A disorder characterized by episodes of vigorous and often violent motor activity during REM sleep (SLEEP, REM). The affected individual may inflict self injury or harm others, and is difficult to awaken from this condition. Episodes are usually followed by a vivid recollection of a dream that is consistent with the aggressive behavior. This condition primarily affects adult males. (From Adams et al., Principles of Neurology, 6th ed, p393)
A stage of sleep characterized by rapid movements of the eye and low voltage fast pattern EEG. It is usually associated with dreaming.
Parasomnias characterized by behavioral abnormalities that occur during the transition between wakefulness and sleep (or between sleep and wakefulness).
An anticonvulsant used for several types of seizures, including myotonic or atonic seizures, photosensitive epilepsy, and absence seizures, although tolerance may develop. It is seldom effective in generalized tonic-clonic or partial seizures. The mechanism of action appears to involve the enhancement of GAMMA-AMINOBUTYRIC ACID receptor responses.
A series of thoughts, images, or emotions occurring during sleep which are dissociated from the usual stream of consciousness of the waking state.
Simultaneous and continuous monitoring of several parameters during sleep to study normal and abnormal sleep. The study includes monitoring of brain waves, to assess sleep stages, and other physiological variables such as breathing, eye movements, and blood oxygen levels which exhibit a disrupted pattern with sleep disturbances.
A condition characterized by recurrent episodes of daytime somnolence and lapses in consciousness (microsomnias) that may be associated with automatic behaviors and AMNESIA. CATAPLEXY; SLEEP PARALYSIS, and hypnagogic HALLUCINATIONS frequently accompany narcolepsy. The pathophysiology of this disorder includes sleep-onset rapid eye movement (REM) sleep, which normally follows stage III or IV sleep. (From Neurology 1998 Feb;50(2 Suppl 1):S2-S7)
A syndrome complex composed of three conditions which represent clinical variants of the same disease process: STRIATONIGRAL DEGENERATION; SHY-DRAGER SYNDROME; and the sporadic form of OLIVOPONTOCEREBELLAR ATROPHIES. Clinical features include autonomic, cerebellar, and basal ganglia dysfunction. Pathologic examination reveals atrophy of the basal ganglia, cerebellum, pons, and medulla, with prominent loss of autonomic neurons in the brain stem and spinal cord. (From Adams et al., Principles of Neurology, 6th ed, p1076; Baillieres Clin Neurol 1997 Apr;6(1):187-204; Med Clin North Am 1999 Mar;83(2):381-92)
A neurodegenerative disease characterized by dementia, mild parkinsonism, and fluctuations in attention and alertness. The neuropsychiatric manifestations tend to precede the onset of bradykinesia, MUSCLE RIGIDITY, and other extrapyramidal signs. DELUSIONS and visual HALLUCINATIONS are relatively frequent in this condition. Histologic examination reveals LEWY BODIES in the CEREBRAL CORTEX and BRAIN STEM. SENILE PLAQUES and other pathologic features characteristic of ALZHEIMER DISEASE may also be present. (From Neurology 1997;48:376-380; Neurology 1996;47:1113-1124)
Polyketides of up to a few dozen carbons in length, formed by chain extension of multiple PROPIONATES and oxygenated to form tetrahydrofuran and lactone rings along the length of the chain. They are found in ANNONACEAE and other PLANTS. Related compounds cyclize to MACROLIDES.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
Abnormal behavioral or physiologic events that are associated with REM sleep, including REM SLEEP BEHAVIOR DISORDER.
A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility.
The storing or preserving of video signals for television to be played back later via a transmitter or receiver. Recordings may be made on magnetic tape or discs (VIDEODISC RECORDING).
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Movements or behaviors associated with sleep, sleep stages, or partial arousals from sleep that may impair sleep maintenance. Parasomnias are generally divided into four groups: arousal disorders, sleep-wake transition disorders, parasomnias of REM sleep, and nonspecific parasomnias. (From Thorpy, Sleep Disorders Medicine, 1994, p191)
Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures.
A condition characterized by transient weakness or paralysis of somatic musculature triggered by an emotional stimulus or physical exertion. Cataplexy is frequently associated with NARCOLEPSY. During a cataplectic attack, there is a marked reduction in muscle tone similar to the normal physiologic hypotonia that accompanies rapid eye movement sleep (SLEEP, REM). (From Adams et al., Principles of Neurology, 6th ed, p396)
Includes two similar disorders: oppositional defiant disorder and CONDUCT DISORDERS. Symptoms occurring in children with these disorders include: defiance of authority figures, angry outbursts, and other antisocial behaviors.
Loss of or impaired ability to smell. This may be caused by OLFACTORY NERVE DISEASES; PARANASAL SINUS DISEASES; viral RESPIRATORY TRACT INFECTIONS; CRANIOCEREBRAL TRAUMA; SMOKING; and other conditions.
Conditions characterized by disturbances of usual sleep patterns or behaviors. Sleep disorders may be divided into three major categories: DYSSOMNIAS (i.e. disorders characterized by insomnia or hypersomnia), PARASOMNIAS (abnormal sleep behaviors), and sleep disorders secondary to medical or psychiatric disorders. (From Thorpy, Sleep Disorders Medicine, 1994, p187)
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Periods of sleep manifested by changes in EEG activity and certain behavioral correlates; includes Stage 1: sleep onset, drowsy sleep; Stage 2: light sleep; Stages 3 and 4: delta sleep, light sleep, deep sleep, telencephalic sleep.
The physical activity of a human or an animal as a behavioral phenomenon.
The name of two islands of the West Indies, separated by a narrow channel. Their capital is Basse-Terre. They were discovered by Columbus in 1493, occupied by the French in 1635, held by the British at various times between 1759 and 1813, transferred to Sweden in 1813, and restored to France in 1816. Its status was changed from colony to a French overseas department in 1946. Columbus named it in honor of the monastery of Santa Maria de Guadalupe in Spain. (From Webster's New Geographical Dictionary, 1988, p470 & Room, Brewer's Dictionary of Names, 1992, p221)
Diseases of the parasympathetic or sympathetic divisions of the AUTONOMIC NERVOUS SYSTEM; which has components located in the CENTRAL NERVOUS SYSTEM and PERIPHERAL NERVOUS SYSTEM. Autonomic dysfunction may be associated with HYPOTHALAMIC DISEASES; BRAIN STEM disorders; SPINAL CORD DISEASES; and PERIPHERAL NERVOUS SYSTEM DISEASES. Manifestations include impairments of vegetative functions including the maintenance of BLOOD PRESSURE; HEART RATE; pupil function; SWEATING; REPRODUCTIVE AND URINARY PHYSIOLOGY; and DIGESTION.
Dyssomnias (i.e., insomnias or hypersomnias) associated with dysfunction of internal sleep mechanisms or secondary to a sleep-related medical disorder (e.g., sleep apnea, post-traumatic sleep disorders, etc.). (From Thorpy, Sleep Disorders Medicine, 1994, p187)
Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain.
A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli.
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
Methods and procedures for recording EYE MOVEMENTS.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.

Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. (1/116)

We describe demographic, clinical, laboratory and aetiological findings in 93 consecutive patients with rapid eye movement (REM) sleep behaviour disorder (RBD), which consists of excessive motor activity during dreaming in association with loss of skeletal muscle atonia of REM sleep. The patients were seen at the Mayo Sleep Disorders Center between January 1, 1991 and July 31, 1995. Eighty-one patients (87%) were male. The mean age of RBD onset was 60.9 years (range 36-84 years) and the mean age at presentation was 64.4 years (37-85 years). Thirty-two per cent of patients had injured themselves and 64% had assaulted their spouses. Subdural haematomas occurred in two patients. Dream content was altered and involved defence of the sleeper against attack in 87%. The frequency of nocturnal events decreased with time in seven untreated patients with neurodegenerative disease. MRI or CT head scans were performed in 56% of patients. Although four scans showed brainstem pathology, all of these patients had apparently unrelated neurodegenerative diseases known to be associated with RBD. Neurological disorders were present in 57% of patients; Parkinson's disease, dementia without parkinsonism and multiple system atrophy accounted for all but 14% of these. RBD developed before parkinsonism in 52% of the patients with Parkinson's disease. Five of the 14 patients with multiple system atrophy were female, and thus the strong male predominance in RBD is less evident in this condition. Psychiatric disorders, drug use or drug withdrawal were rarely causally related to RBD. Clonazepam treatment of RBD was completely or partially successful in 87% of the patients who used the drug. We conclude that RBD is a well-defined condition and that descriptions from different centres are fairly consistent. It is commonest in elderly males and may result in serious morbidity to patients and bed partners. There is a strong relationship to neurodegenerative disease, especially Parkinson's disease, multiple system atrophy and dementia, and neurologists should explore the possibility of RBD in patients with these conditions. RBD symptoms may be the first manifestations of these disorders and careful follow-up is needed. Neuroimaging is unlikely to reveal underlying disorders not suspected clinically. We confirm the effectiveness of clonazepam, but note that attention to the safety of the bed environment may be sufficient for patients with contraindications to the drug.  (+info)

Rapid eye movement sleep behaviour disorder, depression and cognitive impairment. Case study. (2/116)

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder is a relatively new diagnostic category. It has never before been associated with a treatable depressive condition. AIMS: To report on a 74-year-old man with a history of depression and REM sleep behaviour disorder, associated with mild cognitive impairment. METHOD: Assessment using brain CT, MRI, PET, electroencephalography, neuropsychological testing and nocturnal polysomnography. RESULTS: Depression was treated with sertraline. Sleep laboratory studies supported a diagnosis of REM sleep behaviour disorder, which was treated with clonazepam. Sleep apnoea, revealed later, was treated with nasal continuous positive airways pressure. Brain MRI showed mild atrophy, but neuropsychological testing indicated no progressive cognitive deterioration. CONCLUSIONS: This case draws attention to REM sleep behaviour disorder and its potential interaction with depression and cognitive impairment, producing symptoms which can be mistaken for early dementia. The diagnosis of REM sleep behaviour disorder is easily missed, and it requires careful history-taking and sleep investigation in all suspected sufferers. Associated neurological, sleep and psychiatric conditions (including depression and cognitive impairment) may confound the diagnosis.  (+info)

Interobserver reliability of ICSD-R criteria for REM sleep behaviour disorder. (3/116)

