A diverse group of metabolic diseases characterized by errors in the biosynthetic pathway of HEME in the LIVER, the BONE MARROW, or both. They are classified by the deficiency of specific enzymes, the tissue site of enzyme defect, or the clinical features that include neurological (acute) or cutaneous (skin lesions). Porphyrias can be hereditary or acquired as a result of toxicity to the hepatic or erythropoietic marrow tissues.
A group of metabolic diseases due to deficiency of one of a number of LIVER enzymes in the biosynthetic pathway of HEME. They are characterized by the accumulation and increased excretion of PORPHYRINS or its precursors. Clinical features include neurological symptoms (PORPHYRIA, ACUTE INTERMITTENT), cutaneous lesions due to photosensitivity (PORPHYRIA CUTANEA TARDA), or both (HEREDITARY COPROPORPHYRIA). Hepatic porphyrias can be hereditary or acquired as a result of toxicity to the hepatic tissues.
An autosomal dominant porphyria that is due to a deficiency of HYDROXYMETHYLBILANE SYNTHASE in the LIVER, the third enzyme in the 8-enzyme biosynthetic pathway of HEME. Clinical features are recurrent and life-threatening neurologic disturbances, ABDOMINAL PAIN, and elevated level of AMINOLEVULINIC ACID and PORPHOBILINOGEN in the urine.
An autosomal recessive porphyria that is due to a deficiency of UROPORPHYRINOGEN III SYNTHASE in the BONE MARROW; also known as congenital erythropoietic porphyria. This disease is characterized by SPLENOMEGALY; ANEMIA; photosensitivity; cutaneous lesions; accumulation of hydroxymethylbilane; and increased excretion of UROPORPHYRINS and COPROPORPHYRINS.
An autosomal dominant porphyria that is due to a deficiency of protoporphyrinogen oxidase (EC 1.3.3.4) in the LIVER, the seventh enzyme in the 8-enzyme biosynthetic pathway of HEME. Clinical features include both neurological symptoms and cutaneous lesions. Patients excrete increased levels of porphyrin precursors, COPROPORPHYRINS and protoporphyrinogen.
An autosomal dominant or acquired porphyria due to a deficiency of UROPORPHYRINOGEN DECARBOXYLASE in the LIVER. It is characterized by photosensitivity and cutaneous lesions with little or no neurologic symptoms. Type I is the acquired form and is strongly associated with liver diseases and hepatic toxicities caused by alcohol or estrogenic steroids. Type II is the familial form.
An enzyme that catalyzes the tetrapolymerization of the monopyrrole PORPHOBILINOGEN into the hydroxymethylbilane preuroporphyrinogen (UROPORPHYRINOGENS) in several discrete steps. It is the third enzyme in the 8-enzyme biosynthetic pathway of HEME. In humans, deficiency in this enzyme encoded by HMBS (or PBGD) gene results in a form of neurological porphyria (PORPHYRIA, ACUTE INTERMITTENT). This enzyme was formerly listed as EC 4.3.1.8
Porphobilinogen is a porphyrin precursor, specifically the organic compound intermediate in the biosynthesis of heme and chlorophyll, formed by the condensation of two pyrrole molecules in the liver and other tissues.
An enzyme that catalyzes the decarboxylation of UROPORPHYRINOGEN III to coproporphyrinogen III by the conversion of four acetate groups to four methyl groups. It is the fifth enzyme in the 8-enzyme biosynthetic pathway of HEME. Several forms of cutaneous PORPHYRIAS are results of this enzyme deficiency as in PORPHYRIA CUTANEA TARDA; and HEPATOERYTHROPOIETIC PORPHYRIA.
A membrane-bound flavoenzyme that catalyzes the oxygen-dependent aromatization of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX). It is the last enzyme of the common branch of the HEME and CHLOROPHYLL pathways in plants, and is the molecular target of diphenyl ether-type herbicides. VARIEGATE PORPHYRIA is an autosomal dominant disorder associated with deficiency of protoporphyrinogen oxidase.
A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin.
An enzyme that catalyzes the cyclization of hydroxymethylbilane to yield UROPORPHYRINOGEN III and water. It is the fourth enzyme in the 8-enzyme biosynthetic pathway of HEME, and is encoded by UROS gene. Mutations of UROS gene result in CONGENITAL ERYTHROPOIETIC PORPHYRIA.
Porphyrins with four acetic acid and four propionic acid side chains attached to the pyrrole rings.
An autosomal recessive cutaneous porphyria that is due to a deficiency of UROPORPHYRINOGEN DECARBOXYLASE in both the LIVER and the BONE MARROW. Similar to PORPHYRIA CUTANEA TARDA, this disorder is caused by defects in the fifth enzyme in the 8-enzyme biosynthetic pathway of HEME, but is a homozygous enzyme deficiency with less than 10% of the normal enzyme activity. Cutaneous lesions are severe and mutilating.
Porphyrins with four methyl and four propionic acid side chains attached to the pyrrole rings. Elevated levels of Coproporphyrin III in the urine and feces are major findings in patients with HEREDITARY COPROPORPHYRIA.
An enzyme of the transferase class that catalyzes condensation of the succinyl group from succinyl coenzyme A with glycine to form delta-aminolevulinate. It is a pyridoxyal phosphate protein and the reaction occurs in mitochondria as the first step of the heme biosynthetic pathway. The enzyme is a key regulatory enzyme in heme biosynthesis. In liver feedback is inhibited by heme. EC 2.3.1.37.
An autosomal dominant porphyria that is due to a deficiency of COPROPORPHYRINOGEN OXIDASE in the LIVER, the sixth enzyme in the 8-enzyme biosynthetic pathway of HEME. Clinical features include both neurological symptoms and cutaneous lesions. Patients excrete increased levels of porphyrin precursors, 5-AMINOLEVULINATE and COPROPORPHYRINS.
A branch of the celiac artery that distributes to the stomach, pancreas, duodenum, liver, gallbladder, and greater omentum.
Porphyrinogens which are intermediates in heme biosynthesis. They have four acetic acid and four propionic acid side chains attached to the pyrrole rings. Uroporphyrinogen I and III are formed from polypyrryl methane in the presence of uroporphyrinogen III cosynthetase and uroporphyrin I synthetase, respectively. They can yield uroporphyrins by autooxidation or coproporphyrinogens by decarboxylation.
A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS.
Colorless reduced precursors of porphyrins in which the pyrrole rings are linked by methylene (-CH2-) bridges.
Keto acids that are derivatives of 4-oxopentanoic acids (levulinic acid).
Veins which drain the liver.
An agricultural fungicide and seed treatment agent.
An enzyme that catalyzes the formation of porphobilinogen from two molecules of 5-aminolevulinic acid. EC 4.2.1.24.
Enzymes that catalyze the formation of a carbon-carbon double bond by the elimination of AMMONIA. EC 4.3.1.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide or flavin adenine dinucleotide as cofactors, involved in various redox reactions and metabolic pathways, such as electron transfer, energy production, and DNA repair.
Pathological processes of the LIVER.
A mitochondrial enzyme found in a wide variety of cells and tissues. It is the final enzyme in the 8-enzyme biosynthetic pathway of HEME. Ferrochelatase catalyzes ferrous insertion into protoporphyrin IX to form protoheme or heme. Deficiency in this enzyme results in ERYTHROPOIETIC PROTOPORPHYRIA.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
An antifungal agent used in the treatment of TINEA infections.
An enzyme that catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX by the conversion of two propionate groups to two vinyl groups. It is the sixth enzyme in the 8-enzyme biosynthetic pathway of HEME, and is encoded by CPO gene. Mutations of CPO gene result in HEREDITARY COPROPORPHYRIA.
Porphyrinogens which are intermediates in the heme biosynthesis. They have four methyl and four propionic acid side chains attached to the pyrrole rings. Coproporphyrinogens I and III are formed in the presence of uroporphyrinogen decarboxylase from the corresponding uroporphyrinogen. They can yield coproporphyrins by autooxidation or protoporphyrin by oxidative decarboxylation.
'Skin diseases' is a broad term for various conditions affecting the skin, including inflammatory disorders, infections, benign and malignant tumors, congenital abnormalities, and degenerative diseases, which can cause symptoms such as rashes, discoloration, eruptions, lesions, itching, or pain.
1,4-Dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylic acid diethyl ester.
A syndrome characterized by central nervous system dysfunction in association with LIVER FAILURE, including portal-systemic shunts. Clinical features include lethargy and CONFUSION (frequently progressing to COMA); ASTERIXIS; NYSTAGMUS, PATHOLOGIC; brisk oculovestibular reflexes; decorticate and decerebrate posturing; MUSCLE SPASTICITY; and bilateral extensor plantar reflexes (see REFLEX, BABINSKI). ELECTROENCEPHALOGRAPHY may demonstrate triphasic waves. (From Adams et al., Principles of Neurology, 6th ed, pp1117-20; Plum & Posner, Diagnosis of Stupor and Coma, 3rd ed, p222-5)
An autosomal dominant porphyria that is due to a deficiency of FERROCHELATASE (heme synthetase) in both the LIVER and the BONE MARROW, the last enzyme in the 8-enzyme biosynthetic pathway of HEME. Clinical features include mainly neurological symptoms, rarely cutaneous lesions, and elevated levels of protoporphyrin and COPROPORPHYRINS in the feces.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
Abnormal responses to sunlight or artificial light due to extreme reactivity of light-absorbing molecules in tissues. It refers almost exclusively to skin photosensitivity, including sunburn, reactions due to repeated prolonged exposure in the absence of photosensitizing factors, and reactions requiring photosensitizing factors such as photosensitizing agents and certain diseases. With restricted reference to skin tissue, it does not include photosensitivity of the eye to light, as in photophobia or photosensitive epilepsy.
Perisinusoidal cells of the liver, located in the space of Disse between HEPATOCYTES and sinusoidal endothelial cells.
Puncture of a vein to draw blood for therapeutic purposes. Bloodletting therapy has been used in Talmudic and Indian medicine since the medieval time, and was still practiced widely in the 18th and 19th centuries. Its modern counterpart is PHLEBOTOMY.
Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
An allylic compound that acts as a suicide inactivator of CYTOCHROME P450 by covalently binding to its heme moiety or surrounding protein.
A disorder of iron metabolism characterized by a triad of HEMOSIDEROSIS; LIVER CIRRHOSIS; and DIABETES MELLITUS. It is caused by massive iron deposits in parenchymal cells that may develop after a prolonged increase of iron absorption. (Jablonski's Dictionary of Syndromes & Eponymic Diseases, 2d ed)
Factors associated with the definitive onset of a disease, illness, accident, behavioral response, or course of action. Usually one factor is more important or more obviously recognizable than others, if several are involved, and one may often be regarded as "necessary". Examples include exposure to specific disease; amount or level of an infectious organism, drug, or noxious agent, etc.
Tumors or cancer of the LIVER.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
The circulation of BLOOD through the LIVER.
Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.
The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules.
A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, and chemicals from the environment.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.

