An autosomal dominant disorder that is the most frequent form of short-limb dwarfism. Affected individuals exhibit short stature caused by rhizomelic shortening of the limbs, characteristic facies with frontal bossing and mid-face hypoplasia, exaggerated lumbar lordosis, limitation of elbow extension, GENU VARUM, and trident hand. (Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim, MIM#100800, April 20, 2001)
A fibroblast growth factor receptor that regulates CHONDROCYTE growth and CELL DIFFERENTIATION. Mutations in the gene for fibroblast growth factor receptor 3 have been associated with ACHONDROPLASIA; THANATOPHORIC DYSPLASIA and NEOPLASTIC CELL TRANSFORMATION.
A severe form of neonatal dwarfism with very short limbs. All cases have died at birth or later in the neonatal period.
Developmental bone diseases are a category of skeletal disorders that arise from disturbances in the normal growth and development of bones, including abnormalities in size, shape, structure, or composition, which can lead to various musculoskeletal impairments and deformities.
Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity.
Age of the biological father.
A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height.
The religion of the Jews characterized by belief in one God and in the mission of the Jews to teach the Fatherhood of God as revealed in the Hebrew Scriptures. (Webster, 3d ed)
Tomography using x-ray transmission.
The cavity within the SPINAL COLUMN through which the SPINAL CORD passes.
The area between the EPIPHYSIS and the DIAPHYSIS within which bone growth occurs.
Abnormal development of cartilage and bone.
Devices for examining the interior of the eye, permitting the clear visualization of the structures of the eye at any depth. (UMDNS, 1999)
Congenital structural abnormalities and deformities of the musculoskeletal system.

A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. (1/155)

We have identified a novel fibroblast growth factor receptor 3 (FGFR3) missense mutation in four unrelated individuals with skeletal dysplasia that approaches the severity observed in thanatophoric dysplasia type I (TD1). However, three of the four individuals developed extensive areas of acanthosis nigricans beginning in early childhood, suffer from severe neurological impairments, and have survived past infancy without prolonged life-support measures. The FGFR3 mutation (A1949T: Lys650Met) occurs at the nucleotide adjacent to the TD type II (TD2) mutation (A1948G: Lys650Glu) and results in a different amino acid substitution at a highly conserved codon in the kinase domain activation loop. Transient transfection studies with FGFR3 mutant constructs show that the Lys650Met mutation causes a dramatic increase in constitutive receptor kinase activity, approximately three times greater than that observed with the Lys650Glu mutation. We refer to the phenotype caused by the Lys650Met mutation as "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) because it differs significantly from the phenotypes of other known FGFR3 mutations.  (+info)

Can transvaginal fetal biometry be considered a useful tool for early detection of skeletal dysplasias in high-risk patients? (2/155)

OBJECTIVE: To evaluate the possibility of an early diagnosis of skeletal dysplasias in high-risk patients. METHODS: A total of 149 consecutive, uncomplicated singleton pregnancies at 9-13 weeks' amenorrhea, with certain menstrual history and regular cycles, were investigated with transvaginal ultrasound to establish the relationship between femur length and menstrual age, biparietal diameter and crown-rump length, using a polynomial regression model. A further eight patients with previous skeletal dysplasias in a total of 13 pregnancies were evaluated with serial examinations every 2 weeks from 10-11 weeks. RESULTS: A significant correlation between femur length and crown-rump length and biparietal diameter was found, whereas none was observed between femur length and menstrual age. Of the five cases with skeletal dysplasias, only two (one with recurrent osteogenesis imperfecta and one with recurrent achondrogenesis) were diagnosed in the first trimester. CONCLUSIONS: An early evaluation of fetal morphology in conjunction with the use of biometric charts of femur length against crown-rump length and femur length against biparietal diameter may be crucial for early diagnosis of severe skeletal dysplasias. By contrast, in less severe cases, biometric evaluation appears to be of no value for diagnosis.  (+info)

A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. (3/155)

Achondroplasia, the most common form of dwarfism in man, is a dominant genetic disorder caused by a point mutation (G380R) in the transmembrane region of fibroblast growth factor receptor 3 (FGFR3). We used gene targeting to introduce the human achondroplasia mutation into the murine FGFR3 gene. Heterozygotes for this point mutation that carried the neo cassette were normal whereas neo+ homozygotes had a phenotype similar to FGFR3-deficient mice, exhibiting bone overgrowth. This was because of interference with mRNA processing in the presence of the neo cassette. Removal of the neo selection marker by Cre/loxP recombination yielded a dominant dwarf phenotype. These mice are distinguished by their small size, shortened craniofacial area, hypoplasia of the midface with protruding incisors, distorted brain case with anteriorly shifted foramen magnum, kyphosis, and narrowed and distorted growth plates in the long bones, vertebrae, and ribs. These experiments demonstrate that achondroplasia results from a gain-of-FGFR3-function leading to inhibition of chondrocyte proliferation. These achondroplastic dwarf mice represent a reliable and useful model for developing drugs for potential treatment of the human disease.  (+info)

Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. (4/155)

Missense mutations in fibroblast growth factor receptor 3 (FGFR3) result in several human skeletal dysplasias, including the most common form of dwarfism, achondroplasia. Here we show that a glycine-to-cysteine substitution at position 375 (Gly375Cys) in human FGFR3 causes ligand-independent dimerization and phosphorylation of FGFR3 and that the equivalent substitution at position 369 (Gly369Cys) in mouse FGFR3 causes dwarfism with features mimicking human achondroplasia. Accordingly, homozygous mice were more severely affected than heterozygotes. The resulting mutant mice exhibited macrocephaly and shortened limbs due to retarded endochondral bone growth and premature closure of cranial base synchondroses. Compared with their wild-type littermates, mutant mice growth plates shared an expanded resting zone and narrowed proliferating and hypertrophic zones, which is correlated with the activation of Stat proteins and upregulation of cell-cycle inhibitors. Reduced bone density is accompanied by increased activity of osteoclasts and upregulation of genes that are related to osteoblast differentiation, including osteopontin, osteonectin, and osteocalcin. These data reveal an essential role for FGF/FGFR3 signals in both chondrogenesis and osteogenesis during endochondral ossification.  (+info)

Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder. (5/155)

Achondrogenesis II-hypochondrogenesis and severe spondyloepiphyseal dysplasia congenita (SEDC) are lethal forms of dwarfism caused by dominant mutations in the type II collagen gene (COL2A1). To identify the underlying defect in seven cases with this group of conditions, we used the combined strategy of cartilage protein analysis and COL2A1 mutation analysis. Overmodified type II collagen and the presence of type I collagen was found in the cartilage matrix of all seven cases. Five patients were heterozygous for a nucleotide change that predicted a glycine substitution in the triple helical domain (G313S, G517V, G571A, G910C, G943S). In all five cases, analysis of cartilage type II collagen suggested incorporation of the abnormal alpha1(II) chain in the extracellular collagen trimers. The G943S mutation has been reported previously in another unrelated patient with a strikingly similar phenotype, illustrating the possible specific effect of the mutation. The radiographically less severely affected patient was heterozygous for a 4 bp deletion in the splice donor site of intron 35, likely to result in aberrant splicing. One case was shown to be heterozygous for a single nucleotide change predicted to result in a T1191N substitution in the carboxy-propeptide of the proalpha1(II) collagen chain. Study of the clinical, radiographic, and morphological features of the seven cases supports evidence for a phenotypic continuum between achondrogenesis II-hypochondrogenesis and lethal SEDC and suggests a relationship between the amount of type I collagen in the cartilage and the severity of the phenotype.  (+info)

A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain. (6/155)

Cartilage oligomeric matrix protein (COMP) is a member of the thrombospondin family of extracellular matrix glycoproteins. All members of the family contain a highly conserved region of thrombospondin type 3 sequence repeats that bind calcium. A mutation in COMP previously identified in a patient with pseudoachondroplasia resulted in abnormal sequestration of COMP in distinctive rER vesicles. The mutation, Asp-446 --> Asn, is located in the type 3 repeats of the molecule. This region was expressed in a mammalian culture with and without the mutation to study the structural or functional properties associated with the mutation. The biophysical parameters of the mutant peptide were compared with those of the wild type and revealed the following difference: secondary structural analysis by circular dichroism showed more alpha-helix content in the wild-type peptides. The calcium binding properties of the two peptides were significantly different; there were 17 calcium ions bound/wild-type COMP3 peptide compared with 8/mutant peptide. In addition, wild-type COMP3 had a higher affinity for calcium and bound calcium more cooperatively. Calcium bound by the wild-type peptide was reflected in a structural change as indicted by velocity sedimentation. Thus, the effect of the COMP mutation appears to profoundly alter the calcium binding properties and may account for the difference observed in the structure of the type 3 domain. Furthermore, the highly cooperative binding of calcium to COMP3 suggests that these type 3 sequence repeats form a single protein domain, the thrombospondin type 3 domain.  (+info)