We estimated the interobserver reliability (IR) of the diagnosis of rapid eye movement (REM) Sleep Behaviour Disorder (RBD) among trained neurologists, with the application of International Classification of Sleep Disorders Revised (ICSD-R), by means of videotaped interviews of people with motor sleep behaviour disorders of different nature. IR of clinical judgement for the diagnosis of RBD was "substantial" (Kappa 0.65); nevertheless, some criteria ('limb or body movement associated with dream mentation', criterion B, and 'sleep behaviours (that) disrupt sleep continuity', criterion C3) showed a 'moderate' IR, resulting from the intrinsic limitations of the patient report and terminological ambiguity. Further clarification of terminology of the ICSD-R criteria would be useful to improve the reliability.  (+info)

Falling asleep. (4/116)

We describe a 74-year-old woman who presented with a history of falling from bed in association with vivid dreams and physical violence towards her spouse. A clinical diagnosis of rapid eye movement sleep behaviour disorder was made and complete resolution of her symptoms was achieved with first line treatment.  (+info)

Combination of 'idiopathic' REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. (5/116)

REM sleep behaviour disorder (RBD) and olfactory dysfunction are common and very early features of alpha-synucleinopathies, in particular Parkinson's disease. To investigate the hypothesis that these two clinical features in combination are an indicator of evolving alpha-synucleinopathy, olfactory function was assessed in RBD. We studied 30 patients (18 male, 12 female; mean age 48 +/- 14 years, range 19-78 years) with clinical (idiopathic, n = 6; symptomatic, n = 13, mostly associated with narcolepsy) or subclinical (n = 11, associated with narcolepsy) RBD according to standard criteria and 30 age- and gender-matched healthy control subjects using standardized 'Sniffin' Sticks'. RBD patients had a significantly higher olfactory threshold (P = 0.0001), lower discrimination score (P = 0.003), and lower identification score (P = 0.001). Compared with normative data, 97% of the RBD patients had a pathologically increased olfactory threshold, 63% an impaired odour discrimination score, and 63% a decreased identification score. On neurological examination, signs of parkinsonism were newly found in five patients with clinical RBD (not associated with narcolepsy), who usually had a long history of 'idiopathic' RBD. Four of the five patients fulfilled the UK Brain Bank criteria for the clinical diagnosis of Parkinson's disease. The underlying nigrostriatal degeneration of clinical Parkinson's disease was confirmed by I-123-FP-CIT SPECT in one patient and early nigrostriatal degeneration was identified by SPECT in a further two patients with 'idiopathic' clinical RBD out of 11 RBD patients who agreed to undergo SPECT studies. Our study shows that RBD patients have a profound impairment of olfactory function. Five patients with clinical RBD not associated with narcolepsy had clinical or imaging signs of nigrostriatal degeneration. This new clinical finding correlates with the neuropathological staging of Parkinson's disease (stages 1-3) as proposed by Braak. In stage 1, the anterior olfactory nucleus or the olfactory bulb is affected (along with the dorsal motor nucleus of the glossopharyngeal and vagal nerves). In stage 2, additional lesions consistently remain confined to the medulla oblongata and pontine tegmentum, which are critical areas for RBD. Midbrain lesions are found only in stage 3, in particular degeneration of dopaminergic neurons in the substantia nigra pars compacta. Thus, 'idiopathic' RBD patients with olfactory impairment might present with stage 2 preclinical alpha-synucleinopathy. Since narcoleptic patients are not known to have an increased risk of developing parkinsonism, the pathophysiology and clinical relevance of hyposmia in RBD/narcolepsy patients requires further research.  (+info)

Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer's disease with injury to pedunculopontine cholinergic neurons. (6/116)

Impaired rapid eye movement sleep (REMS) is commonly observed in Alzheimer's disease, suggesting injury to mesopontine cholinergic neurons. We sought to determine whether abnormal beta-amyloid peptides impair REMS and injure mesopontine cholinergic neurons in transgenic (hAPP695.SWE) mice (Tg2576) that model brain amyloid pathologies. Tg2576 mice and wild-type littermates were studied at 2, 6, and 12 months by using sleep recordings, contextual fear conditioning, and immunohistochemistry. At 2 months of age, REMS was indistinguishable by genotype but was reduced in Tg2576 mice at 6 and 12 months. Choline acetyltransferase-positive neurons in the pedunculopontine tegmentum of Tg2576 mice at 2 months evidenced activated caspase-3 immunoreactivity, and at 6 and 12 months the numbers of pedunculopontine tegmentum choline acetyltransferase-positive neurons were reduced in the Tg2576 mice. Other cholinergic groups involved in REMS were unperturbed. At 12 months, Tg2576 mice demonstrated increased 3-nitrotyrosine immunoreactivity in cholinergic projection sites but not in cholinergic soma. We have identified a population of selectively compromised cholinergic neurons in young Tg2576 mice that manifest early onset REMS impairment. The differential vulnerability of these cholinergic neurons to Abeta injury provides an invaluable tool with which to understand mechanisms of sleep/wake perturbations in Alzheimer's disease.  (+info)

Visual hallucinations in posterior cortical atrophy. (7/116)

