth is often thick, dark, and coarse, resembling male-pattern hair growth. Hirsutism can be caused by various factors, including hormonal imbalances, certain medications, and genetic conditions. It's essential to consult a healthcare professional if you experience excessive or unwanted hair growth to determine the underlying cause and develop an appropriate treatment plan.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

'Abnormalities, Multiple' is a broad term that refers to the presence of two or more structural or functional anomalies in an individual. These abnormalities can be present at birth (congenital) or can develop later in life (acquired). They can affect various organs and systems of the body and can vary greatly in severity and impact on a person's health and well-being.

Multiple abnormalities can occur due to genetic factors, environmental influences, or a combination of both. Chromosomal abnormalities, gene mutations, exposure to teratogens (substances that cause birth defects), and maternal infections during pregnancy are some of the common causes of multiple congenital abnormalities.

Examples of multiple congenital abnormalities include Down syndrome, Turner syndrome, and VATER/VACTERL association. Acquired multiple abnormalities can result from conditions such as trauma, infection, degenerative diseases, or cancer.

The medical evaluation and management of individuals with multiple abnormalities depend on the specific abnormalities present and their impact on the individual's health and functioning. A multidisciplinary team of healthcare professionals is often involved in the care of these individuals to address their complex needs.

Cyst fluid refers to the fluid accumulated within a cyst, which is a closed sac-like or capsular structure, typically filled with liquid or semi-solid material. Cysts can develop in various parts of the body for different reasons, and the composition of cyst fluid may vary depending on the type of cyst and its location.

In some cases, cyst fluid might contain proteins, sugars, hormones, or even cells from the surrounding tissue. Infected cysts may have pus-like fluid, while cancerous or precancerous cysts might contain abnormal cells or tumor markers. The analysis of cyst fluid can help medical professionals diagnose and manage various medical conditions, including infections, inflammatory diseases, genetic disorders, and cancers.

It is important to note that the term 'cyst fluid' generally refers to the liquid content within a cyst, but the specific composition and appearance of this fluid may vary significantly depending on the underlying cause and type of cyst.

A LOD (Logarithm of Odds) score is not a medical term per se, but rather a statistical concept that is used in genetic research and linkage analysis to determine the likelihood of a gene or genetic marker being linked to a particular disease or trait. The LOD score compares the odds of observing the pattern of inheritance of a genetic marker in a family if the marker is linked to the disease, versus the odds if the marker is not linked. A LOD score of 3 or higher is generally considered evidence for linkage, while a score of -2 or lower is considered evidence against linkage.

I'm sorry for any confusion, but "Rats, Mutant Strains" is not a recognized medical term or concept. It may be a term used in science fiction, gaming, or other non-medical contexts to refer to genetically modified rats with altered characteristics. However, in the field of medical research, scientists do conduct studies using various strains of lab rats, some of which have been selectively bred or genetically modified to exhibit specific traits, but these are not referred to as "mutant strains." If you have any questions related to medical definitions or concepts, I'd be happy to help with those!

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

Orofaciodigital syndromes (OFDS) are a group of rare genetic disorders that primarily affect the development of the face, mouth, and digits. The term "orofaciodigital" describes the specific areas of the body that are impacted: oro (mouth), facio (face), and digital (fingers and toes).

There are several types of OFDS, each with its own set of symptoms and genetic cause. Some common features across various types of OFDS include:

1. Oral manifestations: These may include cleft lip and/or palate, tongue abnormalities, such as a lobulated or bifid tongue, and dental anomalies.
2. Facial manifestations: These can range from mild to severe and may include hypertelorism (widely spaced eyes), broad nasal bridge, low-set ears, and a thin upper lip.
3. Digital manifestations: Abnormalities of the fingers and toes may include brachydactyly (shortened digits), clinodactyily (curved digits), syndactyly (fused digits), or extra digits (polydactyly). Nail abnormalities might also be present.

The different types of OFDS are caused by mutations in various genes, such as OFD1, CCDC8, and TMEM216. The specific genetic cause determines the type of OFDS and its associated symptoms.

It is essential to consult with a medical professional or genetic counselor for an accurate diagnosis and personalized management plan if you suspect or have been diagnosed with an orofaciodigital syndrome.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Retinitis pigmentosa (RP) is a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina - a light-sensitive tissue located at the back of the eye. The retina converts light into electrical signals which are then sent to the brain and interpreted as visual images.

In RP, the cells that detect light (rods and cones) degenerate more slowly than other cells in the retina, leading to a progressive loss of vision. Symptoms typically begin in childhood with night blindness (difficulty seeing in low light), followed by a gradual narrowing of the visual field (tunnel vision). Over time, this can lead to significant vision loss and even blindness.

The condition is usually inherited and there are several different genes that have been associated with RP. The diagnosis is typically made based on a combination of genetic testing, family history, and clinical examination. Currently, there is no cure for RP, but researchers are actively working to develop new treatments that may help slow or stop the progression of the disease.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Collecting kidney tubules, also known as collecting ducts, are the final portion of the renal tubule in the nephron of the kidney. They collect filtrate from the distal convoluted tubules and glomeruli and are responsible for the reabsorption of water and electrolytes back into the bloodstream under the influence of antidiuretic hormone (ADH) and aldosterone. The collecting ducts then deliver the remaining filtrate to the ureter, which transports it to the bladder for storage until urination.

Oligomenorrhea is a medical term used to describe infrequent menstrual periods, where the cycle length is more than 35 days but less than 68 days. It's considered a menstrual disorder and can affect people of reproductive age. The causes of oligomenorrhea are varied, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, excessive exercise, significant weight loss or gain, and stress. In some cases, it may not cause any other symptoms, but in others, it can be associated with infertility, hirsutism (excessive hair growth), acne, or obesity. Treatment depends on the underlying cause and may include lifestyle modifications, hormonal medications, or surgery in rare cases.

A frameshift mutation is a type of genetic mutation that occurs when the addition or deletion of nucleotides in a DNA sequence is not divisible by three. Since DNA is read in groups of three nucleotides (codons), which each specify an amino acid, this can shift the "reading frame," leading to the insertion or deletion of one or more amino acids in the resulting protein. This can cause a protein to be significantly different from the normal protein, often resulting in a nonfunctional protein and potentially causing disease. Frameshift mutations are typically caused by insertions or deletions of nucleotides, but they can also result from more complex genetic rearrangements.

The kidney cortex is the outer region of the kidney where most of the functional units called nephrons are located. It plays a crucial role in filtering blood and regulating water, electrolyte, and acid-base balance in the body. The kidney cortex contains the glomeruli, proximal tubules, loop of Henle, and distal tubules, which work together to reabsorb necessary substances and excrete waste products into the urine.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Microcephaly is a medical condition where an individual has a smaller than average head size. The circumference of the head is significantly below the normal range for age and sex. This condition is typically caused by abnormal brain development, which can be due to genetic factors or environmental influences such as infections or exposure to harmful substances during pregnancy.

Microcephaly can be present at birth (congenital) or develop in the first few years of life. People with microcephaly often have intellectual disabilities, delayed development, and other neurological problems. However, the severity of these issues can vary widely, ranging from mild to severe. It is important to note that not all individuals with microcephaly will experience significant impairments or challenges.

A nonsense codon is a sequence of three nucleotides in DNA or RNA that does not code for an amino acid. Instead, it signals the end of the protein-coding region of a gene and triggers the termination of translation, the process by which the genetic code is translated into a protein.

In DNA, the nonsense codons are UAA, UAG, and UGA, which are also known as "stop codons." When these codons are encountered during translation, they cause the release of the newly synthesized polypeptide chain from the ribosome, bringing the process of protein synthesis to a halt.

Nonsense mutations are changes in the DNA sequence that result in the appearance of a nonsense codon where an amino acid-coding codon used to be. These types of mutations can lead to premature termination of translation and the production of truncated, nonfunctional proteins, which can cause genetic diseases or contribute to cancer development.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Kidney function tests (KFTs) are a group of diagnostic tests that evaluate how well your kidneys are functioning by measuring the levels of various substances in the blood and urine. The tests typically assess the glomerular filtration rate (GFR), which is an indicator of how efficiently the kidneys filter waste from the blood, as well as the levels of electrolytes, waste products, and proteins in the body.

Some common KFTs include:

1. Serum creatinine: A waste product that's produced by normal muscle breakdown and is excreted by the kidneys. Elevated levels may indicate reduced kidney function.
2. Blood urea nitrogen (BUN): Another waste product that's produced when protein is broken down and excreted by the kidneys. Increased BUN levels can suggest impaired kidney function.
3. Estimated glomerular filtration rate (eGFR): A calculation based on serum creatinine, age, sex, and race that estimates the GFR and provides a more precise assessment of kidney function than creatinine alone.
4. Urinalysis: An examination of a urine sample to detect abnormalities such as protein, blood, or bacteria that may indicate kidney disease.
5. Electrolyte levels: Measurement of sodium, potassium, chloride, and bicarbonate in the blood to ensure they're properly balanced, which is essential for normal kidney function.

KFTs are often ordered as part of a routine check-up or when kidney disease is suspected based on symptoms or other diagnostic tests. Regular monitoring of kidney function can help detect and manage kidney disease early, potentially preventing or slowing down its progression.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

A haplotype is a group of genes or DNA sequences that are inherited together from a single parent. It refers to a combination of alleles (variant forms of a gene) that are located on the same chromosome and are usually transmitted as a unit. Haplotypes can be useful in tracing genetic ancestry, understanding the genetic basis of diseases, and developing personalized medical treatments.

In population genetics, haplotypes are often used to study patterns of genetic variation within and between populations. By comparing haplotype frequencies across populations, researchers can infer historical events such as migrations, population expansions, and bottlenecks. Additionally, haplotypes can provide information about the evolutionary history of genes and genomic regions.

In clinical genetics, haplotypes can be used to identify genetic risk factors for diseases or to predict an individual's response to certain medications. For example, specific haplotypes in the HLA gene region have been associated with increased susceptibility to certain autoimmune diseases, while other haplotypes in the CYP450 gene family can affect how individuals metabolize drugs.

Overall, haplotypes provide a powerful tool for understanding the genetic basis of complex traits and diseases, as well as for developing personalized medical treatments based on an individual's genetic makeup.

Genetic markers are specific segments of DNA that are used in genetic mapping and genotyping to identify specific genetic locations, diseases, or traits. They can be composed of short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or variable number tandem repeats (VNTRs). These markers are useful in various fields such as genetic research, medical diagnostics, forensic science, and breeding programs. They can help to track inheritance patterns, identify genetic predispositions to diseases, and solve crimes by linking biological evidence to suspects or victims.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

Ciliary motility disorders are a group of rare genetic conditions that affect the function of cilia, which are tiny hair-like structures on the surface of cells in the body. Cilia play an important role in moving fluids and particles across the cell surface, including the movement of mucus and other substances in the respiratory system, the movement of eggs and sperm in the reproductive system, and the movement of fluid in the inner ear.

Ciliary motility disorders are caused by mutations in genes that are responsible for the proper functioning of cilia. These mutations can lead to abnormalities in the structure or function of cilia, which can result in a range of symptoms depending on the specific disorder and the parts of the body that are affected.

Some common symptoms of ciliary motility disorders include recurrent respiratory infections, chronic sinusitis, hearing loss, infertility, and situs inversus, a condition in which the major organs are reversed or mirrored from their normal positions. There are several different types of ciliary motility disorders, including primary ciliary dyskinesia, Kartagener syndrome, and immotile cilia syndrome.

Treatment for ciliary motility disorders typically involves addressing the specific symptoms and underlying causes of the disorder. This may include antibiotics to treat respiratory infections, surgery to correct structural abnormalities, or assisted reproductive technologies to help with infertility.

Ichthyosis is a group of skin disorders that are characterized by dry, thickened, scaly skin. The name "ichthyosis" comes from the Greek word "ichthys," which means fish, as the skin can have a fish-like scale appearance. These conditions can be inherited or acquired and vary in severity.

The medical definition of ichthyosis is a heterogeneous group of genetic keratinization disorders that result in dry, thickened, and scaly skin. The condition may affect any part of the body, but it most commonly appears on the extremities, scalp, and trunk. Ichthyosis can also have associated symptoms such as redness, itching, and blistering.

The severity of ichthyosis can range from mild to severe, and some forms of the condition may be life-threatening in infancy. The exact symptoms and their severity depend on the specific type of ichthyosis a person has. Treatment for ichthyosis typically involves moisturizing the skin, avoiding irritants, and using medications to help control scaling and inflammation.

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

Anovulation is a medical condition in which there is a failure to ovulate, or release a mature egg from the ovaries, during a menstrual cycle. This can occur due to various reasons such as hormonal imbalances, polycystic ovary syndrome (PCOS), premature ovarian failure, excessive exercise, stress, low body weight, or certain medications. Anovulation is common in women with irregular menstrual cycles and can cause infertility if left untreated. In some cases, anovulation may be treated with medication to stimulate ovulation.

Hypotrichosis is a medical term that refers to a condition characterized by an abnormal lack or sparseness of hair growth. This can apply to the eyebrows, eyelashes, or scalp hair. It's important to note that this is not a complete loss of hair, but rather a significant reduction in hair density. The onset and severity can vary greatly, and it can be inherited or acquired later in life due to various factors such as diseases, burns, or certain medications.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working. Specifically, it estimates how much blood passes through the glomeruli each minute. The glomeruli are the tiny fibers in the kidneys that filter waste from the blood. A lower GFR number means that the kidneys aren't working properly and may indicate kidney disease.

The GFR is typically calculated using a formula that takes into account the patient's serum creatinine level, age, sex, and race. The most commonly used formula is the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. A normal GFR is usually above 90 mL/min/1.73m2, but this can vary depending on the individual's age and other factors.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Kidney calculi, also known as kidney stones, are hard deposits made of minerals and salts that form inside your kidneys. They can range in size from a grain of sand to a golf ball. When they're small enough, they can be passed through your urine without causing too much discomfort. However, larger stones may block the flow of urine, causing severe pain and potentially leading to serious complications such as urinary tract infections or kidney damage if left untreated.

The formation of kidney calculi is often associated with factors like dehydration, high levels of certain minerals in your urine, family history, obesity, and certain medical conditions such as gout or inflammatory bowel disease. Symptoms of kidney stones typically include severe pain in the back, side, lower abdomen, or groin; nausea and vomiting; fever and chills if an infection is present; and blood in the urine. Treatment options depend on the size and location of the stone but may include medications to help pass the stone, shock wave lithotripsy to break up the stone, or surgical removal of the stone in severe cases.

Metformin is a type of biguanide antihyperglycemic agent used primarily in the treatment of type 2 diabetes mellitus. It works by decreasing glucose production in the liver, reducing glucose absorption in the gut, and increasing insulin sensitivity in muscle and fat tissue. By lowering both basal and postprandial plasma glucose levels, metformin helps to control blood sugar levels and improve glycemic control. It is also used off-label for various other indications such as polycystic ovary syndrome (PCOS) and gestational diabetes. Common side effects include diarrhea, nausea, vomiting, and abdominal discomfort. Lactic acidosis is a rare but serious side effect that requires immediate medical attention.

Vasopressin receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone vasopressin (also known as antidiuretic hormone or ADH). There are two main types of vasopressin receptors, V1 and V2.

V1 receptors are found in various tissues throughout the body, including vascular smooth muscle, heart, liver, and kidney. Activation of V1 receptors leads to vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and release of glycogen from the liver.

V2 receptors are primarily found in the kidney's collecting ducts. When activated, they increase water permeability in the collecting ducts, allowing for the reabsorption of water into the bloodstream and reducing urine production. This helps to regulate fluid balance and maintain normal blood pressure.

Abnormalities in vasopressin receptor function can contribute to various medical conditions, including hypertension, heart failure, and kidney disease.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

Ichthyosiform erythroderma, congenital, also known as Congenital Ichthyosiform Erythroderma (CIE), is a rare inherited genetic disorder of keratinization. It is characterized by widespread scaliness and erythema (redness) that are present at birth or develop soon thereafter.

The condition is caused by mutations in various genes involved in the development of the skin barrier, leading to abnormalities in the formation and shedding of skin cells. This results in a thickened, scaly appearance of the skin, which can be associated with severe dryness, irritation, and inflammation.

The symptoms of CIE can vary widely among affected individuals, ranging from mild to severe. In addition to the characteristic skin changes, some people with CIE may also experience additional features such as ectropion (outward turning of the eyelids), eclabium (splitting of the lips), and hyperkeratosis of palms and soles.

CIE is typically a lifelong condition, and treatment is focused on managing symptoms and preventing complications. This may include the use of topical moisturizers, emollients, and keratolytic agents to help soften and remove excess skin cells. In some cases, systemic medications such as retinoids may be used to help reduce the severity of skin changes.

Kidney neoplasms refer to abnormal growths or tumors in the kidney tissues that can be benign (non-cancerous) or malignant (cancerous). These growths can originate from various types of kidney cells, including the renal tubules, glomeruli, and the renal pelvis.

Malignant kidney neoplasms are also known as kidney cancers, with renal cell carcinoma being the most common type. Benign kidney neoplasms include renal adenomas, oncocytomas, and angiomyolipomas. While benign neoplasms are generally not life-threatening, they can still cause problems if they grow large enough to compromise kidney function or if they undergo malignant transformation.

Early detection and appropriate management of kidney neoplasms are crucial for improving patient outcomes and overall prognosis. Regular medical check-ups, imaging studies, and urinalysis can help in the early identification of these growths, allowing for timely intervention and treatment.

"Family Health" is not a term that has a single, widely accepted medical definition. However, in the context of healthcare and public health, "family health" often refers to the physical, mental, and social well-being of all members of a family unit. It includes the assessment, promotion, and prevention of health conditions that affect individual family members as well as the family as a whole.

Family health may also encompass interventions and programs that aim to strengthen family relationships, communication, and functioning, as these factors can have a significant impact on overall health outcomes. Additionally, family health may involve addressing social determinants of health, such as poverty, housing, and access to healthcare, which can affect the health of families and communities.

Overall, family health is a holistic approach to healthcare that recognizes the importance of considering the needs and experiences of all family members in promoting and maintaining good health.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Acute kidney injury (AKI), also known as acute renal failure, is a rapid loss of kidney function that occurs over a few hours or days. It is defined as an increase in the serum creatinine level by 0.3 mg/dL within 48 hours or an increase in the creatinine level to more than 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days, or a urine volume of less than 0.5 mL/kg per hour for six hours.

AKI can be caused by a variety of conditions, including decreased blood flow to the kidneys, obstruction of the urinary tract, exposure to toxic substances, and certain medications. Symptoms of AKI may include decreased urine output, fluid retention, electrolyte imbalances, and metabolic acidosis. Treatment typically involves addressing the underlying cause of the injury and providing supportive care, such as dialysis, to help maintain kidney function until the injury resolves.

A nephron is the basic structural and functional unit of the kidney. It is responsible for filtering blood, reabsorbing necessary substances, and excreting waste products into the urine. Each human kidney contains approximately one million nephrons.

The structure of a nephron includes a glomerulus, which is a tuft of capillaries surrounded by Bowman's capsule. The glomerulus filters blood, allowing small molecules like water and solutes to pass through while keeping larger molecules like proteins and blood cells within the capillaries.

The filtrate then passes through the tubular portion of the nephron, which includes the proximal convoluted tubule, loop of Henle, distal convoluted tubule, and collecting duct. The tubular portion reabsorbs necessary substances like water, glucose, amino acids, and electrolytes back into the bloodstream while excreting waste products like urea and creatinine into the urine.

Overall, nephrons play a critical role in maintaining fluid and electrolyte balance, regulating blood pressure, and removing waste products from the body.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Hematuria is a medical term that refers to the presence of blood in urine. It can be visible to the naked eye, which is called gross hematuria, or detected only under a microscope, known as microscopic hematuria. The blood in urine may come from any site along the urinary tract, including the kidneys, ureters, bladder, or urethra. Hematuria can be a symptom of various medical conditions, such as urinary tract infections, kidney stones, kidney disease, or cancer of the urinary tract. It is essential to consult a healthcare professional if you notice blood in your urine to determine the underlying cause and receive appropriate treatment.

Single-Stranded Conformational Polymorphism (SSCP) is not a medical condition but rather a laboratory technique used in molecular biology and genetics. It refers to the phenomenon where a single-stranded DNA or RNA molecule can adopt different conformations or shapes based on its nucleotide sequence, even if the difference in the sequence is as small as a single base pair change. This property is used in SSCP analysis to detect mutations or variations in DNA or RNA sequences.

In SSCP analysis, the denatured single-stranded DNA or RNA sample is subjected to electrophoresis on a non-denaturing polyacrylamide gel. The different conformations of the single-stranded molecules migrate at different rates in the gel, creating multiple bands that can be visualized by staining or other detection methods. The presence of additional bands or shifts in band patterns can indicate the presence of a sequence variant or mutation.

SSCP analysis is often used as a screening tool for genetic diseases, cancer, and infectious diseases to identify genetic variations associated with these conditions. However, it has largely been replaced by more sensitive and accurate methods such as next-generation sequencing.

Clomiphene is a medication that is primarily used to treat infertility in women. It is an ovulatory stimulant, which means that it works by stimulating the development and release of mature eggs from the ovaries (a process known as ovulation). Clomiphene is a selective estrogen receptor modulator (SERM), which means that it binds to estrogen receptors in the body and blocks the effects of estrogen in certain tissues, while enhancing the effects of estrogen in others.

In the ovary, clomiphene works by blocking the negative feedback effect of estrogen on the hypothalamus and pituitary gland, which results in an increase in the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These hormones stimulate the growth and development of ovarian follicles, which contain eggs. As the follicles grow and mature, they produce increasing amounts of estrogen, which eventually triggers a surge in LH that leads to ovulation.

Clomiphene is typically taken orally for 5 days, starting on the 3rd, 4th, or 5th day of the menstrual cycle. The dosage may be adjusted based on the patient's response to treatment. Common side effects of clomiphene include hot flashes, mood changes, breast tenderness, and ovarian hyperstimulation syndrome (OHSS), which is a potentially serious complication characterized by the enlargement of the ovaries and the accumulation of fluid in the abdomen.

It's important to note that clomiphene may not be suitable for everyone, and its use should be carefully monitored by a healthcare provider. Women with certain medical conditions, such as liver disease, thyroid disorders, or uterine fibroids, may not be able to take clomiphene. Additionally, women who become pregnant while taking clomiphene have an increased risk of multiple pregnancies (e.g., twins or triplets), which can pose additional risks to both the mother and the fetuses.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Intellectual disability (ID) is a term used when there are significant limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. This disability originates before the age of 18.

