Suppression of erythropoiesis with little or no abnormality of leukocyte or platelet production.
A neoplasm originating from thymic tissue, usually benign, and frequently encapsulated. Although it is occasionally invasive, metastases are extremely rare. It consists of any type of thymic epithelial cell as well as lymphocytes that are usually abundant. Malignant lymphomas that involve the thymus, e.g., lymphosarcoma, Hodgkin's disease (previously termed granulomatous thymoma), should not be regarded as thymoma. (From Stedman, 25th ed)
An antigenic mismatch between donor and recipient blood. Antibodies present in the recipient's serum may be directed against antigens in the donor product. Such a mismatch may result in a transfusion reaction in which, for example, donor blood is hemolyzed. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984).
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
Tumors or cancer of the THYMUS GLAND.
The major human blood type system which depends on the presence or absence of two antigens A and B. Type O occurs when neither A nor B is present and AB when both are present. A and B are genetic factors that determine the presence of enzymes for the synthesis of certain glycoproteins mainly in the red cell membrane.
Virus infections caused by the PARVOVIRIDAE.
The type species of ERYTHROVIRUS and the etiological agent of ERYTHEMA INFECTIOSUM, a disease most commonly seen in school-age children.
Surgical removal of the thymus gland. (Dorland, 28th ed)
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
A test to detect non-agglutinating ANTIBODIES against ERYTHROCYTES by use of anti-antibodies (the Coombs' reagent.) The direct test is applied to freshly drawn blood to detect antibody bound to circulating red cells. The indirect test is applied to serum to detect the presence of antibodies that can bind to red blood cells.
A rare congenital hypoplastic anemia that usually presents early in infancy. The disease is characterized by a moderate to severe macrocytic anemia, occasional neutropenia or thrombocytosis, a normocellular bone marrow with erythroid hypoplasia, and an increased risk of developing leukemia. (Curr Opin Hematol 2000 Mar;7(2):85-94)
Dermatologic disorders attendant upon non-dermatologic disease or injury.
A spectrum of disorders characterized by clonal expansions of the peripheral blood LYMPHOCYTE populations known as large granular lymphocytes which contain abundant cytoplasm and azurophilic granules. Subtypes develop from either CD3-negative NATURAL KILLER CELLS or CD3-positive T-CELLS. The clinical course of both subtypes can vary from spontaneous regression to progressive, malignant disease.
The number of RETICULOCYTES per unit volume of BLOOD. The values are expressed as a percentage of the ERYTHROCYTE COUNT or in the form of an index ("corrected reticulocyte index"), which attempts to account for the number of circulating erythrocytes.
Removal of bone marrow and evaluation of its histologic picture.
Acquired hemolytic anemia due to the presence of AUTOANTIBODIES which agglutinate or lyse the patient's own RED BLOOD CELLS.
Agents which improve the quality of the blood, increasing the hemoglobin level and the number of erythrocytes. They are used in the treatment of anemias.
Procedure whereby plasma is separated and extracted from anticoagulated whole blood and the red cells retransfused to the donor. Plasmapheresis is also employed for therapeutic use.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
Contagious infection with human B19 Parvovirus most commonly seen in school age children and characterized by fever, headache, and rashes of the face, trunk, and extremities. It is often confused with rubella.
The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors.
Excess of normal lymphocytes in the blood or in any effusion.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Substances, usually of biological origin, that cause cells or other organic particles to aggregate and stick to each other. They include those ANTIBODIES which cause aggregation or agglutination of particulate or insoluble ANTIGENS.
A cyclic undecapeptide from an extract of soil fungi. It is a powerful immunosupressant with a specific action on T-lymphocytes. It is used for the prophylaxis of graft rejection in organ and tissue transplantation. (From Martindale, The Extra Pharmacopoeia, 30th ed).
A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN.
Congenital conditions in individuals with a female karyotype, in which the development of the gonadal or anatomical sex is atypical.
A glucocorticoid with the general properties of the corticosteroids. It is the drug of choice for all conditions in which routine systemic corticosteroid therapy is indicated, except adrenal deficiency states.
Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA.
Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Antibodies obtained from a single clone of cells grown in mice or rats.
Proteins prepared by recombinant DNA technology.
A synthetic anti-inflammatory glucocorticoid derived from CORTISONE. It is biologically inert and converted to PREDNISOLONE in the liver.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
Therapeutic act or process that initiates a response to a complete or partial remission level.
A species of GAMMARETROVIRUS causing leukemia, lymphosarcoma, immune deficiency, or other degenerative diseases in cats. Several cellular oncogenes confer on FeLV the ability to induce sarcomas (see also SARCOMA VIRUSES, FELINE).
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
An immunologic deficiency state characterized by an extremely low level of generally all classes of gamma-globulin in the blood.
The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days.
A pair of ducts near the WOLFFIAN DUCTS in a developing embryo. In the male embryo, they degenerate with the appearance of testicular ANTI-MULLERIAN HORMONE. In the absence of anti-mullerian hormone, mullerian ducts give rise to the female reproductive tract, including the OVIDUCTS; UTERUS; CERVIX; and VAGINA.
Antibodies produced by a single clone of cells.
Oxygen-carrying RED BLOOD CELLS in mammalian blood that are abnormal in structure or function.

Successful treatment of refractory acquired pure red cell aplasia (PRCA) by allogeneic bone marrow transplantation. (1/145)

This case describes a 16-year-old woman treated successfully by a bone marrow transplant from her HLA-identical brother for refractory acquired pure red cell aplasia. Conditioning was as for severe aplastic anaemia with cyclophosphamide 4 x 50 mg/kg and antithymocyte globulin. Complete donor type engraftment at 3 months reversed to full autologous reconstitution at 2 years with normal haemopoiesis. The potential implications on pathogenesis of the disease as well as on treatment of autoimmune disorders by stem cell transplantation are discussed.  (+info)

Parvovirus B19 infections. (2/145)

Infections caused by human parvovirus B19 can result in a wide spectrum of manifestations, which are usually influenced by the patient's immunologic and hematologic status. In the normal host, parvovirus infection can be asymptomatic or can result in erythema infectiosum or arthropathy. Patients with underlying hematologic and immunologic disorders who become infected with this virus are at risk for aplastic anemia. Hydrops fetalis and fetal death are complications of intrauterine parvovirus B19 infection.  (+info)

Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia. (3/145)

Feline leukemia virus-C (FeLV-C) causes red cell aplasia in cats, likely through its interaction with its cell surface receptor. We identified this receptor by the functional screening of a library of complementary DNAs (cDNA) from feline T cells. The library, which was cloned into a retroviral vector, was introduced into FeLV-C-resistant murine (NIH 3T3) cells. The gene conferring susceptibility to FeLV-C was isolated and reintroduced into the same cell type, as well as into FeLV-C-resistant rat (NRK 52E) cells, to verify its role in viral infection. The receptor cDNA is predicted to encode a protein of 560 amino acids with 12 membrane-spanning domains, termed FLVCR. FLVCR has significant amino acid sequence homology with members of the major facilitator superfamily and especially D-glucarate transporters described in bacteria and in C. elegans. As FeLV-C impairs the in vivo differentiation of burst-forming unit-erythroid to colony-forming unit-erythroid, we hypothesize that this transporter system could have an essential role in early erythropoiesis. In further studies, a 6-kb fragment of the human FLVCR gene was amplified by polymerase chain reaction from genomic DNA, using homologous cDNA sequences identified in the human Expressed Sequence Tags database. By radiation hybrid mapping, the human gene was localized to a 0.5-centiMorgan region on the long arm of chromosome 1 at q31.3.  (+info)