Primary liver cancer, other malignancies, and mortality risks following porphyria: a cohort study in Denmark and Sweden. (1/34)

Cancer incidence and mortality risks were evaluated in a combined cohort of patients who were hospitalized for porphyria in Denmark (1977-1989) and Sweden (1965-1983). Patients were identified by using population-based hospitalization registries. The unique individual identification numbers of 530 patients with porphyria cutanea tarda (PCT) and 296 with acute intermittent porphyria (AIP) were linked to the nationwide cancer and death registries. Among patients with both types of porphyria, the authors found small but significantly elevated risks of all cancers combined (PCT: standardized incidence ratio (SIR) = 1.7, 95% confidence interval (CI) 1.3-2.2; AIP: SIR = 1.8, 95% CI 1.1-2.8) due to pronounced excesses of primary liver cancer (PCT: SIR = 21.2, 95% CI 8.5-43.7; AIP: SIR = 70.4, 95% CI 22.7-164.3) and moderate increases in lung cancer (PCT: SIR = 2.9, 95% CI 1.5-5.2; AIP: SIR = 2.8, 95% CI 0.3-10.2). PCT patients had a significantly increased risk of mortality from liver cirrhosis (standardized mortality ratio (SMR) = 8.4, 95% CI 3.1-18.4) or chronic obstructive pulmonary disease (SMR = 3.1, 95% CI 1.1-6.7). The increased risk of primary liver cancer and the increased risk of mortality from cirrhosis of the liver are consistent with findings from previous clinical surveys, but the new observations of excess lung cancer and chronic obstructive pulmonary disease require confirmation.  (+info)

Variegate porphyria in Western Europe: identification of PPOX gene mutations in 104 families, extent of allelic heterogeneity, and absence of correlation between phenotype and type of mutation. (2/34)

Variegate porphyria (VP) is a low-penetrance, autosomal dominant disorder characterized clinically by skin lesions and acute neurovisceral attacks that occur separately or together. It results from partial deficiency of protoporphyrinogen oxidase encoded by the PPOX gene. VP is relatively common in South Africa, where most patients have inherited the same mutation in the PPOX gene from a common ancestor, but few families from elsewhere have been studied. Here we describe the molecular basis and clinical features of 108 unrelated patients from France and the United Kingdom. Mutations in the PPOX gene were identified by a combination of screening (denaturing gradient gel electrophoresis, heteroduplex analysis, or denaturing high-performance liquid chromatography) and direct automated sequencing of amplified genomic DNA. A total of 60 novel and 6 previously reported mutations (25 missense, 24 frameshift, 10 splice site, and 7 nonsense) were identified in 104 (96%) of these unrelated patients, together with 3 previously unrecognized single-nucleotide polymorphisms. VP is less heterogeneous than other acute porphyrias; 5 mutations were present in 28 (26%) of the families, whereas 47 mutations were restricted to 1 family; only 2 mutations were found in both countries. The pattern of clinical presentation was identical to that reported from South Africa and was not influenced by type of mutation. Our results define the molecular genetics of VP in western Europe, demonstrate its allelic heterogeneity outside South Africa, and show that genotype is not a significant determinant of mode of presentation.  (+info)

Identification of a founder mutation in the protoporphyrinogen oxidase gene in variegate porphyria patients from chile. (3/34)

Variegate porphyria (VP; OMIM 176200) is characterized by a partial defect in the activity of protoporphyrinogen oxidase (PPO), the seventh enzyme of the porphyrin-heme biosynthetic pathway. The disease is usually inherited as an autosomal dominant trait displaying incomplete penetrance. In an effort to characterize the spectrum of molecular defects in VP, we identified 3 distinct mutations in 6 VP families from Chile by PCR, heteroduplex analysis, automated sequencing, restriction enzyme digestion and haplotyping analysis. The mutations consisted of 2 deletions and 1 missense mutation, designated 1239delTACAC, 1330delT and R168H. The occurrence of the missense mutation R168H had been reported previously in American, German and Dutch VP families, suggesting that this may represent a frequent recurrent mutation. Interestingly, the mutation 1239delTACAC was found in patients from 4 unrelated families living in different parts of Chile, suggesting that it might represent a common mutation in Chile. Haplotype analysis using 15 microsatellite markers which closely flank the PPO gene on chromosome 1q22, spanning approximately 21 cM, revealed the presence of R168H on different haplotypes in 6 VP patients from 3 unrelated families. In contrast, we found the occurrence of 1239delTACAC on the same chromosome 1 haplotype in 11 mutation carriers from 4 unrelated families with VP. These findings are consistent with R168H representing a hotspot mutation and 1239delTACAC existing as a founder mutation in the PPO gene. Our data comprise the first genetic studies of the porphyrias in South America and will streamline the elucidation of the genetic defects in VP patients from Chile by allowing an initial screening for the founder mutation 1239delTACAC.  (+info)

Characterization of mutations in the CPO gene in British patients demonstrates absence of genotype-phenotype correlation and identifies relationship between hereditary coproporphyria and harderoporphyria. (4/34)

Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as "harderoporphyria"; mutations on both alleles elsewhere in the gene give rise to the "homozygous" variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%-64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause "homozygous" HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase.  (+info)

Expression and characterization of six mutations in the protoporphyrinogen oxidase gene among Finnish variegate porphyria patients. (5/34)

BACKGROUND: Variegate porphyria (VP) is an inherited disorder of heme biosynthesis that results from a partial deficiency of protoporphyrinogen oxidase (PPOX). Patients with VP may experience acute neurovisceral attacks and cutaneous photosensitivity. To date we have characterized 109 VP patients representing 19 VP families in the Finnish population of 5 million, both biochemically and clinically. MATERIALS AND METHODS: Mutations were identified by direct sequencing of the patients' genomic DNA. The effect of the mutations was determined by sequencing the reverse transcriptase polymerase chain reaction (RT-PCR) product amplified from total RNA extracted from the patients' lymphoblast cell lines and expressing the mutations in E. coli and COS-1 cells. RESULTS: Of the six mutations identified in the PPOX gene, three mutations (IVS2-2a-->c, 338G-->C, and 470A-->4C) caused splicing defects, one produced a frameshift (78insC) and two mutations (R152C and L401F) caused amino acid substitutions. In RT-PCR, the IVS2-2a-->c mutation caused a retention of a 36-bp fragment in the 3' end of intron 2, the 338G-->C mutation caused an exon 4 deletion, and the 470A-->C mutation caused an exon 5 deletion with retention of a 19-bp fragment of the 3' end of intron 5. In both prokaryotic and eukaryotic expression systems, the PPOX activities of five mutants were decreased to 0-5% of the normal activity. CONCLUSIONS: This study describes five novel mutations and one earlier described major mutation among Finnish VP patients. All mutations produced detectable transcripts, but resulted in decreased PPOX activity confirming the causality of the mutations and the biochemical defects in these patients.  (+info)

Neonatal-onset hereditary coproporphyria with male pseudohermaphrodism. (6/34)

The appearance of hereditary coproporphyria (HCP) before puberty is very rare, and all reported cases of early-onset HCP have been in the homozygous or the compound heterozygous state. Some have been identified as harderoporphyria, which is a rare erythropoietic variant form of HCP. These conditions can be differentiated by molecular analysis because the gene abnormality responsible for harderoporphyria seems to be unique (K404E). Early-onset HCP, not harderoporphyria, is reported with a gene mutation in the heterozygous state and male pseudohermaphrodism. It was shown that adrenal gland hypofunction resulted in male pseudohermaphrodism. This case demonstrates the possibility that abnormalities of steroid metabolism influence porphyria.  (+info)

Impact of undergraduate medical training on housestaff problem-solving performance: implications for problem-based curricula. (7/34)