Intellectual functioning, also known as intelligence, refers to general mental capacity, such as learning, reasoning, problem-solving, and other cognitive skills. Adaptive behavior includes skills needed for day-to-day life, such as communication, self-care, social skills, safety judgement, and basic academic skills.

Intellectual disability is characterized by below-average intelligence or mental ability and a lack of skills necessary for day-to-day living. It can be mild, moderate, severe, or profound, depending on the degree of limitation in intellectual functioning and adaptive behavior.

It's important to note that people with intellectual disabilities have unique strengths and limitations, just like everyone else. With appropriate support and education, they can lead fulfilling lives and contribute to their communities in many ways.

Renal hypertension, also known as renovascular hypertension, is a type of secondary hypertension (high blood pressure) that is caused by narrowing or obstruction of the renal arteries or veins, which supply blood to the kidneys. This can lead to decreased blood flow and oxygen delivery to the kidney tissue, activating the renin-angiotensin-aldosterone system (RAAS) and resulting in increased peripheral vascular resistance, sodium retention, and extracellular fluid volume, ultimately causing hypertension.

Renal hypertension can be classified into two types:

1. Renin-dependent renal hypertension: This is caused by a decrease in blood flow to the kidneys, leading to increased renin release from the juxtaglomerular cells of the kidney. Renin converts angiotensinogen to angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin II is a potent vasoconstrictor that causes an increase in peripheral vascular resistance and blood pressure.
2. Renin-independent renal hypertension: This is caused by increased sodium retention and extracellular fluid volume, leading to an increase in blood pressure. This can be due to various factors such as obstructive sleep apnea, primary aldosteronism, or pheochromocytoma.

Renal hypertension is often asymptomatic but can lead to serious complications such as kidney damage, heart failure, and stroke if left untreated. Diagnosis of renal hypertension involves imaging studies such as renal artery duplex ultrasound, CT angiography, or magnetic resonance angiography (MRA) to identify any narrowing or obstruction in the renal arteries or veins. Treatment options include medications such as ACE inhibitors, angiotensin receptor blockers (ARBs), calcium channel blockers, and diuretics, as well as interventions such as angioplasty and stenting to improve blood flow to the kidneys.

I'm sorry for any confusion, but "Pakistan" is a country in South Asia and not a medical term or condition. If you have any medical questions or terms you would like defined, I would be happy to help!

I'm sorry for any confusion, but "Iothalamic Acid" doesn't appear to be a recognized term in medical or physiological literature. It's possible there may be a spelling error or it could be a highly specialized or obscure term used only in specific research contexts.

If you meant "Iothalamate," that is a compound used as a contrast agent in medical imaging, specifically in radiology for procedures like intravenous pyelograms (IVPs) and computed tomography (CT) scans. Iothalamate is not typically referred to as an acid, though.

Please double-check the term you're looking for, and if there's any chance you meant "Iothalamate," let me know so I can provide a more accurate response!

Multicystic Dysplastic Kidney (MCDK) is a congenital kidney disorder, which means it is present at birth. It occurs when the kidney doesn't develop properly and forms one or more non-functioning cysts. The kidney with MCDK is usually small and has abnormally shaped cysts that can be seen on an ultrasound.

In a normal kidney, the renal pelvis (the central part of the kidney where urine collects) and the calyces (the smaller cups that receive urine from the renal tubules) are shaped like funnels to help direct urine into the ureter and then to the bladder. However, in a dysplastic kidney, these structures don't form correctly and instead develop as cysts of various sizes.

MCDK is usually unilateral (occurring in one kidney), but it can be bilateral (occurring in both kidneys), which is a more serious condition because it can lead to kidney failure. Most cases of MCDK are discovered prenatally during routine ultrasounds, and if the other kidney is normal, no treatment is necessary. The affected kidney will shrink over time and may disappear entirely. However, regular follow-ups with a healthcare provider are essential to monitor kidney function and overall health.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Nephrectomy is a surgical procedure in which all or part of a kidney is removed. It may be performed due to various reasons such as severe kidney damage, kidney cancer, or living donor transplantation. The type of nephrectomy depends on the reason for the surgery - a simple nephrectomy involves removing only the affected portion of the kidney, while a radical nephrectomy includes removal of the whole kidney along with its surrounding tissues like the adrenal gland and lymph nodes.

Lamellar Ichthyosis is a rare, inherited genetic skin disorder characterized by widespread, persistent scaling of the skin. It is caused by mutations in genes responsible for maintaining the barrier function and hydration of the skin. The condition is present from birth and can vary in severity.

In lamellar ichthyosis, the skin cells do not shed properly and instead accumulate in plates or scales that cover the entire body. These scales are large, dark brown or gray, and have a cracked appearance, resembling fish scales. The scales may be present at birth (congenital) or develop within the first few weeks of life.

The skin is also prone to redness, irritation, and infection due to the impaired barrier function. Other symptoms can include overheating, dehydration, and difficulty with sweating. The condition may improve in warmer, more humid environments.

Treatment for lamellar ichthyosis is aimed at managing symptoms and preventing complications. This may include topical creams and ointments to moisturize the skin, medications to reduce inflammation and infection, and avoiding environmental triggers that can worsen symptoms. In some cases, oral retinoids may be prescribed to help regulate skin cell growth and shedding.

Hand-assisted laparoscopy (HAL) is a surgical technique that combines the principles of traditional open surgery and minimally invasive laparoscopic surgery. In HAL, a small incision is made, typically in the abdomen, through which the surgeon's hand can be introduced into the abdominal cavity while maintaining a pneumoperitoneum (insufflation of carbon dioxide gas to create a working space). This approach allows the surgeon to use their hands to perform complex surgical procedures with the aid of laparoscopic instruments, which are inserted through other small incisions.

The hand-assisted technique provides several advantages over traditional laparoscopy, including improved tactile feedback, enhanced dexterity, and more precise dissection and manipulation of tissues. This approach is often used in complex urological, gynecological, and general surgical procedures, such as nephrectomy (removal of the kidney), colectomy (removal of part of the colon), and gastrectomy (removal of part of the stomach).

Hand-assisted laparoscopy offers several benefits over traditional open surgery, including smaller incisions, reduced postoperative pain, shorter hospital stays, quicker recovery times, and improved cosmetic outcomes. However, HAL still requires general anesthesia and carries the risks associated with any surgical procedure, such as infection, bleeding, and injury to surrounding tissues or organs.

Deafness is a hearing loss that is so severe that it results in significant difficulty in understanding or comprehending speech, even when using hearing aids. It can be congenital (present at birth) or acquired later in life due to various causes such as disease, injury, infection, exposure to loud noises, or aging. Deafness can range from mild to profound and may affect one ear (unilateral) or both ears (bilateral). In some cases, deafness may be accompanied by tinnitus, which is the perception of ringing or other sounds in the ears.

Deaf individuals often use American Sign Language (ASL) or other forms of sign language to communicate. Some people with less severe hearing loss may benefit from hearing aids, cochlear implants, or other assistive listening devices. Deafness can have significant social, educational, and vocational implications, and early intervention and appropriate support services are critical for optimal development and outcomes.

An Encephalocele is a type of neural tube defect that occurs when the bones of the skull do not close completely during fetal development. This results in a sac-like protrusion of the brain and the membranes that cover it through an opening in the skull. The sac may be visible on the scalp, forehead, or back of the head, and can vary in size. Encephaloceles can cause a range of symptoms, including developmental delays, intellectual disabilities, vision problems, and seizures, depending on the severity and location of the defect. Treatment typically involves surgical repair of the encephalocele soon after birth to prevent further damage to the brain and improve outcomes.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

Dwarfism is a medical condition that is characterized by short stature, typically with an adult height of 4 feet 10 inches (147 centimeters) or less. It is caused by a variety of genetic and medical conditions that affect bone growth, including skeletal dysplasias, hormonal deficiencies, and chromosomal abnormalities.

Skeletal dysplasias are the most common cause of dwarfism and are characterized by abnormalities in the development and growth of bones and cartilage. Achondroplasia is the most common form of skeletal dysplasia, accounting for about 70% of all cases of dwarfism. It is caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene and results in short limbs, a large head, and a prominent forehead.

Hormonal deficiencies, such as growth hormone deficiency or hypothyroidism, can also cause dwarfism if they are not diagnosed and treated early. Chromosomal abnormalities, such as Turner syndrome (monosomy X) or Down syndrome (trisomy 21), can also result in short stature and other features of dwarfism.

It is important to note that people with dwarfism are not "dwarves" - the term "dwarf" is a medical and sociological term used to describe individuals with this condition, while "dwarves" is a term often used in fantasy literature and media to refer to mythical beings. The use of the term "dwarf" can be considered disrespectful or offensive to some people with dwarfism, so it is important to use respectful language when referring to individuals with this condition.

Female infertility is a condition characterized by the inability to conceive after 12 months or more of regular, unprotected sexual intercourse or the inability to carry a pregnancy to a live birth. The causes of female infertility can be multifactorial and may include issues with ovulation, damage to the fallopian tubes or uterus, endometriosis, hormonal imbalances, age-related factors, and other medical conditions.

Some common causes of female infertility include:

1. Ovulation disorders: Conditions such as polycystic ovary syndrome (PCOS), thyroid disorders, premature ovarian failure, and hyperprolactinemia can affect ovulation and lead to infertility.
2. Damage to the fallopian tubes: Pelvic inflammatory disease, endometriosis, or previous surgeries can cause scarring and blockages in the fallopian tubes, preventing the egg and sperm from meeting.
3. Uterine abnormalities: Structural issues with the uterus, such as fibroids, polyps, or congenital defects, can interfere with implantation and pregnancy.
4. Age-related factors: As women age, their fertility declines due to a decrease in the number and quality of eggs.
5. Other medical conditions: Certain medical conditions, such as diabetes, celiac disease, and autoimmune disorders, can contribute to infertility.

In some cases, female infertility can be treated with medications, surgery, or assisted reproductive technologies (ART) like in vitro fertilization (IVF). A thorough evaluation by a healthcare professional is necessary to determine the underlying cause and develop an appropriate treatment plan.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Genetic heterogeneity is a phenomenon in genetics where different genetic variations or mutations in various genes can result in the same or similar phenotypic characteristics, disorders, or diseases. This means that multiple genetic alterations can lead to the same clinical presentation, making it challenging to identify the specific genetic cause based on the observed symptoms alone.

There are two main types of genetic heterogeneity:

1. Allelic heterogeneity: Different mutations in the same gene can cause the same or similar disorders. For example, various mutations in the CFTR gene can lead to cystic fibrosis, a genetic disorder affecting the respiratory and digestive systems.
2. Locus heterogeneity: Mutations in different genes can result in the same or similar disorders. For instance, mutations in several genes, such as BRCA1, BRCA2, and PALB2, are associated with an increased risk of developing breast cancer.

Genetic heterogeneity is essential to consider when diagnosing genetic conditions, evaluating recurrence risks, and providing genetic counseling. It highlights the importance of comprehensive genetic testing and interpretation for accurate diagnosis and appropriate management of genetic disorders.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Sensorineural hearing loss (SNHL) is a type of hearing impairment that occurs due to damage to the inner ear (cochlea) or to the nerve pathways from the inner ear to the brain. It can be caused by various factors such as aging, exposure to loud noises, genetics, certain medical conditions (like diabetes and heart disease), and ototoxic medications.

SNHL affects the ability of the hair cells in the cochlea to convert sound waves into electrical signals that are sent to the brain via the auditory nerve. As a result, sounds may be perceived as muffled, faint, or distorted, making it difficult to understand speech, especially in noisy environments.

SNHL is typically permanent and cannot be corrected with medication or surgery, but hearing aids or cochlear implants can help improve communication and quality of life for those affected.

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Osteochondrodysplasias are a group of genetic disorders that affect the development of bones and cartilage. These conditions can result in dwarfism or short stature, as well as other skeletal abnormalities. Osteochondrodysplasias can be caused by mutations in genes that regulate bone and cartilage growth, and they are often characterized by abnormalities in the shape, size, and/or structure of the bones and cartilage.

There are many different types of osteochondrodysplasias, each with its own specific symptoms and patterns of inheritance. Some common examples include achondroplasia, thanatophoric dysplasia, and spondyloepiphyseal dysplasia. These conditions can vary in severity, and some may be associated with other health problems, such as respiratory difficulties or neurological issues.

Treatment for osteochondrodysplasias typically focuses on managing the symptoms and addressing any related health concerns. This may involve physical therapy, bracing or surgery to correct skeletal abnormalities, and treatment for any associated medical conditions. In some cases, genetic counseling may also be recommended for individuals with osteochondrodysplasias and their families.

The Founder Effect is a concept in population genetics that refers to the loss of genetic variation that occurs when a new colony is established by a small number of individuals from a larger population. This decrease in genetic diversity can lead to an increase in homozygosity, which can in turn result in a higher frequency of certain genetic disorders or traits within the founding population and its descendants. The Founder Effect is named after the "founding" members of the new colony who carry and pass on their particular set of genes to the next generations. It is one of the mechanisms that can lead to the formation of distinct populations or even new species over time.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Cerebellar ataxia is a type of ataxia, which refers to a group of disorders that cause difficulties with coordination and movement. Cerebellar ataxia specifically involves the cerebellum, which is the part of the brain responsible for maintaining balance, coordinating muscle movements, and regulating speech and eye movements.

The symptoms of cerebellar ataxia may include:

* Unsteady gait or difficulty walking
* Poor coordination of limb movements
* Tremors or shakiness, especially in the hands
* Slurred or irregular speech
* Abnormal eye movements, such as nystagmus (rapid, involuntary movement of the eyes)
* Difficulty with fine motor tasks, such as writing or buttoning a shirt

Cerebellar ataxia can be caused by a variety of underlying conditions, including:

* Genetic disorders, such as spinocerebellar ataxia or Friedreich's ataxia
* Brain injury or trauma
* Stroke or brain hemorrhage
* Infections, such as meningitis or encephalitis
* Exposure to toxins, such as alcohol or certain medications
* Tumors or other growths in the brain

Treatment for cerebellar ataxia depends on the underlying cause. In some cases, there may be no cure, and treatment is focused on managing symptoms and improving quality of life. Physical therapy, occupational therapy, and speech therapy can help improve coordination, balance, and communication skills. Medications may also be used to treat specific symptoms, such as tremors or muscle spasticity. In some cases, surgery may be recommended to remove tumors or repair damage to the brain.

A spermatocele is a type of cyst that develops in the epididymis, which is a small, coiled tube located on the back surface of the testicle. This cyst typically contains sperm and fluid from the epididymis, and it is usually benign and harmless.

Spermatoceles are often asymptomatic and may be discovered during a routine physical examination or self-examination. In some cases, however, they may cause discomfort or pain, particularly if they become large enough to press on the testicle or surrounding structures.

While spermatoceles do not typically require treatment unless they are causing symptoms, it is important to have them evaluated by a healthcare provider to rule out other potential causes of any symptoms and to ensure that appropriate treatment is provided if necessary.

Muscular dystrophies are a group of genetic disorders that primarily affect skeletal muscles, causing progressive weakness and degeneration. They are characterized by the lack or deficiency of a protein called dystrophin, which is essential for maintaining the integrity of muscle fibers. The most common form is Duchenne muscular dystrophy (DMD), but there are many other types with varying symptoms and severity. Over time, muscle wasting and weakness can lead to disability and shortened lifespan, depending on the type and progression of the disease. Treatment typically focuses on managing symptoms, maintaining mobility, and supporting quality of life.

Heterozygote detection is a method used in genetics to identify individuals who carry one normal and one mutated copy of a gene. These individuals are known as heterozygotes and they do not typically show symptoms of the genetic disorder associated with the mutation, but they can pass the mutated gene on to their offspring, who may then be affected.

Heterozygote detection is often used in genetic counseling and screening programs for recessive disorders such as cystic fibrosis or sickle cell anemia. By identifying heterozygotes, individuals can be informed of their carrier status and the potential risks to their offspring. This information can help them make informed decisions about family planning and reproductive options.

Various methods can be used for heterozygote detection, including polymerase chain reaction (PCR) based tests, DNA sequencing, and genetic linkage analysis. The choice of method depends on the specific gene or mutation being tested, as well as the availability and cost of the testing technology.

Human chromosome pair 4 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and they are identical or very similar in length and gene content. Chromosomes are made up of DNA, which contains genetic information, and proteins that package and organize the DNA.

Human chromosomes are numbered from 1 to 22, with chromosome pair 4 being one of the autosomal pairs, meaning it is not a sex chromosome (X or Y). Chromosome pair 4 is a medium-sized pair and contains an estimated 1,800-2,000 genes. These genes provide instructions for making proteins that are essential for various functions in the body, such as development, growth, and metabolism.

Abnormalities in chromosome pair 4 can lead to genetic disorders, including Wolf-Hirschhorn syndrome, which is caused by a deletion of part of the short arm of chromosome 4, and 4p16.3 microdeletion syndrome, which is caused by a deletion of a specific region on the short arm of chromosome 4. These conditions can result in developmental delays, intellectual disability, physical abnormalities, and other health problems.

TOR (Target Of Rapamycin) Serine-Threonine Kinases are a family of conserved protein kinases that play crucial roles in the regulation of cell growth, proliferation, and metabolism in response to various environmental cues such as nutrients, growth factors, and energy status. They are named after their ability to phosphorylate serine and threonine residues on target proteins.

Mammalian cells express two distinct TOR kinases, mTORC1 and mTORC2, which have different protein compositions and functions. mTORC1 is rapamycin-sensitive and regulates cell growth, proliferation, and metabolism by phosphorylating downstream targets such as p70S6 kinase and 4E-BP1, thereby controlling protein synthesis, autophagy, and lysosome biogenesis. mTORC2 is rapamycin-insensitive and regulates cell survival, cytoskeleton organization, and metabolism by phosphorylating AGC kinases such as AKT and PKCα.

Dysregulation of TOR Serine-Threonine Kinases has been implicated in various human diseases, including cancer, diabetes, and neurological disorders. Therefore, targeting TOR kinases has emerged as a promising therapeutic strategy for the treatment of these diseases.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Microsatellite repeats, also known as short tandem repeats (STRs), are repetitive DNA sequences made up of units of 1-6 base pairs that are repeated in a head-to-tail manner. These repeats are spread throughout the human genome and are highly polymorphic, meaning they can have different numbers of repeat units in different individuals.

Microsatellites are useful as genetic markers because of their high degree of variability. They are commonly used in forensic science to identify individuals, in genealogy to trace ancestry, and in medical research to study genetic diseases and disorders. Mutations in microsatellite repeats have been associated with various neurological conditions, including Huntington's disease and fragile X syndrome.

Renal insufficiency, also known as kidney failure, is a medical condition in which the kidneys are unable to properly filter waste products and excess fluids from the blood. This results in a buildup of these substances in the body, which can cause a variety of symptoms such as weakness, shortness of breath, and fluid retention. Renal insufficiency can be acute, meaning it comes on suddenly, or chronic, meaning it develops over time. It is typically diagnosed through blood tests, urine tests, and imaging studies. Treatment may include medications to control symptoms, dietary changes, and in severe cases, dialysis or a kidney transplant.

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that causes non-cancerous (benign) tumors to grow in many parts of the body. These tumors can affect the brain, skin, heart, kidneys, eyes, and lungs. The signs and symptoms of TSC can vary widely, depending on where the tumors develop and how severely a person is affected.

The condition is caused by mutations in either the TSC1 or TSC2 gene, which regulate a protein that helps control cell growth and division. When these genes are mutated, the protein is not produced correctly, leading to excessive cell growth and the development of tumors.

TSC is typically diagnosed based on clinical symptoms, medical imaging, and genetic testing. Treatment for TSC often involves a multidisciplinary approach, with specialists in neurology, dermatology, cardiology, nephrology, pulmonology, and ophthalmology working together to manage the various symptoms of the condition. Medications, surgery, and other therapies may be used to help control seizures, developmental delays, skin abnormalities, and other complications of TSC.

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

Proteinuria is a medical term that refers to the presence of excess proteins, particularly albumin, in the urine. Under normal circumstances, only small amounts of proteins should be found in the urine because the majority of proteins are too large to pass through the glomeruli, which are the filtering units of the kidneys.

However, when the glomeruli become damaged or diseased, they may allow larger molecules such as proteins to leak into the urine. Persistent proteinuria is often a sign of kidney disease and can indicate damage to the glomeruli. It is usually detected through a routine urinalysis and may be confirmed with further testing.

The severity of proteinuria can vary, and it can be a symptom of various underlying conditions such as diabetes, hypertension, glomerulonephritis, and other kidney diseases. Treatment for proteinuria depends on the underlying cause and may include medications to control blood pressure, manage diabetes, or reduce protein loss in the urine.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Osteopetrosis, also known as Albers-Schönberg disease or marble bone disease, is a group of rare genetic disorders characterized by increased bone density due to impaired bone resorption by osteoclasts. This results in brittle bones that are more susceptible to fractures and can also lead to various complications such as anemia, hearing loss, and vision problems. There are several types of osteopetrosis, which vary in severity and age of onset.

The medical definition of osteopetrosis is:

A genetic disorder characterized by defective bone resorption due to impaired osteoclast function, resulting in increased bone density, susceptibility to fractures, and potential complications such as anemia, hearing loss, and vision problems.

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Developmental bone diseases are a group of medical conditions that affect the growth and development of bones. These diseases are present at birth or develop during childhood and adolescence, when bones are growing rapidly. They can result from genetic mutations, hormonal imbalances, or environmental factors such as poor nutrition.

Some examples of developmental bone diseases include:

1. Osteogenesis imperfecta (OI): Also known as brittle bone disease, OI is a genetic disorder that affects the body's production of collagen, a protein necessary for healthy bones. People with OI have fragile bones that break easily and may also experience other symptoms such as blue sclerae (whites of the eyes), hearing loss, and joint laxity.
2. Achondroplasia: This is the most common form of dwarfism, caused by a genetic mutation that affects bone growth. People with achondroplasia have short limbs and a large head relative to their body size.
3. Rickets: A condition caused by vitamin D deficiency or an inability to absorb or use vitamin D properly. This leads to weak, soft bones that can bow or bend easily, particularly in children.
4. Fibrous dysplasia: A rare bone disorder where normal bone is replaced with fibrous tissue, leading to weakened bones and deformities.
5. Scoliosis: An abnormal curvature of the spine that can develop during childhood or adolescence. While not strictly a developmental bone disease, scoliosis can be caused by various underlying conditions such as cerebral palsy, muscular dystrophy, or spina bifida.

