Organic compounds that contain 1,2-diphenylethylene as a functional group.
A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells.
A plant genus of the family FABACEAE. Members contain STILBENES.
An inhibitor of anion conductance including band 3-mediated anion transport.
A plant genus of the family POLYGONACEAE that is an ingredient of Shou-Wu-Pian, a Chinese herbal preparation (DRUGS, CHINESE HERBAL). The common name of black bindweed also refers to TAMUS or Fallopia (use POLYGONACEAE).
A plant genus in the family VITACEAE, order Rhamnales, subclass Rosidae. It is a woody vine cultivated worldwide. It is best known for grapes, the edible fruit and used to make WINE and raisins.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
The mulberry plant family of the order Urticales, subclass Hamamelidae, class Magnoliopsida. They have milky latex and small, petalless male or female flowers.
A plant genus of the family Gnetaceae, order Gnetales class Gnetopsida, division GNETOPHYTA. Members contain STILBENES and benzylisoquinoline alkaloids.
A synthetic estrogen that has been used as a hormonal antineoplastic agent.
A plant species of the family FABACEAE that yields edible seeds, the familiar peanuts, which contain protein, oil and lectins.
A plant genus of the family POLYGONACEAE. Members contain chrysophanic acid, rhein, EMODIN, and other ANTHRAQUINONES. The roots were formerly used as PURGATIVES.
A synthetic, non-steroidal estrogen structurally related to stilbestrol. It is used, usually as the cream, in the treatment of menopausal and postmenopausal symptoms.
A plant genus of the family CYPERACEAE. SESQUITERPENES are found in some of the species.
A plant species of the family POLYGONACEAE. Itadori tea is prepared from the root of this genus.
The science of the chemical composition and reactions of chemicals involved in the production, protection and use of crops and livestock. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS.
A plant genus of the family Paeoniaceae, order Dilleniales, subclass Dilleniidae, class Magnoliopsida. These perennial herbs are up to 2 m (6') tall. Leaves are alternate and are divided into three lobes, each lobe being further divided into three smaller lobes. The large flowers are symmetrical, bisexual, have 5 sepals, 5 petals (sometimes 10), and many stamens.
Eukaryotes in the group STRAMENOPILES, formerly considered FUNGI, whose exact taxonomic level is unsettled. Many consider Oomycetes (Oomycota) a phylum in the kingdom Stramenopila, or alternatively, as Pseudofungi in the phylum Heterokonta of the kingdom Chromista. They are morphologically similar to fungi but have no close phylogenetic relationship to them. Oomycetes are found in both fresh and salt water as well as in terrestrial environments. (Alexopoulos et al., Introductory Mycology, 4th ed, pp683-4). They produce flagellated, actively motile spores (zoospores) that are pathogenic to many crop plants and FISHES.
Compounds that contain a BENZENE ring fused to a furan ring.
A plant family of the order Rhamnales, subclass Rosidae, class Magnoliopsida, best known for the VITIS genus, the source of grapes.
A class of phenolic acids related to chlorogenic acid, p-coumaric acid, vanillic acid, etc., which are found in plant tissues. It is involved in plant growth regulation.
The above-ground plant without the roots.
A plant family of the order Sapindales, subclass Rosidae, class Magnoliopsida. They are resinous trees and shrubs with alternate leaves composed of many leaflets.
A plant genus of the family ORCHIDACEAE that contains dihydroayapin (COUMARINS) and phenanthraquinones.
Membrane transporters that co-transport two or more dissimilar molecules in the opposite direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.
Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.
An order of the ANGIOSPERMS, subclass Rosidae. Its members include some of the most known ornamental and edible plants of temperate zones including roses, apples, cherries, and peaches.
Hydroxycinnamic acid and its derivatives. Act as activators of the indoleacetic acid oxidizing system, thereby producing a decrease in the endogenous level of bound indoleacetic acid in plants.
Purgative anthraquinone found in several plants, especially Rhamnus frangula. It was formerly used as a laxative, but is now used mainly as tool in toxicity studies.
A group of phenyl benzopyrans named for having structures like FLAVONES.
A genus of gram negative, aerobic, rod-shaped bacteria found in soil, plants, and marine mud.
A large plant genus of the family EUPHORBIACEAE, order Euphorbiales, subclass Rosidae. They have a milky sap and a female flower consisting of a single pistil, surrounded by numerous male flowers of one stamen each. Euphorbia hirta is rarely called milkweed but that name is normally used for ASCLEPIAS.
Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
A plant genus in the family PINACEAE, order Pinales, class Pinopsida, division Coniferophyta. They are evergreen, pyramidal trees with whorled branches and thin, scaly bark. Each of the linear, spirally arranged leaves is jointed near the stem on a separate woody base.
Electroneutral chloride bicarbonate exchangers that allow the exchange of BICARBONATE IONS exchange for CHLORIDE IONS across the cellular membrane. The action of specific antiporters in this class serve important functions such as allowing the efficient exchange of bicarbonate across red blood cell membranes as they passage through capillaries and the reabsorption of bicarbonate ions by the kidney.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
A plant genus of the family VITACEAE. Cissus rufescence gum is considered comparable to TRAGACANTH.
The outer layer of the woody parts of plants.
Glucosides are glycosides that contain glucose as the sugar component, often forming part of the plant's defense mechanism and can have various pharmacological effects when extracted and used medically.
Diseases of plants.
2- or 4-Hydroxyestrogens. Substances that are physiologically active in mammals, especially in the control of gonadotropin secretion. Physiological activity can be ascribed to either an estrogenic action or interaction with the catecholaminergic system.
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis.
Proteins that cotransport sodium ions and bicarbonate ions across cellular membranes.
An anthranilic acid derivative with analgesic, anti-inflammatory, and antipyretic properties. It is used in musculoskeletal and joint disorders and administered by mouth and topically. (From Martindale, The Extra Pharmacopoeia, 30th ed, p16)
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed)
Fermented juice of fresh grapes or of other fruit or plant products used as a beverage.
A synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed)
Inorganic salts of sulfuric acid.
A large class of organic compounds having more than one PHENOL group.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.

Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick alpha7 nicotinic receptor. (1/1991)

1. We assessed the pharmacological activity of triethyl-(beta-4-stilbenoxy-ethyl) ammonium (MG624), a drug that is active on neuronal nicotinic receptors (nicotinic AChR). Experiments on the major nicotinic AChR subtypes present in chick brain, showed that it inhibits the binding of [125I]-alphaBungarotoxin (alphaBgtx) to the alpha7 subtype, and that of [3H]-epibatidine (Epi) to the alpha4beta2 subtype, with Ki values of respectively 106 nM and 84 microM. 2. MG624 also inhibited ACh elicited currents (I(ACh)) in the oocyte-expressed alpha7 and alpha4beta2 chick subtypes with half-inhibitory concentrations (IC50) of respectively 109 nM and 3.2 microM. 3. When tested on muscle-type AChR, it inhibited [125I]-alphaBgtx binding with a Ki of 32 microM and ACh elicited currents (I(ACh)) in the oocyte-expressed alpha1beta1gammadelta chick subtype with an IC50 of 2.9 microM. 4. The interaction of MG624 with the alpha7 subtype was investigated using an alpha7 homomeric mutant receptor with a threonine-for-leucine 247 substitution (L247T alpha7). MG624 did not induce any current in oocytes expressing the wild type alpha7 receptor, but did induce large currents in the oocyte-expressed L247T alpha7 receptor. The MG624 elicited current (I(MG62)) has an EC50 of 0.2 nM and a Hill coefficient nH of 1.9, and is blocked by the nicotinic receptor antagonist methyllycaconitine (MLA). 5. These binding and electrophysiological studies show that MG624 is a potent antagonist of neuronal chick alpha7 nicotinic AChR, and becomes a competitive agonist following the mutation of the highly conserved leucine residue 247 located in the M2 channel domain.  (+info)

Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. (2/1991)

Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive complex with DsbA under respiration-defective conditions. While DsbB, under normal aerobic conditions, is in the oxidized state, having two intramolecular disulfide bonds, oxidation of Cys104 and Cys130 requires the presence of Cys41-Cys44. Remarkably, the Cys41-Cys44 disulfide bond is refractory to reduction by a high concentration of dithiothreitol, unless the membrane is solubilized with a detergent. This reductant resistance requires both the respiratory function and oxygen, since Cys41-Cys44 became sensitive to the reducing agent when membrane was prepared from quinone- or heme-depleted cells or when a membrane sample was deaerated. Thus, the Cys41-Val-Leu-Cys44 motif of DsbB is kept both strongly oxidized and strongly oxidizing when DsbB is integrated into the membrane with the normal set of respiratory components.  (+info)

Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. (3/1991)

Resveratrol, a plant constituent enriched in the skin of grapes, is one of the most promising agents for the prevention of cancer. However, the mechanism of the anti-carcinogenic activity of resveratrol is not well understood. Here we offer a possible explanation of its anti-cancer effect. Resveratrol suppresses tumor promoter-induced cell transformation and markedly induces apoptosis, transactivation of p53 activity and expression of p53 protein in the same cell line and at the same dosage. Also, resveratrol-induced apoptosis occurs only in cells expressing wild-type p53 (p53+/+), but not in p53-deficient (p53-/-) cells, while there is no difference in apoptosis induction between normal lymphoblasts and sphingomyelinase-deficient cell lines. These results demonstrate for the first time that resveratrol induces apoptosis through activation of p53 activity, suggesting that its anti-tumor activity may occur through the induction of apoptosis.  (+info)

Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b. (4/1991)

The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  (+info)

Hydrodynamic properties of human erythrocyte band 3 solubilized in reduced Triton X-100. (5/1991)

The oligomeric state and function of band 3, purified by sulfhydryl affinity chromatography in reduced Triton X-100, was investigated. Size exclusion high-performance liquid chromatography showed that a homogeneous population of band 3 dimers could be purified from whole erythrocyte membranes. The elution profile of band 3 purified from membranes that had been stripped of its cytoskeleton before solubilization was a broad single peak describing a heterogeneous population of oligomers with a mean Stokes radius of 100 A. Sedimentation velocity ultracentrifugation analysis confirmed particle heterogeneity and further showed monomer/dimer/tetramer equilibrium self-association. Whether the conversion of dimer to the form described by a Stokes radius of 100 A was initiated by removal of cytoskeletal components, alkali-induced changes in band 3 conformation, or alkali-induced loss of copurifying ligands remains unclear. After incubation at 20 degrees C for 24 h, both preparations of band 3 converted to a common form characterized by a mean Stokes radius of 114 A. This form of the protein, examined by equilibrium sedimentation ultracentrifugation, is able to self-associate reversibly, and the self-association can be described by a dimer/tetramer/hexamer model, although the presence of higher oligomers cannot be discounted. The ability of the different forms of the protein to bind stilbene disulfonates revealed that the dimer had the highest inhibitor binding affinity, and the form characterized by a mean Stokes radius of 114 A to have the lowest.  (+info)

Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. (6/1991)

Resveratrol, naringenin and naringin are naturally occurring flavonoids in grapes and grapefruits. The anti-inflammatory effects of these flavonoids have been well documented, but the mechanism is poorly characterized. High concentration of NO are produced by inducible NO synthase (iNOS) in inflammation, and the prevention of the expression of iNOS may be an important anti-inflammatory mechanism. In this study, the effects of these flavonoids on the induction of NO synthase (NOS) in RAW 264.7 cells activated with bacterial lipopolysaccharide (LPS, 50 ng ml(-1)) were investigated. Resveratrol was found strongly to inhibit NO generation in activated macrophages, as measured by the amount of nitrite released into the culture medium, and resveratrol strongly reduced the amount of cytosolic iNOS protein and steady state mRNA levels. However, the inhibitory abilities of naringenin were lower, and the inhibitory abilities of naringin were almost negligible. In electrophoretic mobility shift assays, the activation of NFkappaB induced by LPS for 1 h was inhibited by resveratrol (30 microM). Furthermore, in immunoblotting analysis, cells treated with LPS plus resveratrol showed an inhibition of phosphorylation as well as degradation of IkappaBalpha, and a reduced nuclear content of NFkappaB subunits. The flavonoids may be of value for inhibiting the enhanced expression of iNOS in inflammation through down-regulation of NFkappaB binding activity.  (+info)