Disability, gene therapy and eugenics--a challenge to John Harris. (7/155)

This article challenges the view of disability presented by Harris in his article, "Is gene therapy a form of eugenics?" It is argued that his definition of disability rests on an individual model of disability, where disability is regarded as a product of biological determinism or "personal tragedy" in the individual. Within disability theory this view is often called "the medical model" and it has been criticised for not being able to deal with the term "disability", but only with impairment. The individual model of disability presupposes a necessary causal link between a certain condition in the individual and disablement. The shortcomings of such a view of disability are stated and it is argued that in order to have an adequate ethical discourse on gene therapy perspectives from disability research need to be taken into consideration.  (+info)

Molecular cloning and expression patterns of mouse cartilage oligomeric matrix protein gene. (8/155)

OBJECTIVE: To develop transgenic mice harboring mutations in the COMP gene as animal models for pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), autosomal dominant disorders characterized by early onset osteoarthritis and epiphyseal abnormalities. As a first step in generating a mouse model for COMP mutations, we have cloned the cDNA of mouse COMP and examined its tissue expression pattern. DESIGN: Total mRNA was isolated from the skeletal tissues of newborn C57BL/6j mice and used as a template for oligo(dT) first-strand cDNA synthesis. The cDNA was used for PCR amplification of COMP using three oligonucleotide primer pairs designed from the published rat COMP cDNA sequence. Nested PCR was used to complete the sequence between the amplified fragments. The entire cDNA was sequenced and the expression pattern of the corresponding transcripts examined by Northern hybridizations. RESULTS: A full-length COMP cDNA was isolated. Analysis showed that the entire translated region of the mouse COMP gene is 2268 bp and the derived amino acid sequence shows 90% homology to human COMP. Of eight adult mouse non-cartilage tissues tested, COMP expression was detected only in testis.  (+info)

Achondroplasia is a genetic disorder that affects bone growth, leading to dwarfism. It is the most common form of short-limbed dwarfism and is caused by a mutation in the FGFR3 gene. This mutation results in impaired endochondral ossification, which is the process by which cartilage is converted into bone.

People with achondroplasia have a characteristic appearance, including:

* Short stature (typically less than 4 feet, 4 inches tall)
* Disproportionately short arms and legs
* Large head with a prominent forehead and flat nasal bridge
* Short fingers with a gap between the middle and ring fingers (known as a trident hand)
* Bowing of the lower legs
* A swayed back (lordosis)

Achondroplasia is usually inherited in an autosomal dominant manner, which means that a child has a 50% chance of inheriting the disorder if one parent has it. However, about 80% of cases result from new mutations in the FGFR3 gene and occur in people with no family history of the condition.

While achondroplasia can cause various medical issues, such as breathing difficulties, ear infections, and spinal cord compression, most individuals with this condition have normal intelligence and a typical lifespan. Treatment typically focuses on managing specific symptoms and addressing any related complications.

Fibroblast Growth Factor Receptor 3 (FGFR3) is a type of cell surface receptor that binds to fibroblast growth factors (FGFs), which are signaling proteins involved in various biological processes such as cell division, growth, and wound healing.

FGFR3 is a transmembrane protein with an extracellular domain that contains the binding site for FGFs, a transmembrane domain, and an intracellular tyrosine kinase domain that activates downstream signaling pathways upon FGF binding.

Mutations in the FGFR3 gene have been associated with several human genetic disorders, including thanatophoric dysplasia, achondroplasia, and hypochondroplasia, which are characterized by abnormal bone growth and development. In these conditions, gain-of-function mutations in FGFR3 lead to increased receptor activity and activation of downstream signaling pathways, resulting in impaired endochondral ossification and short-limbed dwarfism.

In addition to its role in bone growth and development, FGFR3 has been implicated in the regulation of cell proliferation, differentiation, and survival in various tissues, including the brain, lung, and kidney. Dysregulation of FGFR3 signaling has also been associated with cancer, including bladder, breast, and cervical cancers.

Thnanatophoric Dysplasia is a severe skeletal disorder characterized by extreme short limbs, a narrow chest, and large head. It is one of the most common types of short-limbed dwarfism. The name "thanatophoric" comes from the Greek word thanatos, meaning death, as this condition is often lethal in the newborn period or shortly thereafter due to respiratory distress.

The disorder is caused by mutations in the FGFR3 gene, which provides instructions for making a protein that is part of a group of proteins called fibroblast growth factor receptors. These receptors play critical roles in many important processes during embryonic development, such as controlling bone growth.