Treatment for developmental bone diseases varies depending on the specific condition and its severity. Treatment may include medication, physical therapy, bracing, or surgery to correct deformities and improve function. Regular follow-up with a healthcare provider is essential to monitor growth, manage symptoms, and prevent complications.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

The exome is the part of the genome that contains all the protein-coding regions. It represents less than 2% of the human genome but accounts for about 85% of disease-causing mutations. Exome sequencing, therefore, is a cost-effective and efficient method to identify genetic variants associated with various diseases, including cancer, neurological disorders, and inherited genetic conditions.

Female fertility agents are medications or treatments that are used to enhance or restore female fertility. They can work in various ways such as stimulating ovulation, improving the quality of eggs, facilitating the implantation of a fertilized egg in the uterus, or addressing issues related to the reproductive system.

Some examples of female fertility agents include:

1. Clomiphene citrate (Clomid, Serophene): This medication stimulates ovulation by causing the pituitary gland to release more follicle-stimulating hormone (FSH) and luteinizing hormone (LH).
2. Gonadotropins: These are hormonal medications that contain FSH and LH, which stimulate the ovaries to produce mature eggs. Examples include human menopausal gonadotropin (hMG) and follicle-stimulating hormone (FSH).
3. Letrozole (Femara): This medication is an aromatase inhibitor that can be used off-label to stimulate ovulation in women who do not respond to clomiphene citrate.
4. Metformin (Glucophage): This medication is primarily used to treat type 2 diabetes, but it can also improve fertility in women with polycystic ovary syndrome (PCOS) by regulating insulin levels and promoting ovulation.
5. Bromocriptine (Parlodel): This medication is used to treat infertility caused by hyperprolactinemia, a condition characterized by high levels of prolactin in the blood.
6. Assisted reproductive technologies (ART): These include procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and gamete intrafallopian transfer (GIFT). They involve manipulating eggs and sperm outside the body to facilitate fertilization and implantation.

It is important to consult with a healthcare provider or reproductive endocrinologist to determine the most appropriate fertility agent for individual needs, as these medications can have side effects and potential risks.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

'Poisonous fishes' are species of fish that contain toxic substances in their bodies, which can cause harm or injury to other organisms, including humans. These toxins can be present in various parts of the fish, such as the flesh, skin, organs, or even in the form of venomous spines.

There are several types of poisonous fishes, including:

1. Pufferfish (Fugu): These fish contain a potent neurotoxin called tetrodotoxin (TTX) in their organs, especially the liver and ovaries. TTX is highly toxic and can cause paralysis and death if ingested in even small amounts.
2. Stonefish: Stonefishes are venomous fishes that have sharp, spiny dorsal fins that can inject a painful toxin into the skin when stepped on or touched. The venom can cause severe pain, swelling, and tissue damage, and in some cases, it can lead to respiratory failure and death.
3. Blue-ringed octopuses: While not technically fish, blue-ringed octopuses are often included in discussions of poisonous marine life. They have venom glands that produce a powerful neurotoxin called tetrodotoxin (TTX), which can cause paralysis and death if it enters the bloodstream.
4. Cone snails: Cone snails are predatory mollusks that use a harpoon-like tooth to inject venom into their prey. Some species of cone snail have venom that contains powerful neurotoxins, which can cause paralysis and death in humans.
5. Lionfish: Lionfish are venomous fishes that have spines on their dorsal, pelvic, and anal fins that can inject a painful toxin into the skin when touched or stepped on. The venom can cause pain, swelling, and other symptoms, but it is rarely fatal to humans.

It's important to note that many species of fish can become toxic if they consume harmful algae blooms (HABs) or other contaminants in their environment. These "toxic fishes" are not considered poisonous by definition, as their toxicity is not inherent to their biology.

Hereditary eye diseases refer to conditions that affect the eyes and are passed down from parents to their offspring through genetics. These diseases are caused by mutations or changes in an individual's DNA that are inherited from their parents. The mutations can occur in any of the genes associated with eye development, function, or health.

There are many different types of hereditary eye diseases, some of which include:

1. Retinitis Pigmentosa - a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina.
2. Macular Degeneration - a progressive disease that damages the central portion of the retina, impairing vision.
3. Glaucoma - a group of eye conditions that damage the optic nerve, often caused by an increase in pressure inside the eye.
4. Cataracts - clouding of the lens inside the eye, which can lead to blurry vision and blindness.
5. Keratoconus - a progressive eye disease that causes the cornea to thin and bulge outward into a cone shape.
6. Color Blindness - a condition where an individual has difficulty distinguishing between certain colors.
7. Optic Neuropathy - damage to the optic nerve, which can result in vision loss.

The symptoms and severity of hereditary eye diseases can vary widely depending on the specific condition and the individual's genetic makeup. Some conditions may be present at birth or develop in early childhood, while others may not appear until later in life. Treatment options for these conditions may include medication, surgery, or lifestyle changes, and are often most effective when started early.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Human chromosome pair 2 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each member of the pair contains thousands of genes and other genetic material, encoded in the form of DNA molecules. Chromosomes are the physical carriers of inheritance, and human cells typically contain 23 pairs of chromosomes for a total of 46 chromosomes.

Chromosome pair 2 is one of the autosomal pairs, meaning that it is not a sex chromosome (X or Y). Each member of chromosome pair 2 is approximately 247 million base pairs in length and contains an estimated 1,000-1,300 genes. These genes play crucial roles in various biological processes, including development, metabolism, and response to environmental stimuli.

Abnormalities in chromosome pair 2 can lead to genetic disorders, such as cat-eye syndrome (CES), which is characterized by iris abnormalities, anal atresia, hearing loss, and intellectual disability. This disorder arises from the presence of an extra copy of a small region on chromosome 2, resulting in partial trisomy of this region. Other genetic conditions associated with chromosome pair 2 include proximal 2q13.3 microdeletion syndrome and Potocki-Lupski syndrome (PTLS).

Inborn errors of metabolism (IEM) refer to a group of genetic disorders caused by defects in enzymes or transporters that play a role in the body's metabolic processes. These disorders result in the accumulation or deficiency of specific chemicals within the body, which can lead to various clinical manifestations, such as developmental delay, intellectual disability, seizures, organ damage, and in some cases, death.

Examples of IEM include phenylketonuria (PKU), maple syrup urine disease (MSUD), galactosemia, and glycogen storage diseases, among many others. These disorders are typically inherited in an autosomal recessive manner, meaning that an affected individual has two copies of the mutated gene, one from each parent.

Early diagnosis and management of IEM are crucial to prevent or minimize complications and improve outcomes. Treatment options may include dietary modifications, supplementation with missing enzymes or cofactors, medication, and in some cases, stem cell transplantation or gene therapy.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Human chromosome pair 6 consists of two rod-shaped structures present in the nucleus of each human cell. They are identical in size and shape and contain genetic material, made up of DNA and proteins, that is essential for the development and function of the human body.

Chromosome pair 6 is one of the 23 pairs of chromosomes found in humans, with one chromosome inherited from each parent. Each chromosome contains thousands of genes that provide instructions for the production of proteins and regulate various cellular processes.

Chromosome pair 6 contains several important genes, including those involved in the development and function of the immune system, such as the major histocompatibility complex (MHC) genes. It also contains genes associated with certain genetic disorders, such as hereditary neuropathy with liability to pressure palsies (HNPP), a condition that affects the nerves, and Waardenburg syndrome, a disorder that affects pigmentation and hearing.

Abnormalities in chromosome pair 6 can lead to various genetic disorders, including numerical abnormalities such as trisomy 6 (three copies of chromosome 6) or monosomy 6 (only one copy of chromosome 6), as well as structural abnormalities such as deletions, duplications, or translocations of parts of the chromosome.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Prenatal diagnosis is the medical testing of fetuses, embryos, or pregnant women to detect the presence or absence of certain genetic disorders or birth defects. These tests can be performed through various methods such as chorionic villus sampling (CVS), amniocentesis, or ultrasound. The goal of prenatal diagnosis is to provide early information about the health of the fetus so that parents and healthcare providers can make informed decisions about pregnancy management and newborn care. It allows for early intervention, treatment, or planning for the child's needs after birth.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

The term "Arabs" is a cultural and linguistic designation, rather than a racial or genetic one. It refers to individuals who speak Arabic as their native language and share a common cultural and historical heritage that is rooted in the Arabian Peninsula. The Arabic language and culture have spread throughout North Africa, the Middle East, and other parts of the world through conquest, trade, and migration over many centuries.

It's important to note that there is significant genetic diversity within the Arab population, just as there is in any large and geographically dispersed group of people. Therefore, it would not be accurate or appropriate to use the term "Arabs" to make assumptions about an individual's genetic background or ancestry.

In medical contexts, it is more appropriate to use specific geographic or ethnic designations (such as "Saudi Arabian," "Lebanese," "North African," etc.) rather than the broad cultural label of "Arab." This can help ensure greater accuracy and precision in describing a patient's background and health risks.

Androstenedione is a steroid hormone produced by the adrenal glands, ovaries, and testes. It is a precursor to both male and female sex hormones, including testosterone and estrogen. In the adrenal glands, it is produced from cholesterol through a series of biochemical reactions involving several enzymes. Androstenedione can also be converted into other steroid hormones, such as dehydroepiandrosterone (DHEA) and estrone.

In the body, androstenedione plays an important role in the development and maintenance of secondary sexual characteristics, such as facial hair and a deep voice in men, and breast development and menstrual cycles in women. It also contributes to bone density, muscle mass, and overall physical strength.

Androstenedione is available as a dietary supplement and has been marketed as a way to boost athletic performance and increase muscle mass. However, its effectiveness for these purposes is not supported by scientific evidence, and it may have harmful side effects when taken in high doses or for extended periods of time. Additionally, the use of androstenedione as a dietary supplement is banned by many sports organizations, including the International Olympic Committee and the National Collegiate Athletic Association.

Oculocutaneous albinism (OCA) is a group of genetic disorders characterized by reduced or complete absence of melanin pigment in the eyes, skin, and hair. Melanin is the pigment responsible for giving color to our skin, hair, and eyes. OCA affects both the eyes (oculo-) and the skin (cutaneous), hence the name oculocutaneous albinism.

There are several types of OCA, each caused by different genetic mutations affecting melanin production. The most common forms include:

1. OCA1: This type is further divided into two subtypes - OCA1A and OCA1B. OCA1A is characterized by complete absence of melanin in the eyes, skin, and hair from birth. Individuals with this condition have white hair, very light skin, and pale blue or gray irises. OCA1B, on the other hand, presents with reduced melanin production, leading to lighter-than-average skin, hair, and eye color at birth. Over time, some melanin may be produced, resulting in milder pigmentation changes compared to OCA1A.
2. OCA2: This form of albinism is caused by mutations in the tyrosinase-related protein 1 (TYRP1) gene, which plays a role in melanin production. Individuals with OCA2 typically have light brown or yellowish skin, golden or straw-colored hair, and lighter irises compared to their family members without albinism.
3. OCA3: Also known as Rufous oculocutaneous albinism (ROCA), this type is caused by mutations in the tyrosinase gene (TYR). It primarily affects people of African descent, leading to reddish-brown hair, light brown skin, and normal or near-normal eye color.
4. OCA4: This form of albinism results from mutations in the membrane-associated transporter protein (MATP) gene, which is involved in melanin transport within cells. Individuals with OCA4 usually have light brown skin, yellowish or blond hair, and lighter irises compared to their family members without albinism.

Regardless of the type, all individuals with oculocutaneous albinism face similar challenges, including reduced vision due to abnormal eye development (nystagmus, strabismus, and farsightedness) and increased sensitivity to sunlight (photophobia). Proper management, such as wearing UV-protective sunglasses, hats, and sunscreen, can help protect their skin and eyes from damage.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Medical definitions of "malformed nails" may vary, but generally, it refers to a condition where the nails are abnormally formed or shaped. This can include various deformities such as:

1. Koilonychia: Also known as "spoon nails," where the nails appear scooped out and concave.
2. Pterygium: A condition where skin grows over the nail, causing it to adhere to the finger.
3. Onychogryphosis: Also known as "ram's horn nails," where the nails become thick, curved, and overgrown.
4. Brachyonychia: Shortened nails that do not grow normally.
5. Onychauxis: Thickening of the nails.
6. Leukonychia: White spots or lines on the nails.
7. Beau's lines: Indentations across the nails, often caused by a previous illness or injury.
8. Pitting: Small depressions or holes in the nails.
9. Cracking or splitting of the nails.

These nail abnormalities can be caused by various factors such as genetics, fungal infections, trauma, nutritional deficiencies, and underlying medical conditions.

Genetic counseling is a process of communication and education between a healthcare professional and an individual or family, aimed at understanding, adapting to, and managing the medical, psychological, and familial implications of genetic contributions to disease. This includes providing information about the risk of inherited conditions, explaining the implications of test results, discussing reproductive options, and offering support and resources for coping with a genetic condition. Genetic counselors are trained healthcare professionals who specialize in helping people understand genetic information and its impact on their health and lives.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Charcot-Marie-Tooth disease (CMT) is a group of inherited disorders that cause nerve damage, primarily affecting the peripheral nerves. These are the nerves that transmit signals between the brain and spinal cord to the rest of the body. CMT affects both motor and sensory nerves, leading to muscle weakness and atrophy, as well as numbness or tingling in the hands and feet.

The disease is named after the three physicians who first described it: Jean-Martin Charcot, Pierre Marie, and Howard Henry Tooth. CMT is characterized by its progressive nature, meaning symptoms typically worsen over time, although the rate of progression can vary significantly among individuals.

There are several types of CMT, classified based on their genetic causes and patterns of inheritance. The two most common forms are CMT1 and CMT2:

1. CMT1: This form is caused by mutations in the genes responsible for the myelin sheath, which insulates peripheral nerves and allows for efficient signal transmission. As a result, demyelination occurs, slowing down nerve impulses and causing muscle weakness, particularly in the lower limbs. Symptoms usually begin in childhood or adolescence and include foot drop, high arches, and hammertoes.
2. CMT2: This form is caused by mutations in the genes responsible for the axons, the nerve fibers that transmit signals within peripheral nerves. As a result, axonal degeneration occurs, leading to muscle weakness and atrophy. Symptoms usually begin in early adulthood and progress more slowly than CMT1. They primarily affect the lower limbs but can also involve the hands and arms.

Diagnosis of CMT typically involves a combination of clinical evaluation, family history, nerve conduction studies, and genetic testing. While there is no cure for CMT, treatment focuses on managing symptoms and maintaining mobility and function through physical therapy, bracing, orthopedic surgery, and pain management.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Potassium citrate is a medication and dietary supplement that contains potassium and citrate. Medically, it is used to treat and prevent kidney stones, as well as to manage metabolic acidosis in people with chronic kidney disease. Potassium citrate works by increasing the pH of urine, making it less acidic, which can help to dissolve certain types of kidney stones and prevent new ones from forming. It is also used as an alkalizing agent in the treatment of various conditions that cause acidosis.

In addition to its medical uses, potassium citrate is also found naturally in some fruits and vegetables, such as oranges, grapefruits, lemons, limes, and spinach. It is often used as a food additive and preservative, and can be found in a variety of processed foods and beverages.

It's important to note that taking too much potassium citrate can lead to high levels of potassium in the blood, which can be dangerous. Therefore, it is important to follow the dosage instructions carefully and talk to your doctor before taking this medication if you have any medical conditions or are taking any other medications.

Mouth abnormalities, also known as oral or orofacial anomalies, refer to structural or functional differences or defects in the mouth and surrounding structures, including the lips, teeth, gums, palate, tongue, and salivary glands. These abnormalities can be present at birth (congenital) or acquired later in life due to injury, disease, or surgery. They can range from minor variations in size, shape, or position of oral structures to more significant anomalies that may affect speech, swallowing, chewing, breathing, and overall quality of life.

Examples of mouth abnormalities include cleft lip and palate, macroglossia (enlarged tongue), microglossia (small tongue), ankyloglossia (tongue-tie), high or narrow palate, bifid uvula (split uvula), dental malocclusion (misaligned teeth), supernumerary teeth (extra teeth), missing teeth, and various oral tumors or cysts. Some mouth abnormalities may require medical intervention, such as surgery, orthodontic treatment, or speech therapy, while others may not necessitate any treatment.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Human chromosome pair 1 refers to the first pair of chromosomes in a set of 23 pairs found in the cells of the human body, excluding sex cells (sperm and eggs). Each cell in the human body, except for the gametes, contains 46 chromosomes arranged in 23 pairs. These chromosomes are rod-shaped structures that contain genetic information in the form of DNA.

Chromosome pair 1 is the largest pair, making up about 8% of the total DNA in a cell. Each chromosome in the pair consists of two arms - a shorter p arm and a longer q arm - connected at a centromere. Chromosome 1 carries an estimated 2,000-2,500 genes, which are segments of DNA that contain instructions for making proteins or regulating gene expression.

Defects or mutations in the genes located on chromosome 1 can lead to various genetic disorders and diseases, such as Charcot-Marie-Tooth disease type 1A, Huntington's disease, and certain types of cancer.

Chromosome disorders are a group of genetic conditions caused by abnormalities in the number or structure of chromosomes. Chromosomes are thread-like structures located in the nucleus of cells that contain most of the body's genetic material, which is composed of DNA and proteins. Normally, humans have 23 pairs of chromosomes, for a total of 46 chromosomes.

Chromosome disorders can result from changes in the number of chromosomes (aneuploidy) or structural abnormalities in one or more chromosomes. Some common examples of chromosome disorders include:

1. Down syndrome: a condition caused by an extra copy of chromosome 21, resulting in intellectual disability, developmental delays, and distinctive physical features.
2. Turner syndrome: a condition that affects only females and is caused by the absence of all or part of one X chromosome, resulting in short stature, lack of sexual development, and other symptoms.
3. Klinefelter syndrome: a condition that affects only males and is caused by an extra copy of the X chromosome, resulting in tall stature, infertility, and other symptoms.
4. Cri-du-chat syndrome: a condition caused by a deletion of part of the short arm of chromosome 5, resulting in intellectual disability, developmental delays, and a distinctive cat-like cry.
5. Fragile X syndrome: a condition caused by a mutation in the FMR1 gene on the X chromosome, resulting in intellectual disability, behavioral problems, and physical symptoms.

Chromosome disorders can be diagnosed through various genetic tests, such as karyotyping, chromosomal microarray analysis (CMA), or fluorescence in situ hybridization (FISH). Treatment for these conditions depends on the specific disorder and its associated symptoms and may include medical interventions, therapies, and educational support.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Introns are non-coding sequences of DNA that are present within the genes of eukaryotic organisms, including plants, animals, and humans. Introns are removed during the process of RNA splicing, in which the initial RNA transcript is cut and reconnected to form a mature, functional RNA molecule.

After the intron sequences are removed, the remaining coding sequences, known as exons, are joined together to create a continuous stretch of genetic information that can be translated into a protein or used to produce non-coding RNAs with specific functions. The removal of introns allows for greater flexibility in gene expression and regulation, enabling the generation of multiple proteins from a single gene through alternative splicing.

In summary, introns are non-coding DNA sequences within genes that are removed during RNA processing to create functional RNA molecules or proteins.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Sarcoglycans are a group of proteins that are part of the dystrophin-glycoprotein complex in muscle cells. This complex helps to maintain the structural integrity of the muscle fiber by forming a link between the cytoskeleton and the extracellular matrix. Sarcoglycans are located on the surface of the muscle fiber and play a critical role in protecting the muscle from damage during contraction.

There are four main sarcoglycans, known as alpha, beta, gamma, and delta-sarcoglycan. Mutations in any one of these proteins can lead to a group of genetic disorders known as the sarcoglycanopathies, which are characterized by progressive muscle weakness and wasting. The most severe form of this disorder is called limb-girdle muscular dystrophy type 2C (LGMD2C), which is caused by mutations in the gamma-sarcoglycan gene.

In addition to their role in muscle cells, sarcoglycans have also been found to be expressed in other tissues, including the brain and the lungs, suggesting that they may have additional functions beyond their structural role in muscle.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Aquaporin 2 (AQP2) is a type of aquaporin, which is a water channel protein found in the membranes of cells. Specifically, AQP2 is located in the principal cells of the collecting ducts in the kidneys. It plays a crucial role in regulating water reabsorption and urine concentration by facilitating the movement of water across the cell membrane in response to the hormone vasopressin (also known as antidiuretic hormone). When vasopressin binds to receptors on the cell surface, it triggers a cascade of intracellular signals that lead to the translocation of AQP2 water channels from intracellular vesicles to the apical membrane. This increases the permeability of the apical membrane to water, allowing for efficient reabsorption of water and concentration of urine. Dysfunction in AQP2 has been implicated in various kidney disorders, such as nephrogenic diabetes insipidus.

Menstruation disturbances, also known as menstrual disorders, refer to any irregularities or abnormalities in a woman's menstrual cycle. These disturbances can manifest in various ways, including:

1. Amenorrhea: The absence of menstrual periods for three consecutive cycles or more in women of reproductive age.
2. Oligomenorrhea: Infrequent or light menstrual periods that occur at intervals greater than 35 days.
3. Dysmenorrhea: Painful menstruation, often accompanied by cramping, pelvic pain, and other symptoms that can interfere with daily activities.
4. Menorrhagia: Heavy or prolonged menstrual periods that last longer than seven days or result in excessive blood loss, leading to anemia or other health complications.
5. Polymenorrhea: Abnormally frequent menstrual periods that occur at intervals of 21 days or less.
6. Metrorrhagia: Irregular and unpredictable vaginal bleeding between expected menstrual periods, which can be caused by various factors such as hormonal imbalances, infections, or structural abnormalities.

Menstruation disturbances can have significant impacts on a woman's quality of life, fertility, and overall health. They may result from various underlying conditions, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, uterine fibroids, endometriosis, or sexually transmitted infections. Proper diagnosis and treatment of the underlying cause are essential for managing menstruation disturbances effectively.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Bile ducts are tubular structures that carry bile from the liver to the gallbladder for storage or directly to the small intestine to aid in digestion. There are two types of bile ducts: intrahepatic and extrahepatic. Intrahepatic bile ducts are located within the liver and drain bile from liver cells, while extrahepatic bile ducts are outside the liver and include the common hepatic duct, cystic duct, and common bile duct. These ducts can become obstructed or inflamed, leading to various medical conditions such as cholestasis, cholecystitis, and gallstones.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

17-α-Hydroxyprogesterone is a naturally occurring hormone produced by the adrenal glands and, in smaller amounts, by the ovaries and testes. It is an intermediate in the biosynthesis of steroid hormones, including cortisol, aldosterone, and sex hormones such as testosterone and estrogen.