Anti-A isoagglutinin as a risk factor for the development of pure red cell aplasia after major ABO-incompatible allogeneic bone marrow transplantation. (4/145)

Delayed erythropoiesis and pure red cell aplasia (PRCA) have been reported after major ABO-incompatible BMT. We attempted to find risk factors for the development of PRCA in 27 patients who underwent major ABO-incompatible BMT. In all patients, the donor marrow was depleted of RBCs before infusion. In 22 patients, isoagglutinins were determined until they disappeared. In eight (29.6%) out of 27 patients, bone marrow examination following BMT showed the findings of PRCA. We analyzed various clinico-pathologic risk factors and isoagglutinin type was the only significant risk factor. Patients with anti-A isoagglutinins against donor RBC developed PRCA more frequently than patients with anti-B (8/17 vs 0/9). Median days to the disappearance of isoagglutinins tended to be longer in patients with PRCA (PRCA vsnon-PRCA, 200 vs 66 days) and in cases with anti-A isoagglutinins (anti-A vsanti-B, 160 vs 51 days). Times to disappearance of isoagglutinins correlated with times to reticulocytes over 1% and initial appearance of donor type RBC (R2 = 0.708 and 0.711). In conclusion, RBC engraftment following major ABO-incompatible BMT was dependent on the disappearance of isoagglutinins against donor RBC, and anti-A isoagglutinin was a risk factor for the development of PRCA after major ABO-incompatible allogeneic BMT. Bone Marrow Transplantation (2000) 25, 179-184.  (+info)

The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. (5/145)

Nontransferrin-bound iron (NTBI) appears in the serum of individuals with iron overload and in a variety of other pathologic conditions. Because NTBI constitutes a labile form of iron, it might underlie some of the biologic damage associated with iron overload. We have developed a simple method for NTBI determination, which operates in a 96-well enzyme-linked immunosorbent assay format with sensitivity comparable to that of previous assays. A weak ligand, oxalic acid, mobilizes the NTBI and mediates its transfer to the iron chelator deferoxamine (DFO) immobilized on the plate. The amount of DFO-bound iron, originating from NTBI, is quantitatively revealed in a fluorescence plate reader by the fluorescent metallosensor calcein. No NTBI is found in normal sera because transferrin-bound iron is not detected in the assay. Thalassemic sera contained NTBI in 80% of the cases (range, 0.9-12.8 micromol/L). In patients given intravenous infusions of DFO, NTBI initially became undetectable due to the presence of DFO in the sera, but reappeared in 55% of the cases within an hour of cessation of the DFO infusion. This apparent rebound was attributable to the loss of DFO from the circulation and the possibility that a major portion of NTBI was not mobilized by DFO. NTBI was also found in patients with end-stage renal disease who were treated for anemia with intravenous iron supplements and in patients with hereditary hemochromatosis, at respective frequencies of 22% and 69%. The availability of a simple assay for monitoring NTBI could provide a useful index of iron status during chelation and supplementation treatments. (Blood. 2000;95:2975-2982)  (+info)

Pure red cell aplasia due to parvovirus B19 in a patient treated with rituximab. (6/145)

Rituximab is a chimeric monoclonal antibody directed against CD20 and used in the treatment of B-cell non-Hodgkin's lymphoma. Due to its ability to deplete B lymphocytes, rituximab can interfere with humoral immunity, causing it to be suppressed for several months after treatment. The reported case depicts a serious consequence of this effect of rituximab therapy: pure red cell aplasia resulting from chronic parvovirus B19 infection. The point of interest in this case is not only the association between rituximab therapy and pure red cell aplasia, but the diagnostic and therapeutic utility of the knowledge of parvovirus B19 as the likely etiologic link between the two. Given the known efficacy of intravenous immunoglobulin (IVIg) in the treatment of chronic parvovirus B19 infection, this therapy can cure some of these patients and successfully render most others transfusion-independent until recovery of their own humoral immune system.  (+info)

Clonality analysis of various hematopoietic disorders in cats naturally infected with feline leukemia virus. (7/145)

The clonality analysis of the bone marrow cells was carried out by detecting the integrated proviruses of feline leukemia virus (FeLV) to understand the pathogenesis of FeLV-associated hematopoietic disorders in cats. Bone marrow cells from 4 cases with acute myeloid leukemia (AML), 9 cases with myelodysplastic syndromes (MDS), 2 cases with pure red cell aplasia (PRCA) and 3 healthy carriers infected with FeLV were subjected to Southern blot analyses using an exogenous FeLV probe. Clonal hematopoiesis was found in all the cases with AML and in 6 of the 9 cases with MDS, but not in the cases with both PRCA and healthy carriers infected with FeLV. In the 2 cases with MDS, it was thought that the same clones of the hematopoietic cells might proliferate before and after the progression of the disease irrespective of the changes of the hematological diagnoses by cytological examination. This study indicates that MDS in cats is a disease manifestation as a result of clonal proliferation of hematopoietic cells and can be recognized as a pre-leukemic state of AML.  (+info)

Pure red cell aplasia after allogeneic stem cell transplantation with reduced conditioning. (8/145)

Conditioning regimens with reduced intensity are used increasingly for allogeneic stem cell transplantation in elderly or extensively pretreated patients. Two cases of pure red cell aplasia after fludarabine-based conditioning and during immunosuppression with cyclosporin are described. Both patients received ABO-mismatched stem cells and had anti-donor isoagglutinins. Red cell recovery occurred after extended immunosuppression when isoagglutinins had disappeared. Colony assays indicated serologic suppression of the erythrocyte lineage in one patient. Since reduced conditioning permits donor cell engraftment primarily by suppression of host T cells, antibody-mediated immunological complications may occur more frequently than after 'classical' conditioning.  (+info)

Pure red cell aplasia (PRCA) is a rare hematologic disorder characterized by selective absence or severe reduction in the production of mature red blood cells (erythropoiesis) in the bone marrow, while the production of other blood cell lines such as white blood cells and platelets remains normal or near normal. This condition leads to anemia, which can be severe and require transfusions.

In PRCA, there is a specific absence or reduction of erythroblasts (immature red blood cells) in the bone marrow. The cause of this disorder can be congenital or acquired. Acquired forms are more common and can be idiopathic or associated with various conditions such as viral infections, immunological disorders, drugs, malignancies, or autoimmune diseases.

In pure red cell aplasia, the immune system often produces antibodies against erythroid progenitor cells, leading to their destruction and impaired red blood cell production. This results in anemia, which can be severe and require regular transfusions to maintain adequate hemoglobin levels.

The diagnosis of PRCA is confirmed through bone marrow aspiration and biopsy, which reveal a marked decrease or absence of erythroid precursors. Additional tests, such as immunological studies and viral serologies, may be performed to identify potential causes or associated conditions. Treatment options depend on the underlying cause and can include corticosteroids, immunosuppressive therapy, intravenous immunoglobulins, and occasionally, targeted therapies or stem cell transplantation.

Thymoma is a type of tumor that originates from the thymus gland, which is a part of the immune system located in the chest behind the breastbone. Thymomas are typically slow-growing and often do not cause any symptoms until they have grown quite large or spread to other parts of the body.