This article reports a study comparing the problem-solving performance of housestaff with undergraduate medical training in either conventional or problem-based schools. After reading two clinical cases, residents were required to write differential diagnoses and pathophysiological explanations. Biomedical and clinical knowledge used and reasoning strategies were identified. The results suggest that housestaff performance is influenced by the nature of instruction. Housestaff trained in a conventional curriculum (CC) focused on patient information, separated biomedical from clinical knowledge, and used data-driven strategies. Housestaff from problem-based learning curricula (PBLC) organized their knowledge around generated inferences, integrated biomedical and clinical knowledge, and used hypothesis-driven strategies. Data-driven reasoning appears to be impeded in PBLC, suggesting that PBLC students have difficulties in acquiring problem schemata. Previous investigations also found this pattern to be true for medical students trained in two different curriculum formats. Although all housestaff generated equal numbers of diagnostic hypotheses during the reasoning process, housestaff from the conventional curriculum generated a greater number of accurate hypotheses than residents in PBLC. These results are discussed in relation to assumptions in health professional curricula about the adequacy of hypothetico-deductive methods of reasoning as teaching mechanisms and the need for clinical and biomedical knowledge integration.  (+info)

Clinical and biochemical characteristics and genotype-phenotype correlation in Finnish variegate porphyria patients. (8/34)

Variegate porphyria (VP) is an inherited metabolic disease resulting from the partial deficiency of protoporphyrinogen oxidase, the penultimate enzyme in the heme biosynthetic pathway. We have evaluated the clinical and biochemical outcome of 103 Finnish VP patients diagnosed between 1966 and 2001. Fifty-two per cent of patients had experienced clinical symptoms: 40% had photosensitivity, 27% acute attacks and 14% both manifestations. The proportion of patients with acute attacks has decreased dramatically from 38 to 14% in patients diagnosed before and after 1980, whereas the prevalence of skin symptoms had decreased only subtly from 45 to 34%. We have studied the correlation between PPOX genotype and clinical outcome of 90 patients with the three most common Finnish mutations I12T, R152C and 338G-->C. The patients with the I12T mutation experienced no photosensitivity and acute attacks were rare (8%). Therefore, the occurrence of photosensitivity was lower in the I12T group compared to the R152C group (P=0.001), whereas no significant differences between the R152C and 338G-->C groups could be observed. Biochemical abnormalities were significantly milder suggesting a milder form of the disease in patients with the I12T mutation. In all VP patients, normal excretion of protoporphyrin in faeces in adulthood predicted freedom from both skin symptoms and acute attacks. The most valuable test predicting an increased risk of symptoms was urinary coproporphyrin, but only a substantially increased excretion exceeding 1,000 nmol/day was associated with an increased risk of both skin symptoms and acute attacks. All patients with an excretion of more than 1,000 nmol/day experienced either skin symptoms, acute attacks, or both.  (+info)

Porphyrias are a group of rare genetic disorders that affect the production of heme, a component in hemoglobin that carries oxygen in the blood. The diseases are caused by mutations in the genes involved in the production of heme, leading to the buildup of porphyrins or their precursors in the body. These substances can be toxic and can cause various symptoms depending on the specific type of porphyria. Symptoms may include abdominal pain, neurological problems, and skin issues. Porphyrias are typically divided into two categories: acute porphyrias, which affect the nervous system, and cutaneous porphyrias, which primarily affect the skin.

Hepatic porphyrias are a group of rare genetic disorders that affect the production of heme in the liver. Heme is a crucial component of hemoglobin, the protein in red blood cells that carries oxygen throughout the body. In hepatic porphyrias, there is a buildup of porphyrins or porphyrin precursors, which are toxic and can cause a variety of symptoms.

The four types of hepatic porphyrias are:

1. Acute Intermittent Porphyria (AIP): This is the most common type of hepatic porphyria. It is characterized by attacks of abdominal pain, nausea, vomiting, constipation, and neurological symptoms such as muscle weakness, seizures, and mental changes.
2. Variegate Porphyria (VP): This type of porphyria is more common in South Africa but can occur worldwide. It is characterized by skin symptoms such as blistering and scarring after exposure to sunlight, as well as acute attacks similar to those seen in AIP.
3. Hereditary Coproporphyria (HCP): This type of porphyria is similar to VP, but the symptoms are usually less severe. It can cause both skin symptoms and acute attacks.
4. ALA Dehydratase Deficiency Porphyria (ADDP): This is the rarest type of hepatic porphyria. It is characterized by severe neurological symptoms and is often diagnosed in infancy or early childhood.

The diagnosis of hepatic porphyrias typically involves measuring the levels of porphyrins and their precursors in the urine, blood, or stool during an attack or between attacks. Treatment may include avoiding trigger factors such as certain medications, alcohol, and smoking, as well as providing supportive care during acute attacks. In some cases, medication to reduce porphyrin production or prevent attacks may be necessary.

Acute Intermittent Porphyria (AIP) is a rare inherited metabolic disorder that affects the production of heme, a component in hemoglobin. This condition is part of a group of disorders known as the porphyrias, which are caused by genetic mutations that result in enzyme deficiencies needed to produce heme.

In AIP, specifically, there is a deficiency in the enzyme porphobilinogen deaminase (PBGD). This leads to the buildup of porphyrin precursors, particularly porphobilinogen and delta-aminolevulinic acid (ALA), in the body. These substances are toxic and can cause acute attacks when they accumulate in high concentrations.

Acute attacks are characterized by severe abdominal pain, nausea, vomiting, constipation or diarrhea, muscle weakness, seizures, and mental changes such as confusion, hallucinations, or anxiety. These symptoms can be triggered by certain factors like drugs, alcohol, hormonal changes, infections, or stress.

It is essential to differentiate AIP from other medical conditions that may present with similar symptoms, as the treatment strategies differ significantly. Diagnosis typically involves measuring porphyrin precursors in urine, especially during an acute attack, and can be confirmed by genetic testing for the PBGD gene mutation.

Treatment of AIP primarily focuses on managing acute attacks with intravenous heme preparations, which help to reduce the production of toxic porphyrin precursors. In addition, providing supportive care such as hydration, pain management, and addressing any triggers or complications is crucial. Long-term management includes avoiding identified triggers, monitoring for early signs of acute attacks, and implementing a low-purine diet in some cases.

Erythropoietic Porphyria (EP) is a rare inherited disorder of the heme biosynthesis pathway, specifically caused by a deficiency of the enzyme uroporphyrinogen III synthase. This results in the accumulation of porphyrin precursors, particularly uroporphyrin I and coproporphyrin I, in erythrocytes (red blood cells), bone marrow, and other tissues. The accumulation of these porphyrins leads to photosensitivity, hemolysis, and iron overload.

The symptoms of EP typically appear in childhood or early adulthood and include severe skin fragility and blistering, particularly on sun-exposed areas, which can result in scarring, disfigurement, and increased susceptibility to infection. Other features may include anemia due to hemolysis, iron overload, and splenomegaly (enlarged spleen).

The diagnosis of EP is based on clinical symptoms, laboratory tests measuring porphyrin levels in blood and urine, and genetic testing to confirm the presence of pathogenic variants in the UROS gene. Treatment for EP includes avoidance of sunlight exposure, use of sun-protective measures, and management of anemia with blood transfusions or erythropoietin injections. In some cases, bone marrow transplantation may be considered as a curative treatment option.

Variegate Porphyria (VP) is a rare inherited metabolic disorder that affects the production of heme, a component in hemoglobin. It is one of the types of porphyrias, which are caused by genetic mutations that result in deficiencies of enzymes needed to synthesize heme.

In variegate porphyria, the deficient enzyme is protoporphyrinogen oxidase (PPOX). This leads to the accumulation of porphyrins and their precursors, particularly coproporphyrin III and protoporphyrin, in the body. These substances can cause neurological symptoms when they are excreted in urine and exposed to light.

Variegate porphyria is characterized by both cutaneous (skin) and neurovisceral (neurological) manifestations. Cutaneous symptoms include skin sensitivity to sunlight, blistering, scarring, and fragility. Neurovisceral symptoms can include abdominal pain, nausea, vomiting, constipation, muscle weakness, seizures, and mental changes such as anxiety, hallucinations, or confusion.

The severity of variegate porphyria can vary widely between individuals, even among family members who carry the same genetic mutation. Symptoms may be triggered by certain medications, hormonal changes, alcohol consumption, infections, or other factors that increase heme synthesis. Diagnosis typically involves measuring porphyrin levels in blood and urine, as well as genetic testing for the PPOX gene mutation. Treatment usually focuses on managing symptoms, avoiding triggers, and providing supportive care during acute attacks.

Porphyria Cutanea Tarda (PCT) is a type of porphyria, a group of rare genetic disorders that affect the production of heme, a component in hemoglobin. PCT is primarily an acquired disorder, although it can have a hereditary component as well.

In PCT, there is a dysfunction in the enzyme uroporphyrinogen decarboxylase (UROD), which leads to the accumulation of porphyrins and porphyrin precursors in the skin. This buildup causes the characteristic symptoms of PCT, which include:

* Blisters, particularly on sun-exposed areas such as the hands and face
* Fragile, thin skin that tears easily
* Scarring
* Hypertrichosis (abnormal hair growth)
* Changes in skin color, including redness, increased pigmentation, or loss of pigment

PCT is typically triggered by factors such as alcohol consumption, estrogen use, hepatitis C infection, and exposure to certain chemicals. Treatment often involves addressing these triggers, along with the use of phlebotomy (removal of blood) or low-dose hydroxychloroquine to reduce porphyrin levels in the body.

It's important to note that PCT is a complex disorder and its diagnosis and management should be done by healthcare professionals with experience in managing porphyrias.

Hydroxymethylbilane Synthase (HMBS) is an enzyme that plays a crucial role in the metabolic pathway known as heme biosynthesis. Heme is an essential component of various proteins, including hemoglobin, which is responsible for oxygen transport in the blood.