In a medical context, 17-α-Hydroxyprogesterone may also refer to a synthetic form of this hormone that is used in the treatment of certain medical conditions. For example, a medication called 17-alpha-hydroxyprogesterone caproate (17-OHP) is used to reduce the risk of preterm birth in women who have previously given birth prematurely. It works by suppressing uterine contractions and promoting fetal lung maturity.

It's important to note that 17-alpha-Hydroxyprogesterone should only be used under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Friedreich Ataxia is a genetic disorder that affects the nervous system and causes issues with movement. It is characterized by progressive damage to the nerves (neurons) in the spinal cord and peripheral nerves, which can lead to problems with muscle coordination, gait, speech, and hearing. The condition is also associated with heart disorders, diabetes, and vision impairment.

Friedreich Ataxia is caused by a mutation in the FXN gene, which provides instructions for making a protein called frataxin. This protein plays a role in the production of energy within cells, particularly in the mitochondria. The mutation in the FXN gene leads to reduced levels of frataxin, which can cause nerve damage and other symptoms associated with Friedreich Ataxia.

The condition typically begins in childhood or early adulthood and progresses over time, often leading to significant disability. There is currently no cure for Friedreich Ataxia, but treatments are available to help manage the symptoms and improve quality of life.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

Ectodermal dysplasia (ED) is a group of genetic disorders that affect the development and formation of ectodermal tissues, which include the skin, hair, nails, teeth, and sweat glands. The condition is usually present at birth or appears in early infancy.

The symptoms of ED can vary widely depending on the specific type and severity of the disorder. Common features may include:

* Sparse or absent hair
* Thin, wrinkled, or rough skin
* Abnormal or missing teeth
* Nail abnormalities
* Absent or reduced sweat glands, leading to heat intolerance and problems regulating body temperature
* Ear abnormalities, which can result in hearing loss
* Eye abnormalities

ED is caused by mutations in genes that are involved in the development of ectodermal tissues. Most cases of ED are inherited in an autosomal dominant or autosomal recessive pattern, meaning that a child can inherit the disorder even if only one parent (dominant) or both parents (recessive) carry the mutated gene.

There is no cure for ED, but treatment is focused on managing the symptoms and improving quality of life. This may include measures to maintain body temperature, such as cooling vests or frequent cool baths; dental treatments to replace missing teeth; hearing aids for hearing loss; and skin care regimens to prevent dryness and irritation.

Ovulation induction is a medical procedure that involves the stimulation of ovulation (the release of an egg from the ovaries) in women who have difficulties conceiving due to ovulatory disorders. This is typically achieved through the use of medications such as clomiphene citrate or gonadotropins, which promote the development and maturation of follicles in the ovaries containing eggs. The process is closely monitored through regular ultrasounds and hormone tests to ensure appropriate response and minimize the risk of complications like multiple pregnancies. Ovulation induction may be used as a standalone treatment or in conjunction with other assisted reproductive technologies (ART), such as intrauterine insemination (IUI) or in vitro fertilization (IVF).

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Cystinosis is a rare, inherited metabolic disorder that affects primarily the eyes, kidneys, and liver. It is characterized by an abnormal accumulation of the amino acid cystine within lysosomes (cellular organelles responsible for breaking down and recycling waste products) due to a defect in the gene CTNS that encodes for a protein called cystinosin. This leads to the formation of crystals, which can cause cell damage and multi-organ dysfunction.

There are three main types of cystinosis:

1. Nephropathic or infantile cystinosis: This is the most severe form, with symptoms appearing within the first year of life. It primarily affects the kidneys, leading to Fanconi syndrome (a condition characterized by excessive loss of nutrients in urine), growth failure, and kidney dysfunction. If left untreated, it can progress to end-stage renal disease (ESRD) around the age of 10.
2. Intermediate cystinosis: This form presents during childhood with milder kidney involvement but can still lead to ESRD in adolescence or early adulthood. Eye and central nervous system abnormalities may also be present.
3. Non-nephropathic or ocular cystinosis: This is the mildest form, primarily affecting the eyes. Symptoms include photophobia (sensitivity to light), corneal opacities, and decreased vision. Kidney function remains normal in this type.

Treatment for cystinosis typically involves a combination of medications to manage symptoms and slow disease progression. Cysteamine therapy, which helps remove excess cystine from cells, is the primary treatment for all types of cystinosis. Regular monitoring and management of complications are essential to maintain quality of life and prolong survival.

Spinal muscular atrophy (SMA) is a genetic disorder that affects the motor neurons in the spinal cord, leading to muscle weakness and atrophy. It is caused by a mutation in the survival motor neuron 1 (SMN1) gene, which results in a deficiency of SMN protein necessary for the survival of motor neurons.

There are several types of SMA, classified based on the age of onset and severity of symptoms. The most common type is type 1, also known as Werdnig-Hoffmann disease, which presents in infancy and is characterized by severe muscle weakness, hypotonia, and feeding difficulties. Other types include type 2 (intermediate SMA), type 3 (Kugelberg-Welander disease), and type 4 (adult-onset SMA).

The symptoms of SMA may include muscle wasting, fasciculations, weakness, hypotonia, respiratory difficulties, and mobility impairment. The diagnosis of SMA typically involves genetic testing to confirm the presence of a mutation in the SMN1 gene. Treatment options for SMA may include medications, physical therapy, assistive devices, and respiratory support.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Hajdu-Cheney Syndrome (HCS) is a rare genetic disorder characterized by skeletal abnormalities, distinctive facial features, and potential complications involving other organ systems. The syndrome is caused by mutations in the NOTCH2 gene, which plays a crucial role in bone development and maintenance.

The main features of Hajdu-Cheney Syndrome include:

1. Acroosteolysis: Progressive destruction and resorption of the distal phalanges (the bones at the ends of fingers and toes) leading to shortened, deformed fingers and toes.
2. Osteoporosis: Generalized bone loss resulting in increased fracture risk and bone deformities.
3. Widened cranial sutures: The fibrous joints between the bones in the skull remain open longer than usual, leading to a wide appearance of the forehead and other facial features.
4. Facial abnormalities: Include a prominent forehead (frontal bossing), widely spaced eyes (hypertelorism), down-slanting palpebral fissures (the openings for the eyes), a flat nasal bridge, and a pointed chin.
5. Dental anomalies: Including widely spaced teeth, irregular tooth enamel, and an increased risk of periodontal disease.
6. Neurological issues: Some individuals with HCS may experience hearing loss, cognitive impairment, or cerebrovascular complications (such as strokes).
7. Cardiovascular abnormalities: Including mitral valve prolapse and aortic root dilation.
8. Increased cancer risk: There is an increased incidence of various types of cancers in individuals with HCS, particularly gastrointestinal malignancies.

Due to the rarity of this condition, its diagnosis often requires genetic testing for mutations in the NOTCH2 gene and a multidisciplinary approach to management, involving specialists such as clinical geneticists, orthopedic surgeons, neurologists, dentists, and other healthcare professionals.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Cutis laxa is a group of rare connective tissue disorders characterized by loose, sagging, and inelastic skin. The term "cutis laxa" comes from Latin, meaning "loose skin." This condition can affect both the skin and the internal organs. Inherited forms of cutis laxa are caused by mutations in various genes involved in the structure and function of connective tissue, while acquired forms can be associated with autoimmune disorders, cancer, or certain medications.

The main features of cutis laxa include:

1. Sagging, redundant skin: The skin appears loose and wrinkled, especially on the face, neck, hands, and feet. This is due to a deficiency in elastic fibers, which provide flexibility and resilience to the skin.
2. Premature aging appearance: The sagging skin can give an individual a prematurely aged appearance, with deep wrinkles and folds around the eyes, mouth, and neck.
3. Pulmonary involvement: Recurrent respiratory infections, bronchiectasis (permanent enlargement of the airways), and emphysema can occur due to weakened lung tissue.
4. Gastrointestinal issues: Weakened intestinal walls may lead to hernias, bowel obstructions, or malabsorption.
5. Cardiovascular problems: The aorta and other major blood vessels may become weakened and dilated, leading to an increased risk of aneurysms and dissections (tears in the vessel wall).
6. Ophthalmic complications: Eye abnormalities such as blue sclerae (transparent blue appearance of the whites of the eyes) and strabismus (crossed eyes) can occur.
7. Skeletal abnormalities: Individuals with cutis laxa may have joint hypermobility, scoliosis (curvature of the spine), or hip dislocations.
8. Neurological issues: Rarely, cutis laxa can be associated with developmental delays, intellectual disability, or seizures.

There is no cure for cutis laxa, and treatment focuses on managing symptoms and preventing complications. This may include skin care, physical therapy, medications to control blood pressure, and surgery to repair hernias or aneurysms. Regular follow-up with a multidisciplinary team of healthcare professionals is essential to monitor disease progression and address any emerging issues.

Dysostosis is a term used to describe a group of genetic disorders that are characterized by abnormal development and formation of one or more bones in the body. The condition is typically present at birth (congenital) and can affect any bone, but it most commonly involves the bones of the skull, face, hands, and feet.

The term "dysostosis" comes from the Greek words "dys," meaning difficult or abnormal, and "osteon," meaning bone. Dysostoses are usually caused by mutations in specific genes that regulate bone development. These genetic changes can be inherited from one or both parents or can occur spontaneously during fetal development.

There are many different types of dysostoses, each with its own set of symptoms and characteristics. Some common examples include:

1. Cleidocranial Dysplasia: This is a rare genetic disorder that affects the development of the skull and collarbones (cleido). People with cleidocranial dysplasia may have a larger than normal head, wide-set eyes, a prominent forehead, and underdeveloped or missing collarbones.
2. Acrocephalopolysyndactyly Type II: Also known as ACPS II or Greig cephalopolysyndactyly syndrome, this disorder is characterized by a pointed skull (acrocephaly), extra fingers and toes (polydactyly), and wide-set eyes.
3. Osteogenesis Imperfecta: This is a group of genetic disorders that affect the body's production of collagen, a protein that helps to strengthen bones. People with osteogenesis imperfecta have fragile bones that break easily, often as a result of minor trauma.
4. Diastrophic Dysplasia: This is a rare genetic disorder that affects the development of the bones and cartilage in the body. People with diastrophic dysplasia may have short limbs, a deformed spine, and a characteristic "hitchhiker's thumb" appearance.
5. Thanatophoric Dysplasia: This is a severe genetic disorder that affects the development of the bones in the body. People with thanatophoric dysplasia have very short limbs, a small chest, and a deformed skull. The condition is often fatal in infancy or early childhood.

These are just a few examples of the many different types of skeletal dysplasias that exist. While some forms of these disorders can be managed with medical treatment and therapy, others may require surgery or other interventions to help improve quality of life. In some cases, genetic counseling and testing may be recommended for individuals who are considering starting a family and have a history of skeletal dysplasia in their family.

Electroretinography (ERG) is a medical test used to evaluate the functioning of the retina, which is the light-sensitive tissue located at the back of the eye. The test measures the electrical responses of the retina to light stimulation.

During the procedure, a special contact lens or electrode is placed on the surface of the eye to record the electrical activity generated by the retina's light-sensitive cells (rods and cones) and other cells in the retina. The test typically involves presenting different levels of flashes of light to the eye while the electrical responses are recorded.

The resulting ERG waveform provides information about the overall health and function of the retina, including the condition of the photoreceptors, the integrity of the inner retinal layers, and the health of the retinal ganglion cells. This test is often used to diagnose and monitor various retinal disorders, such as retinitis pigmentosa, macular degeneration, and diabetic retinopathy.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Tumor suppressor proteins are a type of regulatory protein that helps control the cell cycle and prevent cells from dividing and growing in an uncontrolled manner. They work to inhibit tumor growth by preventing the formation of tumors or slowing down their progression. These proteins can repair damaged DNA, regulate gene expression, and initiate programmed cell death (apoptosis) if the damage is too severe for repair.

Mutations in tumor suppressor genes, which provide the code for these proteins, can lead to a decrease or loss of function in the resulting protein. This can result in uncontrolled cell growth and division, leading to the formation of tumors and cancer. Examples of tumor suppressor proteins include p53, Rb (retinoblastoma), and BRCA1/2.

Hearing loss is a partial or total inability to hear sounds in one or both ears. It can occur due to damage to the structures of the ear, including the outer ear, middle ear, inner ear, or nerve pathways that transmit sound to the brain. The degree of hearing loss can vary from mild (difficulty hearing soft sounds) to severe (inability to hear even loud sounds). Hearing loss can be temporary or permanent and may be caused by factors such as exposure to loud noises, genetics, aging, infections, trauma, or certain medical conditions. It is important to note that hearing loss can have significant impacts on a person's communication abilities, social interactions, and overall quality of life.

Retinal degeneration is a broad term that refers to the progressive loss of photoreceptor cells (rods and cones) in the retina, which are responsible for converting light into electrical signals that are sent to the brain. This process can lead to vision loss or blindness. There are many different types of retinal degeneration, including age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease, among others. These conditions can have varying causes, such as genetic mutations, environmental factors, or a combination of both. Treatment options vary depending on the specific type and progression of the condition.

Inborn errors of amino acid metabolism refer to genetic disorders that affect the body's ability to properly break down and process individual amino acids, which are the building blocks of proteins. These disorders can result in an accumulation of toxic levels of certain amino acids or their byproducts in the body, leading to a variety of symptoms and health complications.

There are many different types of inborn errors of amino acid metabolism, each affecting a specific amino acid or group of amino acids. Some examples include:

* Phenylketonuria (PKU): This disorder affects the breakdown of the amino acid phenylalanine, leading to its accumulation in the body and causing brain damage if left untreated.
* Maple syrup urine disease: This disorder affects the breakdown of the branched-chain amino acids leucine, isoleucine, and valine, leading to their accumulation in the body and causing neurological problems.
* Homocystinuria: This disorder affects the breakdown of the amino acid methionine, leading to its accumulation in the body and causing a range of symptoms including developmental delay, intellectual disability, and cardiovascular problems.

Treatment for inborn errors of amino acid metabolism typically involves dietary restrictions or supplementation to manage the levels of affected amino acids in the body. In some cases, medication or other therapies may also be necessary. Early diagnosis and treatment can help prevent or minimize the severity of symptoms and health complications associated with these disorders.

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a protein that functions as a chloride channel in the membranes of various cells, including those in the lungs and pancreas. Mutations in the gene encoding CFTR can lead to Cystic Fibrosis, a genetic disorder characterized by thick, sticky mucus in the lungs and other organs, leading to severe respiratory and digestive problems.

CFTR is normally activated by cyclic AMP-dependent protein kinase (PKA) and regulates the movement of chloride ions across cell membranes. In Cystic Fibrosis, mutations in CFTR can result in impaired channel function or reduced amounts of functional CFTR at the cell surface, leading to an imbalance in ion transport and fluid homeostasis. This can cause the production of thick, sticky mucus that clogs the airways and leads to chronic lung infections, as well as other symptoms associated with Cystic Fibrosis.

Human chromosome pair 19 refers to a group of 19 identical chromosomes that are present in every cell of the human body, except for the sperm and egg cells which contain only 23 chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of DNA (deoxyribonucleic acid) molecules.

Each chromosome is made up of two arms, a shorter p arm and a longer q arm, separated by a centromere. Human chromosome pair 19 is an acrocentric chromosome, which means that the centromere is located very close to the end of the short arm (p arm).

Chromosome pair 19 contains approximately 58 million base pairs of DNA and encodes for around 1,400 genes. It is one of the most gene-dense chromosomes in the human genome, with many genes involved in important biological processes such as metabolism, immunity, and neurological function.

Abnormalities in chromosome pair 19 have been associated with various genetic disorders, including Sotos syndrome, which is characterized by overgrowth, developmental delay, and distinctive facial features, and Smith-Magenis syndrome, which is marked by intellectual disability, behavioral problems, and distinct physical features.

Survival of Motor Neuron 1 (SMN1) protein is a critical component for the survival of motor neurons, which are nerve cells that control muscle movements. The SMN1 protein is produced by the Survival of Motor Neuron 1 gene, located on human chromosome 5q13.

The primary function of the SMN1 protein is to assist in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are essential for spliceosomes - complex molecular machines responsible for RNA processing in the cell. The absence or significant reduction of SMN1 protein leads to defective snRNP assembly, impaired RNA splicing, and ultimately results in motor neuron degeneration.

Mutations in the SMN1 gene can cause Spinal Muscular Atrophy (SMA), a genetic disorder characterized by progressive muscle weakness, atrophy, and paralysis due to the loss of lower motor neurons in the spinal cord. The severity of SMA depends on the amount of functional SMN1 protein produced, with less protein leading to more severe symptoms.

Microphthalmos is a medical condition where one or both eyes are abnormally small due to developmental anomalies in the eye. The size of the eye may vary from slightly smaller than normal to barely visible. This condition can occur in isolation or as part of a syndrome with other congenital abnormalities. It can also be associated with other ocular conditions such as cataracts, retinal disorders, and orbital defects. Depending on the severity, microphthalmos may lead to visual impairment or blindness.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Optic atrophy is a medical term that refers to the degeneration and shrinkage (atrophy) of the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various vision abnormalities, including loss of visual acuity, color vision deficiencies, and peripheral vision loss.

Optic atrophy can occur due to a variety of causes, such as:

* Traumatic injuries to the eye or optic nerve
* Glaucoma
* Optic neuritis (inflammation of the optic nerve)
* Ischemic optic neuropathy (reduced blood flow to the optic nerve)
* Compression or swelling of the optic nerve
* Hereditary or congenital conditions affecting the optic nerve
* Toxins and certain medications that can damage the optic nerve.

The diagnosis of optic atrophy typically involves a comprehensive eye examination, including visual acuity testing, refraction assessment, slit-lamp examination, and dilated funduscopic examination to evaluate the health of the optic nerve. In some cases, additional diagnostic tests such as visual field testing, optical coherence tomography (OCT), or magnetic resonance imaging (MRI) may be necessary to confirm the diagnosis and determine the underlying cause.

There is no specific treatment for optic atrophy, but addressing the underlying cause can help prevent further damage to the optic nerve. In some cases, vision rehabilitation may be recommended to help patients adapt to their visual impairment.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Congenital foot deformities refer to abnormal structural changes in the foot that are present at birth. These deformities can vary from mild to severe and may affect the shape, position, or function of one or both feet. Common examples include clubfoot (talipes equinovarus), congenital vertical talus, and cavus foot. Congenital foot deformities can be caused by genetic factors, environmental influences during fetal development, or a combination of both. Treatment options may include stretching, casting, surgery, or a combination of these approaches, depending on the severity and type of the deformity.

Eye abnormalities refer to any structural or functional anomalies that affect the eye or its surrounding tissues. These abnormalities can be present at birth (congenital) or acquired later in life due to various factors such as injury, disease, or aging. Some examples of eye abnormalities include:

1. Strabismus: Also known as crossed eyes, strabismus is a condition where the eyes are misaligned and point in different directions.
2. Nystagmus: This is an involuntary movement of the eyes that can be horizontal, vertical, or rotatory.
3. Cataracts: A cataract is a clouding of the lens inside the eye that can cause vision loss.
4. Glaucoma: This is a group of eye conditions that damage the optic nerve and can lead to vision loss.
5. Retinal disorders: These include conditions such as retinal detachment, macular degeneration, and diabetic retinopathy.
6. Corneal abnormalities: These include conditions such as keratoconus, corneal ulcers, and Fuchs' dystrophy.
7. Orbital abnormalities: These include conditions such as orbital tumors, thyroid eye disease, and Graves' ophthalmopathy.
8. Ptosis: This is a condition where the upper eyelid droops over the eye.
9. Color blindness: A condition where a person has difficulty distinguishing between certain colors.
10. Microphthalmia: A condition where one or both eyes are abnormally small.

These are just a few examples of eye abnormalities, and there are many others that can affect the eye and its functioning. If you suspect that you have an eye abnormality, it is important to consult with an ophthalmologist for proper diagnosis and treatment.

The term "family" in a medical context often refers to a group of individuals who are related by blood, marriage, or adoption and who consider themselves to be a single household. This can include spouses, parents, children, siblings, grandparents, and other extended family members. In some cases, the term may also be used more broadly to refer to any close-knit group of people who provide emotional and social support for one another, regardless of their biological or legal relationship.

In healthcare settings, understanding a patient's family dynamics can be important for providing effective care. Family members may be involved in decision-making about medical treatments, providing care and support at home, and communicating with healthcare providers. Additionally, cultural beliefs and values within families can influence health behaviors and attitudes towards medical care, making it essential for healthcare professionals to take a culturally sensitive approach when working with patients and their families.

Blood Urea Nitrogen (BUN) is a laboratory value that measures the amount of urea nitrogen in the blood. Urea nitrogen is a waste product that is formed when proteins are broken down in the liver. The kidneys filter urea nitrogen from the blood and excrete it as urine.

A high BUN level may indicate impaired kidney function, as the kidneys are not effectively removing urea nitrogen from the blood. However, BUN levels can also be affected by other factors such as dehydration, heart failure, or gastrointestinal bleeding. Therefore, BUN should be interpreted in conjunction with other laboratory values and clinical findings.

The normal range for BUN is typically between 7-20 mg/dL (milligrams per deciliter) or 2.5-7.1 mmol/L (millimoles per liter), but the reference range may vary depending on the laboratory.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

Hair diseases is a broad term that refers to various medical conditions affecting the hair shaft, follicle, or scalp. These conditions can be categorized into several types, including:

1. Hair shaft abnormalities: These are conditions that affect the structure and growth of the hair shaft. Examples include trichorrhexis nodosa, where the hair becomes weak and breaks easily, and pili torti, where the hair shaft is twisted and appears sparse and fragile.
2. Hair follicle disorders: These are conditions that affect the hair follicles, leading to hair loss or abnormal growth patterns. Examples include alopecia areata, an autoimmune disorder that causes patchy hair loss, and androgenetic alopecia, a genetic condition that leads to pattern baldness in both men and women.
3. Scalp disorders: These are conditions that affect the scalp, leading to symptoms such as itching, redness, scaling, or pain. Examples include seborrheic dermatitis, psoriasis, and tinea capitis (ringworm of the scalp).
4. Hair cycle abnormalities: These are conditions that affect the normal growth cycle of the hair, leading to excessive shedding or thinning. Examples include telogen effluvium, where a large number of hairs enter the resting phase and fall out, and anagen effluvium, which is typically caused by chemotherapy or radiation therapy.
5. Infectious diseases: Hair follicles can become infected with various bacteria, viruses, or fungi, leading to conditions such as folliculitis, furunculosis, and kerion.
6. Genetic disorders: Some genetic disorders can affect the hair, such as Menkes syndrome, which is a rare inherited disorder that affects copper metabolism and leads to kinky, sparse, and brittle hair.