BACKGROUND: Visual hallucinations have been reported to occur in up to 25% of patients who meet the criteria for posterior cortical atrophy (PCA). It is not known, however, whether patients who meet the criteria for PCA and have hallucinations are different from those who meet the criteria and do not have hallucinations. OBJECTIVE: To compare the clinical and imaging features of patients with PCA with and without well-formed visual hallucinations. DESIGN: Case-control study. SETTING: Tertiary care medical center. PATIENTS: Fifty-nine patients fulfilling the criteria for PCA were retrospectively identified and divided into 2 groups based on the presence (n = 13) or absence (n = 46) of visual hallucinations. MAIN OUTCOME MEASURES: Statistically significant clinical differences and imaging differences using voxel-based morphometry between the 2 groups. RESULTS: In patients with PCA and hallucinations, parkinsonism and rapid eye movement sleep behavior disorder occurred more frequently, as did myoclonic jerks (P<.001 for both). Voxel-based morphometry showed greater atrophy in a network of structures, including the primary visual cortex, lentiform nuclei, thalamus, basal forebrain, and midbrain, in patients with hallucinations. CONCLUSIONS: Hallucinations in patients with PCA are associated with parkinsonism, rapid eye movement sleep behavior disorder, and myoclonic jerks. The voxel-based morphometry results suggest that hallucinations in PCA cannot be exclusively attributed to atrophy of the posterior association cortices and may involve a circuit of thalamocortical connections.  (+info)

Olfactory dysfunction in patients with narcolepsy with and without REM sleep behaviour disorder. (8/116)

Patients with idiopathic rapid eye movement sleep behaviour disorder (RBD) frequently develop Parkinson's disease and the majority present with hyposmia, which is a potential preclinical non-motor sign of Parkinson's disease. Accordingly, it has been proposed that the clinical symptoms of hyposmia and RBD in combination have to be considered as very early symptoms of Parkinson's disease. Since not only patients with idiopathic RBD but also patients in whom RBD is associated with narcolepsy present with an olfactory dysfunction we investigated if hyposmia in RBD patients with concomitant narcolepsy is RBD specific or if narcolepsy per se is associated with olfactory dysfunction. We studied olfactory function in 20 narcoleptic patients each with RBD (9 male and 11 female; mean age 45.4 +/- 14.0 years, range 20-75 years) and without associated RBD (8 male and 12 female; mean age 44.4 +/- 13.40 years, range 20-70 years) and 40 age- and gender-matched healthy control subjects using standardized 'Sniffin' Sticks'. Both, narcoleptics with (Narc/+RBD) and without RBD (Narc/-RBD) had a significantly higher olfactory threshold (Narc/+RBD, P = 0.0001; Narc/-RBD, P = 0.0001), lower discrimination scores (P = 0.001; P = 0.014) and lower identification scores (P = 0.057; P = 0.003) than controls. There were no symptoms or signs for early parkinsonism in both patient groups. Our results show for the first time that narcolepsy per se is associated with olfactory dysfunction. In contrast to patients with idiopathic RBD, hyposmia in patients with RBD associated with narcolepsy is unlikely to be a predictor for developing parkinsonism.  (+info)

REM Sleep Behavior Disorder (RBD) is a parasomnia, which is a disorder that involves undesirable experiences or abnormal behaviors during sleep. Specifically, RBD is a type of rapid eye movement (REM) sleep parasomnia where the muscle atonia (lack of muscle tone) that normally occurs during REM sleep is absent or incomplete, allowing for the emergence of motor behaviors and vivid dreaming. These dreams can be quite intense and may result in the individual physically acting out their dreams, leading to potential harm for themselves or their bed partner. RBD can occur in isolation or as a symptom of another neurological condition.

REM sleep, or Rapid Eye Movement sleep, is a stage of sleep characterized by rapid eye movements, low muscle tone, and active brain activity. It is one of the two main types of sleep along with non-REM sleep and is marked by vivid dreaming, increased brain metabolism, and altered brain wave patterns. REM sleep is often referred to as "paradoxical sleep" because of the seemingly contradictory nature of its characteristics - an active brain in a state of relaxation. It is thought to play a role in memory consolidation, learning, and mood regulation. A typical night's sleep cycle includes several episodes of REM sleep, with each episode becoming longer as the night progresses.

Sleep-Wake Transition Disorders are a group of sleep disorders characterized by irregularities in the transition between sleep and wakefulness. These disorders include conditions such as:

1. Narcolepsy: A neurological disorder that affects the control of sleep and wakefulness, causing excessive daytime sleepiness and sudden attacks of sleep.
2. Idiopathic Hypersomnia: A sleep disorder characterized by excessive daytime sleepiness despite adequate or prolonged nighttime sleep.
3. Kleine-Levin Syndrome: A rare sleep disorder characterized by recurring episodes of excessive sleepiness and eating.
4. Insomnia with Non-REM Sleep Disorder: A condition in which a person has difficulty falling asleep or staying asleep, accompanied by abnormal behaviors during non-rapid eye movement (NREM) sleep.
5. Sleepwalking (Somnambulism): A behavior disorder that originates during deep sleep and results in walking or performing other complex behaviors while asleep.
6. Night Terrors (Pavor Nocturnus): A parasomnia characterized by extreme fear, agitation, and arousal during sleep, typically occurring during deep non-REM sleep.
7. Sleep Paralysis: A temporary inability to move or speak while falling asleep or waking up, caused by the failure of the brain to transition properly between sleep and wakefulness.
8. REM Sleep Behavior Disorder (RBD): A disorder characterized by the acting out of dreams during REM sleep, which can result in injury to the sleeper or their bed partner.

These disorders can have significant impacts on a person's quality of life, safety, and overall health. Proper diagnosis and treatment are essential for managing these conditions effectively.

Clonazepam is a medication that belongs to a class of drugs called benzodiazepines. It is primarily used to treat seizure disorders, panic attacks, and anxiety. Clonazepam works by increasing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter in the brain that has a calming effect on the nervous system.