The HMBS enzyme catalyzes the conversion of aminolevulinic acid (ALA) and glycine into a linear tetrapyrrole intermediate called hydroxymethylbilane. This reaction is the third step in the heme biosynthesis pathway, and it takes place in the mitochondria of cells.

Deficiencies in HMBS can lead to a rare genetic disorder called acute intermittent porphyria (AIP), which is characterized by neurovisceral attacks and neurological symptoms such as abdominal pain, vomiting, hypertension, tachycardia, and mental disturbances.

Porphobilinogen (PBG) is a bioactive compound that plays a crucial role in the biosynthesis pathway of heme, which is an essential component of hemoglobin and other hemoproteins. It is a porphyrin precursor and is synthesized from aminolevulinic acid (ALA) by the enzyme ALA dehydratase in the second step of heme biosynthesis.

In medical terms, abnormal accumulation or increased levels of PBG in the body can indicate an underlying disorder in heme biosynthesis, such as acute intermittent porphyria (AIP), variegate porphyria (VP), or hereditary coproporphyria (HCP). These disorders are known as porphyrias and are characterized by the buildup of porphyrin precursors in various tissues, leading to neurological and gastrointestinal symptoms.

Therefore, measuring PBG levels in urine or blood can help diagnose and monitor these conditions.

Uroporphyrinogen decarboxylase is a vital enzyme in the biosynthetic pathway of heme, which is a crucial component of hemoglobin in red blood cells. This enzyme is responsible for catalyzing the decarboxylation of uroporphyrinogen III, a colorless porphyrinogen, to produce coproporphyrinogen III, a brownish-red porphyrinogen.

The reaction involves the sequential removal of four carboxyl groups from the four acetic acid side chains of uroporphyrinogen III, resulting in the formation of coproporphyrinogen III. This enzyme's activity is critical for the normal biosynthesis of heme, and any defects or deficiencies in its function can lead to various porphyrias, a group of metabolic disorders characterized by the accumulation of porphyrins and their precursors in the body.

The gene responsible for encoding uroporphyrinogen decarboxylase is UROD, located on chromosome 1p34.1. Mutations in this gene can lead to a deficiency in the enzyme's activity, causing an autosomal recessive disorder known as congenital erythropoietic porphyria (CEP), also referred to as Günther's disease. This condition is characterized by severe photosensitivity, hemolytic anemia, and scarring or thickening of the skin.

Protoporphyrinogen Oxidase (PPO) is a mitochondrial enzyme that plays a crucial role in the heme biosynthesis pathway. It catalyzes the oxidation of protoporphyrinogen IX to protporphyrin IX, which is the penultimate step in the production of heme. This enzyme is the target of certain herbicides, such as those containing the active ingredient diphenyl ether, and genetic deficiencies in PPO can lead to a rare genetic disorder called Protoporphyria.

Porphyrins are complex organic compounds that contain four pyrrole rings joined together by methine bridges (=CH-). They play a crucial role in the biochemistry of many organisms, as they form the core structure of various heme proteins and other metalloproteins. Some examples of these proteins include hemoglobin, myoglobin, cytochromes, and catalases, which are involved in essential processes such as oxygen transport, electron transfer, and oxidative metabolism.

In the human body, porphyrins are synthesized through a series of enzymatic reactions known as the heme biosynthesis pathway. Disruptions in this pathway can lead to an accumulation of porphyrins or their precursors, resulting in various medical conditions called porphyrias. These disorders can manifest as neurological symptoms, skin lesions, and gastrointestinal issues, depending on the specific type of porphyria and the site of enzyme deficiency.

It is important to note that while porphyrins are essential for life, their accumulation in excessive amounts or at inappropriate locations can result in pathological conditions. Therefore, understanding the regulation and function of porphyrin metabolism is crucial for diagnosing and managing porphyrias and other related disorders.

Uroporphyrinogen III Synthase is a crucial enzyme in the biosynthetic pathway of heme and chlorophyll. This enzyme, specifically classified under EC 4.2.1.75, catalyzes the conversion of coproporphyrinogen III to protoporphyrinogen IX, which is a key step in the synthesis of heme.

The reaction it facilitates is:

Coproporphyrinogen III + reduced ferredoxin → Protoporphyrinogen IX + oxidized ferredoxin + CO2

Deficiency or malfunctioning of this enzyme can lead to a rare genetic disorder known as "congenital erythropoietic porphyria" (CEP), also known as Günther's disease, which is characterized by severe photosensitivity and related symptoms.

Uroporphyrins are porphyrin derivatives that contain four carboxylic acid groups. They are intermediates in the biosynthesis of heme, which is a component of hemoglobin and other hemoproteins. Uroporphyrinogen I and III are precursors to uroporphyrin I and III, respectively, through the action of uroporphyrinogen decarboxylase.

Uroporphyrin I and III differ in the position of acetate and propionate side chains on the porphyrin ring. Uroporphyrins are usually elevated in the urine of patients with certain inherited metabolic disorders, such as acute intermittent porphyria, variegate porphyria, and hereditary coproporphyria, due to enzyme deficiencies in the heme biosynthetic pathway.

The measurement of uroporphyrins in urine or other body fluids can be helpful in diagnosing and monitoring these disorders.

Hepatoerythropoietic porphyria (HEP) is a rare inherited metabolic disorder that affects the production of heme, a component in hemoglobin. It is a subtype of porphyria known as "erythropoietic porphyria," which primarily affects the bone marrow and erythroid cells.

In HEP, there are deficiencies in the activity of two enzymes involved in heme biosynthesis: uroporphyrinogen III synthase (UROS) and coproporphyrinogen oxidase (CPOX). This double enzyme deficiency leads to the accumulation of porphyrin precursors, particularly uroporphyrinogen I and coproporphyrinogen I, in erythrocytes, plasma, and tissues.

The main clinical manifestations of HEP include severe cutaneous photosensitivity, blistering, scarring, and hypertrichosis (excessive hair growth) on sun-exposed areas. Other features may include hemolytic anemia, splenomegaly, and liver dysfunction. The condition typically presents in infancy or early childhood, and it can be associated with significant morbidity and mortality if not properly managed.

Diagnosis of HEP is based on the detection of elevated levels of porphyrin precursors in plasma, erythrocytes, and stool, as well as genetic testing to confirm mutations in the UROS and CPOX genes. Treatment involves avoidance of sunlight exposure, use of sun-protective measures, and management of anemia with blood transfusions or other therapies. In some cases, hematopoietic stem cell transplantation may be considered as a curative treatment option.

Coproporphyrins are porphyrin molecules that contain four carboxylic acid groups (four propionic side chains and two acetic side chains). They are intermediates in the biosynthesis of heme, which is a component of hemoglobin and other hemoproteins. Coproporphyrins can be further metabolized to form protoporphyrins, which are converted into heme by the enzyme ferrochelatase.

Coproporphyrins can be excreted in urine and feces, and their levels can be measured in clinical testing. Elevated coproporphyrin levels in urine or feces may indicate the presence of certain medical conditions, such as lead poisoning, porphyrias, or liver dysfunction.

There are two types of coproporphyrins, coproporphyrin I and coproporphyrin III, which differ in the arrangement of their side chains. Coproporphyrin III is the form that is normally produced in the body, while coproporphyrin I is a byproduct of abnormal porphyrin metabolism.

5-Aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, a metabolic pathway that produces heme, a porphyrin ring with an iron atom at its center. Heme is a crucial component of hemoglobin, cytochromes, and other important molecules in the body.

ALAS exists in two forms: ALAS1 and ALAS2. ALAS1 is expressed in all tissues, while ALAS2 is primarily expressed in erythroid cells (precursors to red blood cells). The reaction catalyzed by ALAS involves the condensation of glycine and succinyl-CoA to form 5-aminolevulinate.

Deficiencies or mutations in the ALAS2 gene can lead to a rare genetic disorder called X-linked sideroblastic anemia, which is characterized by abnormal red blood cell maturation and iron overload in mitochondria.

Hereditary coproporphyria (HCP) is a rare inherited disorder of the heme biosynthesis pathway, which is the process by which your body produces heme. Heme is a crucial component of various proteins, including hemoglobin, which carries oxygen in red blood cells.

In HCP, there is a deficiency of an enzyme called coproporphyrinogen oxidase. This enzyme is essential for converting coproporphyrinogen III to protoporphyrin IX in the heme biosynthesis pathway. As a result, coproporphyrinogen III accumulates and gets converted to coproporphyrin, which is excreted in urine and stool in abnormally high amounts.

The symptoms of HCP can be diverse and may include both neurological and gastrointestinal manifestations. Neurological symptoms might include abdominal pain, muscle weakness, numbness, tingling, seizures, and psychiatric disturbances. Gastrointestinal symptoms could encompass nausea, vomiting, constipation, or diarrhea. These symptoms are typically triggered by certain factors such as infections, drugs, hormonal changes, or alcohol consumption.

HCP is usually inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the disease-causing gene from a parent with the disorder. However, some cases may result from de novo mutations, which means the mutation occurs spontaneously without a family history of the condition.

Diagnosis of HCP is usually made through measuring porphyrin levels and their precursors in urine, stool, and blood during an acute attack or between attacks. Genetic testing can confirm the diagnosis by identifying mutations in the CPOX gene, which encodes coproporphyrinogen oxidase.

Treatment for HCP typically involves avoiding triggers, providing supportive care during acute attacks, and using medications to manage symptoms. In some cases, heme arginate or hemine may be given to help decrease porphyrin precursor production. Preventive measures such as avoidance of potential triggers, adequate hydration, and a balanced diet are essential in managing HCP.