There are two major types of thanatophoric dysplasia: type I and type II. Type I is characterized by curved thigh bones (femurs) and a clover-leaf shaped skull. Type II is characterized by straight femurs and an unossified (not fully developed) vertebral column.

The diagnosis of thanatophoric dysplasia can be made prenatally through ultrasound examination or postnatally through physical examination, X-rays, and genetic testing. Unfortunately, due to the severity of the condition, there is no cure for thanatophoric dysplasia and management is supportive in nature, focusing on providing comfort and addressing any complications that may arise.

Developmental bone diseases are a group of medical conditions that affect the growth and development of bones. These diseases are present at birth or develop during childhood and adolescence, when bones are growing rapidly. They can result from genetic mutations, hormonal imbalances, or environmental factors such as poor nutrition.

Some examples of developmental bone diseases include:

1. Osteogenesis imperfecta (OI): Also known as brittle bone disease, OI is a genetic disorder that affects the body's production of collagen, a protein necessary for healthy bones. People with OI have fragile bones that break easily and may also experience other symptoms such as blue sclerae (whites of the eyes), hearing loss, and joint laxity.
2. Achondroplasia: This is the most common form of dwarfism, caused by a genetic mutation that affects bone growth. People with achondroplasia have short limbs and a large head relative to their body size.
3. Rickets: A condition caused by vitamin D deficiency or an inability to absorb or use vitamin D properly. This leads to weak, soft bones that can bow or bend easily, particularly in children.
4. Fibrous dysplasia: A rare bone disorder where normal bone is replaced with fibrous tissue, leading to weakened bones and deformities.
5. Scoliosis: An abnormal curvature of the spine that can develop during childhood or adolescence. While not strictly a developmental bone disease, scoliosis can be caused by various underlying conditions such as cerebral palsy, muscular dystrophy, or spina bifida.

Treatment for developmental bone diseases varies depending on the specific condition and its severity. Treatment may include medication, physical therapy, bracing, or surgery to correct deformities and improve function. Regular follow-up with a healthcare provider is essential to monitor growth, manage symptoms, and prevent complications.

Fibroblast growth factor (FGF) receptors are a group of cell surface tyrosine kinase receptors that play crucial roles in various biological processes, including embryonic development, tissue repair, and tumor growth. There are four high-affinity FGF receptors (FGFR1-4) in humans, which share a similar structure, consisting of an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyrosine kinase domain.

These receptors bind to FGFs with different specificities and affinities, triggering a cascade of intracellular signaling events that regulate cell proliferation, differentiation, migration, and survival. Aberrant FGFR signaling has been implicated in several diseases, such as cancer, developmental disorders, and fibrotic conditions. Dysregulation of FGFRs can occur through various mechanisms, including genetic mutations, amplifications, or aberrant expression, leading to uncontrolled cell growth and malignant transformation. Therefore, FGFRs are considered promising targets for therapeutic intervention in several diseases.

"Paternal age" is a term used to describe the age of a father at the time of conception. It is often considered in relation to the potential impact on genetic health and the risk of certain genetic conditions in offspring. As a father's age increases, there is a higher chance of mutations occurring during the formation of sperm cells, which can potentially lead to an increased risk of certain genetic disorders such as Apert syndrome, Crouzon syndrome, and Schinzel-Giedion midface retraction syndrome. However, it is important to note that while the risk does increase with paternal age, the overall likelihood remains relatively low.

Dwarfism is a medical condition that is characterized by short stature, typically with an adult height of 4 feet 10 inches (147 centimeters) or less. It is caused by a variety of genetic and medical conditions that affect bone growth, including skeletal dysplasias, hormonal deficiencies, and chromosomal abnormalities.

Skeletal dysplasias are the most common cause of dwarfism and are characterized by abnormalities in the development and growth of bones and cartilage. Achondroplasia is the most common form of skeletal dysplasia, accounting for about 70% of all cases of dwarfism. It is caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene and results in short limbs, a large head, and a prominent forehead.

Hormonal deficiencies, such as growth hormone deficiency or hypothyroidism, can also cause dwarfism if they are not diagnosed and treated early. Chromosomal abnormalities, such as Turner syndrome (monosomy X) or Down syndrome (trisomy 21), can also result in short stature and other features of dwarfism.

It is important to note that people with dwarfism are not "dwarves" - the term "dwarf" is a medical and sociological term used to describe individuals with this condition, while "dwarves" is a term often used in fantasy literature and media to refer to mythical beings. The use of the term "dwarf" can be considered disrespectful or offensive to some people with dwarfism, so it is important to use respectful language when referring to individuals with this condition.