Thymomas can be classified into different types based on their appearance under a microscope, such as type A, AB, B1, B2, and B3. These classifications are important because they can help predict how aggressive the tumor is likely to be and how it should be treated.

Symptoms of thymoma may include cough, chest pain, difficulty breathing, or swelling in the face or neck. Thymomas can also be associated with autoimmune disorders such as myasthenia gravis, which affects muscle strength and mobility. Treatment for thymoma typically involves surgical removal of the tumor, often followed by radiation therapy or chemotherapy to help prevent recurrence.

Blood group incompatibility refers to a situation where the blood type of a donor and a recipient are not compatible, leading to an immune response and destruction of the donated red blood cells. This is because the recipient's immune system recognizes the donor's red blood cells as foreign due to the presence of incompatible antigens on their surface.

The most common type of blood group incompatibility occurs between individuals with different ABO blood types, such as when a person with type O blood receives type A, B, or AB blood. This can lead to agglutination and hemolysis of the donated red blood cells, causing potentially life-threatening complications such as hemolytic transfusion reaction.

Another type of blood group incompatibility occurs between Rh-negative mothers and their Rh-positive fetuses. If a mother's immune system is exposed to her fetus's Rh-positive red blood cells during pregnancy or childbirth, she may develop antibodies against them. This can lead to hemolytic disease of the newborn if the mother becomes pregnant with another Rh-positive fetus in the future.

To prevent these complications, it is essential to ensure that donated blood is compatible with the recipient's blood type before transfusion and that appropriate measures are taken during pregnancy and childbirth to prevent sensitization of Rh-negative mothers to Rh-positive red blood cells.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

Thymus neoplasms are abnormal growths in the thymus gland that result from uncontrolled cell division. The term "neoplasm" refers to any new and abnormal growth of tissue, also known as a tumor. Thymus neoplasms can be benign or malignant (cancerous).

Malignant thymus neoplasms are called thymomas or thymic carcinomas. Thymomas are the most common type and tend to grow slowly, invading nearby tissues and organs. They can also spread (metastasize) to other parts of the body. Thymic carcinomas are rarer and more aggressive, growing and spreading more quickly than thymomas.

Symptoms of thymus neoplasms may include coughing, chest pain, difficulty breathing, or swelling in the neck or upper chest. Treatment options for thymus neoplasms depend on the type, size, location, and stage of the tumor, as well as the patient's overall health. Treatment may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

The ABO blood-group system is a classification system used in blood transfusion medicine to determine the compatibility of donated blood with a recipient's blood. It is based on the presence or absence of two antigens, A and B, on the surface of red blood cells (RBCs), as well as the corresponding antibodies present in the plasma.

There are four main blood types in the ABO system:

1. Type A: These individuals have A antigens on their RBCs and anti-B antibodies in their plasma.
2. Type B: They have B antigens on their RBCs and anti-A antibodies in their plasma.
3. Type AB: They have both A and B antigens on their RBCs but no natural antibodies against either A or B antigens.
4. Type O: They do not have any A or B antigens on their RBCs, but they have both anti-A and anti-B antibodies in their plasma.

Transfusing blood from a donor with incompatible ABO antigens can lead to an immune response, causing the destruction of donated RBCs and potentially life-threatening complications such as acute hemolytic transfusion reaction. Therefore, it is crucial to match the ABO blood type between donors and recipients before performing a blood transfusion.

Parvoviridae infections refer to diseases caused by viruses belonging to the Parvoviridae family. These viruses are known to infect a wide range of hosts, including humans, animals, and insects. The most well-known member of this family is the human parvovirus B19, which is responsible for a variety of clinical manifestations such as:

1. Erythema infectiosum (Fifth disease): A common childhood exanthem characterized by a "slapped cheek" rash and a lace-like rash on the extremities.
2. Transient aplastic crisis: A sudden and temporary halt in red blood cell production, which can lead to severe anemia in individuals with underlying hematologic disorders.
3. Hydrops fetalis: Intrauterine death due to severe anemia caused by parvovirus B19 infection in pregnant women, leading to heart failure and widespread fluid accumulation in the fetus.

Parvoviruses are small, non-enveloped viruses with a single-stranded DNA genome. They primarily infect and replicate within actively dividing cells, making them particularly harmful to rapidly proliferating tissues such as bone marrow and fetal tissues. In addition to parvovirus B19, other Parvoviridae family members can cause significant diseases in animals, including cats, dogs, and livestock.

Parvovirus B19, Human is a single-stranded DNA virus that primarily infects humans. It belongs to the Parvoviridae family and Erbovirus genus. This virus is the causative agent of erythema infectiosum, also known as fifth disease, a mild, self-limiting illness characterized by a facial rash and occasionally joint pain or inflammation.

Parvovirus B19 has a strong tropism for erythroid progenitor cells in the bone marrow, where it replicates and causes temporary suppression of red blood cell production (aplastic crisis) in individuals with underlying hemolytic disorders such as sickle cell disease or spherocytosis.

Additionally, Parvovirus B19 can cause more severe complications in immunocompromised individuals, pregnant women, and fetuses. Infection during pregnancy may lead to hydrops fetalis, anemia, or even fetal death, particularly in the first and second trimesters. Transmission of the virus occurs primarily through respiratory droplets and occasionally via blood transfusions or vertical transmission from mother to fetus.

Thymectomy is a surgical procedure that involves the removal of the thymus gland. The thymus gland is a part of the immune system located in the upper chest, behind the sternum (breastbone), and above the heart. It is responsible for producing white blood cells called T-lymphocytes, which help fight infections.

Thymectomy is often performed as a treatment option for patients with certain medical conditions, such as:

* Myasthenia gravis: an autoimmune disorder that causes muscle weakness and fatigue. In some cases, the thymus gland may contain abnormal cells that contribute to the development of myasthenia gravis. Removing the thymus gland can help improve symptoms in some patients with this condition.
* Thymomas: tumors that develop in the thymus gland. While most thymomas are benign (non-cancerous), some can be malignant (cancerous) and may require surgical removal.
* Myasthenic syndrome: a group of disorders characterized by muscle weakness and fatigue, similar to myasthenia gravis. In some cases, the thymus gland may be abnormal and contribute to the development of these conditions. Removing the thymus gland can help improve symptoms in some patients.

Thymectomy can be performed using various surgical approaches, including open surgery (through a large incision in the chest), video-assisted thoracoscopic surgery (VATS, using small incisions and a camera to guide the procedure), or robotic-assisted surgery (using a robot to perform the procedure through small incisions). The choice of surgical approach depends on several factors, including the size and location of the thymus gland, the patient's overall health, and the surgeon's expertise.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

The Coombs test is a laboratory procedure used to detect the presence of antibodies on the surface of red blood cells (RBCs). It is named after the scientist, Robin Coombs, who developed the test. There are two types of Coombs tests: direct and indirect.

1. Direct Coombs Test (DCT): This test is used to detect the presence of antibodies directly attached to the surface of RBCs. It is often used to diagnose hemolytic anemia, a condition in which RBCs are destroyed prematurely, leading to anemia. A positive DCT indicates that the patient's RBCs have been coated with antibodies, which can occur due to various reasons such as autoimmune disorders, blood transfusion reactions, or drug-induced immune hemolysis.
2. Indirect Coombs Test (ICT): This test is used to detect the presence of antibodies in the patient's serum that can agglutinate (clump) foreign RBCs. It is commonly used before blood transfusions or during pregnancy to determine if the patient has antibodies against the RBCs of a potential donor or fetus, respectively. A positive ICT indicates that the patient's serum contains antibodies capable of binding to and agglutinating foreign RBCs.