Proper diagnosis and treatment of hair diseases require consultation with a healthcare professional, often a dermatologist or a trichologist who specializes in hair and scalp disorders.

Fetal diseases are medical conditions or abnormalities that affect a fetus during pregnancy. These diseases can be caused by genetic factors, environmental influences, or a combination of both. They can range from mild to severe and may impact various organ systems in the developing fetus. Examples of fetal diseases include congenital heart defects, neural tube defects, chromosomal abnormalities such as Down syndrome, and infectious diseases such as toxoplasmosis or rubella. Fetal diseases can be diagnosed through prenatal testing, including ultrasound, amniocentesis, and chorionic villus sampling. Treatment options may include medication, surgery, or delivery of the fetus, depending on the nature and severity of the disease.

Renal tubular acidosis (RTA) is a medical condition that occurs when the kidneys are unable to properly excrete acid into the urine, leading to an accumulation of acid in the bloodstream. This results in a state of metabolic acidosis.

There are several types of RTA, but renal tubular acidosis type 1 (also known as distal RTA) is characterized by a defect in the ability of the distal tubules to acidify the urine, leading to an inability to lower the pH of the urine below 5.5, even in the face of metabolic acidosis. This results in a persistently alkaline urine, which can lead to calcium phosphate stones and bone demineralization.

Type 1 RTA is often caused by inherited genetic defects, but it can also be acquired due to various kidney diseases, drugs, or autoimmune disorders. Symptoms of type 1 RTA may include fatigue, weakness, muscle cramps, decreased appetite, and vomiting. Treatment typically involves alkali therapy to correct the acidosis and prevent complications.

Renal circulation refers to the blood flow specifically dedicated to the kidneys. The main function of the kidneys is to filter waste and excess fluids from the blood, which then get excreted as urine. To perform this function efficiently, the kidneys receive a substantial amount of the body's total blood supply - about 20-25% in a resting state.

The renal circulation process begins when deoxygenated blood from the rest of the body returns to the right side of the heart and is pumped into the lungs for oxygenation. Oxygen-rich blood then leaves the left side of the heart through the aorta, the largest artery in the body.

A portion of this oxygen-rich blood moves into the renal arteries, which branch directly from the aorta and supply each kidney with blood. Within the kidneys, these arteries divide further into smaller vessels called afferent arterioles, which feed into a network of tiny capillaries called the glomerulus within each nephron (the functional unit of the kidney).

The filtration process occurs in the glomeruli, where waste materials and excess fluids are separated from the blood. The resulting filtrate then moves through another set of capillaries, the peritubular capillaries, which surround the renal tubules (the part of the nephron that reabsorbs necessary substances back into the bloodstream).

The now-deoxygenated blood from the kidneys' capillary network coalesces into venules and then merges into the renal veins, which ultimately drain into the inferior vena cava and return the blood to the right side of the heart. This highly specialized circulation system allows the kidneys to efficiently filter waste while maintaining appropriate blood volume and composition.

Inborn genetic diseases, also known as inherited genetic disorders, are conditions caused by abnormalities in an individual's DNA that are present at conception. These abnormalities can include mutations, deletions, or rearrangements of genes or chromosomes. In many cases, these genetic changes are inherited from one or both parents and may be passed down through families.

Inborn genetic diseases can affect any part of the body and can cause a wide range of symptoms, which can vary in severity depending on the specific disorder. Some genetic disorders are caused by mutations in a single gene, while others are caused by changes in multiple genes or chromosomes. In some cases, environmental factors may also contribute to the development of these conditions.

Examples of inborn genetic diseases include cystic fibrosis, sickle cell anemia, Huntington's disease, Duchenne muscular dystrophy, and Down syndrome. These conditions can have significant impacts on an individual's health and quality of life, and many require ongoing medical management and treatment. In some cases, genetic counseling and testing may be recommended for individuals with a family history of a particular genetic disorder to help them make informed decisions about their reproductive options.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

A ureter is a thin, muscular tube that transports urine from the kidney to the bladder. In humans, there are two ureters, one for each kidney, and they are typically about 10-12 inches long. The ureters are lined with a special type of cells called transitional epithelium that can stretch and expand as urine passes through them. They are located in the retroperitoneal space, which is the area behind the peritoneum, the membrane that lines the abdominal cavity. The ureters play a critical role in the urinary system by ensuring that urine flows from the kidneys to the bladder for storage and eventual elimination from the body.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

Sodium-Potassium-Exchanging ATPase (also known as Na+/K+ ATPase) is a type of active transporter found in the cell membrane of many types of cells. It plays a crucial role in maintaining the electrochemical gradient and membrane potential of animal cells by pumping sodium ions (Na+) out of the cell and potassium ions (K+) into the cell, using energy derived from ATP hydrolysis.

This transporter is composed of two main subunits: a catalytic α-subunit that contains the binding sites for Na+, K+, and ATP, and a regulatory β-subunit that helps in the proper targeting and functioning of the pump. The Na+/K+ ATPase plays a critical role in various physiological processes, including nerve impulse transmission, muscle contraction, and kidney function.

In summary, Sodium-Potassium-Exchanging ATPase is an essential membrane protein that uses energy from ATP to transport sodium and potassium ions across the cell membrane, thereby maintaining ionic gradients and membrane potentials necessary for normal cellular function.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

Syndactyly is a congenital condition where two or more digits (fingers or toes) are fused together. It can occur in either the hand or foot, and it can involve fingers or toes on both sides of the hand or foot. The fusion can be partial, where only the skin is connected, or complete, where the bones are also connected. Syndactyly is usually noticed at birth and can be associated with other genetic conditions or syndromes. Surgical intervention may be required to separate the digits and improve function and appearance.

Cyproterone acetate is a synthetic steroid hormone with anti-androgen and progestogenic properties. It works by blocking the action of androgens (male sex hormones) in the body, which helps to reduce symptoms associated with excessive androgen production such as severe acne or hirsutism (excessive hair growth).

Cyproterone acetate is used in the treatment of conditions such as prostate cancer, where it can help to slow the growth of cancer cells by reducing the levels of androgens in the body. It is also used in the treatment of sexual deviations, such as pedophilia or exhibitionism, as it can reduce sexual desire.

In addition, cyproterone acetate is sometimes used in combination with estrogen in hormone replacement therapy for transgender women to suppress the production of testosterone and promote feminization.

It's important to note that cyproterone acetate can have significant side effects and its use should be under the close supervision of a healthcare professional.

Uromodulin, also known as Tamm-Horsfall protein, is a glycoprotein that is primarily produced in the thick ascending limb of the loop of Henle in the kidney. It is the most abundant protein found in normal urine. Uromodulin plays a role in the protection of the urinary tract by preventing the formation of calcium oxalate and brushite crystals, which can lead to kidney stones. Additionally, it has been implicated in various renal diseases, including chronic kidney disease and kidney transplant rejection.

Single Nucleotide Polymorphism (SNP) is a type of genetic variation that occurs when a single nucleotide (A, T, C, or G) in the DNA sequence is altered. This alteration must occur in at least 1% of the population to be considered a SNP. These variations can help explain why some people are more susceptible to certain diseases than others and can also influence how an individual responds to certain medications. SNPs can serve as biological markers, helping scientists locate genes that are associated with disease. They can also provide information about an individual's ancestry and ethnic background.

I'm sorry for any confusion, but "Jews" is not a medical term. It is a term used to describe a group of people who share cultural, religious, and ethnic heritage. The Jewish people originated from the ancient kingdoms of Israel and Judah. They are bound together by their religion, Judaism, which is based on the Torah, or the five books of Moses.

If you have any medical questions or terms that you would like defined, I'd be happy to help!

Hereditary Spastic Paraplegia (HSP) is a group of genetic disorders that affect the long motor neurons in the spinal cord, leading to lower limb spasticity and weakness. It is characterized by progressive stiffness and contraction of the leg muscles, resulting in difficulty with walking and balance.

The symptoms of HSP typically begin in childhood or early adulthood and worsen over time. The severity of the condition can vary widely, even within the same family, depending on the specific genetic mutation involved. In addition to lower limb spasticity, some individuals with HSP may also experience bladder dysfunction, sensory loss, or other neurological symptoms.

HSP is inherited in an autosomal dominant or autosomal recessive pattern, depending on the specific genetic mutation involved. There are over 70 different genes that have been identified as causing HSP, and genetic testing can be used to confirm the diagnosis and identify the specific genetic mutation responsible.

Treatment for HSP is focused on managing symptoms and maintaining mobility. Physical therapy, orthotics, and medications such as baclofen or tizanidine may be used to help reduce muscle spasticity and improve mobility. In some cases, surgery may be necessary to relieve muscle contractures or other complications.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Muscle hypotonia, also known as decreased muscle tone, refers to a condition where the muscles appear to be flaccid or lacking in tension and stiffness. This results in reduced resistance to passive movements, making the limbs feel "floppy" or "like a rag doll." It can affect any muscle group in the body and can be caused by various medical conditions, including neurological disorders, genetic diseases, and injuries to the nervous system. Hypotonia should not be confused with muscle weakness, which refers to the inability to generate normal muscle strength.

Dehydroepiandrosterone sulfate (DHEA-S) is a steroid hormone that is produced by the adrenal glands. It is a modified form of dehydroepiandrosterone (DHEA), which is converted to DHEA-S in the body for storage and later conversion back to DHEA or other steroid hormones, such as testosterone and estrogen. DHEA-S is often measured in the blood as a marker of adrenal function. It is also available as a dietary supplement, although its effectiveness for any medical purpose is not well established.

Spinal muscular atrophies (SMAs) of childhood are a group of inherited neuromuscular disorders characterized by degeneration and loss of lower motor neurons in the spinal cord, leading to progressive muscle weakness and atrophy. The severity and age of onset can vary significantly, with some forms presenting in infancy and others in later childhood or even adulthood.

The most common form of SMA is 5q autosomal recessive SMA, also known as survival motor neuron (SMN) disease, which results from mutations in the SMN1 gene. The severity of this form can range from severe (type I or Werdnig-Hoffmann disease), intermediate (type II or chronic infantile neurodegenerative disorder), to mild (type III or Kugelberg-Welander disease).

Type I SMA is the most severe form, with onset before 6 months of age and rapid progression leading to death within the first two years of life if left untreated. Type II SMA has an onset between 6 and 18 months of age, with affected children never achieving the ability to walk independently. Type III SMA has a later onset, typically after 18 months of age, and is characterized by a slower progression, allowing for the ability to walk unaided, although mobility may be lost over time.

Other forms of childhood-onset SMA include autosomal dominant distal SMA, X-linked SMA, and spinal bulbar muscular atrophy (SBMA or Kennedy's disease). These forms have distinct genetic causes and clinical presentations.

In general, SMAs are characterized by muscle weakness, hypotonia, fasciculations, tongue atrophy, and depressed or absent deep tendon reflexes. Respiratory and nutritional support is often required in more severe cases. Recent advances in gene therapy have led to the development of disease-modifying treatments for some forms of SMA.

Congenital hand deformities refer to physical abnormalities or malformations of the hand, wrist, and/or digits (fingers) that are present at birth. These deformities can result from genetic factors, environmental influences during pregnancy, or a combination of both. They may affect the bones, muscles, tendons, joints, and other structures in the hand, leading to varying degrees of impairment in function and appearance.

There are numerous types of congenital hand deformities, some of which include:

1. Polydactyly: The presence of extra digits on the hand, which can be fully formed or rudimentary.
2. Syndactyly: Webbing or fusion of two or more fingers, which may involve soft tissue only or bone as well.
3. Clinodactyly: A curved finger due to a sideways deviation of the fingertip, often affecting the little finger.
4. Camptodactyly: Permanent flexion or bending of one or more fingers, typically involving the proximal interphalangeal joint.
5. Trigger Finger/Thumb: A condition where a finger or thumb becomes locked in a bent position due to thickening and narrowing of the tendon sheath.
6. Radial Club Hand (Radial Ray Deficiency): Underdevelopment or absence of the radius bone, resulting in a short, curved forearm and hand deformity.
7. Ulnar Club Hand (Ulnar Ray Deficiency): Underdevelopment or absence of the ulna bone, leading to a short, curved forearm and hand deformity.
8. Cleidocranial Dysplasia: A genetic disorder affecting bone growth, resulting in underdeveloped or absent collarbones, dental abnormalities, and occasionally hand deformities.
9. Apert Syndrome: A rare genetic disorder characterized by the fusion of fingers and toes (syndactyly) and other skeletal abnormalities.
10. Holt-Oram Syndrome: A genetic disorder involving heart defects and upper limb deformities, such as radial ray deficiency or thumb anomalies.

Treatment for hand deformities varies depending on the specific condition and severity. Options may include physical therapy, bracing, splinting, medications, or surgical intervention.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

Fanconi anemia is a rare, inherited disorder that affects the body's ability to produce healthy blood cells. It is characterized by bone marrow failure, congenital abnormalities, and an increased risk of developing certain types of cancer. The condition is caused by mutations in genes responsible for repairing damaged DNA, leading to chromosomal instability and cell death.

The classic form of Fanconi anemia (type A) is typically diagnosed in childhood and is associated with various physical abnormalities such as short stature, skin pigmentation changes, thumb and radial ray anomalies, kidney and genitourinary malformations, and developmental delays. Other types of Fanconi anemia (B-G) may have different clinical presentations but share the common feature of bone marrow failure and cancer predisposition.

Bone marrow failure in Fanconi anemia results in decreased production of all three types of blood cells: red blood cells, white blood cells, and platelets. This can lead to anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). These conditions increase the risk of infections, fatigue, and bleeding.

Individuals with Fanconi anemia have a significantly higher risk of developing various types of cancer, particularly acute myeloid leukemia (AML) and solid tumors such as squamous cell carcinomas of the head, neck, esophagus, and anogenital region.

Treatment for Fanconi anemia typically involves managing symptoms related to bone marrow failure, such as transfusions, growth factors, and antibiotics. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment option for bone marrow failure but carries risks of its own, including graft-versus-host disease and transplant-related mortality. Regular cancer surveillance is essential due to the increased risk of malignancies in these patients.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

I'm sorry for any confusion, but "Tunisia" is not a medical term. It is actually the name of a country located in North Africa, known for its rich history, beautiful coastline, and vibrant culture. If you have any questions about medical terms or if there's another topic you'd like to know more about, please let me know!

The descending colon is a part of the large intestine in the human digestive system. It is called "descending" because it is located inferiorly and posteriorly to the transverse colon, and its direction goes downward as it continues toward the rectum. The descending colon receives digested food material from the transverse colon via the splenic flexure, also known as the left colic flexure.

The primary function of the descending colon is to absorb water, electrolytes, and any remaining nutrients from the undigested food materials that have passed through the small intestine. The descending colon also stores this waste material temporarily before it moves into the rectum for eventual elimination from the body.

The descending colon's wall contains a layer of smooth muscle, which helps propel the waste material along the gastrointestinal tract via peristalsis. Additionally, the inner mucosal lining of the descending colon contains numerous goblet cells that produce and secrete mucus to lubricate the passage of stool and protect the intestinal wall from irritation or damage caused by waste materials.

In summary, the medical definition of 'Colon, Descending' refers to a section of the large intestine responsible for absorbing water and electrolytes while storing and eliminating waste materials through peristaltic movements and mucus secretion.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

A chronic granulomatous disease (CGD) is a group of rare inherited disorders that affect the body's ability to fight off certain types of bacterial and fungal infections. It is characterized by the formation of granulomas, which are abnormal masses or nodules composed of immune cells called macrophages that cluster together in an attempt to wall off and destroy the infectious agents.

In CGD, the macrophages have a genetic defect that prevents them from producing reactive oxygen species (ROS), which are molecules that help kill bacteria and fungi. As a result, the immune system is unable to effectively eliminate these pathogens, leading to chronic inflammation and the formation of granulomas.

CGD is typically diagnosed in childhood and can affect various organs and systems in the body, including the lungs, gastrointestinal tract, skin, and lymph nodes. Symptoms may include recurrent infections, fever, fatigue, weight loss, cough, diarrhea, and abdominal pain. Treatment typically involves antibiotics or antifungal medications to manage infections, as well as immunosuppressive therapy to control inflammation and prevent the formation of granulomas. In some cases, bone marrow transplantation may be considered as a curative treatment option.

Sirolimus is a medication that belongs to a class of drugs called immunosuppressants. It is also known as rapamycin. Sirolimus works by inhibiting the mammalian target of rapamycin (mTOR), which is a protein that plays a key role in cell growth and division.

Sirolimus is primarily used to prevent rejection of transplanted organs, such as kidneys, livers, and hearts. It works by suppressing the activity of the immune system, which can help to reduce the risk of the body rejecting the transplanted organ. Sirolimus is often used in combination with other immunosuppressive drugs, such as corticosteroids and calcineurin inhibitors.

Sirolimus is also being studied for its potential therapeutic benefits in a variety of other conditions, including cancer, tuberous sclerosis complex, and lymphangioleiomyomatosis. However, more research is needed to fully understand the safety and efficacy of sirolimus in these contexts.

It's important to note that sirolimus can have significant side effects, including increased risk of infections, mouth sores, high blood pressure, and kidney damage. Therefore, it should only be used under the close supervision of a healthcare provider.

Acne vulgaris is a common skin condition characterized by the formation of various types of blemishes on the skin, such as blackheads, whiteheads, papules, pustules, and cysts or nodules. These lesions typically appear on areas of the body that have a high concentration of sebaceous glands, including the face, neck, chest, back, and shoulders.

Acne vulgaris occurs when hair follicles become clogged with dead skin cells and excess oil (sebum) produced by the sebaceous glands. This blockage provides an ideal environment for bacteria, particularly Propionibacterium acnes, to multiply, leading to inflammation and infection. The severity of acne vulgaris can range from mild with only a few scattered comedones (blackheads or whiteheads) to severe cystic acne, which can cause significant scarring and emotional distress.

The exact causes of acne vulgaris are not fully understood, but several factors contribute to its development, including:

1. Hormonal changes during puberty, menstruation, pregnancy, or due to conditions like polycystic ovary syndrome (PCOS)
2. Genetic predisposition
3. Use of certain medications, such as corticosteroids and lithium
4. Excessive production of sebum due to overactive sebaceous glands
5. Accumulation of dead skin cells that clog pores
6. Bacterial infection (particularly Propionibacterium acnes)
7. Inflammation caused by the body's immune response to bacterial infection and clogged pores

Treatment for acne vulgaris depends on its severity and can include over-the-counter or prescription topical treatments, oral medications, chemical peels, light therapies, or even hormonal therapies in some cases. It is essential to seek professional medical advice from a dermatologist or healthcare provider to determine the most appropriate treatment plan for individual needs.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Cytoskeletal proteins are a type of structural proteins that form the cytoskeleton, which is the internal framework of cells. The cytoskeleton provides shape, support, and structure to the cell, and plays important roles in cell division, intracellular transport, and maintenance of cell shape and integrity.

There are three main types of cytoskeletal proteins: actin filaments, intermediate filaments, and microtubules. Actin filaments are thin, rod-like structures that are involved in muscle contraction, cell motility, and cell division. Intermediate filaments are thicker than actin filaments and provide structural support to the cell. Microtubules are hollow tubes that are involved in intracellular transport, cell division, and maintenance of cell shape.

Cytoskeletal proteins are composed of different subunits that polymerize to form filamentous structures. These proteins can be dynamically assembled and disassembled, allowing cells to change their shape and move. Mutations in cytoskeletal proteins have been linked to various human diseases, including cancer, neurological disorders, and muscular dystrophies.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Arthrogryposis is a medical term that describes a condition characterized by the presence of multiple joint contractures at birth. A contracture occurs when the range of motion in a joint is limited, making it difficult or impossible to move the joint through its full range of motion. In arthrogryposis, these contractures are present in two or more areas of the body.

The term "arthrogryposis" comes from two Greek words: "arthro," meaning joint, and "gyros," meaning curved or bent. Therefore, arthrogryposis literally means "curving of the joints."

There are many different types of arthrogryposis, each with its own specific set of symptoms and causes. However, in general, arthrogryposis is caused by decreased fetal movement during pregnancy, which can be due to a variety of factors such as genetic mutations, nervous system abnormalities, or environmental factors that restrict fetal movement.

Treatment for arthrogryposis typically involves a combination of physical therapy, bracing, and surgery to help improve joint mobility and function. The prognosis for individuals with arthrogryposis varies depending on the severity and type of contractures present, as well as the underlying cause of the condition.

"Facies" is a medical term that refers to the typical appearance of a person or part of the body, particularly the face, which may provide clues about their underlying medical condition or genetic background. A specific facies is often associated with certain syndromes or disorders. For example, a "downsyndrome facies" refers to the distinctive facial features commonly found in individuals with Down syndrome, such as a flattened nasal bridge, almond-shaped eyes, and an upward slant to the eyelids.

It's important to note that while facies can provide valuable diagnostic information, it should be used in conjunction with other clinical findings and genetic testing to make a definitive diagnosis. Additionally, facies should be described objectively and without judgment, as they are simply physical characteristics associated with certain medical conditions.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Craniofacial abnormalities refer to a group of birth defects that affect the development of the skull and face. These abnormalities can range from mild to severe and may involve differences in the shape and structure of the head, face, and jaws, as well as issues with the formation of facial features such as the eyes, nose, and mouth.

Craniofacial abnormalities can be caused by genetic factors, environmental influences, or a combination of both. Some common examples of craniofacial abnormalities include cleft lip and palate, craniosynostosis (premature fusion of the skull bones), and hemifacial microsomia (underdevelopment of one side of the face).

Treatment for craniofacial abnormalities may involve a team of healthcare professionals, including plastic surgeons, neurosurgeons, orthodontists, speech therapists, and other specialists. Treatment options may include surgery, bracing, therapy, and other interventions to help improve function and appearance.

A lethal gene is a type of gene that causes the death of an organism or prevents it from surviving to maturity. This can occur when the gene contains a mutation that disrupts the function of a protein essential for the organism's survival. In some cases, the presence of two copies of a lethal gene (one inherited from each parent) can result in a condition that is incompatible with life, and the organism will not survive beyond embryonic development or shortly after birth.