The medication comes in tablet or orally disintegrating tablet form and is typically taken two to three times per day. Common side effects of clonazepam include dizziness, drowsiness, and coordination problems. It can also cause memory problems, mental confusion, and depression.

Like all benzodiazepines, clonazepam has the potential for abuse and addiction, so it should be used with caution and only under the supervision of a healthcare provider. It is important to follow the dosage instructions carefully and not to stop taking the medication suddenly, as this can lead to withdrawal symptoms.

It's important to note that while I strive to provide accurate information, this definition is intended to be a general overview and should not replace professional medical advice. Always consult with a healthcare provider for medical advice.

Dreams are a series of thoughts, images, and sensations occurring in a person's mind during sleep. They can be vivid or vague, positive or negative, and may involve memories, emotions, and fears. The scientific study of dreams is called oneirology. While the exact purpose and function of dreams remain a topic of debate among researchers, some theories suggest that dreaming may help with memory consolidation, problem-solving, emotional processing, and learning.

Dreams usually occur during the rapid eye movement (REM) stage of sleep, although they can also happen in non-REM stages. They are typically associated with complex brain activities, involving areas such as the amygdala, hippocampus, and the neocortex. The content of dreams can be influenced by various factors, including a person's thoughts, experiences, emotions, physical state, and environmental conditions.

It is important to note that dreaming is a natural and universal human experience, and understanding dreams can provide insights into our cognitive processes, emotional well-being, and mental health.

Polysomnography (PSG) is a comprehensive sleep study that monitors various body functions during sleep, including brain activity, eye movement, muscle tone, heart rate, respirations, and oxygen levels. It is typically conducted in a sleep laboratory under the supervision of a trained technologist. The data collected during PSG is used to diagnose and manage various sleep disorders such as sleep-related breathing disorders (e.g., sleep apnea), movement disorders (e.g., periodic limb movement disorder), parasomnias, and narcolepsy.

The study usually involves the attachment of electrodes to different parts of the body, such as the scalp, face, chest, and legs, to record electrical signals from the brain, eye movements, muscle activity, and heartbeats. Additionally, sensors may be placed on or near the nose and mouth to measure airflow, and a belt may be worn around the chest and abdomen to monitor breathing efforts. Oxygen levels are also monitored through a sensor attached to the finger or ear.

Polysomnography is often recommended when a sleep disorder is suspected based on symptoms or medical history, and other diagnostic tests have been inconclusive. The results of the study can help guide treatment decisions and improve overall sleep health.

Narcolepsy is a chronic neurological disorder that affects the control of sleep and wakefulness. It's characterized by excessive daytime sleepiness (EDS), where people experience sudden, uncontrollable episodes of falling asleep during the day. These "sleep attacks" can occur at any time - while working, talking, eating, or even driving.

In addition to EDS, narcolepsy often includes cataplexy, a condition that causes loss of muscle tone, leading to weakness and sometimes collapse, often triggered by strong emotions like laughter or surprise. Other common symptoms are sleep paralysis (a temporary inability to move or speak while falling asleep or waking up), vivid hallucinations during the transitions between sleep and wakefulness, and fragmented nighttime sleep.

The exact cause of narcolepsy is not fully understood, but it's believed to involve genetic and environmental factors, as well as problems with certain neurotransmitters in the brain, such as hypocretin/orexin, which regulate sleep-wake cycles. Narcolepsy can significantly impact a person's quality of life, making it essential to seek medical attention for proper diagnosis and management.

Multiple System Atrophy (MSA) is a rare, progressive neurodegenerative disorder that affects multiple systems in the body. It is characterized by a combination of symptoms including Parkinsonism (such as stiffness, slowness of movement, and tremors), cerebellar ataxia (lack of muscle coordination), autonomic dysfunction (problems with the autonomic nervous system which controls involuntary actions like heart rate, blood pressure, sweating, and digestion), and pyramidal signs (abnormalities in the corticospinal tracts that control voluntary movements).

The disorder is caused by the degeneration of nerve cells in various parts of the brain and spinal cord, leading to a loss of function in these areas. The exact cause of MSA is unknown, but it is thought to involve a combination of genetic and environmental factors. There is currently no cure for MSA, and treatment is focused on managing symptoms and improving quality of life.

Lewy body disease, also known as dementia with Lewy bodies, is a type of progressive degenerative dementia that affects thinking, behavior, and movement. It's named after Dr. Friedrich Lewy, the scientist who discovered the abnormal protein deposits, called Lewy bodies, that are characteristic of this disease.

Lewy bodies are made up of a protein called alpha-synuclein and are found in the brain cells of individuals with Lewy body disease. These abnormal protein deposits are also found in people with Parkinson's disease, but they are more widespread in Lewy body disease, affecting multiple areas of the brain.

The symptoms of Lewy body disease can vary from person to person, but they often include:

* Cognitive decline, such as memory loss, confusion, and difficulty with problem-solving
* Visual hallucinations and delusions
* Parkinsonian symptoms, such as stiffness, tremors, and difficulty walking or moving
* Fluctuations in alertness and attention
* REM sleep behavior disorder, where a person acts out their dreams during sleep

Lewy body disease is a progressive condition, which means that the symptoms get worse over time. Currently, there is no cure for Lewy body disease, but medications can help manage some of the symptoms.