Genetic and pharmacological analyses of Syk function in alphaIIbbeta3 signaling in platelets. (7/1991)

Agonists induce inside-out alphaIIbbeta3 signaling resulting in fibrinogen binding and platelet aggregation. These in turn trigger outside-in signaling resulting in further platelet stimulation. Because the Syk tyrosine kinase is activated during both phases of integrin signaling, we evaluated its role in alphaIIbbeta3 function in murine platelets rendered null for Syk by gene targeting and in human platelets incubated with piceatannol, a tyrosine kinase inhibitor reportedly selective for Syk. Both Syk null murine platelets and piceatannol-treated human platelets exhibited a partial, but statistically significant defect in activation of alphaIIbbeta3 by adenine diphosphate (ADP) +/- epinephrine as assessed by fibrinogen binding. Syk null platelets adhered normally to immobilized fibrinogen, and mice with these platelets exhibited normal tail bleeding times. In contrast, piceatannol treatment of human platelets completely inhibited platelet adhesion to immobilized fibrinogen. The discrepancy in extent of integrin dysfunction between murine and human platelet models may be due to lack of specificity of piceatannol, because this compound inhibited the activity of Src and FAK as well as Syk and also reduced tyrosine phosphorylation of multiple platelet proteins. These results provide genetic evidence that Syk plays a role in alphaIIbbeta3 signaling in platelets and pharmacological evidence that, although piceatannol also inhibits alphaIIbbeta3 signaling, it does so by inhibtion of multiple protein tyrosine kinases.  (+info)

Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. (8/1991)

The potential for tumor vascular-targeting by using the tubulin destabilizing agent disodium combretastatin A-4 3-0-phosphate (CA-4-P) was assessed in a rat system. This approach aims to shut down the established tumor vasculature, leading to the development of extensive tumor cell necrosis. The early vascular effects of CA-4-P were assessed in the s.c. implanted P22 carcinosarcoma and in a range of normal tissues. Blood flow was measured by the uptake of radiolabeled iodoantipyrine, and quantitative autoradiography was used to measure spatial heterogeneity of blood flow in tumor sections. CA-4-P (100 mg/kg i.p.) caused a significant increase in mean arterial blood pressure at 1 and 6 h after treatment and a very large decrease in tumor blood flow, which-by 6 h-was reduced approximately 100-fold. The spleen was the most affected normal tissue with a 7-fold reduction in blood flow at 6 h. Calculations of vascular resistance revealed some vascular changes in the heart and kidney for which there were no significant changes in blood flow. Quantitative autoradiography showed that CA-4-P increased the spatial heterogeneity in tumor blood flow. The drug affected peripheral tumor regions less than central regions. Administration of CA-4-P (30 mg/kg) in the presence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester, potentiated the effect of CA-4-P in tumor tissue. The combination increased tumor vascular resistance 300-fold compared with less than 7-fold for any of the normal tissues. This shows that tissue production of nitric oxide protects against the damaging vascular effects of CA-4-P. Significant changes in tumor vascular resistance could also be obtained in isolated tumor perfusions using a cell-free perfusate, although the changes were much less than those observed in vivo. This shows that the action of CA-4-P includes mechanisms other than those involving red cell viscosity, intravascular coagulation, and neutrophil adhesion. The uptake of CA-4-P and combretastatin A-4 (CA-4) was more efficient in tumor than in skeletal muscle tissue and dephosphorylation of CA-4-P to CA-4 was faster in the former. These results are promising for the use of CA-4-P as a tumor vascular-targeting agent.  (+info)

Stilbenes are a type of chemical compound that consists of a 1,2-diphenylethylene backbone. They are phenolic compounds and can be found in various plants, where they play a role in the defense against pathogens and stress conditions. Some stilbenes have been studied for their potential health benefits, including their antioxidant and anti-inflammatory effects. One well-known example of a stilbene is resveratrol, which is found in the skin of grapes and in red wine.

It's important to note that while some stilbenes have been shown to have potential health benefits in laboratory studies, more research is needed to determine their safety and effectiveness in humans. It's always a good idea to talk to a healthcare provider before starting any new supplement regimen.

4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid is a chemical compound that is often used in research and scientific studies. It is a type of stilbene derivative, which is a class of compounds characterized by the presence of a central double bond flanked by two phenyl rings.

In this particular compound, one of the phenyl rings has been substituted with an acetamido group (-NH-C(=O)CH3), while the other phenyl ring has been substituted with an isothiocyanato group (-N=C=S) and two sulfonic acid groups (-SO3H).

The compound is often used as a fluorescent probe in biochemical and cellular studies, as it exhibits strong fluorescence when bound to certain proteins or other biological molecules. It can be used to study the interactions between these molecules and to investigate their structure and function.

It's important to note that this compound is not approved for medical use in humans and should only be handled by trained professionals in a controlled laboratory setting.

I'm sorry for any confusion, but "Caragana" is not a medical term or concept. It is actually the name of a genus of flowering plants in the legume family, also known as Siberian peashrubs. These plants are often used in landscaping and erosion control due to their hardiness and ability to fix nitrogen in the soil. If you have any questions related to medicine or health, I would be happy to try to help answer them for you!

'4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid' is a chemical compound that is often used in research and scientific studies. Its molecular formula is C14H10N2O6S2. This compound is a derivative of stilbene, which is a type of organic compound that consists of two phenyl rings joined by a ethylene bridge. In '4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid', the hydrogen atoms on the carbon atoms of the ethylene bridge have been replaced with isothiocyanate groups (-N=C=S), and the phenyl rings have been sulfonated (introduction of a sulfuric acid group, -SO3H) to increase its water solubility.