Lethal genes can also contribute to genetic disorders, where the disruption of protein function caused by the mutation leads to progressive degeneration and ultimately death. In some cases, lethal genes may only cause harm when expressed in certain tissues or at specific stages of development, leading to a range of phenotypes from embryonic lethality to adult-onset disorders.

It's important to note that the term "lethal" is relative and can depend on various factors such as genetic background, environmental conditions, and the presence of modifier genes. Additionally, some lethal genes may be targeted for gene editing or other therapeutic interventions to prevent their harmful effects.

I'm sorry for any confusion, but "Lebanon" is not a medical term. It is the name of a country located in the Middle East, known officially as the Lebanese Republic. If you have any questions about medical conditions or terms, please provide them, and I would be happy to help.

Keratoderma, palmoplantar is a medical term that refers to a group of skin conditions characterized by thickening and hardening (hyperkeratosis) of the skin on the palms of the hands and soles of the feet. This condition can affect people of all ages, but it's most commonly seen in children.

The thickening of the skin is caused by an overproduction of keratin, a protein that helps to form the tough, outer layer of the skin. In palmoplantar keratoderma, this excess keratin accumulates in the stratum corneum, the outermost layer of the epidermis, leading to the formation of rough, scaly, and thickened patches on the palms and soles.

There are several different types of palmoplantar keratoderma, each with its own specific symptoms and causes. Some forms of the condition are inherited and present at birth or develop in early childhood, while others may be acquired later in life as a result of an underlying medical condition, such as atopic dermatitis, lichen planus, or psoriasis.

Treatment for palmoplantar keratoderma typically involves the use of emollients and keratolytic agents to help soften and remove the thickened skin. In some cases, oral retinoids or other systemic medications may be necessary to manage more severe symptoms. It's important to consult with a healthcare provider for an accurate diagnosis and treatment plan.

Bardet-Biedl Syndrome (BBD) is a rare genetic disorder that affects multiple organs and systems in the body. It is characterized by a combination of symptoms including:

1. Obesity: Excessive weight gain, especially around the trunk and face, is a common feature of BBS.
2. Polydactyly: Extra fingers or toes are present at birth in about 70% of individuals with BBS.
3. Retinal degeneration: Progressive loss of vision due to retinal dystrophy is a hallmark of the syndrome.
4. Renal abnormalities: Structural and functional kidney problems, such as cysts, nephronophthisis, and chronic kidney disease, are common in BBS patients.
5. Learning difficulties: Intellectual disability or developmental delay is often present in individuals with BBS.
6. Hypogonadism: Abnormalities of the reproductive system, such as small genitals, delayed puberty, and infertility, are common in both males and females with BBS.
7. Other features: Additional symptoms may include speech and language delay, behavioral problems, diabetes mellitus, heart defects, and hearing loss.

Bardet-Biedl Syndrome is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the syndrome. The disorder affects both males and females equally and has a prevalence of about 1 in 100,000-160,000 individuals worldwide.

Chromosome aberrations refer to structural and numerical changes in the chromosomes that can occur spontaneously or as a result of exposure to mutagenic agents. These changes can affect the genetic material encoded in the chromosomes, leading to various consequences such as developmental abnormalities, cancer, or infertility.

Structural aberrations include deletions, duplications, inversions, translocations, and rings, which result from breaks and rearrangements of chromosome segments. Numerical aberrations involve changes in the number of chromosomes, such as aneuploidy (extra or missing chromosomes) or polyploidy (multiples of a complete set of chromosomes).

Chromosome aberrations can be detected and analyzed using various cytogenetic techniques, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). These methods allow for the identification and characterization of chromosomal changes at the molecular level, providing valuable information for genetic counseling, diagnosis, and research.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Alopecia is a medical term that refers to the loss of hair or baldness. It can occur in various parts of the body, but it's most commonly used to describe hair loss from the scalp. Alopecia can have several causes, including genetics, hormonal changes, medical conditions, and aging.

There are different types of alopecia, such as:

* Alopecia Areata: It is a condition that causes round patches of hair loss on the scalp or other parts of the body. The immune system attacks the hair follicles, causing the hair to fall out.
* Androgenetic Alopecia: Also known as male pattern baldness or female pattern baldness, it's a genetic condition that causes gradual hair thinning and eventual hair loss, typically following a specific pattern.
* Telogen Effluvium: It is a temporary hair loss condition caused by stress, medication, pregnancy, or other factors that can cause the hair follicles to enter a resting phase, leading to shedding and thinning of the hair.

The treatment for alopecia depends on the underlying cause. In some cases, such as with telogen effluvium, hair growth may resume without any treatment. However, other forms of alopecia may require medical intervention, including topical treatments, oral medications, or even hair transplant surgery in severe cases.

The Survival Motor Neuron (SMN) complex is a protein complex that plays a crucial role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are essential components of the spliceosome involved in pre-messenger RNA (pre-mRNA) splicing. The SMN complex consists of several proteins, including the SMN protein itself, Gemins2-8, and unrip.

The SMN protein is the central component of the complex and is encoded by the SMN1 gene located on chromosome 5q13.2. Mutations in this gene can lead to spinal muscular atrophy (SMA), a genetic disorder characterized by degeneration of motor neurons in the spinal cord, leading to muscle weakness and atrophy.

The SMN complex assembles in the cytoplasm and facilitates the assembly of spliceosomal snRNPs by helping to load Sm proteins onto small nuclear RNA (snRNA) molecules. Proper functioning of the SMN complex is essential for the correct splicing of pre-mRNA, and its dysfunction can lead to various developmental abnormalities and diseases, including SMA.

I'm sorry for any confusion, but "siblings" is not a medical term. It is a term used in genealogy and sociology to refer to the brothers and sisters that someone has. Sibling relationships can have medical implications, such as when inherited genetic disorders are present in a family, but the term "siblings" itself does not have a specific medical definition.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Ectromelia is a medical term that refers to the congenital absence or malformation of a limb or extremity. It is also known as "congenital amputation" or "limb reduction defect." This condition can affect any extremity, including arms, legs, hands, or feet, and can range from mild, such as a missing finger or toe, to severe, such as the absence of an entire limb.

Ectromelia can be caused by various factors, including genetic mutations, environmental factors, or a combination of both. In some cases, the cause may be unknown. Treatment options for ectromelia depend on the severity and location of the malformation and may include prosthetics, physical therapy, or surgery.

Tooth abnormalities refer to any variations or irregularities in the size, shape, number, structure, or development of teeth that deviate from the typical or normal anatomy. These abnormalities can occur in primary (deciduous) or permanent teeth and can be caused by genetic factors, environmental influences, systemic diseases, or localized dental conditions during tooth formation.

Some examples of tooth abnormalities include:

1. Microdontia - teeth that are smaller than normal in size.
2. Macrodontia - teeth that are larger than normal in size.
3. Peg-shaped teeth - teeth with a narrow, conical shape.
4. Talon cusps - additional cusps or points on the biting surface of a tooth.
5. Dens invaginatus - an abnormal development where the tooth crown has an extra fold or pouch that can trap bacteria and cause dental problems.
6. Taurodontism - teeth with large pulp chambers and short roots.
7. Supernumerary teeth - having more teeth than the typical number (20 primary and 32 permanent teeth).
8. Hypodontia - missing one or more teeth due to a failure of development.
9. Germination - two adjacent teeth fused together, usually occurring in the front teeth.
10. Fusion - two separate teeth that have grown together during development.

Tooth abnormalities may not always require treatment unless they cause functional, aesthetic, or dental health issues. A dentist can diagnose and manage tooth abnormalities through various treatments, such as fillings, extractions, orthodontic care, or restorative procedures.

Amenorrhea is a medical condition characterized by the absence or cessation of menstrual periods in women of reproductive age. It can be categorized as primary amenorrhea, when a woman who has not yet had her first period at the expected age (usually around 16 years old), or secondary amenorrhea, when a woman who has previously had regular periods stops getting them for six months or more.

There are various causes of amenorrhea, including hormonal imbalances, pregnancy, breastfeeding, menopause, extreme weight loss or gain, eating disorders, intense exercise, stress, chronic illness, tumors, and certain medications or medical treatments. In some cases, amenorrhea may indicate an underlying medical condition that requires further evaluation and treatment.

Amenorrhea can have significant impacts on a woman's health and quality of life, including infertility, bone loss, and emotional distress. Therefore, it is essential to consult with a healthcare provider if you experience amenorrhea or missed periods to determine the underlying cause and develop an appropriate treatment plan.

Hereditary Sensory and Autonomic Neuropathies (HSANs) are a group of inherited disorders that affect the sensory and autonomic nerves. These nerves are responsible for transmitting information about senses such as touch, pain, temperature, and vibration to the brain, as well as controlling automatic functions like blood pressure, heart rate, and digestion.

HSANs are caused by genetic mutations that result in damage to the peripheral nerves. There are several types of HSANs, each with its own specific symptoms and patterns of inheritance. Some common features include:

* Loss of sensation in the hands and feet
* Pain insensitivity
* Absent or reduced reflexes
* Autonomic dysfunction, such as abnormal sweating, blood pressure regulation, and digestive problems

The severity and progression of HSANs can vary widely depending on the specific type and individual factors. Treatment is generally focused on managing symptoms and preventing complications, such as injuries from lack of pain sensation or falls due to balance problems. Early diagnosis and intervention are important for optimizing outcomes.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Alpha-globulins are a group of proteins present in blood plasma, which are classified based on their electrophoretic mobility. They migrate between albumin and beta-globulins during electrophoresis. Alpha-globulins include several proteins, such as alpha-1 antitrypsin, alpha-1 acid glycoprotein, and haptoglobin. These proteins play various roles in the body, including transporting and regulating other molecules, participating in immune responses, and maintaining oncotic pressure in blood vessels.

Sex Hormone-Binding Globulin (SHBG) is a protein produced mainly in the liver that plays a crucial role in regulating the active forms of the sex hormones, testosterone and estradiol, in the body. SHBG binds to these hormones in the bloodstream, creating a reservoir of bound hormones. Only the unbound (or "free") fraction of testosterone and estradiol is considered biologically active and can easily enter cells to exert its effects.

By binding to sex hormones, SHBG helps control their availability and transport in the body. Factors such as age, sex, infection with certain viruses (like hepatitis or HIV), liver disease, obesity, and various medications can influence SHBG levels and, consequently, impact the amount of free testosterone and estradiol in circulation.

SHBG is an essential factor in maintaining hormonal balance and has implications for several physiological processes, including sexual development, reproduction, bone health, muscle mass, and overall well-being. Abnormal SHBG levels can contribute to various medical conditions, such as hypogonadism (low testosterone levels), polycystic ovary syndrome (PCOS), and certain types of cancer.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

A cataract is a clouding of the natural lens in the eye that affects vision. This clouding can cause vision to become blurry, faded, or dim, making it difficult to see clearly. Cataracts are a common age-related condition, but they can also be caused by injury, disease, or medication use. In most cases, cataracts develop gradually over time and can be treated with surgery to remove the cloudy lens and replace it with an artificial one.

The Renin-Angiotensin System (RAS) is a complex hormonal system that regulates blood pressure, fluid and electrolyte balance, and vascular resistance. It plays a crucial role in the pathophysiology of hypertension, heart failure, and kidney diseases.

Here's a brief overview of how it works:

1. Renin is an enzyme that is released by the juxtaglomerular cells in the kidneys in response to decreased blood pressure or reduced salt delivery to the distal tubules.
2. Renin acts on a protein called angiotensinogen, which is produced by the liver, converting it into angiotensin I.
3. Angiotensin-converting enzyme (ACE), found in the lungs and other tissues, then converts angiotensin I into angiotensin II, a potent vasoconstrictor that narrows blood vessels and increases blood pressure.
4. Angiotensin II also stimulates the release of aldosterone from the adrenal glands, which promotes sodium and water reabsorption in the kidneys, further increasing blood volume and blood pressure.
5. Additionally, angiotensin II has direct effects on the heart, promoting hypertrophy and remodeling, which can contribute to heart failure.
6. The RAS can be modulated by various medications, such as ACE inhibitors, angiotensin receptor blockers (ARBs), and aldosterone antagonists, which are commonly used to treat hypertension, heart failure, and kidney diseases.

Ataxia telangiectasia is a rare, inherited genetic disorder that affects the nervous system, immune system, and overall development. The condition is characterized by progressive difficulty with coordination and balance (ataxia), as well as the development of small, dilated blood vessels (telangiectasias) on the skin and eyes.

The underlying cause of ataxia telangiectasia is a mutation in the ATM gene, which provides instructions for making a protein that plays a critical role in DNA repair and maintaining genetic stability. When this gene is mutated, cells are unable to properly repair damaged DNA, leading to an increased risk of cancer and other health problems.

Individuals with ataxia telangiectasia typically begin to show symptoms during early childhood, with progressive difficulties in coordination and balance, slurred speech, and recurrent respiratory infections due to weakened immune function. Over time, these symptoms can worsen, leading to significant disability and reduced life expectancy.

There is currently no cure for ataxia telangiectasia, and treatment is focused on managing the symptoms and complications of the condition. This may include physical therapy, speech therapy, and medications to help control infections and other health problems.