In summary, the Coombs test is a crucial diagnostic tool in identifying various hemolytic disorders and ensuring safe blood transfusions by detecting the presence of harmful antibodies against RBCs.

Diamond-Blackfan anemia is a rare, congenital bone marrow failure disorder characterized by a decreased production of red blood cells (erythroblasts) in the bone marrow. This results in a reduced number of circulating red blood cells, leading to anemia and related symptoms such as fatigue, weakness, and pallor. The disorder is typically diagnosed in infancy or early childhood and can also be associated with physical abnormalities.

The exact cause of Diamond-Blackfan anemia is not fully understood, but it is believed to involve genetic mutations that affect the development and function of the bone marrow. In many cases, the disorder is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the mutated gene from an affected parent. However, some cases may arise spontaneously due to new genetic mutations.

Treatment for Diamond-Blackfan anemia typically involves regular blood transfusions to maintain adequate red blood cell levels and alleviate symptoms. Corticosteroid therapy may also be used to stimulate red blood cell production in some cases. In severe or refractory cases, stem cell transplantation may be considered as a curative treatment option.

Skin manifestations refer to visible changes on the skin that can indicate an underlying medical condition or disease process. These changes can include rashes, lesions, discoloration, eruptions, blisters, hives, and other abnormalities. The appearance, distribution, and pattern of these manifestations can provide important clues for healthcare professionals to diagnose and manage the underlying condition.

Skin manifestations can be caused by a wide range of factors, including infections, inflammatory conditions, allergic reactions, genetic disorders, autoimmune diseases, and cancer. In some cases, skin manifestations may be the primary symptom of a medical condition, while in other cases, they may be a secondary effect of medication or treatment.

It is important to note that while skin manifestations can provide valuable diagnostic information, they should always be evaluated in the context of the patient's overall medical history and presentation. A thorough physical examination and appropriate diagnostic tests are often necessary to confirm a diagnosis and develop an effective treatment plan.

Large granular lymphocytic (LGL) leukemia is a rare type of blood cancer that affects a specific group of white blood cells called large granular lymphocytes (LGLs), which include both T-cell and natural killer (NK) cell populations. This disorder is characterized by an abnormal increase in the number of these LGL cells in the peripheral blood, bone marrow, and spleen.

In LGL leukemia, the overproduction of these abnormal lymphocytes can lead to cytopenias (low counts) of one or more types of blood cells, such as anemia, neutropenia, or thrombocytopenia. These cytopenias are caused by the abnormal LGL cells infiltrating and disrupting the normal function of the bone marrow, where blood cells are produced.

There are two main types of large granular lymphocytic leukemia: T-cell LGL leukemia and natural killer (NK)-cell LGL leukemia. The T-cell type is more common and tends to have a better prognosis compared to the NK-cell type.

Symptoms of LGL leukemia can vary but may include fatigue, recurrent infections, easy bruising or bleeding, and enlarged lymph nodes. The diagnosis typically involves a combination of blood tests, bone marrow aspiration and biopsy, and sometimes immunophenotyping to identify the specific type of LGL cells involved. Treatment options may include chemotherapy, immunosuppressive therapy, or targeted therapies, depending on the individual case and the patient's overall health.

A reticulocyte count is a laboratory test that measures the percentage of reticulocytes in the peripheral blood. Reticulocytes are immature red blood cells produced in the bone marrow and released into the bloodstream. They contain residual ribosomal RNA, which gives them a reticular or net-like appearance under a microscope when stained with certain dyes.

The reticulocyte count is often used as an indicator of the rate of red blood cell production in the bone marrow. A higher than normal reticulocyte count may indicate an increased production of red blood cells, which can be seen in conditions such as hemolysis, blood loss, or response to treatment of anemia. A lower than normal reticulocyte count may suggest a decreased production of red blood cells, which can be seen in conditions such as bone marrow suppression, aplastic anemia, or vitamin deficiencies.

The reticulocyte count is usually expressed as a percentage of the total number of red blood cells, but it can also be reported as an absolute reticulocyte count (the actual number of reticulocytes per microliter of blood). The normal range for the reticulocyte count varies depending on the laboratory and the population studied.

A bone marrow examination is a medical procedure in which a sample of bone marrow, the spongy tissue inside bones where blood cells are produced, is removed and examined. This test is used to diagnose or monitor various conditions affecting blood cell production, such as infections, leukemia, anemia, and other disorders of the bone marrow.

The sample is typically taken from the hipbone (iliac crest) or breastbone (sternum) using a special needle. The procedure may be done under local anesthesia or with sedation to minimize discomfort. Once the sample is obtained, it is examined under a microscope for the presence of abnormal cells, changes in cell size and shape, and other characteristics that can help diagnose specific conditions. Various stains, cultures, and other tests may also be performed on the sample to provide additional information.

Bone marrow examination is an important diagnostic tool in hematology and oncology, as it allows for a detailed assessment of blood cell production and can help guide treatment decisions for patients with various blood disorders.

Hemolytic anemia, autoimmune is a type of anemia characterized by the premature destruction of red blood cells (RBCs) in which the immune system mistakenly attacks and destroys its own RBCs. This occurs when the body produces autoantibodies that bind to the surface of RBCs, leading to their rupture (hemolysis). The symptoms may include fatigue, weakness, shortness of breath, and dark colored urine. The diagnosis is made through blood tests that measure the number and size of RBCs, reticulocyte count, and the presence of autoantibodies. Treatment typically involves suppressing the immune system with medications such as corticosteroids or immunosuppressive drugs, and sometimes removal of the spleen (splenectomy) may be necessary.

Hematinics are a class of medications and dietary supplements that are used to enhance the production of red blood cells or hemoglobin in the body. They typically contain iron, vitamin B12, folic acid, or other nutrients that are essential for the synthesis of hemoglobin and the formation of red blood cells.

Iron is a critical component of hematinics because it plays a central role in the production of hemoglobin, which is the protein in red blood cells that carries oxygen throughout the body. Vitamin B12 and folic acid are also important nutrients for red blood cell production, as they help to regulate the growth and division of red blood cells in the bone marrow.

Hematinics are often prescribed to treat anemia, which is a condition characterized by a low red blood cell count or abnormally low levels of hemoglobin in the blood. Anemia can be caused by a variety of factors, including nutritional deficiencies, chronic diseases, and inherited genetic disorders.

Examples of hematinics include ferrous sulfate (an iron supplement), cyanocobalamin (vitamin B12), and folic acid. These medications are available in various forms, such as tablets, capsules, and liquids, and can be taken orally or by injection. It is important to follow the dosage instructions carefully and to inform your healthcare provider of any other medications you are taking, as hematinics can interact with certain drugs and may cause side effects.

Plasmapheresis is a medical procedure where the liquid portion of the blood (plasma) is separated from the blood cells. The plasma, which may contain harmful substances such as antibodies or toxins, is then removed and replaced with fresh plasma or a plasma substitute. The remaining blood cells are mixed with the new plasma and returned to the body. This process is also known as therapeutic plasma exchange (TPE). It's used to treat various medical conditions including certain autoimmune diseases, poisonings, and neurological disorders.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Erythema infectiosum is a viral infection commonly known as "fifth disease." It is caused by the human parvovirus B19 and primarily affects children. The characteristic symptom of erythema infectiosum is a distinctive red rash on the cheeks, which gives the appearance of having been slapped, hence one of its other names, "slapped cheek syndrome." After a few days, the rash may spread to the arms, legs, and trunk, often in a lacy or net-like pattern. The rash is usually not itchy or painful.