The hepatic artery is a branch of the celiac trunk or abdominal aorta that supplies oxygenated blood to the liver. It typically divides into two main branches, the right and left hepatic arteries, which further divide into smaller vessels to supply different regions of the liver. The hepatic artery also gives off branches to supply other organs such as the gallbladder, pancreas, and duodenum.

It's worth noting that there is significant variability in the anatomy of the hepatic artery, with some individuals having additional branches or variations in the origin of the vessel. This variability can have implications for surgical procedures involving the liver and surrounding organs.

Uroporphyrinogens are organic compounds that are intermediate products in the synthesis of heme, which is a crucial component of hemoglobin and other important molecules in the body. Specifically, uroporphyrinogens are tetrapyrroles, which means they contain four pyrrole rings linked together. They have eight carboxylic acid side chains and two propionic acid side chains.

There are two types of uroporphyrinogens: Type I and Type III. Uroporphyrinogen III is the precursor to heme, while uroporphyrinogen I is a dead-end metabolite that is not used in heme synthesis. Defects in the enzymes involved in heme biosynthesis can lead to various porphyrias, which are genetic disorders characterized by the accumulation of porphyrins and their precursors in the body.

Aminolevulinic acid (ALA) is a naturally occurring compound in the human body and is a key precursor in the biosynthesis of heme, which is a component of hemoglobin in red blood cells. It is also used as a photosensitizer in dermatology for the treatment of certain types of skin conditions such as actinic keratosis and basal cell carcinoma.

In medical terms, ALA is classified as an α-keto acid and a porphyrin precursor. It is synthesized in the mitochondria from glycine and succinyl-CoA in a reaction catalyzed by the enzyme aminolevulinic acid synthase. After its synthesis, ALA is transported to the cytosol where it undergoes further metabolism to form porphyrins, which are then used for heme biosynthesis in the mitochondria.

In dermatology, topical application of ALA followed by exposure to a specific wavelength of light can lead to the production of reactive oxygen species that destroy abnormal cells in the skin while leaving healthy cells unharmed. This makes it an effective treatment for precancerous and cancerous lesions on the skin.

It is important to note that ALA can cause photosensitivity, which means that patients who have undergone ALA-based treatments should avoid exposure to sunlight or other sources of bright light for a period of time after the treatment to prevent adverse reactions.

Porphyrinogens are organic compounds that are the precursors to porphyrins, which are ring-shaped molecules found in many important biological molecules such as hemoglobin and cytochromes. Porphyrinogens are themselves derived from the condensation of four pyrrole molecules, and they undergo further reactions to form porphyrins.

In particular, porphyrinogens are intermediates in the biosynthesis of heme, which is a complex organic ring-shaped molecule that contains iron and plays a critical role in oxygen transport and storage in the body. Abnormalities in heme biosynthesis can lead to various medical conditions known as porphyrias, which are characterized by the accumulation of porphyrinogens and other intermediates in this pathway. These conditions can cause a range of symptoms, including neurological problems, skin sensitivity to light, and abdominal pain.

Levulinic acid is not specifically a medical term, but it is a chemical compound with the formula C5H8O2. It is a white crystalline solid that is used in the production of various chemicals and materials. However, I can provide you with some general information about levulinic acid:

Levulinic acid is a saturated carboxylic acid, which means it contains a carboxyl group (-COOH) and is fully saturated with hydrogen atoms. It is an alpha-beta unsaturated carboxylic acid due to the presence of a carbon-carbon double bond (C=C) between the second and third carbon atoms in its structure.

Levulinic acid can be found naturally in small amounts in various fruits, such as apples and grapes, and is also present in some fermented foods like beer and wine. It can be produced industrially from biomass sources, such as cellulose or lignocellulosic materials, through a process called acid hydrolysis.

In the medical field, levulinic acid may have potential applications as an antimicrobial agent due to its ability to inhibit the growth of certain bacteria and fungi. It is also used in the synthesis of pharmaceuticals and other chemical products. However, it is not a substance that is typically directly associated with medical treatment or diagnosis.

The hepatic veins are blood vessels that carry oxygen-depleted blood from the liver back to the heart. There are typically three major hepatic veins - right, middle, and left - that originate from the posterior aspect of the liver and drain into the inferior vena cava just below the diaphragm. These veins are responsible for returning the majority of the blood flow from the gastrointestinal tract and spleen to the heart. It's important to note that the hepatic veins do not have valves, which can make them susceptible to a condition called Budd-Chiari syndrome, where blood clots form in the veins and obstruct the flow of blood from the liver.

Hexachlorobenzene (HCB) is not typically included in standard medical textbooks or resources as it's more of a environmental and industrial chemical. However, I can provide you with an definition from a toxicological perspective:

Hexachlorobenzene (C6Cl6) is an organic compound that consists of a benzene ring with six chlorine atoms attached to it. It is a persistent organic pollutant, which means it does not break down easily and can accumulate in the environment and living organisms. HCB has been used as a pesticide, fungicide, and chemical intermediate in various industrial processes. Exposure to this compound can lead to several health issues, including skin lesions, damage to the nervous system, and impaired immune function. It's also considered a possible human carcinogen by some agencies. Long-term environmental exposure to HCB is of particular concern due to its bioaccumulation in the food chain and potential adverse effects on human health and the environment.

Porphobilinogen Synthase (also known as PBGD or hydroxymethylbilane synthase) is an enzyme that catalyzes the second step in the heme biosynthesis pathway. This enzyme is responsible for converting two molecules of porphobilinogen into a linear tetrapyrrole called hydroxymethylbilane, which is then converted into uroporphyrinogen III by uroporphyrinogen III synthase.

Deficiency in Porphobilinogen Synthase can lead to a rare genetic disorder known as acute intermittent porphyria (AIP), which is characterized by the accumulation of porphobilinogen and other precursors in the heme biosynthesis pathway, resulting in neurovisceral symptoms such as abdominal pain, vomiting, neuropathy, and psychiatric disturbances.

Ammonia-lyases are a class of enzymes that catalyze the removal of an amino group from a substrate, releasing ammonia in the process. These enzymes play important roles in various biological pathways, including the biosynthesis and degradation of various metabolites such as amino acids, carbohydrates, and aromatic compounds.

The reaction catalyzed by ammonia-lyases typically involves the conversion of an alkyl or aryl group to a carbon-carbon double bond through the elimination of an amine group. This reaction is often reversible, allowing the enzyme to also catalyze the addition of an amino group to a double bond.

Ammonia-lyases are classified based on the type of substrate they act upon and the mechanism of the reaction they catalyze. Some examples of ammonia-lyases include aspartate ammonia-lyase, which catalyzes the conversion of aspartate to fumarate, and tyrosine ammonia-lyase, which converts tyrosine to p-coumaric acid.

These enzymes are important in both plant and animal metabolism and have potential applications in biotechnology and industrial processes.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) as cofactors. These flavin cofactors play a crucial role in redox reactions, acting as electron carriers in various metabolic pathways such as cellular respiration and oxidative phosphorylation. Flavoproteins are involved in several biological processes, including the breakdown of fatty acids, amino acids, and carbohydrates, as well as the synthesis of steroids and other lipids. They can also function as enzymes that catalyze various redox reactions, such as oxidases, dehydrogenases, and reductases. Flavoproteins are widely distributed in nature and found in many organisms, from bacteria to humans.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Ferrochelatase is a medical/biochemical term that refers to an enzyme called Fe-chelatase or heme synthase. This enzyme plays a crucial role in the biosynthesis of heme, which is a vital component of hemoglobin, cytochromes, and other important biological molecules.

Ferrochelatase functions by catalyzing the insertion of ferrous iron (Fe2+) into protoporphyrin IX, the final step in heme biosynthesis. This enzyme is located within the inner mitochondrial membrane of cells and is widely expressed in various tissues, with particularly high levels found in erythroid precursor cells, liver, and brain.

Defects or mutations in the ferrochelatase gene can lead to a rare genetic disorder called erythropoietic protoporphyria (EPP), which is characterized by an accumulation of protoporphyrin IX in red blood cells, plasma, and other tissues. This accumulation results in photosensitivity, skin lesions, and potential complications such as liver dysfunction and gallstones.

Heme is not a medical term per se, but it is a term used in the field of medicine and biology. Heme is a prosthetic group found in hemoproteins, which are proteins that contain a heme iron complex. This complex plays a crucial role in various biological processes, including oxygen transport (in hemoglobin), electron transfer (in cytochromes), and chemical catalysis (in peroxidases and catalases).

The heme group consists of an organic component called a porphyrin ring, which binds to a central iron atom. The iron atom can bind or release electrons, making it essential for redox reactions in the body. Heme is also vital for the formation of hemoglobin and myoglobin, proteins responsible for oxygen transport and storage in the blood and muscles, respectively.

In summary, heme is a complex organic-inorganic structure that plays a critical role in several biological processes, particularly in electron transfer and oxygen transport.

Griseofulvin is an antifungal medication used to treat various fungal infections, including those affecting the skin, hair, and nails. It works by inhibiting the growth of fungi, particularly dermatophytes, which cause these infections. Griseofulvin can be obtained through a prescription and is available in oral (by mouth) and topical (on the skin) forms.

The primary mechanism of action for griseofulvin involves binding to tubulin, a protein necessary for fungal cell division. This interaction disrupts the formation of microtubules, which are crucial for the fungal cell's structural integrity and growth. As a result, the fungi cannot grow and multiply, allowing the infected tissue to heal and the infection to resolve.

Common side effects associated with griseofulvin use include gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), headache, dizziness, and skin rashes. It is essential to follow the prescribing physician's instructions carefully when taking griseofulvin, as improper usage may lead to reduced effectiveness or increased risk of side effects.