This compound is often used as a fluorescent probe in biochemical and cell biological studies due to its ability to form covalent bonds with primary amines, such as those found on proteins. This property allows researchers to label and track specific proteins or to measure the concentration of free primary amines in a sample.

It is important to note that '4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid' is a hazardous chemical and should be handled with care, using appropriate personal protective equipment and safety measures.

"Polygonum" is a genus of plants, also known as "knotweed," that belongs to the family Polygonaceae. It includes various species, some of which have been used in traditional medicine. However, it does not have a specific medical definition as it refers to a group of plants and not a particular medical condition or treatment. Some species of Polygonum have been studied for their potential medicinal properties, such as anti-inflammatory, antioxidant, and antimicrobial effects. But, it is essential to note that further research is required to establish their safety and efficacy in clinical settings.

"Vitis" is a genus name and it refers to a group of flowering plants in the grape family, Vitaceae. This genus includes over 70 species of grapes that are native to the Northern Hemisphere, particularly in North America and Asia. The most commonly cultivated species is "Vitis vinifera," which is the source of most of the world's table and wine grapes.

Therefore, a medical definition of 'Vitis' may not be directly applicable as it is more commonly used in botany and agriculture rather than medicine. However, some compounds derived from Vitis species have been studied for their potential medicinal properties, such as resveratrol found in the skin of red grapes, which has been investigated for its anti-inflammatory, antioxidant, and cardioprotective effects.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Moraceae is not a medical term but a botanical term that refers to a family of flowering plants, also known as the mulberry family. This family includes various trees and shrubs that are widely distributed in tropical and subtropical regions around the world. Some members of this family have economic importance, such as Mulberries (Morus spp.), Figs (Ficus carica), and Breadfruit (Artocarpus altilis).

However, in a medical context, some plants from the Moraceae family may have medicinal uses. For example:
1. Ficus carica (Fig) - The latex of the fig tree has been used traditionally for treating warts and skin diseases.
2. Morus alba (White Mulberry) - Its bark is used in traditional Chinese medicine to treat diabetes, high blood pressure, and high cholesterol.
3. Artocarpus heterophyllus (Jackfruit) - Its seeds are used in traditional Ayurvedic medicine for treating diarrhea and asthma.

It's important to note that the use of these plants as medicines should be done under the guidance of a healthcare professional, as they can interact with other medications and have potential side effects.

"Gnetum" is a botanical term that refers to a genus of plants in the family Gnetaceae. These plants are not commonly referred to as "Gnetum" in a medical context, but rather by the specific names of their edible species, such as Gnetum gnemon (called "Melinjo" in Indonesian) and Gnetum Africanum (called "Okazi" or "Ukazi" in West Africa).

The leaves, seeds, and stems of some Gnetum species are used in traditional medicine in various parts of the world. However, there is limited scientific evidence to support their medicinal uses. Therefore, it's important to consult with a healthcare professional before using any plant-based remedies for medical purposes.

Hexestrol is a synthetic, non-steroidal estrogen that was previously used in various medical treatments, including hormone replacement therapy and the treatment of certain types of cancer. It is no longer commonly used in clinical medicine due to its associated side effects and the availability of safer and more effective alternatives. Hexestrol is classified as a carcinogen and may increase the risk of certain cancers, particularly endometrial and breast cancer. It is important to note that the use of hexestrol and other synthetic estrogens should be under the supervision of a healthcare professional, and it is not recommended for self-medication.

'Arachis hypogaea' is the scientific name for the peanut plant. It is a legume crop that grows underground, which is why it is also known as a groundnut. The peanut plant produces flowers above ground, and when the flowers are pollinated, the ovary of the flower elongates and grows downwards into the soil where the peanut eventually forms and matures.

The peanut is not only an important food crop worldwide but also has various industrial uses, including the production of biodiesel, plastics, and animal feed. The plant is native to South America and was domesticated by indigenous peoples in what is now Brazil and Peru thousands of years ago. Today, peanuts are grown in many countries around the world, with China, India, and the United States being the largest producers.

In medical terms, "Rheum" is not a specific disease or condition. Instead, it is a term that was historically used to refer to a variety of disorders characterized by inflammation and pain in the musculoskeletal system, particularly in the joints. These disorders were often associated with symptoms such as stiffness, swelling, and warmth in the affected areas.

Over time, the term "rheumatic diseases" has become more commonly used to describe this group of conditions. Rheumatic diseases now encompass a wide range of disorders that affect the joints, muscles, tendons, ligaments, bones, and other connective tissues. Examples include rheumatoid arthritis, osteoarthritis, lupus, gout, and many others.

It's important to note that while "rheum" is an outdated term in modern medical nomenclature, it still holds historical significance and is sometimes used in the names of certain medical conditions or concepts, such as "rheumatology," which is the medical specialty focused on the diagnosis and management of rheumatic diseases.

Dienestrol is a synthetic estrogen hormone that is used in various medical treatments, particularly for menopausal symptoms such as hot flashes and vaginal dryness. It works by mimicking the effects of natural estrogen in the body. Dienestrol is available in various forms, including creams, tablets, and suppositories.

It's important to note that the use of hormonal therapies like dienestrol should be under the close supervision of a healthcare provider due to potential risks and side effects, such as an increased risk of certain types of cancer, cardiovascular disease, and stroke. The decision to use hormone replacement therapy should take into account each individual's medical history, current health status, and personal preferences.

'Cyperus' is a genus of plants in the family Cyperaceae, also known as the sedge family. These plants are typically found in wet or moist environments and are characterized by their triangular stems and narrow, grass-like leaves. Some common species of *Cyperus* include *C. alternifolius* (alternanthera), *C. papyrus* (paper reed), and *C. rotundus* (nutgrass). While some species of *Cyperus* have medicinal uses, there is no single medical definition for the genus as a whole.

'Polygonum cuspidatum' is the botanical name for a plant species more commonly known as Japanese knotweed. Although it has some traditional medicinal uses in its native range of East Asia, it is not typically referred to as a 'medical definition.' However, it's crucial to note that Japanese knotweed has become an invasive species in many parts of the world, including North America and Europe. Its rapid growth can cause significant damage to infrastructure and negatively impact native ecosystems.