In addition to the rash, people with erythema infectiosum may experience mild flu-like symptoms such as fever, headache, and fatigue. Some individuals may also develop joint pain and swelling, particularly adolescents and adults. In most cases, erythema infectiosum is a self-limiting illness that resolves within one to three weeks without specific treatment. However, the rash may come and go for several weeks, especially when exposed to sunlight, heat, or emotional stress.

Erythema infectiosum is usually spread through respiratory droplets when an infected person coughs or sneezes. It can also be transmitted through blood transfusions and from mother to fetus during pregnancy. While most cases of erythema infectiosum are mild, the infection can cause more severe complications in people with weakened immune systems, sickle cell disease, or chronic hemolytic anemia. Pregnant women who contract erythema infectiosum may have a higher risk of miscarriage, stillbirth, or premature delivery, especially during the first half of pregnancy.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

Lymphocytosis is a medical term that refers to an abnormal increase in the number of lymphocytes (a type of white blood cell) in the peripheral blood. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (μL) of blood in adults. Lymphocytosis is typically defined as a lymphocyte count greater than 4,800 cells/μL in adults or higher than age-specific normal values in children.

There are various causes of lymphocytosis, including viral infections (such as mononucleosis), bacterial infections, tuberculosis, fungal infections, parasitic infections, autoimmune disorders, allergies, and certain cancers like chronic lymphocytic leukemia or lymphoma. It is essential to investigate the underlying cause of lymphocytosis through a thorough clinical evaluation, medical history, physical examination, and appropriate diagnostic tests, such as blood tests, imaging studies, or biopsies.

It's important to note that an isolated episode of mild lymphocytosis is often not clinically significant and may resolve on its own without any specific treatment. However, persistent or severe lymphocytosis requires further evaluation and management based on the underlying cause.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Agglutinins are antibodies that cause the particles (such as red blood cells, bacteria, or viruses) to clump together. They recognize and bind to specific antigens on the surface of these particles, forming a bridge between them and causing them to agglutinate or clump. Agglutinins are an important part of the immune system's response to infection and help to eliminate pathogens from the body.

There are two main types of agglutinins:

1. Naturally occurring agglutinins: These are present in the blood serum of most individuals, even before exposure to an antigen. They can agglutinate some bacteria and red blood cells without prior sensitization. For example, anti-A and anti-B agglutinins are naturally occurring antibodies found in people with different blood groups (A, B, AB, or O).
2. Immune agglutinins: These are produced by the immune system after exposure to an antigen. They develop as part of the adaptive immune response and target specific antigens that the body has encountered before. Immunization with vaccines often leads to the production of immune agglutinins, which can provide protection against future infections.

Agglutination reactions are widely used in laboratory tests for various diagnostic purposes, such as blood typing, detecting bacterial or viral infections, and monitoring immune responses.

Cyclosporine is a medication that belongs to a class of drugs called immunosuppressants. It is primarily used to prevent the rejection of transplanted organs, such as kidneys, livers, and hearts. Cyclosporine works by suppressing the activity of the immune system, which helps to reduce the risk of the body attacking the transplanted organ.

In addition to its use in organ transplantation, cyclosporine may also be used to treat certain autoimmune diseases, such as rheumatoid arthritis and psoriasis. It does this by suppressing the overactive immune response that contributes to these conditions.

Cyclosporine is available in capsule, oral solution, and injectable forms. Common side effects of the medication include kidney problems, high blood pressure, tremors, headache, and nausea. Long-term use of cyclosporine can also increase the risk of certain types of cancer and infections.

It is important to note that cyclosporine should only be used under the close supervision of a healthcare provider, as it requires regular monitoring of blood levels and kidney function.

Anemia is a medical condition characterized by a lower than normal number of red blood cells or lower than normal levels of hemoglobin in the blood. Hemoglobin is an important protein in red blood cells that carries oxygen from the lungs to the rest of the body. Anemia can cause fatigue, weakness, shortness of breath, and a pale complexion because the body's tissues are not getting enough oxygen.

Anemia can be caused by various factors, including nutritional deficiencies (such as iron, vitamin B12, or folate deficiency), blood loss, chronic diseases (such as kidney disease or rheumatoid arthritis), inherited genetic disorders (such as sickle cell anemia or thalassemia), and certain medications.

There are different types of anemia, classified based on the underlying cause, size and shape of red blood cells, and the level of hemoglobin in the blood. Treatment for anemia depends on the underlying cause and may include dietary changes, supplements, medication, or blood transfusions.

'46, XX Disorders of Sex Development' (DSD) is a medical term used to describe individuals who have typical female chromosomes (46, XX) but do not develop typical female physical characteristics. This condition is also sometimes referred to as 'Complete Androgen Insensitivity Syndrome' (CAIS).

Individuals with 46, XX DSD/CAIS have testes instead of ovaries, and they typically do not have a uterus or fallopian tubes. They usually have female external genitalia that appear normal or near-normal, but they may also have undescended testes or inguinal hernias. Because their bodies are insensitive to androgens (male hormones), they do not develop male physical characteristics such as a penis or facial hair.

Individuals with 46, XX DSD/CAIS are typically raised as females and may not become aware of their condition until puberty, when they do not menstruate or develop secondary sexual characteristics such as breasts. Treatment for this condition typically involves surgery to remove the undescended testes and hormone replacement therapy to promote the development of secondary sexual characteristics.

It's important to note that individuals with 46, XX DSD/CAIS can live healthy and fulfilling lives, but they may face unique challenges related to their gender identity, sexuality, and fertility. It is essential to provide these individuals with comprehensive medical care, emotional support, and access to resources and information to help them navigate these challenges.

Prednisolone is a synthetic glucocorticoid drug, which is a class of steroid hormones. It is commonly used in the treatment of various inflammatory and autoimmune conditions due to its potent anti-inflammatory and immunosuppressive effects. Prednisolone works by binding to specific receptors in cells, leading to changes in gene expression that reduce the production of substances involved in inflammation, such as cytokines and prostaglandins.

Prednisolone is available in various forms, including tablets, syrups, and injectable solutions. It can be used to treat a wide range of medical conditions, including asthma, rheumatoid arthritis, inflammatory bowel disease, allergies, skin conditions, and certain types of cancer.

Like other steroid medications, prednisolone can have significant side effects if used in high doses or for long periods of time. These may include weight gain, mood changes, increased risk of infections, osteoporosis, diabetes, and adrenal suppression. As a result, the use of prednisolone should be closely monitored by a healthcare professional to ensure that its benefits outweigh its risks.

Myelodysplastic syndromes (MDS) are a group of diverse bone marrow disorders characterized by dysplasia (abnormal development or maturation) of one or more types of blood cells or by ineffective hematopoiesis, resulting in cytopenias (lower than normal levels of one or more types of blood cells). MDS can be classified into various subtypes based on the number and type of cytopenias, the degree of dysplasia, the presence of ring sideroblasts, and cytogenetic abnormalities.