It is important to note that griseofulvin has limited use in modern medicine due to the development of newer and more effective antifungal agents. However, it remains a valuable option for specific fungal infections, particularly those resistant to other treatments.

Coproporphyrinogen Oxidase is a mitochondrial enzyme that plays a crucial role in the biosynthesis of heme, which is an essential component of hemoglobin and other hemoproteins. This enzyme catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, a key step in the heme biosynthetic pathway.

Deficiency or dysfunction of Coproporphyrinogen Oxidase can lead to a rare genetic disorder known as Hereditary Coproporphyria (HCP), which is characterized by the accumulation of coproporphyrinogen III and its derivative, coproporphyrin, in various tissues and body fluids. This accumulation can result in a range of symptoms, including abdominal pain, neurological disturbances, and skin manifestations.

Coproporphyrinogens are intermediates in the biosynthesis of heme, a complex molecule that is essential for various biological processes including oxygen transport and cellular respiration. There are two types of coproporphyrinogens: Coproporphyrinogen I and Coproporphyrinogen III.

Coproporphyrinogen I is an intermediate in the biosynthesis of siroheme, a porphyrin-like molecule that functions as a cofactor for enzymes involved in sulfur and nitrogen metabolism. It is produced from uroporphyrinogen III through the action of coproporphyrinogen oxidase.

Coproporphyrinogen III, on the other hand, is an intermediate in the biosynthesis of heme. It is produced from protoporphyrinogen IX through the action of coproporphyrinogen oxidase and then converted to protoporphyrin IX by the enzyme coproporphyrinogen III decarboxylase. Protoporphyrin IX is then converted to heme by the addition of iron in a reaction catalyzed by ferrochelatase.

Abnormal accumulation of coproporphyrinogens can occur due to various genetic and acquired disorders that affect enzymes involved in heme biosynthesis, leading to the accumulation of porphyrins and their precursors in tissues and bodily fluids. These conditions are known as porphyrias and can present with a variety of symptoms including neuropsychiatric manifestations, skin lesions, and gastrointestinal disturbances.

Skin diseases, also known as dermatological conditions, refer to any medical condition that affects the skin, which is the largest organ of the human body. These diseases can affect the skin's function, appearance, or overall health. They can be caused by various factors, including genetics, infections, allergies, environmental factors, and aging.

Skin diseases can present in many different forms, such as rashes, blisters, sores, discolorations, growths, or changes in texture. Some common examples of skin diseases include acne, eczema, psoriasis, dermatitis, fungal infections, viral infections, bacterial infections, and skin cancer.

The symptoms and severity of skin diseases can vary widely depending on the specific condition and individual factors. Some skin diseases are mild and can be treated with over-the-counter medications or topical creams, while others may require more intensive treatments such as prescription medications, light therapy, or even surgery.

It is important to seek medical attention if you experience any unusual or persistent changes in your skin, as some skin diseases can be serious or indicative of other underlying health conditions. A dermatologist is a medical doctor who specializes in the diagnosis and treatment of skin diseases.

I apologize, but I am unable to find a medical definition for "dicarbethoxydihydrocollidine." It is possible that this term does not have a specific meaning within the field of medicine. A more general search indicates that dicarbethoxydihydrocollidine may be a chemical compound used in research or industry, but it does not appear to have direct relevance to medical diagnosis, treatment, or health. If you have further questions or need information on a related medical topic, I would be happy to help you with those.

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome associated with liver dysfunction and/or portosystemic shunting. It results from the accumulation of toxic substances, such as ammonia and inflammatory mediators, which are normally metabolized by the liver. HE can present with a wide range of symptoms, including changes in sleep-wake cycle, altered mental status, confusion, disorientation, asterixis (flapping tremor), and in severe cases, coma. The diagnosis is based on clinical evaluation, neuropsychological testing, and exclusion of other causes of cognitive impairment. Treatment typically involves addressing the underlying liver dysfunction, reducing ammonia production through dietary modifications and medications, and preventing further episodes with lactulose or rifaximin therapy.

Erythropoietic Protoporphyria (EPP) is a rare inherited disorder of porphyrin metabolism. It results from a deficiency in the ferrochelatase enzyme, which normally catalyzes the insertion of iron into protoporphyrin to form heme. This deficiency leads to an accumulation of protoporphyrin, particularly in red blood cells and plasma.

The accumulated protoporphyrin is sensitive to light, particularly wavelengths between 400-410 nm (blue light). When exposed to this light, the protoporphyrin molecules absorb the light energy and transfer it to molecular oxygen, leading to the formation of highly reactive singlet oxygen. This reaction causes oxidative damage to surrounding tissues, resulting in the symptoms of EPP.

The main symptom is severe, painful burn-like reactions on exposed skin after sunlight exposure, often accompanied by swelling and itching. These symptoms can occur within minutes of sun exposure and can last for several days. Chronic skin changes such as scarring and milia can also occur over time.

EPP is usually diagnosed through the measurement of porphyrins in the blood or stool, and genetic testing can confirm the diagnosis. Treatment typically involves avoiding sunlight exposure, using sun protection measures, and in some cases, oral beta-carotene or cysteine supplements to reduce symptoms. In severe cases, heme arginate or afamelanotide may be used.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Photosensitivity disorders refer to conditions that cause an abnormal reaction to sunlight or artificial light. This reaction can take the form of various skin changes, such as rashes, inflammation, or pigmentation, and in some cases, it can also lead to systemic symptoms like fatigue, fever, or joint pain.

The two main types of photosensitivity disorders are:

1. Phototoxic reactions: These occur when a substance (such as certain medications, chemicals, or plants) absorbs light energy and transfers it to skin cells, causing damage and inflammation. The reaction typically appears within 24 hours of exposure to the light source and can resemble a sunburn.

2. Photoallergic reactions: These occur when the immune system responds to the combination of light and a particular substance, leading to an allergic response. The reaction may not appear until several days after initial exposure and can cause redness, itching, and blistering.

It is important for individuals with photosensitivity disorders to avoid excessive sun exposure, wear protective clothing, and use broad-spectrum sunscreens with a high SPF rating to minimize the risk of phototoxic or photoallergic reactions.

Hepatic stellate cells, also known as Ito cells or lipocytes, are specialized perisinusoidal cells located in the space of Disse in the liver. They play a crucial role in maintaining the normal architecture and function of the liver. In response to liver injury or disease, these cells can become activated and transform into myofibroblasts, which produce extracellular matrix components and contribute to fibrosis and scarring in the liver. This activation process is regulated by various signaling pathways and mediators, including cytokines, growth factors, and oxidative stress. Hepatic stellate cells also have the ability to store vitamin A and lipids, which they can release during activation to support hepatocyte function and regeneration.

Bloodletting is a medical procedure that was commonly used in the past to balance the four humors of the body, which were believed to be blood, phlegm, black bile, and yellow bile. The procedure involved withdrawing blood from a patient through various methods such as venesection (making an incision in a vein), leeches, or cupping.

The theory behind bloodletting was that if one humor became overabundant, it could cause disease or illness. By removing some of the excess humor, practitioners believed they could restore balance and promote healing. Bloodletting was used to treat a wide variety of conditions, including fever, inflammation, and pain.

While bloodletting is no longer practiced in modern medicine, it was once a common treatment for many different ailments. The practice dates back to ancient times and was used by various cultures throughout history, including the Greeks, Romans, Egyptians, and Chinese. However, its effectiveness as a medical treatment has been called into question, and it is now considered an outdated and potentially harmful procedure.

Protoporphyrins are organic compounds that are the immediate precursors to heme in the porphyrin synthesis pathway. They are composed of a porphyrin ring, which is a large, complex ring made up of four pyrrole rings joined together, with an acetate and a propionate side chain at each pyrrole. Protoporphyrins are commonly found in nature and are important components of many biological systems, including hemoglobin, the protein in red blood cells that carries oxygen throughout the body.

There are several different types of protoporphyrins, including protoporphyrin IX, which is the most common form found in humans and other animals. Protoporphyrins can be measured in the blood or other tissues as a way to diagnose or monitor certain medical conditions, such as lead poisoning or porphyrias, which are rare genetic disorders that affect the production of heme. Elevated levels of protoporphyrins in the blood or tissues can indicate the presence of these conditions and may require further evaluation and treatment.

Allylisopropylacetamide is not a term that has a widely accepted or established medical definition. It is a chemical compound with the formula (CH₂CHCH₂)N(C=O)CH(CH₃)₂, and it may have various chemical or industrial uses, but it is not a term that is commonly used in medical contexts.

If you have any specific questions about this compound or its potential uses or effects, I would recommend consulting with a relevant expert, such as a chemist or toxicologist, who can provide more detailed and accurate information based on their expertise and knowledge of the subject.

Hemochromatosis is a medical condition characterized by excessive absorption and accumulation of iron in the body, resulting in damage to various organs. It's often referred to as "iron overload" disorder. There are two main types: primary (hereditary) and secondary (acquired). Primary hemochromatosis is caused by genetic mutations that lead to increased intestinal iron absorption, while secondary hemochromatosis can be the result of various conditions such as multiple blood transfusions, chronic liver disease, or certain types of anemia.

In both cases, the excess iron gets stored in body tissues, particularly in the liver, heart, and pancreas, which can cause organ damage and lead to complications like cirrhosis, liver failure, diabetes, heart problems, and skin discoloration. Early diagnosis and treatment through regular phlebotomy (blood removal) or chelation therapy can help manage the condition and prevent severe complications.