... (ARPKD) is the recessive form of polycystic kidney disease. It is associated with ... "Polycystic kidney disease". Genetics Home Reference. Retrieved 2015-07-28. "Imaging in Autosomal Recessive Polycystic Kidney ... Sweeney, William (1993). "Polycystic Kidney Disease, Autosomal Recessive". Polycystic kidney Disease. PMID 20301501. Retrieved ... if kidney failure is present) Kidney transplantation(in serious cases) "Autosomal recessive polycystic kidney disease - ...
Swanson, Kate (2021-09-07). "Autosomal recessive polycystic kidney disease". American Journal of Obstetrics and Gynecology. ... are also determined in an autosomal recessive fashion. Some autosomal recessive disorders are common because, in the past, ... autosomal recessive inheritance) or from a parent with the disorder (autosomal dominant inheritance). When the genetic disorder ... The divisions between recessive and dominant types are not "hard and fast", although the divisions between autosomal and X- ...
... autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). Autosomal ... autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). The abnormal ... Autosomal recessive polycystic kidney disease "Polycystic kidney disease". MedlinePlus Medical Encyclopedia. Retrieved 2015-07- ... Both autosomal dominant and autosomal recessive polycystic kidney disease cyst formation are tied to abnormal cilia-mediated ...
"Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors". Pediatric Nephrology. 11 (3): 302-306 ... "Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease". Kidney ... "The Position of the Polycystic Kidney Disease 1 (PKD1) Gene Mutation Correlates with the Severity of Renal Disease". Journal of ... kidney disorders, renal function after cardiopulmonary bypass, genetic studies in inherited kidney disorders and the urological ...
Both autosomal dominant and autosomal recessive polycystic kidney disease can cause nephromegaly.[citation needed] " ... Nephromegaly is the process whereby a kidney or both kidneys become enlarged. ... Kidney diseases, All stub articles, Disease stubs, Genitourinary system stubs). ...
GeneReviews/NIH/NCBI/UW entry on Polycystic Kidney Disease, Autosomal Recessive fibrocystin+protein,+human at the U.S. National ... Mutations of its encoding gene (chromosomal locus 6p12.2) can cause autosomal recessive polycystic kidney disease. PKHD1 gene ... "PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary ... A mutation in PKHD1 (can be autosomal recessive pattern or spontaneous mutations) leading to a deficiency in fibrocystin causes ...
"Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney ... Tesevatinib (KD019, XL647) is an experimental drug proposed for use in kidney cancer and polycystic kidney disease. The drug ... In polycystic kidney disease, a histological study of the drug effects and toxicity in rats and mice was published in July 2017 ... As of March 2019 the drug was in Phase II clinical trials for the treatment of polycystic kidney disease in adults and children ...
"Sequence analysis of the human hTg737 gene and its polymorphic sites in patients with autosomal recessive polycystic kidney ... Murcia NS, Sweeney WE, Avner ED (1999). "New insights into the molecular pathophysiology of polycystic kidney disease". Kidney ... "Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice". Science. 264 (5163): 1329-33. ... Mutations of a similar gene in mouse can cause polycystic kidney disease. Two transcript variants encoding distinct isoforms ...
Although the cause of Acrorenal mandibular syndrome is unknown, it is thought to be autosomal recessive. Some characteristic ... These anomalies include split hand and split foot malformations, renal agenesis, polycystic kidneys, uterine malformations, and ... Although Acrorenal mandibular syndrome is thought to be autosomal recessive, the syndrome is more common in female children ... features of Acrorenal mandibular syndrome include a high-arched palate, split foot, split hand, absent or malformed kidneys, ...
It does progress to kidney failure. It is inherited as an autosomal recessive trait. Doberman Pinschers can be affected by ... Cairn Terriers can be affected by polycystic kidney disease. Multiple small cysts are found in the kidneys. Cysts are present ... Persians can be affected by polycystic kidney disease, characterized by small cysts in the kidneys. It is inherited through an ... It is inherited through an autosomal recessive mechanism. Chow Chows can be affected by renal dysplasia that progresses to ...
It may be associated with other congenital defects, commonly with autosomal recessive polycystic kidney disease, the most ... Caroli disease Polycystic kidney disease Von Meyenburg complex Biliary hamartomas "eMedicine - Congenital Hepatic Fibrosis : ... Autosomal recessive disorders, Diseases of liver, All stub articles, Disease stubs). ...
"Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1) and the genes MUT, RDS, CSNK2 beta, and GSTA1 ... Comparison of subunit composition of enzymes from liver, kidney, testis, pancreas and trachea". Biochem. J. 286 (2): 383-8. doi ... and kidney (proximal tubules). In addition to metabolizing bilirubin and certain anti-cancer drugs in the liver, the alpha ...
"Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1) and the genes MUT, RDS, CSNK2 beta, and GSTA1 ...
... and its exclusion as a candidate for autosomal recessive polycystic kidney disease". Eur. J. Hum. Genet. 8 (3): 163-6. doi: ...
Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor- ... TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right ... Two members of the PCC family (polycystin 1 and 2; PKD1 and 2) are mutated in human autosomal dominant polycystic kidney ... autosomal-dominant polycystic kidney disease). Besides modulating channel activity and related signaling events, the CRDs (C- ...
... recessive polycystic disease it is found there is abnormal medullary pyramids in autosomal recessive polycystic kidney disease ... GCKD can be associated with autosomal dominant polycystic kidney disease. It can also be found in a number of patients with the ... Glomerulocystic kidney disease (GCKD) is a cystic disorder of the kidneys. GCKD involves cystic dilation of Bowman's capsule. ... meaning kidney have some abnormalities Size of kidneys can be normal or greatly enlarged depending on the individual case ...
... part of autosomal dominant polycystic kidney disease (ADPKD), or autosomal recessive polycystic kidney disease (ARPKD). Many ... Polycystic liver disease comes in two forms: autosomal dominant polycystic kidney disease (with kidney cysts) and autosomal ... The much rarer autosomal-dominant polycystic liver disease will progress without any kidney involvement. Associations with ... PLD is commonly seen in association with autosomal-dominant polycystic kidney disease, with a prevalence of 1 in 400 to 1000, ...
... usually occurs in the presence of other diseases, such as autosomal recessive polycystic kidney disease, ... Caroli disease is also associated with liver failure and polycystic kidney disease. The disease affects about one in 1,000,000 ... The cause appears to be genetic; the simple form is an autosomal dominant trait, while the complex form is an autosomal ... recessive trait. Females are more prone to Caroli disease than males. Family history may include kidney and liver disease due ...
Pharmacokinetic and Dose-Escalation Study of KD019 in Subjects With Autosomal Dominant Polycystic Kidney Disease" at ... and autosomal recessive PKD. During Waksal's leadership of ImClone the company was engaged in early stage research projects for ... and in polycystic kidney disease. XL844 is an inhibitor of protein kinases Chk1 and Chk2 and may increase the sensitivity of ... for KD025 in specific fibrotic and neurodegenerative diseases and tesevatinib to treat autosomal dominant polycystic kidney ...
... polycystic kidney and hepatic disease 1 (autosomal recessive) (6p21.2-p12) PRICKLE4: prickle planar cell polarity protein 4 ( ... autosomal recessive MRT28: mental retardation, non-syndromic, autosomal recessive MTRF1L: mitochondrial translational release ... autosomal recessive, juvenile) 2, parkin (6q26) PCMT1: protein-L-isoaspartate (D-aspartate) O-methyltransferase (6q25.1) PERP: ... autosomal recessive 38 DYX4: dyslexia susceptibility 4 ECT2L: encoding protein Epithelial cell transforming sequence 2 oncogene ...
... of sirenomelia also present with BRA.It is associated with childhood polycystic kidney disease which is autosomal recessive in ... The majority of other possible candidate genetic pathways are autosomal recessive in nature and do not coincide with the ... Her parents kept her on at-home kidney dialysis until she was old enough for a kidney transplant. On February 8, 2016, at the ... Herrera Beutler's Daughter, Husband Recovering After Kidney Transplant". "Rep. Herrera Beutler's husband donates kidney to ...
... as the trait is autosomal recessive. Due to their Persian ancestry, some Himalayans may have the gene that causes Polycystic ... kidney disease, (PKD); however, a genetic test can reveal which cats carry the PKD gene, so that they may be spayed or neutered ...
Extrahepatic bile duct atresia Autosomal recessive polycystic kidney disease Congential hepatic fibrosis Caroli's disease Von ...
... and the loss of this protein has been found to cause an autosomal-recessive polycystic kidney disease model phenotype in mice. ... which causes both cystic kidneys and retinal degeneration, have been linked to the IFT machinery. This diverse group of genetic ...
Chapman AB (May 2007). "Autosomal dominant polycystic kidney disease: time for a change?". Journal of the American Society of ... It can be autosomal dominant or autosomal recessive, with the autosomal dominant form being more common and characterized by ... Chapman AB (July 2008). "Approaches to testing new treatments in autosomal dominant polycystic kidney disease: insights from ... Other well known causes include diseases of the kidney. This includes diseases such as polycystic kidney disease which is a ...
... are especially prone to autosomal dominant polycystic kidney disease (ADPKD). Cysts develop and grow in the kidney over time, ... Early onset progressive retinal atrophy is a degenerative eye disease, with an autosomal recessive mode of inheritance in the ... "Polycystic kidney disease , International Cat Care". icatcare.org. Retrieved July 8, 2016. "Polycystic Kidney Disease". www.vet ... Polycystic kidney disease (PKD) which causes kidney failure in affected adult cats has an incidence rate of 36-49% in the ...
... can affect one or both kidneys Autosomal recessive polycystic kidney disease Autosomal dominant polycystic kidney disease ... the less prevalent autosomal recessive and more prevalent autosomal dominant. Autosomal recessive polycystic kidney disease ( ... autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Consequently, ... "Polycystic Kidney Disease." American Kidney Fund, www.kidneyfund.org/kidney-disease/other-kidney-conditions/polycystic-kidney- ...
Kidney complications in the form of polycystic kidney or nephronophthisis is estimated to affect 77% of patients with COACH ... COACH syndrome, also known as Joubert syndrome with hepatic defect, is a rare autosomal recessive genetic disease. The name is ... Hunter AG, Rothman SJ, Hwang WS, Deckelbaum RJ (1974). "Hepatic fibrosis, polycystic kidney, colobomata and encephalopathy in ... polycystic kidneys, encephalopathy causing intellectual disability and growth problems. The report concludes that the symptoms ...
Autosomal Recessive Polycystic Kidney Disease, Congenital hepatic Fibrosis, Genetic Disorders, Ivemark Syndrome Teal ribbon: ... People who have kidney disease, are on dialysis, have received a kidney transplant, or who are living kidney donors wear the ... Glaucoma Kidney and Adrenal issues: Kidney disease, Kidney Cancer, Renal Cell Carcinoma, Adrenal Cancer, Nephrotic Syndrome, ... March is kidney awareness month and those who are affected by the kidney disease or would like to support the cause and raise ...
Approximately one in 1000 people will develop this condition Autosomal recessive polycystic kidney disease is far less common, ... Right Kidney Kidney Right Kidney Right kidney Left kidney Kidneys Left kidney Artificial kidney Holonephros Nephromegaly Organ ... Nutcracker syndrome Polycystic kidney disease Autosomal dominant polycystic kidney disease affects patients later in life. ... Kidney failure Acute kidney failure Stage 5 Chronic Kidney Disease Renal artery stenosis Renovascular hypertension Generally, ...
Autosomal recessive polycystic kidney disease (ARPKD) is the recessive form of polycystic kidney disease. It is associated with ... "Polycystic kidney disease". Genetics Home Reference. Retrieved 2015-07-28. "Imaging in Autosomal Recessive Polycystic Kidney ... Sweeney, William (1993). "Polycystic Kidney Disease, Autosomal Recessive". Polycystic kidney Disease. PMID 20301501. Retrieved ... if kidney failure is present) Kidney transplantation(in serious cases) "Autosomal recessive polycystic kidney disease - ...
It is distinct from autosomal dominant polycystic kidney disease (ADPKD), which tends to occur in an older population. ... Autosomal recessive polycystic kidney disease (ARPKD) is the most common heritable cystic renal disease occurring in infancy ... Autosomal Recessive Polycystic Kidney Disease (ARPKD) Imaging * Sections Autosomal Recessive Polycystic Kidney Disease (ARPKD) ... encoded search term (Autosomal Recessive Polycystic Kidney Disease (ARPKD) Imaging) and Autosomal Recessive Polycystic Kidney ...
Autosomal Recessive Polycystic Kidney Disease (ARPKD) information leaflet ... Autosomal recessive polycystic kidney disease. If you would like to discuss your kidney diagnosis with our trained members of ... Chronic kidney disease. Kidney disease is a term used by doctors to include any abnormality of the kidneys, even if there is ... It is also distinct from adult polycystic kidney disease.. Incidence is estimated to be from 1:10,000 to 1:40,000. The disease ...
Haouimi A, Autosomal recessive polycystic kidney disease - antenatal. Case study, Radiopaedia.org (Accessed on 26 Sep 2023) ... The urinary bladder was not visualized which may indicate a lethal form of autosomal recessive polycystic kidney disease. ... Ultrasound faetures of an autosomal recessive polycystic kidney disease (ARPKD) with relatively severe oligohydramnios. ... "autosomal-recessive-polycystic-kidney-disease-antenatal-3","modality":"Ultrasound","series":[{"id":53996991,"content_type":" ...
Polycystic Kidney, Autosomal Recessive. About the Disease. Polycystic Kidney Disease 4 with or Without Polycystic Liver Disease ... also known as autosomal recessive polycystic kidney disease, is related to polycystic kidney disease 3 with or without ... Note: If youd like to get a target analysis report for Polycystic Kidney, Autosomal Recessive, or if you are interested to ... polycystic liver disease and polycystic kidney disease 4. An important gene associated with Polycystic Kidney Disease 4 with or ...
Find all the information on Autosomal recessive polycystic kidney disease and talk to all the patients suffering from this ... Autosomal recessive polycystic kidney disease: Get informed. Autosomal recessive polycystic kidney disease: Get informed. ...
Congenital hypothyroidism in association with Carolis disease and autosomal recessive polycystic kidney disease: Patient ... Congenital hypothyroidism in association with Carolis disease and autosomal recessive polycystic kidney disease: Patient ...
Table I: Classification of autosomal recessive polycystic kidney disease. Blyth H, Ockenden BG. Polycystic disease ofkidneys ... Clinical consequences of PKHD1 mutations in 164 patients with autosomal recessive polycystic kidney disease. Kidney Int 2005; ... Autosomal recessive polycystic kidney disease: a case report, Machala, Ecuador. / Nefrología / 24/06/2019 / Por Revista Médica ... The autosomal recessive polycystic kidney disease (ARPKD) is characterized by a variable combination of multiple cysts in both ...
Aberrant transcriptional regulation could explain phenotypic variability in autosomal recessive polycystic kidney disease ... Aberrant transcriptional regulation could explain phenotypic variability in autosomal recessive polycystic kidney disease. ...
Autosomal Recessive Polycystic Kidney disease diagnosed in foetus. 2007-01-01 Indian Journal of Urology, 2007,23.328-9 ...
Unilateral or bilateral early nephrectomy in infants with autosomal recessive polycystic kidney disease? Weighing risks and ...
Autosomal recessive polycystic kidney disease, also known as infantile polycystic disease, is thought to result from dysplasia ... How is multicystic dysplastic kidney differentiated from Wilms tumor on imaging?. How is autosomal recessive polycystic kidney ... Autosomal recessive polycystic kidney disease is associated with hepatic fibrosis and ductal hyperplasia, which may cause ... The condition is inherited in an autosomal recessive manner, and it is usually present in infancy or childhood, though it may ...
Autosomal recessive polycystic kidney disease, also known as infantile polycystic disease, is thought to result from dysplasia ... How is multicystic dysplastic kidney differentiated from Wilms tumor on imaging?. How is autosomal recessive polycystic kidney ... Autosomal recessive polycystic kidney disease is associated with hepatic fibrosis and ductal hyperplasia, which may cause ... The condition is inherited in an autosomal recessive manner, and it is usually present in infancy or childhood, though it may ...
Learn about causes and signs of polycystic kidney disease (PKD). The sooner you know you have PKD, the sooner you can keep your ... Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003;111(5 Pt 1):1072-1080 ... Polycystic kidney disease (PKD) is a genetic disorder that causes many fluid-filled cysts to grow in your kidneys. Unlike the ... autosomal dominant PKD (ADPKD), which is usually diagnosed in adulthood. *autosomal recessive PKD (ARPKD), which can be ...
Stanford Medicine Childrens Health Detailed information on the different types of polycystic kidney disease ... Autosomal recessive PKD Autosomal recessive PKD (ARPKD) is a rare form of PKD. It is thought to be caused by a particular ... Polycystic Kidney Disease. What is polycystic kidney disease (PKD)?. Polycystic kidney disease (PKD) is a rare genetic disorder ... Autosomal dominant PKD Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of PKD. It accounts for ...
Nakanishi K, Sweeney W EJr, Macrae Dell K, et al. Role of CFTR in autosomal recessive polycystic kidney disease. J Am Soc ... CFTR does appear to have a role in the pathophysiology of autosomal recessive polycystic kidney disease, where fluid secretion ... Xu N, Glockner J F, Rossetti S, et al. Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol ... ROLE OF CFTR IN THE KIDNEY. Paradoxically for a condition in which salt transport is a primary abnormality, people with CF have ...
Polycystic kidney disease, autosomal recessive. PKHD1. CNV. Infantile neuroaxonal dystrophy 1. PLA2G6. CNV. ... Deafness, autosomal recessive 16. STRC. CNV+. Mitochondrial DNA depletion syndrome 5 (encephalomyopathic with or without ...
Autosomal recessive polycystic kidney disease: familial, uniform cysts in neonates, cysts are radially arranged, no immature ... Autosomal dominant polycystic kidney disease: familial, adults, rarely presents at birth; alterations in PKD1, PDK2 or PKD3 * ... Enlarged kidney distorted by variably sized cysts that may involve one or both (20%) kidneys *Indistinct corticomedullary ... Kidney nontumor / medical renal. Developmental & cystic diseases. Dysplasia / hypoplasia / agenesis. Author: Mandolin S. Ziadie ...
... is a genetic disorder characterized by the development of fluid-filled cysts in the kidneys. ... The majority of polycystic kidney disease cases fall within this category.. *Autosomal recessive polycystic kidney disease ( ... Polycystic kidney disease comes in two types:. *Autosomal dominant polycystic kidney disease (ADPKD): The most common type of ... Polycystic kidney disease (PKD) is a genetic disorder characterized by the development of fluid-filled cysts in the kidneys. ...
... genetic disease in which fluid-filled cysts grow in the kidneys, leading to kidney failure. Learn more. ... Symptoms of autosomal recessive PKD. Symptoms of autosomal recessive PKD are usually detected before birth during an ultrasound ... Polycystic kidney disease (PKD) is a rare, genetic disease that causes damage to the kidneys and can lead to kidney failure. ... What is Pediatric Polycystic Kidney Disease (PKD)?. Polycystic kidney disease (PKD) is a rare disease in which fluid-filled ...
Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat ... Carriers of autosomal recessive alport syndrome with thin basement membrane nephropathy presenting as focal segmental ... An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease. PLoS One. 2015;10(2):e0116680. ... Kidney diseases related to mutations in COL4A1, COL4A3, COL4A4, and COL4A5 are called collagen IV nephropathies. Alport ...
Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has ... Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. … ... Alport syndrome can be transmitted as an X-linked, autosomal recessive, or autosomal dominant disorder. Individuals with Alport ... Alport syndrome can be transmitted as an X-linked, autosomal recessive, or autosomal dominant disorder. I … ...
There was a history of 2 siblings death from Kostmann syndrome and autosomal-recessive polycystic kidney disease. ... autosomal and X-linked] and hypogammaglobulinemia); or an innate immunodeficiency group (e.g., neutropenia, chronic ...
Autosomal recessive polycystic kidney disease Incidence of autosomal recessive polycystic kidney disease is about 1/10,000 to 1 ... autosomal dominant polycystic kidney disease Autosomal Dominant Polycystic Kidney Disease (ADPKD) Polycystic kidney disease ( ... Diagnosis of autosomal recessive polycystic kidney disease may be difficult, especially without a family history. ... Symptoms of autosomal dominant polycystic kidney disease are usually not present until adulthood. Rarely, symptoms manifest in ...
... is an autosomal recessive disease that primarily affects the hepatobiliary and renal systems. It is characterized by hepatic ... autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). [1, 2] ARPKD ... Chandar J, Garcia J, Jorge L, Tekin A. Transplantation in autosomal recessive polycystic kidney disease: liver and/or kidney?. ... Clinical manifestations of autosomal recessive polycystic kidney disease. Curr Opin Pediatr. 2015 Apr. 27 (2):186-92. [QxMD ...
... polycystic kidneys, and cardiac anomalies. This condition is autosomal recessive and has been mapped to chromosome bands 17q21- ... The parietal foramina can be transmitted as an autosomal dominant trait via a gene located on the short arm of chromosome 11. ...
AUTOSOMAL RECESSIVE POLYCYSTIC KIDNEY DISEASE; ARPKD. CAROLI DISEASE, INCLUDED. CYSTIC KIDNEY DISEASE, TYPE I. ... 263200 POLYCYSTIC KIDNEY DISEASE 4 WITH OR WITHOUT POLYCYSTIC LIVER DISEASE; PKD4. ... 263200 POLYCYSTIC KIDNEY DISEASE 4 WITH OR WITHOUT POLYCYSTIC LIVER DISEASE; PKD4. ... Anhydramnios/oligohydramnios; enlarged kidneys; 46,XX; diagnosis was made by prenatal ultrasound at 33 weeks gestational age ...
Tolvaptanis under clinical development by Otsuka Pharmaceutical and currently in Phase III for Polycystic Kidney Disease. ... It is under development for autosomal recessive polycystic kidney disease (ARPKD) in pediatric population. ... Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - Tolvaptan in Polycystic Kidney Disease Buy ... Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - Tolvaptan in Polycystic Kidney Disease. Buy ...
  • Autosomal recessive polycystic kidney disease (ARPKD) is a genetic condition that is characterized by the growth of cysts in the kidneys (which lead to kidney failure) and liver and problems in other organs, such as the blood vessels in the brain and heart. (nih.gov)
  • Autosomal recessive polycystic kidney disease (ARPKD) is the recessive form of polycystic kidney disease. (wikipedia.org)
  • The classic presentation for ARPKD is systemic hypertension with progression to end-stage kidney disease (ESKD) by the age of 15. (wikipedia.org)
  • deficiency leads to the characteristic polycystic dilation of both structures[citation needed] ARPKD is a significant hereditary renal disease in that appears in childhood. (wikipedia.org)
  • Autosomal recessive polycystic kidney disease (ARPKD) is a rare genetic disorder that affects 1 in 20,000 children. (nih.gov)
  • 8 A fetus or baby with ARPKD has fluid-filled kidney cysts that may make the kidneys too big, or enlarged. (nih.gov)
  • ARPKD can cause a child to have poor kidney function, even in the womb. (nih.gov)
  • How quickly ARPKD progresses to kidney failure is different for each child. (nih.gov)
  • An early sign of ARPKD is an enlarged kidney. (nih.gov)
  • Due to decreased kidney and lung function, children with ARPKD are usually smaller-than-average size, a condition called growth failure . (nih.gov)
  • Children with ARPKD who survive birth often have kidney and liver problems that can affect their breathing. (nih.gov)
  • Children born with ARPKD often develop kidney failure before reaching adulthood. (nih.gov)
  • Autosomal recessive polycystic kidney disease (ARPKD) is the most common heritable cystic renal disease occurring in infancy and childhood. (medscape.com)
  • Risk factors for more severe ARPKD in infants are oligohydramnios or anhydramnios, prenatal kidney enlargement, and the need for postnatal breathing support. (medscape.com)
  • Ultrasonography is the primary radiologic modality for the evaluation of autosomal recessive polycystic kidney disease (ARPKD), especially during the perinatal and neonatal periods. (medscape.com)
  • Axial nonenhanced CT scan of a 1-day-old boy with ARPKD shows massively enlarged, hypoattenuating kidneys (K) that occupy most of the abdominal area. (medscape.com)
  • Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes and is a cause of significant renal and liver-related morbidity and mortality in children. (nih.gov)
  • The majority of individuals with ARPKD present in the neonatal period with enlarged echogenic kidneys. (nih.gov)
  • As advances in renal replacement therapy and kidney transplantation improve long-term survival, it is likely that clinical hepatobiliary disease will become a major feature of the natural history of ARPKD. (nih.gov)
  • There are two forms: autosomal dominant (ADPKD) and autosomal recessive (ARPKD). (healthychildren.org)
  • Most children with ARPKD have high blood pressure and progressive kidney failure. (healthychildren.org)
  • Striking pyramidal hyperechogenicity resembling the sonographic appearance of medullary nephrocalcinosis was found in autosomal recessive polycystic kidney disease (ARPKD). (wustl.edu)
  • Gross pathology and low-power light microscopy of kidney tissue in a neonate with ARPKD. (aspneph.org)
  • These mutations cause autosomal recessive polycystic kidney disease (ARPKD), which is a severe type of the disorder that is usually evident at birth or in early infancy. (medlineplus.gov)
  • Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). (medlineplus.gov)
  • Autosomal recessive PKD (ARPKD) is a rare form of PKD. (uhhospitals.org)
  • Children born with ARPKD may develop kidney failure within a few years. (uhhospitals.org)
  • The autosomal recessive form of polycystic kidney disease (sometimes called ARPKD) is much rarer and is often lethal early in life. (nih.gov)
  • Autosomal recessive polycystic kidney disease (ARPKD) - it is much less common. (usz.ch)
  • Congenital hepatic fibrosis is one of the fibropolycystic diseases, which also include Caroli disease , autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). (medscape.com)
  • Congenital hepatic fibrosis is associated with an impairment of renal functions, usually caused by an ARPKD, which is a severe form of polycystic kidney disease . (medscape.com)
  • This autosomal recessive Pkhd1 gene mutation is a model of human autosomal-recessive polycystic kidney disease (ARPKD). (mcw.edu)
  • Autosomal recessive PKD (ARPKD) is much less common than ADPKD. (healthline.com)
  • There are different types of polycystic kidney disease, you might also hear them called autosomal dominant polycystic kidney disease, ADPKD or autosomal recessive polycystic kidney disease, ARPKD. (britishlivertrust.org.uk)
  • In this review, we examine the clinical features and differential diagnoses of this group of syndromes, including autosomal recessive polycystic kidney disease (ARPKD), juvenile nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS), and Jeune asphyxiating thoracic dystrophy (JATD). (bmj.com)
  • The primary goal of this research study is to learn if patients with autosomal recessive polycystic kidney disease (ARPKD) are at risk for brain aneurysms or cardiovascular abnormalities. (chop.edu)
  • The morbidity associated with the most common forms, autosomal dominant PKD (ADPKD) and autosomal recessive PKD (ARPKD), is mostly limited to the kidney and liver and extends from neonates to old age. (mhmedical.com)
  • Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. (jax.org)
  • In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. (jax.org)