The condition primarily affects older adults, with a median age at diagnosis of around 70 years. MDS can evolve into acute myeloid leukemia (AML) in approximately 30-40% of cases. The pathophysiology of MDS involves genetic mutations and chromosomal abnormalities that lead to impaired differentiation and increased apoptosis of hematopoietic stem and progenitor cells, ultimately resulting in cytopenias and an increased risk of developing AML.

The diagnosis of MDS typically requires a bone marrow aspiration and biopsy, along with cytogenetic and molecular analyses to identify specific genetic mutations and chromosomal abnormalities. Treatment options for MDS depend on the subtype, severity of cytopenias, and individual patient factors. These may include supportive care measures, such as transfusions and growth factor therapy, or more aggressive treatments, such as chemotherapy and stem cell transplantation.

Leukemia, lymphoid is a type of cancer that affects the lymphoid cells, which are a vital part of the body's immune system. It is characterized by the uncontrolled production of abnormal white blood cells (leukocytes or WBCs) in the bone marrow, specifically the lymphocytes. These abnormal lymphocytes accumulate and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are two main types of lymphoid leukemia: acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Acute lymphoblastic leukemia progresses rapidly, while chronic lymphocytic leukemia has a slower onset and progression.

Symptoms of lymphoid leukemia may include fatigue, frequent infections, easy bruising or bleeding, weight loss, swollen lymph nodes, and bone pain. Treatment options depend on the type, stage, and individual patient factors but often involve chemotherapy, radiation therapy, targeted therapy, immunotherapy, or stem cell transplantation.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Monoclonal murine-derived antibodies are a type of laboratory-produced antibody that is identical in structure, having been derived from a single clone of cells. These antibodies are created using mouse cells and are therefore composed entirely of mouse immune proteins. They are designed to bind specifically to a particular target protein or antigen, making them useful tools for research, diagnostic testing, and therapeutic applications.

Monoclonal antibodies offer several advantages over polyclonal antibodies (which are derived from multiple clones of cells and can recognize multiple epitopes on an antigen). Monoclonal antibodies have a consistent and uniform structure, making them more reliable for research and diagnostic purposes. They also have higher specificity and affinity for their target antigens, allowing for more sensitive detection and measurement.

However, there are some limitations to using monoclonal murine-derived antibodies in therapeutic applications. Because they are composed entirely of mouse proteins, they can elicit an immune response in humans, leading to the production of human anti-mouse antibodies (HAMA) that can neutralize their effectiveness. To overcome this limitation, researchers have developed chimeric and humanized monoclonal antibodies that incorporate human protein sequences, reducing the risk of an immune response.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Prednisone is a synthetic glucocorticoid, which is a type of corticosteroid hormone. It is primarily used to reduce inflammation in various conditions such as asthma, allergies, arthritis, and autoimmune disorders. Prednisone works by mimicking the effects of natural hormones produced by the adrenal glands, suppressing the immune system's response and reducing the release of substances that cause inflammation.

It is available in oral tablet form and is typically prescribed to be taken at specific times during the day, depending on the condition being treated. Common side effects of prednisone include increased appetite, weight gain, mood changes, insomnia, and easy bruising. Long-term use or high doses can lead to more serious side effects such as osteoporosis, diabetes, cataracts, and increased susceptibility to infections.

Healthcare providers closely monitor patients taking prednisone for extended periods to minimize the risk of adverse effects. It is essential to follow the prescribed dosage regimen and not discontinue the medication abruptly without medical supervision, as this can lead to withdrawal symptoms or a rebound of the underlying condition.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Remission induction is a treatment approach in medicine, particularly in the field of oncology and hematology. It refers to the initial phase of therapy aimed at reducing or eliminating the signs and symptoms of active disease, such as cancer or autoimmune disorders. The primary goal of remission induction is to achieve a complete response (disappearance of all detectable signs of the disease) or a partial response (a decrease in the measurable extent of the disease). This phase of treatment is often intensive and may involve the use of multiple drugs or therapies, including chemotherapy, immunotherapy, or targeted therapy. After remission induction, patients may receive additional treatments to maintain the remission and prevent relapse, known as consolidation or maintenance therapy.

Feline Leukemia Virus (FeLV) is a retrovirus that primarily infects cats, causing a variety of diseases and disorders. It is the causative agent of feline leukemia, a name given to a syndrome characterized by a variety of symptoms such as lymphoma (cancer of the lymphatic system), anemia, immunosuppression, and reproductive disorders. FeLV is typically transmitted through close contact with infected cats, such as through saliva, nasal secretions, urine, and milk. It can also be spread through shared litter boxes and feeding dishes.

FeLV infects cells of the immune system, leading to a weakened immune response and making the cat more susceptible to other infections. The virus can also integrate its genetic material into the host's DNA, potentially causing cancerous changes in infected cells. FeLV is a significant health concern for cats, particularly those that are exposed to outdoor environments or come into contact with other cats. Vaccination and regular veterinary care can help protect cats from this virus.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Agammaglobulinemia is a medical condition characterized by a severe deficiency or complete absence of gamma globulins (a type of antibodies) in the blood. This deficiency results from a lack of functional B cells, which are a type of white blood cell that produces antibodies to help fight off infections.

There are two main types of agammaglobulinemia: X-linked agammaglobulinemia (XLA) and autosomal recessive agammaglobulinemia (ARA). XLA is caused by mutations in the BTK gene and primarily affects males, while ARA is caused by mutations in other genes and can affect both males and females.

People with agammaglobulinemia are at increased risk for recurrent bacterial infections, particularly respiratory tract infections such as pneumonia and sinusitis. They may also be more susceptible to certain viral and parasitic infections. Treatment typically involves replacement therapy with intravenous immunoglobulin (IVIG) to provide the patient with functional antibodies.

An erythrocyte, also known as a red blood cell, is a type of cell that circulates in the blood and is responsible for transporting oxygen throughout the body. The erythrocyte membrane refers to the thin, flexible barrier that surrounds the erythrocyte and helps to maintain its shape and stability.

The erythrocyte membrane is composed of a lipid bilayer, which contains various proteins and carbohydrates. These components help to regulate the movement of molecules into and out of the erythrocyte, as well as provide structural support and protection for the cell.

The main lipids found in the erythrocyte membrane are phospholipids and cholesterol, which are arranged in a bilayer structure with the hydrophilic (water-loving) heads facing outward and the hydrophobic (water-fearing) tails facing inward. This arrangement helps to maintain the integrity of the membrane and prevent the leakage of cellular components.

The proteins found in the erythrocyte membrane include integral proteins, which span the entire width of the membrane, and peripheral proteins, which are attached to the inner or outer surface of the membrane. These proteins play a variety of roles, such as transporting molecules across the membrane, maintaining the shape of the erythrocyte, and interacting with other cells and proteins in the body.

The carbohydrates found in the erythrocyte membrane are attached to the outer surface of the membrane and help to identify the cell as part of the body's own immune system. They also play a role in cell-cell recognition and adhesion.

Overall, the erythrocyte membrane is a complex and dynamic structure that plays a critical role in maintaining the function and integrity of red blood cells.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Erythrocyte aging, also known as red cell aging, is the natural process of changes and senescence that occur in red blood cells (erythrocytes) over time. In humans, mature erythrocytes are devoid of nuclei and organelles, and have a lifespan of approximately 120 days.