In traditional East Asian medicine, extracts from 'Polygonum cuspidatum' have been used for various purposes, such as treating Lyme disease, skin issues, and inflammation. The plant contains resveratrol, a potent antioxidant that has gained attention in recent years for its potential health benefits. However, more research is needed to confirm these effects and establish safe and effective dosages.

In summary, 'Polygonum cuspidatum' or Japanese knotweed does not have a medical definition per se, but it is a plant species with some traditional medicinal uses and potential health benefits due to its resveratrol content. It is essential to be aware of its invasive nature if you come across this plant in non-native environments.

"Agricultural chemistry" is a branch of chemistry that deals with the application of chemical principles to agriculture, including the study of the composition and properties of soil and fertilizers, the behavior of pesticides and other agrochemicals, and the biochemistry of plants and animals in agricultural systems. It involves the analysis of nutrients, contaminants, and other chemicals present in the soil, water, and air that affect crop production and animal health. Additionally, it encompasses the development and optimization of chemical processes for the production of food, feed, fiber, and biofuels, as well as the study of environmental impacts of agricultural practices. Overall, agricultural chemistry aims to improve the efficiency and sustainability of agricultural systems while minimizing negative effects on human health and the environment.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

Anion Exchange Protein 1, Erythrocyte (AE1), also known as Band 3 protein or SLC4A1, is a transmembrane protein found in the membranes of red blood cells (erythrocytes). It plays a crucial role in maintaining the pH and bicarbonate levels of the blood by facilitating the exchange of chloride ions (Cl-) with bicarbonate ions (HCO3-) between the red blood cells and the plasma.

The anion exchange protein 1 is composed of three major domains: a cytoplasmic domain, a transmembrane domain, and an extracellular domain. The cytoplasmic domain interacts with various proteins involved in regulating the cytoskeleton of the red blood cell, while the transmembrane domain contains the ion exchange site. The extracellular domain is responsible for the interaction between red blood cells and contributes to their aggregation.

Mutations in the AE1 gene can lead to various inherited disorders, such as hereditary spherocytosis, Southeast Asian ovalocytosis, and distal renal tubular acidosis type 1. These conditions are characterized by abnormal red blood cell shapes, impaired kidney function, or both.

"Paeonia" is the botanical name for a genus of plants that includes peonies. It is not a medical term with a specific definition in the context of medicine. However, some peony species have been used in traditional medicine for various purposes, such as treating inflammation and menstrual disorders. The roots and bark of Paeonia suffruticosa (also known as moutan cortex) have been used in Traditional Chinese Medicine (TCM).

In a medical context, if someone is referring to "Paeonia," they are most likely talking about the plant or its extracts. Always consult with a healthcare professional before using any plant or herbal remedy for medicinal purposes.

Oomycetes, also known as water molds or downy mildews, are a group of primarily aquatic, filamentous microorganisms. They were once classified as fungi due to their similar morphology and ecological roles, but they are now known to be more closely related to brown algae and diatoms.

Oomycetes have cell walls made of cellulose and unique osmotically active compounds called cell wall glycoproteins. They reproduce both sexually and asexually, producing structures such as zoospores that can swim through water to find new hosts. Oomycetes are parasites or saprophytes, feeding on other organisms or dead organic matter.

Some oomycetes are important plant pathogens, causing diseases such as potato blight (Phytophthora infestans) and sudden oak death (Phytophthora ramorum). They can cause significant damage to crops and natural ecosystems, making them a focus of study in plant pathology.

Benzofurans are a class of organic compounds that consist of a benzene ring fused to a furan ring. The furan ring is a five-membered aromatic heterocycle containing one oxygen atom and four carbon atoms. Benzofurans can be found in various natural and synthetic substances. Some benzofuran derivatives have biological activity and are used in medicinal chemistry, while others are used as flavorings or fragrances. However, some benzofuran compounds are also known to have psychoactive effects and can be abused as recreational drugs.

"Vitaceae" is not a medical term, but a taxonomic category in botany. It refers to the grape family, which includes around 800 species of plants. Some of these plants are used in traditional medicine and may have some health benefits, but "Vitaceae" itself does not have a specific medical definition.

Caffeic acids are a type of phenolic compounds that contain a catechol structure and a carboxylic acid group. They are found in various plants, including coffee, tea, fruits, and vegetables. The most common caffeic acid is caffeic acid itself, which is abundant in coffee. Caffeic acids have been studied for their potential health benefits, such as antioxidant, anti-inflammatory, and anticancer activities. However, more research is needed to fully understand their effects on human health.

Aerial parts of plants refer to the above-ground portions of a plant, including leaves, stems, flowers, and fruits. These parts are often used in medicine, either in their entirety or as isolated extracts, to take advantage of their medicinal properties. The specific components of aerial parts that are used in medicine can vary depending on the plant species and the desired therapeutic effects. For example, the leaves of some plants may contain active compounds that have anti-inflammatory or analgesic properties, while the flowers of others may be rich in antioxidants or compounds with sedative effects. In general, aerial parts of plants are used in herbal medicine to treat a wide range of conditions, including respiratory, digestive, and nervous system disorders, as well as skin conditions and infections.

Burseraceae is a family of flowering plants that includes approximately 18 genera and 700 species. These plants are characterized by their resinous sap, which is often aromatic and used in perfumes, incense, and traditional medicines. Many members of this family have thick, exfoliating bark and pinnate leaves. Some well-known examples include the frankincense tree (Boswellia sacra) and the myrrh tree (Commiphora myrrha). The plants in Burseraceae are primarily found in tropical regions of the world, particularly in Africa, Asia, and Central America.

Dendrobium is a genus of flowering plants in the family Orchidaceae. It contains around 1,200 to 1,500 species, making it one of the largest orchid genera. The name Dendrobium comes from the Greek words "dendron" meaning tree and "bios" meaning life, which refers to the fact that many of these orchids grow on trees or other plants as epiphytes.