In medical terms, "precipitating factors" refer to specific events, actions, or circumstances that trigger the onset of a disease, symptom, or crisis in an individual who is already vulnerable due to pre-existing conditions. These factors can vary depending on the particular health issue, and they may include things like physical stress, emotional stress, environmental triggers, or changes in medication.

For example, in the context of a heart condition, precipitating factors might include strenuous exercise, exposure to extreme temperatures, or the use of certain drugs that increase heart rate or blood pressure. In mental health, precipitating factors for a depressive episode could include significant life changes such as the loss of a loved one, financial difficulties, or a major life transition.

Identifying and managing precipitating factors is an important aspect of preventative healthcare and disease management, as it can help individuals reduce their risk of experiencing negative health outcomes.

Liver neoplasms refer to abnormal growths in the liver that can be benign or malignant. Benign liver neoplasms are non-cancerous tumors that do not spread to other parts of the body, while malignant liver neoplasms are cancerous tumors that can invade and destroy surrounding tissue and spread to other organs.

Liver neoplasms can be primary, meaning they originate in the liver, or secondary, meaning they have metastasized (spread) to the liver from another part of the body. Primary liver neoplasms can be further classified into different types based on their cell of origin and behavior, including hepatocellular carcinoma, cholangiocarcinoma, and hepatic hemangioma.

The diagnosis of liver neoplasms typically involves a combination of imaging studies, such as ultrasound, CT scan, or MRI, and biopsy to confirm the type and stage of the tumor. Treatment options depend on the type and extent of the neoplasm and may include surgery, radiation therapy, chemotherapy, or liver transplantation.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Liver circulation, also known as hepatic circulation, refers to the blood flow through the liver. The liver receives blood from two sources: the hepatic artery and the portal vein.

The hepatic artery delivers oxygenated blood from the heart to the liver, accounting for about 25% of the liver's blood supply. The remaining 75% comes from the portal vein, which carries nutrient-rich, deoxygenated blood from the gastrointestinal tract, spleen, pancreas, and gallbladder to the liver.

In the liver, these two sources of blood mix in the sinusoids, small vessels with large spaces between the endothelial cells that line them. This allows for efficient exchange of substances between the blood and the hepatocytes (liver cells). The blood then leaves the liver through the hepatic veins, which merge into the inferior vena cava and return the blood to the heart.

The unique dual blood supply and extensive sinusoidal network in the liver enable it to perform various critical functions, such as detoxification, metabolism, synthesis, storage, and secretion of numerous substances, maintaining body homeostasis.

Carboxy-lyases are a class of enzymes that catalyze the removal of a carboxyl group from a substrate, often releasing carbon dioxide in the process. These enzymes play important roles in various metabolic pathways, such as the biosynthesis and degradation of amino acids, sugars, and other organic compounds.

Carboxy-lyases are classified under EC number 4.2 in the Enzyme Commission (EC) system. They can be further divided into several subclasses based on their specific mechanisms and substrates. For example, some carboxy-lyases require a cofactor such as biotin or thiamine pyrophosphate to facilitate the decarboxylation reaction, while others do not.

Examples of carboxy-lyases include:

1. Pyruvate decarboxylase: This enzyme catalyzes the conversion of pyruvate to acetaldehyde and carbon dioxide during fermentation in yeast and other organisms.
2. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO): This enzyme is essential for photosynthesis in plants and some bacteria, as it catalyzes the fixation of carbon dioxide into an organic molecule during the Calvin cycle.
3. Phosphoenolpyruvate carboxylase: Found in plants, algae, and some bacteria, this enzyme plays a role in anaplerotic reactions that replenish intermediates in the citric acid cycle. It catalyzes the conversion of phosphoenolpyruvate to oxaloacetate and inorganic phosphate.
4. Aspartate transcarbamylase: This enzyme is involved in the biosynthesis of pyrimidines, a class of nucleotides. It catalyzes the transfer of a carboxyl group from carbamoyl aspartate to carbamoyl phosphate, forming cytidine triphosphate (CTP) and fumarate.
5. Urocanase: Found in animals, this enzyme is involved in histidine catabolism. It catalyzes the conversion of urocanate to formiminoglutamate and ammonia.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Drug-Induced Liver Injury (DILI) is a medical term that refers to liver damage or injury caused by the use of medications or drugs. This condition can vary in severity, from mild abnormalities in liver function tests to severe liver failure, which may require a liver transplant.

The exact mechanism of DILI can differ depending on the drug involved, but it generally occurs when the liver metabolizes the drug into toxic compounds that damage liver cells. This can happen through various pathways, including direct toxicity to liver cells, immune-mediated reactions, or metabolic idiosyncrasies.

Symptoms of DILI may include jaundice (yellowing of the skin and eyes), fatigue, abdominal pain, nausea, vomiting, loss of appetite, and dark urine. In severe cases, it can lead to complications such as ascites, encephalopathy, and bleeding disorders.