During aging, several biochemical and structural modifications take place in the erythrocyte, including:

1. Loss of membrane phospholipids and proteins, leading to increased rigidity and decreased deformability.
2. Oxidative damage to hemoglobin, resulting in the formation of methemoglobin and heinz bodies.
3. Accumulation of denatured proteins and aggregates, which can impair cellular functions.
4. Changes in the cytoskeleton, affecting the shape and stability of the erythrocyte.
5. Increased expression of surface markers, such as Band 3 and CD47, that signal the spleen to remove aged erythrocytes from circulation.

The spleen plays a crucial role in removing senescent erythrocytes by recognizing and phagocytosing those with altered membrane composition or increased expression of surface markers. This process helps maintain the overall health and functionality of the circulatory system.

Müllerian ducts are a pair of embryonic structures found in female mammals, including humans. They give rise to the female reproductive system during fetal development. In females, the Müllerian ducts develop into the fallopian tubes, uterus, cervix, and upper part of the vagina.

In males, the regression of Müllerian ducts is induced by a hormone called anti-Müllerian hormone (AMH), produced by the developing testes. In the absence of AMH or if it fails to function properly, the Müllerian ducts may persist and lead to conditions known as persistent Müllerian duct syndrome (PMDS) or Müllerian remnants in males.

In summary, Müllerian ducts are essential structures for female reproductive system development, and their regression is crucial for male reproductive organ formation.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Abnormal erythrocytes refer to red blood cells that have an abnormal shape, size, or other characteristics. This can include various types of abnormalities such as:

1. Anisocytosis: Variation in the size of erythrocytes.
2. Poikilocytosis: Variation in the shape of erythrocytes, including but not limited to teardrop-shaped cells (dacrocytes), crescent-shaped cells (sickle cells), and spherical cells (spherocytes).
3. Anemia: A decrease in the total number of erythrocytes or a reduction in hemoglobin concentration, which can result from various underlying conditions such as iron deficiency, chronic disease, or blood loss.
4. Hemoglobinopathies: Abnormalities in the structure or function of hemoglobin, the protein responsible for carrying oxygen in erythrocytes, such as sickle cell anemia and thalassemia.
5. Inclusion bodies: Abnormal structures within erythrocytes, such as Heinz bodies (denatured hemoglobin) or Howell-Jolly bodies (nuclear remnants).

These abnormalities can be detected through a complete blood count (CBC) and peripheral blood smear examination. The presence of abnormal erythrocytes may indicate an underlying medical condition, and further evaluation is often necessary to determine the cause and appropriate treatment.