Dendrobium orchids are native to a wide range of habitats in Asia, Australia, and the Pacific Islands. They vary greatly in size, shape, and color, but most have fleshy, jointed stems and narrow leaves. Some species produce flowers that are highly fragrant and last for several weeks.

In traditional medicine, some Dendrobium species have been used for their anti-inflammatory, antioxidant, and immune-boosting properties. However, it is important to note that the safety and efficacy of using these plants as medicinal remedies have not been thoroughly studied and should be approached with caution.

Antiporters, also known as exchange transporters, are a type of membrane transport protein that facilitate the exchange of two or more ions or molecules across a biological membrane in opposite directions. They allow for the movement of one type of ion or molecule into a cell while simultaneously moving another type out of the cell. This process is driven by the concentration gradient of one or both of the substances being transported. Antiporters play important roles in various physiological processes, including maintaining electrochemical balance and regulating pH levels within cells.

Bicarbonates, also known as sodium bicarbonate or baking soda, is a chemical compound with the formula NaHCO3. In the context of medical definitions, bicarbonates refer to the bicarbonate ion (HCO3-), which is an important buffer in the body that helps maintain normal pH levels in blood and other bodily fluids.

The balance of bicarbonate and carbonic acid in the body helps regulate the acidity or alkalinity of the blood, a condition known as pH balance. Bicarbonates are produced by the body and are also found in some foods and drinking water. They work to neutralize excess acid in the body and help maintain the normal pH range of 7.35 to 7.45.

In medical testing, bicarbonate levels may be measured as part of an electrolyte panel or as a component of arterial blood gas (ABG) analysis. Low bicarbonate levels can indicate metabolic acidosis, while high levels can indicate metabolic alkalosis. Both conditions can have serious consequences if not treated promptly and appropriately.

I apologize for any confusion, but "Rosales" is not a medical term. It is a botanical term used in the classification of plants. Rosales is an order of flowering plants that includes roses, as well as many other plants such as apples, cherries, almonds, and strawberries. The plants in this group are characterized by having flowers with multiple stamens and styles. I hope this clarifies any confusion. If you have any medical terms you would like defined, please let me know!

Coumaric acids are a type of phenolic acid that are widely distributed in plants. They are found in various foods such as fruits, vegetables, and grains. The most common forms of coumaric acids are p-coumaric acid, o-coumaric acid, and m-coumaric acid.

Coumaric acids have been studied for their potential health benefits, including their antioxidant, anti-inflammatory, and antimicrobial properties. They may also play a role in preventing chronic diseases such as cancer and cardiovascular disease. However, more research is needed to fully understand the potential health benefits of coumaric acids.

It's worth noting that coumaric acids are not to be confused with warfarin (also known as Coumadin), a medication used as an anticoagulant. While both coumaric acids and warfarin contain a similar chemical structure, they have different effects on the body.

Emodin is a natural anthraquinone compound that can be found in various plants such as rhubarb, knotweed, and Japanese knotweed. It has been reported to have various biological activities, including anti-inflammatory, antiviral, and anticancer effects. However, more research is needed to confirm these potential health benefits and to understand the mechanisms of action.

Emodin can also interact with certain drugs and may cause adverse effects, so it's important to consult a healthcare professional before taking any supplements containing emodin.

Flavonoids are a type of plant compounds with antioxidant properties that are beneficial to health. They are found in various fruits, vegetables, grains, and wine. Flavonoids have been studied for their potential to prevent chronic diseases such as heart disease and cancer due to their ability to reduce inflammation and oxidative stress.

There are several subclasses of flavonoids, including:

1. Flavanols: Found in tea, chocolate, grapes, and berries. They have been shown to improve blood flow and lower blood pressure.
2. Flavones: Found in parsley, celery, and citrus fruits. They have anti-inflammatory and antioxidant properties.
3. Flavanonols: Found in citrus fruits, onions, and tea. They have been shown to improve blood flow and reduce inflammation.
4. Isoflavones: Found in soybeans and legumes. They have estrogen-like effects and may help prevent hormone-related cancers.
5. Anthocyanidins: Found in berries, grapes, and other fruits. They have antioxidant properties and may help improve vision and memory.

It is important to note that while flavonoids have potential health benefits, they should not be used as a substitute for medical treatment or a healthy lifestyle. It is always best to consult with a healthcare professional before starting any new supplement regimen.

'Agrobacterium' is a genus of Gram-negative, rod-shaped bacteria that are known for their ability to genetically transform plants. The most well-known species in this genus is 'Agrobacterium tumefaciens,' which causes a plant disease called crown gall. This bacterium has the natural ability to transfer a portion of its own DNA (called T-DNA) into the plant's genome, leading to the overproduction of certain plant hormones and ultimately resulting in the formation of tumor-like growths on the infected plant tissue.

This unique ability to transfer genetic material between species has made 'Agrobacterium' a valuable tool in molecular biology and genetic engineering. Scientists can use this bacterium as a vector to introduce foreign DNA into plants, allowing for the study and manipulation of plant genes. This technique is widely used in research and agriculture to create genetically modified organisms (GMOs) with desired traits such as resistance to pests, improved nutritional content, or increased yield.

Euphorbia is a genus of plants that belongs to the spurge family (Euphorbiaceae). It contains around 2,000 species of shrubs, trees, and herbs that are found worldwide, particularly in tropical and subtropical regions. Many euphorbias are known for their milky sap, which can be toxic or irritating to the skin and mucous membranes. Some species of euphorbia are cultivated as ornamental plants due to their attractive flowers and foliage, while others have medicinal or industrial uses. However, it's important to note that some euphorbias can be invasive and harmful to local ecosystems, so care should be taken when handling or growing them.

Phenols, also known as phenolic acids or phenol derivatives, are a class of chemical compounds consisting of a hydroxyl group (-OH) attached to an aromatic hydrocarbon ring. In the context of medicine and biology, phenols are often referred to as a type of antioxidant that can be found in various foods and plants.

Phenols have the ability to neutralize free radicals, which are unstable molecules that can cause damage to cells and contribute to the development of chronic diseases such as cancer, heart disease, and neurodegenerative disorders. Some common examples of phenolic compounds include gallic acid, caffeic acid, ferulic acid, and ellagic acid, among many others.