Acetogenins are a type of compound that are produced by certain plants, particularly those in the family Annonaceae. They are known for their potential medicinal properties, including anti-cancer, anti-malarial, and insecticidal activities. Acetogenins have a complex structure, consisting of a long chain of carbon atoms with various functional groups attached. They work by inhibiting the function of certain enzymes that are necessary for the survival of cancer cells and other target organisms.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

REM sleep parasomnias are a category of disorders that involve abnormal behaviors, experiences, or physiological events occurring during REM (rapid eye movement) sleep, a stage of sleep characterized by rapid eye movements, low muscle tone, and vivid dreaming. These parasomnias include:

1. REM sleep behavior disorder (RBD): A condition where individuals act out their dreams during REM sleep, often resulting in complex motor behaviors, vocalizations, or even injuries to themselves or their bed partners.
2. Nightmare disorder: Recurrent episodes of extended, extremely vivid, and frightening dreams that cause significant distress and impairment upon awakening.
3. Sleep paralysis: A temporary inability to move or speak while falling asleep or waking up, often accompanied by hallucinations or a feeling of suffocation.
4. Catathrenia (nocturnal groaning): A rare parasomnia characterized by involuntary groaning or moaning during expiration (breathing out) in REM sleep.
5. Impaired sleep-related penile erections: The inability to achieve or maintain an erection during REM sleep, which can be a symptom of various medical conditions or medications.
6. Sleep-related painful erections: Spontaneous, often severe penile pain during REM sleep that can disrupt sleep and cause significant distress.

REM sleep parasomnias are thought to result from dysregulation in the brain mechanisms controlling REM sleep, leading to the intrusion of REM sleep phenomena into wakefulness or the intensification of REM-related physiological processes.

Sleep is a complex physiological process characterized by altered consciousness, relatively inhibited sensory activity, reduced voluntary muscle activity, and decreased interaction with the environment. It's typically associated with specific stages that can be identified through electroencephalography (EEG) patterns. These stages include rapid eye movement (REM) sleep, associated with dreaming, and non-rapid eye movement (NREM) sleep, which is further divided into three stages.

Sleep serves a variety of functions, including restoration and strengthening of the immune system, support for growth and development in children and adolescents, consolidation of memory, learning, and emotional regulation. The lack of sufficient sleep or poor quality sleep can lead to significant health problems, such as obesity, diabetes, cardiovascular disease, and even cognitive decline.

The American Academy of Sleep Medicine (AASM) defines sleep as "a period of daily recurring natural rest during which consciousness is suspended and metabolic processes are reduced." However, it's important to note that the exact mechanisms and purposes of sleep are still being researched and debated among scientists.

I apologize, but "video recording" is not a term that has a specific medical definition. It generally refers to the process of capturing and storing moving visual images on electronic media, which is used in various medical fields for different purposes such as surgical training, telemedicine consultations, or monitoring patient conditions. However, there is no unique medical meaning associated with this term.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

Parasomnias are a category of sleep disorders that involve unwanted physical events or experiences that occur while falling asleep, sleeping, or waking up. These behaviors can include abnormal movements, talk, emotions, perceptions, or dreams. Parasomnias can be caused by various factors such as stress, alcohol, certain medications, or underlying medical conditions. Some examples of parasomnias are sleepwalking, night terrors, sleep talking, and REM sleep behavior disorder. These disorders can disrupt sleep and cause distress to the individual and their bed partner.

Neurodegenerative diseases are a group of disorders characterized by progressive and persistent loss of neuronal structure and function, often leading to cognitive decline, functional impairment, and ultimately death. These conditions are associated with the accumulation of abnormal protein aggregates, mitochondrial dysfunction, oxidative stress, chronic inflammation, and genetic mutations in the brain. Examples of neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis (ALS), and Spinal Muscular Atrophy (SMA). The underlying causes and mechanisms of these diseases are not fully understood, and there is currently no cure for most neurodegenerative disorders. Treatment typically focuses on managing symptoms and slowing disease progression.

Cataplexy is a medical condition characterized by sudden and temporary loss of muscle tone or strength, typically triggered by strong emotions such as laughter, anger, or surprise. This can result in symptoms ranging from a slight slackening of the muscles to complete collapse. Cataplexy is often associated with narcolepsy, which is a neurological disorder that affects sleep-wake cycles. It's important to note that cataplexy is different from syncope (fainting), as it specifically involves muscle weakness rather than loss of consciousness.

Attention Deficit and Disruptive Behavior Disorders (ADDBDs) are a group of childhood-onset disorders characterized by persistent patterns of behavior that are difficult for the individual to control. These disorders include Attention Deficit Hyperactivity Disorder (ADHD), Oppositional Defiant Disorder (ODD), and Conduct Disorder (CD).

Attention Deficit Hyperactivity Disorder (ADHD) is characterized by symptoms of inattention, hyperactivity, and impulsivity that interfere with daily functioning. These symptoms must be present for at least six months and occur in multiple settings, such as school, home, and social situations.

Oppositional Defiant Disorder (ODD) is characterized by a pattern of negative, hostile, and defiant behavior towards authority figures, which includes arguing with adults, losing temper, actively defying rules, and deliberately annoying others. These symptoms must be present for at least six months and occur more frequently than in other children of the same age and developmental level.