Pure red cell aplasia (PRCA) or erythroblastopenia refers to a type of aplastic anemia affecting the precursors to red blood ... Association of pure red cell aplasia with T-cell large granular lymphocyte leukemia is well recognized, especially in China. ... genetic red cell aplasia) Aplastic anemia (aplasia affecting other bone marrow cells as well) Kaznelson P (1922). "Zur ... The term "hereditary pure red cell aplasia" has been used to refer to Diamond-Blackfan anemia. PRCA is considered an autoimmune ...
Pure red cell aplasia (PRCA) is an uncommon disorder in which maturation arrest occurs in the formation of erythrocytes. ... encoded search term (Pure Red Cell Aplasia) and Pure Red Cell Aplasia What to Read Next on Medscape ... T-cell large granular lymphocytic leukemia and pure red cell aplasia in a patient with type I autoimmune polyendocrinopathy: ... Pure Red Cell Aplasia. Updated: Dec 06, 2022 * Author: Srikanth Nagalla, MD, MS, FACP; Chief Editor: Emmanuel C Besa, MD more ...
Pure red cell aplasia. Br J Haematol. 2000;111:1010-22. DOIPubMedGoogle Scholar ... Isoniazid induced pure red cell aplasia. Iran J Allergy Asthma Immunol. 2003;17:93-5. ... Loulergue P, Mir O, Dhote R. Pure Red Blood Cell Aplasia and Isoniazid Use. Emerging Infectious Diseases. 2007;13(9):1427. doi: ... Loulergue, P., Mir, O., & Dhote, R. (2007). Pure Red Blood Cell Aplasia and Isoniazid Use. Emerging Infectious Diseases, 13(9 ...
Thymoma associated with hypogammaglobulinaemia and pure red cell aplasia Juan Briones1, Mirentxu Iruretagoyena2, Héctor ... T CD4 cells [4, 5]; and (3) autoimmunity. Studies on paraneoplastic syndromes such as pure red cell aplasia with thymoma show ... Kuo T and Shih LY (2001) Histologic types of thymoma associated with pure red cell aplasia: a study of five cases including a ... Chen-Sung L, Yuan-Bin Y and Han-Shui H (2009) Pure red cell aplasia and hypogammaglobulinemia in a patient with thymoma J Chin ...
Thymoma associated with hypogammaglobulinaemia and pure red cell aplasia Juan Briones1, Mirentxu Iruretagoyena2, Héctor ... T CD4 cells [4, 5]; and (3) autoimmunity. Studies on paraneoplastic syndromes such as pure red cell aplasia with thymoma show ... Kuo T and Shih LY (2001) Histologic types of thymoma associated with pure red cell aplasia: a study of five cases including a ... Chen-Sung L, Yuan-Bin Y and Han-Shui H (2009) Pure red cell aplasia and hypogammaglobulinemia in a patient with thymoma J Chin ...
... incomplete or defective development of red blood cells) was injected in normal mice to determine possible inhibition of red ... Serum of five children ages 1 to 19 months with congenital pure red cell aplasia ( ... Serum of five children ages 1 to 19 months with congenital pure red cell aplasia (incomplete or defective development of red ... Lack of Erythropoietic Inhibitory Effect of Serum From Patients with Congenital Pure Red Cell Aplasia ...
Pure red cell aplasia (PRCA) that begins after treatment with Epogen or other erythropoietin protein drugs [see WARNINGS AND ... Pure Red Cell Aplasia. Cases of PRCA and of severe anemia, with or without other cytopenias that arise following the ... Have been told by your healthcare provider that you have or have ever had a type of anemia called Pure Red Cell Aplasia (PRCA) ... is a man-made form of a protein that helps your body produce red blood cells used to treat anemia (a lack of red blood cells in ...
Pure red cell aplasia (PRCA) is a rare hematologic complication of ICI therapy in metastatic melanoma with significant ... Immune Checkpoint Inhibitor-Induced Pure Red Cell Aplasia: A Review of 2 Cases in Metastatic Melanoma Challenging differential ...
Pure Red Blood Cell Aplasia - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - Medical ... Etiology of Pure Red Blood Cell Aplasia Pure red blood cell (RBC) aplasia is most often due to an inappropriate immune response ... Symptoms of Pure Red Blood Cell Aplasia Symptoms of pure RBC aplasia are generally mild and relate to the degree of the anemia ... Congenital pure red cell aplasia (Diamond-Blackfan anemia Perinatal Anemia Anemia is a reduction in red cell mass or hemoglobin ...
Pure Red Cell Aplasia (PRCA). Cases of pure red cell aplasia (PRCA) have been reported in patients treated with mycophenolate ... Cases of pure red cell aplasia (PRCA) and hypogammaglobulinemia have been reported in patients treated with mycophenolate ... red blood cells. Red blood cells carry oxygen to your body tissues. You have a higher chance of getting severe anemia when your ... low white blood cell count. •. low red blood cell count. These are not all of the possible side effects of mycophenolate ...
TABLE 4-1 CLASSIFICATION OF PURE ERYTHROID APLASIA *. Fetal Red Cell Aplasia (non-immune hydrops fetalis, parvovirus 19 ... "Pure Red Cell Aplasia." Williams Manual of Hematology, 8e Lichtman MA, Kaushansky K, Kipps TJ, Prchal JT, Levi MM. Lichtman M.A ... Pure Red Cell Aplasia. In: Lichtman MA, Kaushansky K, Kipps TJ, Prchal JT, Levi MM. Lichtman M.A., & Kaushansky K, & Kipps T.J ... Pure red cell aplasia. Lichtman MA, Kaushansky K, Kipps TJ, Prchal JT, Levi MM. Lichtman M.A., & Kaushansky K, & Kipps T.J., & ...
title = "Pure red cell aplasia - A rare disease with multiple causes",. abstract = "Pure red cell aplasia (PRCA) is a ... Pure red cell aplasia - A rare disease with multiple causes. M. Djaldetti*, A. Blay, M. Bergman, H. Salman, H. Bessler. * ... Pure red cell aplasia - A rare disease with multiple causes. / Djaldetti, M.; Blay, A.; Bergman, M. et al. In: Biomedicine and ... Djaldetti M, Blay A, Bergman M, Salman H, Bessler H. Pure red cell aplasia - A rare disease with multiple causes. Biomedicine ...
Although the association of pure red cell aplasia (PRCA) and aplastic anemia with thymoma is well-known, acquired ...
Pure hereditary red cell aplasia. Additional Information & Resources. Genetic Testing Information. *Genetic Testing Registry: ... The resulting shortage of red blood cells (anemia. ) usually becomes apparent during the first year of life. Symptoms of anemia ... In Diamond-Blackfan anemia, the bone marrow malfunctions and fails to make enough red blood cells, which carry oxygen to the ... regulating cell division. , and controlling the self-destruction of cells (apoptosis. ). ...
... pure red cell aplasia ... B cells; BENTA: B cell expansion with NF-κB and T cell anergy; ... natural killer cells; Nl: normal; sd: syndrome; SLE: systemic lupus erythematous disease; Tc: T cells; TCR: T cell receptor; XL ... T cells; TCR: T cell receptor; TREC: T cell receptor excision circle; XL: X-linked transmission ... T cells; TCR: T cell receptor; Treg: regulatory T cells; XL: X-linked transmission ...
Open the PDF for Pure Red Cell Aplasia, Toxic Dermatitis and Lymphadenopathy in a Patient Taking Diphenylhydantoin in another ... Pure Red Cell Aplasia, Toxic Dermatitis and Lymphadenopathy in a Patient Taking Diphenylhydantoin ... View article titled, Pure Red Cell Aplasia, Toxic Dermatitis and Lymphadenopathy in a Patient Taking Diphenylhydantoin ... View article titled, Clinical Differential Diagnosis of Hairy-Cell Leukaemia Open the PDF for Clinical Differential Diagnosis ...
... pure red cell aplasia; Diamond-Blackfan anemia. ... whereby entry of sodium into cells and loss of intracellular ...
Response: pure red blood cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of ... Dive into the research topics of Response: pure red blood cell aplasia: association with large granular lymphocyte leukemia ... Powered by Pure, Scopus & Elsevier Fingerprint Engine™ © 2023 Elsevier B.V We use cookies to help provide and enhance our ...
... pure red cell aplasia; Diamond-Blackfan anemia. ... whereby entry of sodium into cells and loss of intracellular ...
Pure red cell aplasia is an autoimmune process in which antibodies are produced against erythropoietin. This causes a ... All the other choices are associated with a normocytic, normochromic anemia.,i, Pure red cell aplasia,/i, is an autoimmune ... All the other choices are associated with a normocytic, normochromic anemia.,i, Pure red cell aplasia,/i, is an autoimmune ... Pure red cell aplasia,/p,\n ,/li,\n ,li,,p class=first-para,Youre evaluating a patient with anemia. During the course of ...
Rational Management Approach To Pure Red Cell Aplasia Dec 2017 Haematologica pure red cell aplasia (PRCA) ...
Pure red cell aplasia (PRCA): This medication may cause PRCA, a condition where the bone marrow does not make red blood cells. ... signs of anemia (low red blood cells; e.g., dizziness, pale skin, unusual tiredness or weakness, shortness of breath) ... It does this by preventing the formation of a certain type of white blood cell (called lymphocytes) that would normally attack ... Infection: This medication reduces the number of cells that fight infection in the body. Take extra measures to prevent ...
Sickle-cell disorders [not covered for sickle-cell ulcers]. D61.01. Constitutional (pure) red blood cell aplasia [Blackfan- ... To avoid red cell sensitization and transfusion reactions, complete red cell typing should be performed, and blood should be ... They assessed 66 children, aged 6 to 10 years, for total white blood cell counts, specific lymphocyte (T-cell and B-cell) ... the center of the bones where blood cells are made) does not make enough red blood cells. One of the treatments for DBA is ...
Pure red cell aplasia--a rare disease with multiple causes. Djaldetti M, Blay A, Bergman M, Salman H, Bessler H. Djaldetti M, ... Modulators affecting the immune dialogue between human immune and colon cancer cells. Djaldetti M, Bessler H. Djaldetti M, et ... Ultrastructure of human colostral cells. Straussberg R, Hart J, Alexandrova S, Sirota L, Djaldetti M, Bessler H. Straussberg R ...
It does this by preventing the formation of a certain type of white blood cell (called lymphocytes) that would normally attack ... Pure red cell aplasia (PRCA): This medication may cause PRCA, a condition where the bone marrow does not make red blood cells. ... signs of anemia (low red blood cells; e.g., dizziness, pale skin, unusual tiredness or weakness, shortness of breath) ... It does this by preventing the formation of a certain type of white blood cell (called lymphocytes) that would normally attack ...
Pure Red Cell Aplasia * Purpura * Recurrent Thrombosis * Red Blood Cell Disorders * Secondary Polycythemia ...
Pure Red Cell Aplasia *Aplastic Anemia. Section IV. Leukocytes. *Neutrophil Structure and Biochemistry *Neutrophil Distribution ... Mast Cell Cancer *B-cell Tumors *Plasma Cell Tumors *Hodgkins Lymphoma *T cell Lymphoproliferative Diseases *Histiocytic ... Red Blood Cell Transfusion in the Dog and Cat *Transfusion of Plasma Products *Platelet and Granulocyte Transfusion *Blood ... Cell Cycle Control in Hematopoietic Cells *Epidemiology of Hematopoietic Neoplasia *Genetics of Hematopoietic Neoplasia * ...
Pure red cell aplasia in association with malignant histiocytosis *Takashi Hanada. *Hideshi Yamamura ... Systemic giant-cell histiocytosis.Report of a case and a review of the adult form of letterer-siwe disease ... Leukemic phase of malignant histiocytosis (arguments in favour of the histiomonocytic origin of the abnormal cells) ...
... anemia refers to an absolute reduction of the total number of circulating red blood cells (RBCs). For practical purposes, ... anemia is considered when one or more of the following are decreased: hemoglobin, hematocrit, or red blood cell (RBC) count. ... Disadvantages of this agent include concerns about possibility of pure red cell aplasia (PRCA). In addition, in 2009, the FDA ... Instead, the FDA recommended using the lowest dose of ESA sufficient to reduce the need for red blood cell transfusions for ...

No FAQ available that match "red cell aplasia pure"

No images available that match "red cell aplasia pure"