Phenols can also have various pharmacological activities, including anti-inflammatory, antimicrobial, and analgesic effects. However, some phenolic compounds can also be toxic or irritating to the body in high concentrations, so their use as therapeutic agents must be carefully monitored and controlled.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

"Picea" is not a medical term. It is the genus name for a group of evergreen coniferous trees commonly known as spruces, which are part of the pine family (Pinaceae). These trees are native to the northern hemisphere and are widely distributed in North America, Europe, and Asia.

While spruce trees have some medicinal uses, such as extracts from the needles being used in traditional medicine for their antimicrobial and anti-inflammatory properties, "Picea" itself is not a medical term or concept.

Chloride-bicarbonate antiporters, also known as chloride-bicarbonate exchangers, are membrane transport proteins that facilitate the exchange of chloride and bicarbonate ions across a biological membrane. These transporters play a crucial role in maintaining acid-base balance and electrical neutrality within cells and organisms.

In general, when chloride ions (Cl-) move down their electrochemical gradient into the cell, they are exchanged for bicarbonate ions (HCO3-) that move out of the cell, also following their own electrochemical gradient. This coupled exchange helps maintain electroneutrality across the membrane and allows cells to regulate their intracellular pH and chloride concentration.

There are several types of chloride-bicarbonate antiporters found in various tissues, including:

1. SLC4A family: This family includes several isoforms, such as AE1 (anion exchanger 1), AE2, AE3, and AE4. They are widely expressed in different tissues, including red blood cells, kidney, gastrointestinal tract, and brain.
2. SLC26A family: This family includes several isoforms, such as SLC26A3 (also known as Downregulated in Adenoma or DRA), SLC26A4 (pendrin), and SLC26A6 (PAT1). They are involved in various physiological processes, including intestinal ion transport, inner ear homeostasis, and airway surface liquid secretion.

Dysfunction of chloride-bicarbonate antiporters has been implicated in several diseases, such as distal renal tubular acidosis (dRTA), cystic fibrosis, and Bartter syndrome.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

"Cissus" is a genus of plants in the grape family, Vitaceae. It includes around 350 species of woody vines and shrubs that are found primarily in tropical regions around the world. Some species of Cissus have been used in traditional medicine for various purposes, including wound healing and treating bone fractures. However, it is important to note that the use of these plants as a medical treatment should be done under the guidance of a healthcare professional, as they can also have side effects and interact with other medications.

I'm sorry for any confusion, but "Plant Bark" is not a term with a specific medical definition. In general, the bark refers to the outermost covering of a tree or other plant, which serves as protection and provides a barrier against external threats. It is composed of layers including the inner bark (phloem), which transports nutrients throughout the plant, and the outer bark (periderm), which is made up of dead cells that form a protective layer.

While some plants or plant parts do have medicinal properties and are used in various forms of traditional or alternative medicine, "Plant Bark" by itself does not have any specific medical connotations. If you're referring to a specific type of plant bark with potential medicinal uses, please provide more details so I can give a more accurate response.

Glucosides are chemical compounds that consist of a glycosidic bond between a sugar molecule (typically glucose) and another non-sugar molecule, which can be an alcohol, phenol, or steroid. They occur naturally in various plants and some microorganisms.

Glucosides are not medical terms per se, but they do have significance in pharmacology and toxicology because some of them may release the sugar portion upon hydrolysis, yielding aglycone, which can have physiological effects when ingested or absorbed into the body. Some glucosides are used as medications or dietary supplements due to their therapeutic properties, while others can be toxic if consumed in large quantities.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

I'm sorry for any confusion, but "Estrogens, Catechol" is not a recognized medical term or classification. Estrogens are a group of steroid hormones that are primarily responsible for the development and maintenance of female sexual characteristics. They are produced mainly in the ovaries, but also in other tissues such as fat, liver, and breast tissue.

Catechols, on the other hand, are a type of chemical compound that contain a benzene ring with two hydroxyl groups attached to it in a particular arrangement. Some estrogens can be metabolized into catechol estrogen metabolites, which have been studied for their potential role in cancer development and progression.

If you have any specific questions about estrogens or catechols, I'd be happy to try to help answer them!

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

An anion is an ion that has a negative electrical charge because it has more electrons than protons. The term "anion" is derived from the Greek word "anion," which means "to go up" or "to move upward." This name reflects the fact that anions are attracted to positively charged electrodes, or anodes, and will move toward them during electrolysis.

Anions can be formed when a neutral atom or molecule gains one or more extra electrons. For example, if a chlorine atom gains an electron, it becomes a chloride anion (Cl-). Anions are important in many chemical reactions and processes, including the conduction of electricity through solutions and the formation of salts.

In medicine, anions may be relevant in certain physiological processes, such as acid-base balance. For example, the concentration of anions such as bicarbonate (HCO3-) and chloride (Cl-) in the blood can affect the pH of the body fluids and help maintain normal acid-base balance. Abnormal levels of anions may indicate the presence of certain medical conditions, such as metabolic acidosis or alkalosis.

Sodium-bicarbonate symporters, also known as sodium bicarbonate co-transporters, are membrane transport proteins that facilitate the movement of both sodium ions (Na+) and bicarbonate ions (HCO3-) across the cell membrane in the same direction. These transporters play a crucial role in maintaining acid-base balance in the body by regulating the concentration of bicarbonate ions, which is an important buffer in the blood and other bodily fluids.

The term "symporter" refers to the fact that these proteins transport two or more different molecules or ions in the same direction across a membrane. In this case, sodium-bicarbonate symporters co-transport one sodium ion and one bicarbonate ion together, usually using a concentration gradient of sodium to drive the uptake of bicarbonate.

These transporters are widely expressed in various tissues, including the kidneys, where they help reabsorb bicarbonate ions from the urine back into the bloodstream, and the gastrointestinal tract, where they contribute to the absorption of sodium and bicarbonate from food and drink. Dysfunction of sodium-bicarbonate symporters has been implicated in several diseases, including renal tubular acidosis and hypertension.