Conduct Disorder (CD) is characterized by a repetitive and persistent pattern of behavior that violates the rights of others or major age-appropriate societal norms and rules. These behaviors include aggression towards people and animals, destruction of property, deceitfulness or theft, and serious violation of rules.

It's important to note that these disorders can co-occur with other mental health conditions, such as mood disorders, anxiety disorders, and learning disabilities. Proper diagnosis and treatment are essential for managing the symptoms and improving the individual's quality of life.

Olfaction disorders, also known as smell disorders, refer to conditions that affect the ability to detect or interpret odors. These disorders can be categorized into two main types:

1. Anosmia: This is a complete loss of the sense of smell. It can be caused by various factors such as nasal polyps, sinus infections, head injuries, and degenerative diseases like Alzheimer's and Parkinson's.
2. Hyposmia: This is a reduced ability to detect odors. Like anosmia, it can also be caused by similar factors including aging and exposure to certain chemicals.

Other olfaction disorders include parosmia, which is a distortion of smell where individuals may perceive a smell as being different from its original scent, and phantosmia, which is the perception of a smell that isn't actually present.

Sleep disorders are a group of conditions that affect the ability to sleep well on a regular basis. They can include problems with falling asleep, staying asleep, or waking up too early in the morning. These disorders can be caused by various factors such as stress, anxiety, depression, medical conditions, or substance abuse.

The American Academy of Sleep Medicine (AASM) recognizes over 80 distinct sleep disorders, which are categorized into the following major groups:

1. Insomnia - difficulty falling asleep or staying asleep.
2. Sleep-related breathing disorders - abnormal breathing during sleep such as obstructive sleep apnea.
3. Central disorders of hypersomnolence - excessive daytime sleepiness, including narcolepsy.
4. Circadian rhythm sleep-wake disorders - disruption of the internal body clock that regulates the sleep-wake cycle.
5. Parasomnias - abnormal behaviors during sleep such as sleepwalking or night terrors.
6. Sleep-related movement disorders - repetitive movements during sleep such as restless legs syndrome.
7. Isolated symptoms and normal variants - brief and occasional symptoms that do not warrant a specific diagnosis.

Sleep disorders can have significant impacts on an individual's quality of life, productivity, and overall health. If you suspect that you may have a sleep disorder, it is recommended to consult with a healthcare professional or a sleep specialist for proper evaluation and treatment.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Sleep stages are distinct patterns of brain activity that occur during sleep, as measured by an electroencephalogram (EEG). They are part of the sleep cycle and are used to describe the different types of sleep that humans go through during a normal night's rest. The sleep cycle includes several repeating stages:

1. Stage 1 (N1): This is the lightest stage of sleep, where you transition from wakefulness to sleep. During this stage, muscle activity and brain waves begin to slow down.
2. Stage 2 (N2): In this stage, your heart rate slows, body temperature decreases, and eye movements stop. Brain wave activity becomes slower, with occasional bursts of electrical activity called sleep spindles.
3. Stage 3 (N3): Also known as deep non-REM sleep, this stage is characterized by slow delta waves. It is during this stage that the body undergoes restorative processes such as tissue repair, growth, and immune function enhancement.
4. REM (Rapid Eye Movement) sleep: This is the stage where dreaming typically occurs. Your eyes move rapidly beneath closed eyelids, heart rate and respiration become irregular, and brain wave activity increases to levels similar to wakefulness. REM sleep is important for memory consolidation and learning.

The sleep cycle progresses through these stages multiple times during the night, with REM sleep periods becoming longer towards morning. Understanding sleep stages is crucial in diagnosing and treating various sleep disorders.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

I'm sorry for any confusion, but "Guadeloupe" is not a medical term. It is actually an overseas region and department of France, located in the Caribbean Sea. Guadeloupe is an archipelago consisting of several islands, with a total land area of approximately 1,700 square kilometers (656 square miles) and a population of around 400,000 people.

If you have any questions related to medical terminology or health-related topics, I would be happy to try and help answer them for you.

The Autonomic Nervous System (ANS) is a part of the nervous system that controls involuntary actions, such as heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal. It consists of two subdivisions: the sympathetic and parasympathetic nervous systems, which generally have opposing effects and maintain homeostasis in the body.

Autonomic Nervous System Diseases (also known as Autonomic Disorders or Autonomic Neuropathies) refer to a group of conditions that affect the functioning of the autonomic nervous system. These diseases can cause damage to the nerves that control automatic functions, leading to various symptoms and complications.

Autonomic Nervous System Diseases can be classified into two main categories:

1. Primary Autonomic Nervous System Disorders: These are conditions that primarily affect the autonomic nervous system without any underlying cause. Examples include:
* Pure Autonomic Failure (PAF): A rare disorder characterized by progressive loss of autonomic nerve function, leading to symptoms such as orthostatic hypotension, urinary retention, and constipation.
* Multiple System Atrophy (MSA): A degenerative neurological disorder that affects both the autonomic nervous system and movement coordination. Symptoms may include orthostatic hypotension, urinary incontinence, sexual dysfunction, and Parkinsonian features like stiffness and slowness of movements.
* Autonomic Neuropathy associated with Parkinson's Disease: Some individuals with Parkinson's disease develop autonomic symptoms such as orthostatic hypotension, constipation, and urinary dysfunction due to the degeneration of autonomic nerves.
2. Secondary Autonomic Nervous System Disorders: These are conditions that affect the autonomic nervous system as a result of an underlying cause or disease. Examples include:
* Diabetic Autonomic Neuropathy: A complication of diabetes mellitus that affects the autonomic nerves, leading to symptoms such as orthostatic hypotension, gastroparesis (delayed gastric emptying), and sexual dysfunction.
* Autoimmune-mediated Autonomic Neuropathies: Conditions like Guillain-Barré syndrome or autoimmune autonomic ganglionopathy can cause autonomic symptoms due to the immune system attacking the autonomic nerves.
* Infectious Autonomic Neuropathies: Certain infections, such as HIV or Lyme disease, can lead to autonomic dysfunction as a result of nerve damage.
* Toxin-induced Autonomic Neuropathy: Exposure to certain toxins, like heavy metals or organophosphate pesticides, can cause autonomic neuropathy.