  • Autosomal recessive polycystic kidney disease (ARPKD) is usually detected late in pregnancies in embryos with large echogenic kidneys accompanied by oligohydramnios. (huji.ac.il)
  • [ 1 ] It is distinct from autosomal dominant polycystic kidney disease (ADPKD), which tends to occur in an older population. (medscape.com)
  • Translational strategies for autosomal recessive and dominant polycystic kidney disease / Gregory G. Germino, Lisa M. Guay-Woodford. (nih.gov)
  • Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of PKD. (uhhospitals.org)
  • Autosomal dominant means that if 1 parent has the disease, there is a 50% chance that the disease will pass to a child. (uhhospitals.org)
  • The autosomal dominant form (sometimes called ADPKD) has signs and symptoms that typically begin in adulthood, although cysts in the kidney are often present from birth or childhood. (nih.gov)
  • Autosomal dominant polycystic kidney disease can be further divided into type 1 and type 2, depending on the genetic cause. (nih.gov)
  • The autosomal dominant form of the disease is much more common than the autosomal recessive form. (nih.gov)
  • Autosomal dominant polycystic kidney disease affects 1 in 500 to 1,000 people, while the autosomal recessive type occurs in an estimated 1 in 20,000 to 40,000 people. (nih.gov)
  • Most cases of polycystic kidney disease have an autosomal dominant pattern of inheritance. (nih.gov)
  • Autosomal Dominant Polycystic Kidney Disease (ADPKD) Polycystic kidney disease (PKD) is a hereditary disorder of renal cyst formation causing gradual enlargement of both kidneys, sometimes with progression to renal failure. (msdmanuals.com)
  • Symptoms of autosomal dominant polycystic kidney disease are usually not present until adulthood. (msdmanuals.com)
  • 3. Prenatal ultrasonography of autosomal dominant polycystic kidney disease mimicking recessive type: case series. (nih.gov)
  • 4. Imaging features of tuberous sclerosis complex with autosomal-dominant polycystic kidney disease: a contiguous gene syndrome. (nih.gov)
  • 5. Prenatal sonographic patterns in autosomal dominant polycystic kidney disease: a multicenter study. (nih.gov)
  • 8. Hypomagnesaemia is absent in children with autosomal dominant polycystic kidney disease. (nih.gov)
  • 12. Abdominal sonographic study of autosomal dominant polycystic kidney disease. (nih.gov)
  • 14. Autosomal recessive and dominant polycystic kidney diseases. (nih.gov)
  • 18. [Clinical diagnosis of Autosomal Dominant Polycystic Kidney Disease]. (nih.gov)
  • 1993. Autosomal-dominant polycystic kidney disease in the rat. (nih.gov)
  • 1995. New mouse model for polycystic kidney disease with both recessive and dominant gene effects. (nih.gov)
  • Understanding and ameliorating autosomal dominant PKD and autosomal recessive PKD are central to the mission of NIDDK. (nih.gov)
  • The mode of inheritance is autosomal dominant. (usz.ch)
  • A baby can inherit this condition from one parent (autosomal dominant) or both parents (autosomal recessive) during conception. (clevelandclinic.org)
  • Renal agenesis can be either autosomal dominant or recessive, where one or two copies of the mutated gene need to pass to the child during conception for the child to inherit the condition. (clevelandclinic.org)
  • autosomal dominant inheritance. (theodora.com)
  • Autosomal dominant (ADPKD) is sometimes called adult PKD. (healthline.com)
  • Autosomal dominant polycystic kidney disease is one of the most common forms of polycystic kidney disease. (healthykidneyclub.com)
  • Minimal change disease, unstable rapidly progressing renal disease, and/or renal disease requiring significant immunosuppression, autosomal dominant or autosomal recessive polycystic kidney disease. (astrazenecaclinicaltrials.com)
  • Autosomal dominant tubulointerstitial kidney disease (ADTKD) describes a group of diseases that affect the tubules of the kidney. (rarediseases.org)
  • Patients with this type of autosomal dominant tubulointerstitial kidney disease have slowly progressive chronic kidney disease. (rarediseases.org)
  • Autosomal dominant tubulotubulointerstitial kidney disease of unknown genetic cause is the term used to describe families with this disease in whom the cause is not known. (rarediseases.org)
  • Dominantly inherited isolated polycystic liver disease (PCLD) consists of liver cysts that are radiologically and pathologically identical to those seen in autosomal dominant polycystic kidney disease, but without clinically relevant kidney cysts. (korea.ac.kr)
  • These findings define genetic and biochemical modulators of polycystin-1 function and provide a more complete definition of the spectrum of dominant human polycystic diseases. (korea.ac.kr)
  • Large kidney cysts are associated with ADPKD. (healthychildren.org)
  • It is not recommended for otherwise healthy children and teens to have kidney-imaging tests done, regardless of whether a parent has ADPKD. (healthychildren.org)
  • There is no cure for ADPKD, but a new treatment is available that has been shown to slow the progression of ADPKD to kidney failure. (healthykidneyclub.com)
  • The signs and symptoms of ADPKD , such as pain, high blood pressure, and kidney failure, are also PKD complications. (healthykidneyclub.com)
  • In many cases, ADPKD does not cause signs or symptoms until your kidney cysts are a half inch or larger in size. (healthykidneyclub.com)
  • Mutations in the PKHD1 gene cause autosomal recessive polycystic kidney disease. (nih.gov)
  • Characteristics of congenital hepatic fibrosis in a large cohort of patients with autosomal recessive polycystic kidney disease. (nih.gov)
  • Cystic kidneys are congenital in about two-thirds of those affected, and babies are already born with the genetic defect. (usz.ch)
  • Congenital hepatic fibrosis (CHF) is an autosomal recessive disease that primarily affects the hepatobiliary and renal systems. (medscape.com)
  • The congenital hepatorenal fibrocystic syndromes are a group of severe, mostly autosomal recessive, monogenic disorders that are characterised by a common pathological appearance, with the presentation of multiple defects in the liver and kidney as the most predominant feature. (bmj.com)
  • The condition is caused by a genetic change in the PKHD1 gene and is inherited in an autosomal recessive manner. (nih.gov)
  • This outcome is postulated to result from expression of the polycystic kidney and hepatic disease gene PKHD1, which is located on chromosome 6p. (wikipedia.org)
  • More than 270 mutations in the PKHD1 gene have been identified in people with polycystic kidney disease. (medlineplus.gov)
  • Mutations in the PKD1 , PKD2 , and PKHD1 genes cause polycystic kidney disease. (nih.gov)
  • Researchers have not determined how mutations in the PKHD1 gene lead to the formation of numerous cysts characteristic of polycystic kidney disease. (nih.gov)
  • We also found enrichment on a genome-wide basis of heterozygous mutations in the autosomal recessive polycystic kidney disease gene PKHD1, indicating that adult PKHD1 carriers can present with clinical PCLD. (korea.ac.kr)
  • It used to be called adult polycystic kidney disease. (uhhospitals.org)
  • In the past, this type was called adult polycystic kidney disease, but children can develop the disorder.Only one parent needs to have the disease for it to pass to the children. (mayoclinic.org)
  • This condition was previously known as adult polycystic kidney disease, however it can also affect youngsters. (medicahospitals.in)
  • Mice homozygous for an ENU-induced mutation exhibit early onset, progressive cystic kidney disease, polydactyly, facial clefting, eye defects, and prenatal lethality. (jax.org)
  • More than six million people worldwide have cystic kidney disease. (usz.ch)
  • Acquired cystic kidney disease (ACKD) isn't inherited. (healthline.com)
  • This particular condition has previously been called familial juvenile hyperuricemic nephropathy type1 or medullary cystic kidney disease type 2. (rarediseases.org)
  • 111. Poly cystic kidney disease is which Mendelian genetic disorder? (medicospace.com)
  • These cases are called acquired polycystic kidney disease. (nih.gov)
  • People with polycystic liver disease have more than 10 cysts in their liver. (britishlivertrust.org.uk)
  • Many people with polycystic liver disease will have no symptoms and will not need any treatment. (britishlivertrust.org.uk)
  • Most people with polycystic liver disease will have no symptoms. (britishlivertrust.org.uk)
  • Additionally, people with polycystic kidney disease have an increased risk of an abnormal bulging (an aneurysm) in a large blood vessel called the aorta or in blood vessels at the base of the brain. (encyclopedia.pub)
  • Diagnosis often includes ultrasound imaging of the fetus or newborn to reveal cysts in the kidneys. (uhhospitals.org)
  • After the diagnosis of chronic kidney disease is made, staging based on estimated glomerular filtration rate determines prognosis, evaluation, and management. (aafp.org)
  • Diagnosis of autosomal recessive polycystic kidney disease may be difficult, especially without a family history. (msdmanuals.com)
  • If the absence of kidneys in your baby's body causes their diagnosis, the condition is fatal. (clevelandclinic.org)
  • This form accounts for most of the cases of polycystic kidney disease. (mayoclinic.org)
  • Polycystic liver disease is a condition where you have 10 or more cysts in your liver. (britishlivertrust.org.uk)
  • Polycystic liver disease often has no symptoms. (britishlivertrust.org.uk)
  • Polycystic liver disease can run in the family (be inherited). (britishlivertrust.org.uk)
  • Most people will not need any treatment for polycystic liver disease. (britishlivertrust.org.uk)
  • Tests for polycystic liver disease include ultrasound, MRI and CT scans. (britishlivertrust.org.uk)
  • Severe polycystic liver disease is treated with surgery to drain the cysts or remove part of the liver. (britishlivertrust.org.uk)
  • The female hormone oestrogen could be involved in polycystic liver disease. (britishlivertrust.org.uk)
  • Most people who develop severe polycystic liver disease are women. (britishlivertrust.org.uk)
  • What are the symptoms of polycystic liver disease? (britishlivertrust.org.uk)
  • In rare cases, polycystic liver disease can cause your liver to become very large. (britishlivertrust.org.uk)
  • Most cases of polycystic liver disease are found by accident when you have a scan for something else. (britishlivertrust.org.uk)
  • Polycystic Liver Disease (PLD) is a medical condition of liver caused by multiple cysts in liver. (epainassist.com)
  • Polycystic liver disease may be associated with similar cystic disease of kidney. (epainassist.com)
  • In this article, we will discuss various causes, symptoms, and treatment for Polycystic Liver Disease. (epainassist.com)
  • How Is Polycystic Liver Disease (PLD) Defined? (epainassist.com)
  • Isolated cystic disease is less common than polycystic liver disease. (epainassist.com)
  • The isolated liver cystic disease is comprised of only 10 to 20% of all liver polycystic liver disease. (epainassist.com)
  • Polycystic liver disease involves liver and kidney. (epainassist.com)
  • Polycystic liver disease is common among elderly as compared to middle age and younger population. (epainassist.com)
  • Polycystic liver disease is common among female patient. (epainassist.com)
  • Polycystic liver disease is rarely fatal. (epainassist.com)
  • Polycystic Liver Disease is an inherited medical condition. (epainassist.com)
  • Polycystic liver disease is more common among females. (epainassist.com)
  • Patient diagnosed of polycystic liver disease have shown the number of cyst to increase during pregnancy. (epainassist.com)
  • Follow up MRI and CT Scans of females diagnosed of polycystic liver disease have shown increased number of cyst when prescribed contraceptive steroid hormones. (epainassist.com)
  • The number of polycystic liver disease is higher in postmenopausal female who are taking estrogen or progesterone or both the hormones. (epainassist.com)
  • The signs and symptoms, including a decline in kidney function, tend to appear later in adulthood in people with a PKD2 mutation. (nih.gov)
  • 20. Autosomal recessive polycystic kidney disease in adulthood. (nih.gov)
  • Most often, cystic kidneys appear in adulthood between the ages of 30 and 40. (usz.ch)
  • Kidney cysts are round pouches of fluid that form in the kidneys and are typically less than 1 inch in diameter. (healthychildren.org)
  • Polycystic kidney disease (PKD) is an inherited disorder that causes fluid-filled cysts to form in the kidneys, leading to impaired kidney function and potential kidney failure. (healthline.com)
  • Unlike the usually harmless simple kidney cysts that can form in the kidneys later in life, PKD cysts can change the shape of your kidneys, including making them much larger. (healthykidneyclub.com)
  • Further evaluation should focus on the specific type of kidney disease and on identifying complications related to the disease stage. (aafp.org)
  • Frequent complications of polycystic kidney disease include dangerously high blood pressure ( hypertension ), pain in the back or sides, blood in the urine (hematuria), recurrent urinary tract infections, kidney stones , and heart valve abnormalities. (nih.gov)
  • The disease can cause serious complications, including high blood pressure and kidney failure. (mayoclinic.org)
  • The disease varies greatly in its severity, and some complications from polycystic kidney disease are preventable. (mayoclinic.org)
  • Lifestyle changes and treatments might help reduce damage to the kidneys from complications, but long-term interventions, including dialysis or kidney transplant , are sometimes needed. (mayoclinic.org)
  • In addition to the symptoms generally experienced with PKD, there may be complications as cysts on the kidneys grow larger. (healthline.com)
  • Some lifestyle alterations and proper treatment might help reduce kidney complications naturally. (kidneytreatmentinayurveda.com)
  • Complications to your kidneys may be lessened with lifestyle modifications and therapies. (medicahospitals.in)
  • 2. Hereditary polycystic kidney diseases in children: changing sonographic patterns through childhood. (nih.gov)
  • 11. Prenatal ultrasound, genotype, and outcome in a large cohort of prenatally affected patients with autosomal-recessive polycystic kidney disease and other hereditary cystic kidney diseases. (nih.gov)
  • Cystic kidneys are among the most common hereditary diseases: In Switzerland, about 10,000 people are affected. (usz.ch)
  • The recessive form is much rarer and they are very different diseases. (pkdcure.org)
  • RaDaR (National Registry of Rare Kidney Diseases) is one such registry which currently holds data from almost 24,000 patients with rare kidney disease. (nihr.ac.uk)
  • Renal medicine deals with the kidneys which can be affected by a large number of rare diseases, often causing chronic or end stage kidney disease. (nihr.ac.uk)
  • The National Institute of Diabetes and Digestive and Kidney Diseases has more information about ACKD . (healthykidneyclub.com)
  • Autosomal recessive" means that for a child to have this disorder, both parents must have and pass along the gene mutation. (nih.gov)
  • Polycystic kidney disease (PKD) is a rare genetic disorder. (uhhospitals.org)
  • Polycystic kidney disease is a disorder that affects the kidneys and other organs. (nih.gov)
  • Polycystic kidney disease is a fairly common genetic disorder. (nih.gov)
  • Although polycystic kidney disease is usually a genetic disorder, a small percentage of cases are not caused by gene mutations. (nih.gov)
  • This form of the disorder occurs most often in people with other types of kidney disease who have been treated for several years with hemodialysis (a procedure that filters waste products from the blood). (nih.gov)
  • Polycystic kidney disease is an inherited disorder where clusters of cysts develop within the kidneys, causing the kidneys to enlarge and lose function over time. (mayoclinic.org)
  • Polycystic kidney disease (PKD) is an inherited kidney disorder. (healthline.com)
  • Polycystic kidney disease is a genetic disorder that causes many fluid-filled cysts to grow in your kidneys. (healthykidneyclub.com)
  • Polycystic kidney disease is a genetic disorder characterized by the growth of numerous cysts in both kidneys. (healthykidneyclub.com)
  • Some families with this disorder may have a less severe mutation and may present in their early twenties with gout and later develop chronic kidney disease. (rarediseases.org)
  • Genetic disorder defined by the pathological development of fluid-filled cysts throughout the kidneys leading to organ enlargement and chronic kidney disease. (mhmedical.com)
  • Caroli's disease is a rare autosomal-recessive disorder caused by malformation of the ductal plate during embryonic development. (e-cmh.org)
  • the polycystic kidney and hepatic disease 1 gene (PKDH1 ). (usz.ch)
  • Sometimes, the kidneys are so large and function so poorly that infants are born with severe respiratory problems and do not survive. (healthychildren.org)
  • In most cases, a PKD1 mutation means a more severe course because kidney failure sets in earlier. (usz.ch)
  • autosomal recessive inheritance. (theodora.com)
  • Autosomal recessive inheritance, caused by mutations in the cartilage-derived morphogenetic protein 1 (CDMP1) gene on chromosome 20q. (theodora.com)
  • It can lead to kidney failure. (uhhospitals.org)
  • The growth of cysts causes the kidneys to become enlarged and can lead to kidney failure. (nih.gov)
  • PKD is a form of chronic kidney disease that reduces kidney function and may lead to kidney failure . (healthykidneyclub.com)
  • The progressive expansion of PKD cysts slowly replaces much of the normal mass of the kidneys, and can reduce kidney function and lead to kidney failure. (healthykidneyclub.com)
  • Lifestyle and diet may be the decisive factors when you experience symptoms of polycystic kidney disease , either in your 30-40s or later years of life. (kidneytreatmentinayurveda.com)
  • Cystic kidneys are not (yet) curable, but doctors can treat the symptoms and slow down the progression of the disease. (usz.ch)
  • Children who don't have working kidneys will need dialysis or a kidney transplant . (nih.gov)
  • They will need to be on kidney dialysis and or receive a kidney transplant by late childhood to survive. (healthychildren.org)
  • However, in the final stages of the disease, dialysis or a kidney transplant may become necessary. (usz.ch)
  • Medications, blood purification (dialysis) and finally a kidney transplant are used. (usz.ch)
  • If you dont have other medical problems, you may be a good candidate for a kidney transplant. (healthykidneyclub.com)
  • 3) Dialysis or kidney transplant is required sometime between the 4th and 7th decade of life. (rarediseases.org)
  • Mildly decreased kidney function may first be noted in the late teens/early twenties, and affected individuals usually require dialysis or a kidney transplant between the 3rd and seventh decades of life. (rarediseases.org)
  • Ultrasonography is the primary method to evaluate autosomal recessive polycystic kidney disease, particularly in the perinatal and neonatal stages. (wikipedia.org)
  • 15. Autosomal recessive polycystic kidney disease: long-term sonographic findings in patients surviving the neonatal period. (nih.gov)
  • Commonly, HRFC syndromes present in the neonatal and paediatric age, with consistent developmental abnormalities mostly involving the liver and kidney. (bmj.com)
  • Using imaging tests to find cysts on the kidney and other organs. (uhhospitals.org)
  • which disrupt the normal functions of the kidneys and other organs. (nih.gov)
  • They can develop in almost all tissues and organs of the body - including the kidneys. (usz.ch)
  • Affected individuals have very large numbers of cysts in both kidneys, which gradually impair the vital filtering function of the organs. (usz.ch)
  • Potter syndrome is a rare condition that affects the growth and function of a baby's kidneys and other internal organs. (clevelandclinic.org)
  • Potter syndrome affects how your baby's internal organs develop and function, especially the kidneys . (clevelandclinic.org)
  • To diagnose all three types of PKD, your doctor may use imaging tests to look for cysts of the kidney, liver, and other organs. (healthline.com)
  • HRFC disease is characterised by changes in the parenchymal tissues of the liver, kidney, and sometimes pancreas or other organs. (bmj.com)
  • Because the kidneys are such important organs, their failure may start to affect other organs, such as the liver. (healthykidneyclub.com)
  • Mutations in the PKD1 or PKD2 gene lead to the formation of thousands of cysts, which disrupt the normal functions of the kidneys and other organs. (encyclopedia.pub)
  • Chronic kidney disease affects an estimated 27 million adults in the United States, and is associated with significantly increased risk of cardiovascular disease and stroke. (aafp.org)
  • Chronic kidney disease (CKD) affects an estimated 27 million adults in the United States and is associated with increased mortality, morbidity, and health care costs. (aafp.org)
  • The condition is the result of abnormal kidney growth and function, which affects how much amniotic fluid surrounds the baby during pregnancy. (clevelandclinic.org)
  • If the duration of the abnormality is unknown, the possibility of acute kidney injury should be considered and appropriate evaluation performed for reversible causes. (aafp.org)
  • 16. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities. (nih.gov)
  • New disorders continue to be added, for example, inherited kidney cancer is a new condition that we are now recruiting for. (nihr.ac.uk)
  • In severely affected infants with progressive disease, kidney size should be monitored according to clinical needs. (medscape.com)
  • Patients should be assessed annually to determine whether they are at increased risk of developing chronic kidney disease based on clinical and sociodemographic factors. (aafp.org)
  • The data is housed and managed using the same informatics infrastructure as the UK Renal Registry which was set up in 1995 to collect clinical and outcome data from recipients of dialysis and kidney transplants to help standardize and improve care. (nihr.ac.uk)
  • All 23,814 patients recruited have provided consent for their routinely collected clinical data to be fed into RaDaR, this includes all their eGFR (kidney function monitoring) test results. (nihr.ac.uk)
  • Cystic lesions also affect the kidneys and their severity determines the clinical presentation and long term prognosis for many HRFC syndromes. (bmj.com)
  • A variety of renal cysts can be seen in rodent kidneys. (nih.gov)
  • However, the situation is different for cystic kidneys, which are hereditary. (usz.ch)
  • In a study of ultrasound and laboratory findings in Wilms tumor survivors with a solitary kidney, signs of kidney damage were seen in 22 of 53 (41.5%) patients on ultrasonography. (medscape.com)
  • Angiography is now uncommonly performed, but it may be useful in the preoperative assessment of tumors in patients with a solitary kidney or bilateral Wilms tumors. (medscape.com)
  • Patients should be assessed for risk factors leading to the further loss of kidney function and cardiovascular disease. (aafp.org)
  • Patients with estimated glomerular filtration rates less than 30 mL per minute per 1.73 m 2 , significant proteinuria, or rapid loss of kidney function should be referred to a nephrologist for further evaluation and management. (aafp.org)
  • 8 In 2002, the National Kidney Foundation's Kidney Disease Outcomes Quality Initiative published practice guidelines to help primary care physicians identify patients with early CKD and improve health outcomes. (aafp.org)
  • Annual CKD screening is recommended by the American Diabetes Association, 10 by the National Kidney Foundation for patients at risk, 9 , 11 by the Joint National Committee on Hypertension 12 for patients with diabetes and hypertension, and by the American Heart Association for patients with cardiovascular disease. (aafp.org)
  • The purpose of this study is to look at how well the new study drug, Finerenone, works in patients with non-diabetic chronic kidney disease. (umc.edu)
  • Around the age of 50, patients must expect the final loss of kidney function. (usz.ch)
  • But finding and recruiting patients with rare kidney disease can be challenging, or was, until RaDaR came along. (nihr.ac.uk)
  • RaDaR commenced 10 years ago as an initiative designed to collect information about patients with rare kidney disease to facilitate research, and share the expertise and learning from that research. (nihr.ac.uk)
  • It has a dedicated website and pulls together information from patients with 58 different conditions which we have organised into 30 rare kidney disease groups. (nihr.ac.uk)
  • It is a very efficient way to rapidly access patients with rare kidney disease - a great facilitator of interventional studies. (nihr.ac.uk)
  • As chronic kidney disease progresses, and the creatinine rises more, patients develop symptoms of fatigue, anemia, and feel cold all the time. (rarediseases.org)
  • Unlike the other types of the disease (uromodulin kidney disease or disease due to renin mutations), patients with MUC1 mutations do not have frequent gout, anemia or other symptoms. (rarediseases.org)
  • CKD is defined by the presence of structural or functional abnormalities of the kidney with or without an accompanying reduction in GFR. (aafp.org)
  • Persons with CKD may have one or more of the following: pathologic abnormalities, markers of kidney damage (i.e., imaging abnormalities and abnormalities in serum or urine, including proteinuria and abnormal urinary sediment), or GFR less than 60 mL per minute per 1.73 m 2 for at least three months. (aafp.org)
  • NIDDK is issuing this Notice of Special Interest (NOSI) to announce the opportunity for investigators with active NIDDK-supported R01 grants that focus on Polycystic Kidney Disease (PKD) to apply for administrative supplements. (nih.gov)
  • A health care provider can see enlarged kidneys in a fetus or an infant using ultrasound imaging, also called a sonogram. (nih.gov)
  • Simple kidney cysts are often detected during an imaging test (e.g. ultrasound, CT, MRI) being done for another condition, because they rarely cause pain or other symptoms. (healthychildren.org)
  • An ultrasound exam of kidneys of relatives may also be helpful. (uhhospitals.org)
  • 17. Prenatal ultrasound in fetuses with polycystic kidney appearance - expanding the diagnostic algorithm. (nih.gov)
  • Polycystic Kidney Disease" Encyclopedia , https://encyclopedia.pub/entry/5381 (accessed December 09, 2023). (encyclopedia.pub)
  • Of the 49 babies with multiple malformations, 21 (42.8%) had recog- nized syndromes, most of which were autosomal recessive and 17 had chromosomal aberrations. (who.int)
  • We review recent molecular advances in the recessive HRFC syndromes and discuss this hypothesis. (bmj.com)
  • Herman, TE & Siegel, MJ 1991, ' Pyramidal hyperechogenicity in autosomal recessive polycystic kidney disease resembling medullary nephrocalcinosis ', Pediatric radiology , vol. 21, no. 4, pp. 270-271. (wustl.edu)
  • These medullary cysts are the result of a toxic effect on the kidney. (nih.gov)
  • Sometimes, the first sign is a urinary tract infection (UTI) and or kidney stones . (healthychildren.org)
  • In this process, a large number of fluid-filled cysts form in both kidneys. (usz.ch)
  • The Chronic Kidney Disease Epidemiology Collaboration formula is more accurate than the Modification of Diet in Renal Disease equation or the Cockcroft-Gault equation, and should be used to estimate GFR. (aafp.org)
  • a) eGFR chronic kidney disease epidemiology collaboration (CKD-EPI) ≥ 20 mL/min/1.73 m^2, and (b) UACR ≥ 150 and ≤ 5000 mg albumin/g creatinine, based on a single first morning void spot urine sample at screening. (astrazenecaclinicaltrials.com)
  • This MRI uses strong magnets to image your body to visualize kidney structure and look for cysts. (healthline.com)
  • This MRI employs powerful magnets to picture your body in order to see the structure of your kidneys and look for cysts. (medicahospitals.in)
  • Transaxial section through the same kidney (arrowheads) as shown in the previous image demonstrates a very echogenic kidney with loss of the corticomedullary junction. (medscape.com)
  • When the doctor came back, they said that the kidneys looked echogenic and enlarged. (pkdcure.org)
  • This protein is present in fetal and adult kidney cells, and is also present at low levels in the liver and pancreas. (medlineplus.gov)
  • Fibrocystin spans the cell membrane of kidney cells, so that one end of the protein remains inside the cell and the other end projects from the outer surface of the cell. (medlineplus.gov)
  • This protein is only made in the kidney. (rarediseases.org)
  • ADTKD-MUC1 (MUC1 kidney disease) is due to mutations in the gene producing the protein mucin-1. (rarediseases.org)
  • ESRD may require kidney transplantation. (nih.gov)
  • If they do not function, a large number of cysts develop in both kidneys. (usz.ch)
  • Polycystic kidney disease varies in severity from person to person, even within the same family. (medicahospitals.in)