I'm sorry for any confusion, but "Judaism" is not a medical term. It is a religion, ethnicity, and culture originating in the Judaea region of the Middle East. Judaism is based on the teachings of the Torah and the Talmud, and it includes various practices, beliefs, and traditions. If you have any questions about medical terminology or health-related topics, I would be happy to try to help answer those for you.

X-ray tomography, also known as computed tomography (CT) or computerized axial tomography (CAT), is a medical imaging technique that uses X-rays to create detailed cross-sectional images of the body. In this technique, an X-ray source and detectors rotate around the patient, acquiring multiple X-ray projections at different angles. A computer then processes these projections to reconstruct tomographic images (slices) of the internal structures of the body, such as bones, organs, and soft tissues.

The term "tomography" comes from the Greek words "tome," meaning slice or section, and "graphein," meaning to write or record. X-ray tomography allows radiologists and other medical professionals to visualize and diagnose various conditions, such as fractures, tumors, infections, and internal injuries, more accurately and efficiently than with traditional X-ray imaging techniques.

It is important to note that while X-ray tomography provides valuable diagnostic information, it does involve exposure to ionizing radiation. Therefore, the benefits of the examination should outweigh the potential risks, and the use of this technique should be justified based on clinical necessity and patient safety considerations.

The spinal canal is the bony, protective channel within the vertebral column that contains and houses the spinal cord. It extends from the foramen magnum at the base of the skull to the sacrum, where the spinal cord ends and forms the cauda equina. The spinal canal is formed by a series of vertebral bodies stacked on top of each other, intervertebral discs in between them, and the laminae and spinous processes that form the posterior elements of the vertebrae. The spinal canal provides protection to the spinal cord from external trauma and contains cerebrospinal fluid (CSF) that circulates around the cord, providing nutrients and cushioning. Any narrowing or compression of the spinal canal, known as spinal stenosis, can cause various neurological symptoms due to pressure on the spinal cord or nerve roots.

A growth plate, also known as an epiphyseal plate or physis, is a layer of cartilaginous tissue found near the ends of long bones in children and adolescents. This region is responsible for the longitudinal growth of bones during development. The growth plate contains actively dividing cells that differentiate into chondrocytes, which produce and deposit new matrix, leading to bone elongation. Once growth is complete, usually in late adolescence or early adulthood, the growth plates ossify (harden) and are replaced by solid bone, transforming into the epiphyseal line.

Osteochondrodysplasias are a group of genetic disorders that affect the development of bones and cartilage. These conditions can result in dwarfism or short stature, as well as other skeletal abnormalities. Osteochondrodysplasias can be caused by mutations in genes that regulate bone and cartilage growth, and they are often characterized by abnormalities in the shape, size, and/or structure of the bones and cartilage.

There are many different types of osteochondrodysplasias, each with its own specific symptoms and patterns of inheritance. Some common examples include achondroplasia, thanatophoric dysplasia, and spondyloepiphyseal dysplasia. These conditions can vary in severity, and some may be associated with other health problems, such as respiratory difficulties or neurological issues.

Treatment for osteochondrodysplasias typically focuses on managing the symptoms and addressing any related health concerns. This may involve physical therapy, bracing or surgery to correct skeletal abnormalities, and treatment for any associated medical conditions. In some cases, genetic counseling may also be recommended for individuals with osteochondrodysplasias and their families.

An ophthalmoscope is a medical device used by healthcare professionals to examine the interior structures of the eye, including the retina, optic disc, and vitreous humor. It consists of a handle with a battery-powered light source and a head that contains lenses for focusing. When placed in contact with the patient's dilated pupil, the ophthalmoscope allows the examiner to visualize the internal structures of the eye and assess their health. Ophthalmoscopes are commonly used in routine eye examinations, as well as in the diagnosis and management of various eye conditions and diseases.

Musculoskeletal abnormalities refer to structural and functional disorders that affect the musculoskeletal system, which includes the bones, muscles, cartilages, tendons, ligaments, joints, and other related tissues. These abnormalities can result from genetic factors, trauma, overuse, degenerative processes, infections, or tumors. They may cause pain, stiffness, limited mobility, deformity, weakness, and susceptibility to injuries. Examples of musculoskeletal abnormalities include osteoarthritis, rheumatoid arthritis, scoliosis, kyphosis, lordosis, fractures, dislocations, tendinitis, bursitis, myopathies, and various congenital conditions.

No FAQ available that match "achondroplasia"

No images available that match "achondroplasia"