Autonomic nervous system disorders can significantly impact a person's quality of life and daily functioning. Proper diagnosis and management are crucial for improving symptoms and preventing complications. Treatment options may include lifestyle modifications, medications, and in some cases, devices or surgical interventions.

Sleep disorders, intrinsic, refer to a group of sleep disorders that are caused by underlying medical conditions within an individual's body. These disorders originate from internal physiological or psychological factors and can significantly impact the quality, duration, and timing of sleep. The most common types of intrinsic sleep disorders include insomnia, sleep-related breathing disorders (such as sleep apnea), central hypersomnias (like narcolepsy), circadian rhythm sleep-wake disorders, and parasomnias (including nightmares and sleepwalking).

Intrinsic sleep disorders can lead to various negative consequences, such as excessive daytime sleepiness, impaired cognitive function, reduced quality of life, and increased risk of accidents or injuries. Proper diagnosis and management of these disorders typically involve addressing the underlying medical condition and implementing appropriate treatment strategies, which may include lifestyle modifications, pharmacological interventions, or medical devices.

Electroencephalography (EEG) is a medical procedure that records electrical activity in the brain. It uses small, metal discs called electrodes, which are attached to the scalp with paste or a specialized cap. These electrodes detect tiny electrical charges that result from the activity of brain cells, and the EEG machine then amplifies and records these signals.

EEG is used to diagnose various conditions related to the brain, such as seizures, sleep disorders, head injuries, infections, and degenerative diseases like Alzheimer's or Parkinson's. It can also be used during surgery to monitor brain activity and ensure that surgical procedures do not interfere with vital functions.

EEG is a safe and non-invasive procedure that typically takes about 30 minutes to an hour to complete, although longer recordings may be necessary in some cases. Patients are usually asked to relax and remain still during the test, as movement can affect the quality of the recording.

Wakefulness is a state of consciousness in which an individual is alert and aware of their surroundings. It is characterized by the ability to perceive, process, and respond to stimuli in a purposeful manner. In a medical context, wakefulness is often assessed using measures such as the electroencephalogram (EEG) to evaluate brain activity patterns associated with consciousness.

Wakefulness is regulated by several interconnected neural networks that promote arousal and attention. These networks include the ascending reticular activating system (ARAS), which consists of a group of neurons located in the brainstem that project to the thalamus and cerebral cortex, as well as other regions involved in regulating arousal and attention, such as the basal forebrain and hypothalamus.

Disorders of wakefulness can result from various underlying conditions, including neurological disorders, sleep disorders, medication side effects, or other medical conditions that affect brain function. Examples of such disorders include narcolepsy, insomnia, hypersomnia, and various forms of encephalopathy or brain injury.

A neurological examination is a series of tests used to evaluate the functioning of the nervous system, including both the central nervous system (the brain and spinal cord) and peripheral nervous system (the nerves that extend from the brain and spinal cord to the rest of the body). It is typically performed by a healthcare professional such as a neurologist or a primary care physician with specialized training in neurology.

During a neurological examination, the healthcare provider will assess various aspects of neurological function, including:

1. Mental status: This involves evaluating a person's level of consciousness, orientation, memory, and cognitive abilities.
2. Cranial nerves: There are 12 cranial nerves that control functions such as vision, hearing, smell, taste, and movement of the face and neck. The healthcare provider will test each of these nerves to ensure they are functioning properly.
3. Motor function: This involves assessing muscle strength, tone, coordination, and reflexes. The healthcare provider may ask the person to perform certain movements or tasks to evaluate these functions.
4. Sensory function: The healthcare provider will test a person's ability to feel different types of sensations, such as touch, pain, temperature, vibration, and proprioception (the sense of where your body is in space).
5. Coordination and balance: The healthcare provider may assess a person's ability to perform coordinated movements, such as touching their finger to their nose or walking heel-to-toe.
6. Reflexes: The healthcare provider will test various reflexes throughout the body using a reflex hammer.

The results of a neurological examination can help healthcare providers diagnose and monitor conditions that affect the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, or peripheral neuropathy.

Eye movement measurements, also known as oculometry, refer to the measurement and analysis of eye movements. This can include assessing the direction, speed, range, and patterns of eye movement. These measurements are often used in research and clinical settings to understand various aspects of vision, perception, and cognition. They can be used to diagnose and monitor conditions that affect eye movement, such as strabismus (crossed eyes), amblyopia (lazy eye), or neurological disorders. Additionally, eye movement measurements are also used in areas such as human-computer interaction, marketing research, and virtual reality to understand how individuals interact with their environment.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

No FAQ available that match "rem sleep behavior disorder"

No images available that match "rem sleep behavior disorder"