The diagnosis of DILI is often challenging because it requires the exclusion of other potential causes of liver injury. Liver function tests, imaging studies, and sometimes liver biopsies may be necessary to confirm the diagnosis. Treatment typically involves discontinuing the offending drug and providing supportive care until the liver recovers. In some cases, medications that protect the liver or promote its healing may be used.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Hepatic porphyrias is a form of porphyria in which toxic porphyrin molecules build up in the liver. Hepatic porphyrias can ... Porphyrias,+Hepatic at the U.S. National Library of Medicine Medical Subject Headings (MeSH) www.drugs-porphyria.com www. ... intermittent porphyria Porphyria cutanea tarda and Hepatoerythropoietic porphyria Hereditary coproporphyria Variegate porphyria ... Erythropoietic porphyria Givosiran "OMIM - PORPHYRIA, CONGENITAL ERYTHROPOIETIC". Retrieved 2008-12-04. ...
Hepatic porphyria "OMIM - PORPHYRIA, CONGENITAL ERYTHROPOIETIC". Retrieved 2008-12-04. Richard E, Robert-Richard E, Ged C, ... Erythropoietic porphyria is a type of porphyria associated with erythropoietic cells. In erythropoietic porphyrias, the enzyme ... There are three types: X-linked dominant erythropoietic protoporphyria is a relatively mild version of porphyria with the ... Moreau-Gaudry F, de Verneuil H (June 2008). "Erythropoietic porphyrias: animal models and update in gene-based therapies". Curr ...
Reynolds NC, Miska RM (April 1981). "Safety of anticonvulsants in hepatic porphyrias". Neurology. 31 (4): 480-484. doi:10.1212/ ... It was first reported to exacerbate hepatic porphyria in 1975. In 1981, phenobarbital, one of primidone's metabolites, was ... Alvin J, Goh E, Bush MT (July 1975). "Study of the hepatic metabolism of primidone by improved methodology". The Journal of ... In fact, people taking these drugs have displayed the highest degree of hepatic-enzyme induction on record. In addition to ...
... may aggravate hepatic porphyria. Clonazepam is not recommended for patients with chronic schizophrenia. A 1982 ... Bonkowsky HL, Sinclair PR, Emery S, Sinclair JF (June 1980). "Seizure management in acute hepatic porphyria: risks of valproate ... Reynolds NC, Miska RM (April 1981). "Safety of anticonvulsants in hepatic porphyrias". Neurology. 31 (4): 480-484. doi:10.1212/ ...
SART3 Porphyria cutanea tarda; 176100; UROD Porphyria variegata; 176200; PPOX Porphyria, acute hepatic; 612740; ALAD Porphyria ... hepatic, type IA; 255120; CPT1A CPT deficiency, hepatic, type II; 600649; CPT2 CPT II deficiency, lethal neonatal; 608836; CPT2 ... CCBE1 Hepatic adenoma; 142330; HNF1A Hepatic venoocclusive disease with immunodeficiency; 235550; SP110 Hepatocellular cancer; ... HMBS Porphyria, congenital erythropoietic; 263700; UROS Porphyria, hepatoerythropoietic; 176100; UROD Prader-Willi syndrome; ...
... dominantly inherited acute hepatic porphyrias (acute intermittent porphyria, hereditary coproporphyria, variegate porphyria) ... Defects in any of these can lead to some form of porphyria. The hepatic porphyrias are characterized by acute neurological ... Variegate porphyria (also porphyria variegata or mixed porphyria), which results from a partial deficiency in PROTO oxidase, ... "About Porphyria: Safety database". Porphyria Drug Safety Database. American Porphyria Foundation. Archived from the original on ...
This involves hepatic fibrosis (scarring of the liver), and inflammation. However, liver problems are less common in patients ... Porphyria cutanea tarda is the most common subtype of porphyria. The disease is named because it is a porphyria that often ... Hepatoerythropoietic porphyria has been described as a homozygous form of porphyria cutanea tarda, although it can also be ... "Porphyria Cutanea Tarda (PCT)". 2020-01-12. "Porphyrin Tests". 7 May 2020. Jackson, A. H.; Ferramola, A. M.; Sancovich, H. A.; ...
Acute and chronic hepatic porphyrias (acute intermittent porphyria, porphyria cutanea tarda, hereditary coproporphyria, ... Patients with acute hepatic porphyrias should be monitored for HCC.[citation needed] The incidence of HCC is relatively lower ... The diagnosis of an acute hepatic porphyria (AIP, HCP, VP) should be sought in patients with HCC without typical risk factors ... Both active and latent genetic carriers of acute hepatic porphyrias are at risk for this cancer, although latent genetic ...
... , sold under the brand name Givlaari, is a medication used for the treatment of adults with acute hepatic porphyria. ... Givosiran is indicated for the treatment of adults with acute hepatic porphyria, a genetic disorder resulting in the buildup of ... Syed YY (May 2021). "Givosiran: A Review in Acute Hepatic Porphyria". Drugs. 81 (7): 841-848. doi:10.1007/s40265-021-01511-3. ... "FDA approves givosiran for acute hepatic porphyria". U.S. Food and Drug Administration (FDA). 20 November 2019. Archived from ...
As may hepatic encephalopathy and the genetic disorder porphyria. Cavernoma or cavernous malformation is a treatable medical ...
ALA dehydratase deficiency is a rare cause of hepatic porphyria, meaning that excess porphyrins originate from the liver rather ... Doss M, von Tiepermann R, Schneider J, Schmid H (October 1979). "New type of hepatic porphyria with porphobilinogen synthase ... "Overview of the Porphyrias". Rare Diseases Clinical Research Network. Porphyrias Consortium. n.d. Archived from the original on ... the symptoms in lead poisoning closely mimic those of acute porphyria Jaffe EK, Stith L (February 2007). "ALAD porphyria is a ...
Diseases of Tetrapyrrole Metabolism - Refsum Disease and the Hepatic Porphyrias at eMedicine Narang, Neatu; Banerjee, A; Kotwal ... American Porphyria Foundation. "About Porphyria: Acute Intermittent Porhyria" Archived April 25, 2008, at the Wayback Machine, ... "Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium". The American Journal of Medicine. 127 (12): ... Like other porphyrias, AIP is more likely to present in women. A distinguishing feature of AIP that separates it from other ...
Elder GH, Lee GB, Tovey JA (1978). "Decreased activity of hepatic uroporphyrinogen decarboxylase in sporadic porphyria cutanea ... of the human uroporphyrinogen decarboxylase gene causes both hepatoerythropoietic porphyria and overt familial porphyria ... 1998). "Familial porphyria cutanea tarda: characterization of seven novel uroporphyrinogen decarboxylase mutations and ... 1991). "Identification of a new mutation responsible for hepatoerythropoietic porphyria". Eur. J. Clin. Invest. 21 (2): 225-9. ...
In his postdoctoral work, he described the molecular defect in heme synthesis causing hepatic porphyrias. He and his coworkers ... "Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria". Nature Genetics. ... later made the first transgenic mouse model of this disease and elucidated the drug sensitivity of patients with porphyria. ...
Typical risk factors for HCC need not be present with the acute hepatic porphyrias, specifically acute intermittent porphyria, ... Several European studies have linked the inherited hepatic porphyrias with a predisposition to hepatocellular carcinoma. ... variegate porphyria and hereditary coproporphyria. Porphyria cutanea tarda is also associated with HCC, but with typical risk ... "Alcohol and Hepatic Carcinogenesis". In Raz Yirmiya; Anna N. Taylor (eds.). Alcohol, Immunity, and Cancer. Boca Raton, Florida ...
... and the RNA Interference Therapy for the Acute Hepatic Porphyrias. He was the co-founder of Amicus Therapeutics, a ... He is currently the President of the American Porphyrias Expert Collaborative. He lives in New York City and Palm Beach with ... "The American Porphyria Foundation". Retrieved 2010-03-01. "Alnylam Announces Approval of GIVLAARI® (givosiran) in the European ... Acute intermittent porphyria: Vector optimization for gene therapy J. Gene Med. 9:806-911, 2007. doi:10.1002/jgm.1074 PMID ...
... (HCP) is a disorder of heme biosynthesis, classified as an acute hepatic porphyria. HCP is caused by ... "Tests for Porphyria Diagnosis". National Porphyria Foundation. Archived from the original on 2014-03-20. Retrieved 2012-05-28. ... Porphyria at NLM Genetics Home Reference Coproporphyria at NIH's Office of Rare Diseases MedlinePlus Encyclopedia: Porphyria ( ... such as acute intermittent porphyria (AIP) and variegate porphyria (VP). Patients with HCP and VP can present with symptoms ...
... therapy for acute hepatic porphyria which led to the development of givosiran as the first therapy for acute hepatic porphyria ... silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice". ... "Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria". The New England Journal of Medicine. 382 (24): ...
In 2019, FDA approved the second RNAi therapy, Givlaari (givosiran) used to treat acute hepatic porphyria (AHP). The disease is ... which has property of inhibiting hepatic synthesis of transthyretin. Target messenger RNA (mRNA) is cleaved as a result by tiny ...
... the FDA and EMA approved givosiran for the treatment of adults with acute hepatic porphyria (AHP). The FDA also granted ... and orphan drug designation for the treatment of acute hepatic porphyria (AHP) in November 2019. By 2020, givosiran received ... Therapeutics using siRNA conjugates have been developed for rare or genetic diseases such as acute hepatic porphyria (AHP), ... Bissell, DM; Lai, JC; Meister, RK; Blanc, PD (2015). "Role of delta-aminolevulinic acid in the symptoms of acute porphyria". ...
... relationship with human acute hepatic porphyrias" (PDF). J Clin Chem Clin Biochem. 23 (9): 505-13. doi:10.1515/cclm.1985.23. ... mutations in the erythroid specific ALA synthase gene have been shown recently to cause a previously unknown form of porphyria ...
... is a very rare form of hepatic porphyria caused by a disorder in both genes which code ... ISBN 978-0-7216-2921-6. "hepatoerythropoietic porphyria" at Dorland's Medical Dictionary Hepatoerythropoietic porphyria at NLM ... In classifications which define PCT type 1 as "sporadic" and PCT type 2 as "familial", hepatoerythropoietic porphyria is more ... February 2007). "Two novel uroporphyrinogen decarboxylase (URO-D) mutations causing hepatoerythropoietic porphyria (HEP)". ...
... which could presumably lead to hepatic porphyria. This is not sure, however, since few studies have been done on the metabolism ... Stonard M, Greig J (1976). "Different patterns of hepatic microsomal enzyme activity produced by administration of pure ...
Porphyria, especially acute intermittent porphyria; lidocaine has been classified as porphyrogenic because of the hepatic ... The Norwegian Porphyria Centre and the Swedish Porphyria Centre. Archived from the original on 2014-04-20. strong clinical ... This may be prolonged in patients with hepatic impairment (average 343 min) or congestive heart failure (average 136 min). ... "Table 96-4. Drugs and Porphyria" (PDF). Merck Manual. Merck & Company, Inc. 2011. Archived from the original on 2014-04-20. " ...
The risk of hypoglycemia makes this drug a poor choice for the elderly and patients with mild to moderate hepatic and renal ... patients with porphyria, patients who are breastfeeding, patients with ketoacidosis, and elderly patients. Chlorpropamide, ... Sulfonylureas should be used with caution or generally avoided in patients with hepatic and renal impairment, ...
... (also known as hepatic cancer, primary hepatic cancer, or primary hepatic malignancy) is cancer that starts in the ... porphyria cutanea tarda, Wilson's disease, tyrosinemia have all been associated with development of HCC. Oral contraceptive ... Chen, Nelson; Yu, Aidan (Jia Sheng); Jung, Jihye (2018-05-31). "Editor's Pick: Primary Hepatic Angiosarcoma: A Brief Review of ... Intrahepatic cholangiocarcinoma (CCA) is an epithelial cancer of the intra-hepatic biliary tree branches. Intrahepatic CCA is ...
Type III (aka hepatic photosensitivity) is the most common type of photosensitivity reaction seen in animals. In this type, the ... A common condition seen in animals is congenital porphyria due to the accumulation of Uroporphyrin, which is deposited in the ... This condition is exacerbated by the presence of hepatic parasites. Type IV Photosensitivity occurs following the ingestion of ...
... porphyrias MeSH C18.452.872.617.250 - porphyria, erythropoietic MeSH C18.452.872.617.400 - porphyrias, hepatic MeSH C18.452. ... porphyria, erythropoietic MeSH C18.452.648.735 - porphyrias, hepatic MeSH C18.452.648.735.074 - coproporphyria, hereditary MeSH ... porphyria cutanea tarda MeSH C18.452.872.617.400.437 - porphyria, hepatoerythropoietic MeSH C18.452.872.617.400.625 - porphyria ... porphyria cutanea tarda MeSH C18.452.648.735.437 - porphyria, hepatoerythropoietic MeSH C18.452.648.735.625 - porphyria, ...
... porphyria, erythropoietic MeSH C16.320.565.735 - porphyrias, hepatic MeSH C16.320.565.735.074 - coproporphyria, hereditary MeSH ... porphyria, erythropoietic MeSH C16.320.850.742 - porphyrias, hepatic MeSH C16.320.850.742.074 - coproporphyria, hereditary MeSH ... porphyria cutanea tarda MeSH C16.320.565.735.437 - porphyria, hepatoerythropoietic MeSH C16.320.565.735.625 - porphyria, ... porphyria cutanea tarda MeSH C16.320.850.742.437 - porphyria, hepatoerythropoietic MeSH C16.320.850.742.625 - porphyria, ...
... porphyrias MeSH C17.800.849.617.250 - porphyria, erythropoietic MeSH C17.800.849.617.400 - porphyrias, hepatic MeSH C17.800. ... porphyria, erythropoietic MeSH C17.800.827.742 - porphyrias, hepatic MeSH C17.800.827.742.074 - coproporphyria, hereditary MeSH ... porphyria cutanea tarda MeSH C17.800.849.617.400.437 - porphyria, hepatoerythropoietic MeSH C17.800.849.617.400.625 - porphyria ... porphyria cutanea tarda MeSH C17.800.827.742.437 - porphyria, hepatoerythropoietic MeSH C17.800.827.742.625 - porphyria, ...

No FAQ available that match "porphyrias hepatic"

No images available that match "porphyrias hepatic"