Flufenamic Acid is a type of non-steroidal anti-inflammatory drug (NSAID) that is used to relieve pain, reduce inflammation, and lower fever. It works by blocking the action of certain enzymes in the body, such as cyclooxygenase (COX), which are involved in producing substances that cause pain and inflammation. Flufenamic Acid is available in various forms, including tablets, capsules, and suppositories, and is used to treat a variety of conditions, such as menstrual cramps, arthritis, and muscle or bone injuries. It is important to note that like all NSAIDs, Flufenamic Acid can have side effects, particularly if taken in large doses or for long periods of time, so it should be used only under the supervision of a healthcare provider.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Hydroxylation is a biochemical process that involves the addition of a hydroxyl group (-OH) to a molecule, typically a steroid or xenobiotic compound. This process is primarily catalyzed by enzymes called hydroxylases, which are found in various tissues throughout the body.

In the context of medicine and biochemistry, hydroxylation can have several important functions:

1. Drug metabolism: Hydroxylation is a common way that the liver metabolizes drugs and other xenobiotic compounds. By adding a hydroxyl group to a drug molecule, it becomes more polar and water-soluble, which facilitates its excretion from the body.
2. Steroid hormone biosynthesis: Hydroxylation is an essential step in the biosynthesis of many steroid hormones, including cortisol, aldosterone, and the sex hormones estrogen and testosterone. These hormones are synthesized from cholesterol through a series of enzymatic reactions that involve hydroxylation at various steps.
3. Vitamin D activation: Hydroxylation is also necessary for the activation of vitamin D in the body. In order to become biologically active, vitamin D must undergo two successive hydroxylations, first in the liver and then in the kidneys.
4. Toxin degradation: Some toxic compounds can be rendered less harmful through hydroxylation. For example, phenol, a toxic compound found in cigarette smoke and some industrial chemicals, can be converted to a less toxic form through hydroxylation by enzymes in the liver.

Overall, hydroxylation is an important biochemical process that plays a critical role in various physiological functions, including drug metabolism, hormone biosynthesis, and toxin degradation.

'Wine' is not typically defined in medical terms, but it is an alcoholic beverage made from the fermentation of grape juice. It contains ethanol and can have varying levels of other compounds depending on the type of grape used, the region where it was produced, and the method of fermentation.

In a medical context, wine might be referred to in terms of its potential health effects, which can vary. Moderate consumption of wine, particularly red wine, has been associated with certain health benefits, such as improved cardiovascular health. However, heavy or excessive drinking can lead to numerous health problems, including addiction, liver disease, heart disease, and an increased risk of various types of cancer.

It's important to note that while moderate consumption may have some health benefits, the potential risks of alcohol consumption generally outweigh the benefits for many people. Therefore, it's recommended that individuals who do not currently drink alcohol should not start drinking for health benefits. Those who choose to drink should do so in moderation, defined as up to one drink per day for women and up to two drinks per day for men.

Diethylstilbestrol (DES) is a synthetic form of the hormone estrogen that was prescribed to pregnant women from the 1940s until the early 1970s to prevent miscarriage, premature labor, and other complications of pregnancy. However, it was later discovered that DES could cause serious health problems in both the mothers who took it and their offspring.

DES is a non-selective estrogen agonist, meaning that it binds to and activates both estrogen receptors (ERα and ERβ) in the body. It has a higher binding affinity for ERα than for ERβ, which can lead to disruptions in normal hormonal signaling pathways.

In addition to its use as a pregnancy aid, DES has also been used in the treatment of prostate cancer, breast cancer, and other conditions associated with hormonal imbalances. However, due to its potential health risks, including an increased risk of certain cancers, DES is no longer widely used in clinical practice.

Some of the known health effects of DES exposure include:

* In women who were exposed to DES in utero (i.e., their mothers took DES during pregnancy):
+ A rare form of vaginal or cervical cancer called clear cell adenocarcinoma
+ Abnormalities of the reproductive system, such as structural changes in the cervix and vagina, and an increased risk of infertility, ectopic pregnancy, and preterm delivery
+ An increased risk of breast cancer later in life
* In men who were exposed to DES in utero:
+ Undescended testicles
+ Abnormalities of the penis and scrotum
+ A higher risk of testicular cancer
* In both men and women who were exposed to DES in utero or who took DES themselves:
+ An increased risk of certain types of breast cancer
+ A possible increased risk of cardiovascular disease, including high blood pressure and stroke.

It is important for individuals who have been exposed to DES to inform their healthcare providers of this fact, as it may have implications for their medical care and monitoring.

In the context of medicine and biology, sulfates are ions or compounds that contain the sulfate group (SO4−2). Sulfate is a polyatomic anion with the structure of a sphere. It consists of a central sulfur atom surrounded by four oxygen atoms in a tetrahedral arrangement.

Sulfates can be found in various biological molecules, such as glycosaminoglycans and proteoglycans, which are important components of connective tissue and the extracellular matrix. Sulfate groups play a crucial role in these molecules by providing negative charges that help maintain the structural integrity and hydration of tissues.

In addition to their biological roles, sulfates can also be found in various medications and pharmaceutical compounds. For example, some laxatives contain sulfate salts, such as magnesium sulfate (Epsom salt) or sodium sulfate, which work by increasing the water content in the intestines and promoting bowel movements.

It is important to note that exposure to high levels of sulfates can be harmful to human health, particularly in the form of sulfur dioxide (SO2), a common air pollutant produced by burning fossil fuels. Prolonged exposure to SO2 can cause respiratory problems and exacerbate existing lung conditions.

Polyphenols are a type of phytochemical, which are naturally occurring compounds found in plant-based foods. They contain multiple phenol units and can be classified into several subgroups, including flavonoids, stilbenes, tannins, and lignans. These compounds have been studied for their potential health benefits due to their antioxidant, anti-inflammatory, and immune-modulating properties. They are found in a wide variety of foods such as fruits, vegetables, tea, wine, chocolate, and cereals.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

No FAQ available that match "stilbenes"

No images available that match "stilbenes"