A condition of lung damage that is characterized by bilateral pulmonary infiltrates (PULMONARY EDEMA) rich in NEUTROPHILS, and in the absence of clinical HEART FAILURE. This can represent a spectrum of pulmonary lesions, endothelial and epithelial, due to numerous factors (physical, chemical, or biological).
Damage to any compartment of the lung caused by physical, chemical, or biological agents which characteristically elicit inflammatory reaction. These inflammatory reactions can either be acute and dominated by NEUTROPHILS, or chronic and dominated by LYMPHOCYTES and MACROPHAGES.
A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Pathological processes involving any part of the LUNG.
Lung damage that is caused by the adverse effects of PULMONARY VENTILATOR usage. The high frequency and tidal volumes produced by a mechanical ventilator can cause alveolar disruption and PULMONARY EDEMA.
Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening.
Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2).
Damage inflicted on the body as the direct or indirect result of an external force, with or without disruption of structural continuity.
Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place.
An abnormal increase in the amount of oxygen in the tissues and organs.
Water content outside of the lung vasculature. About 80% of a normal lung is made up of water, including intracellular, interstitial, and blood water. Failure to maintain the normal homeostatic fluid exchange between the vascular space and the interstitium of the lungs can result in PULMONARY EDEMA and flooding of the alveolar space.
The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T.
Infection of the lung often accompanied by inflammation.
Pulmonary injury following the breathing in of toxic smoke from burning materials such as plastics, synthetics, building materials, etc. This injury is the most frequent cause of death in burn patients.
The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER.
A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The barrier between capillary blood and alveolar air comprising the alveolar EPITHELIUM and capillary ENDOTHELIUM with their adherent BASEMENT MEMBRANE and EPITHELIAL CELL cytoplasm. PULMONARY GAS EXCHANGE occurs across this membrane.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7.
Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits.
Adverse functional, metabolic, or structural changes in ischemic tissues resulting from the restoration of blood flow to the tissue (REPERFUSION), including swelling; HEMORRHAGE; NECROSIS; and damage from FREE RADICALS. The most common instance is MYOCARDIAL REPERFUSION INJURY.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Artificial respiration (RESPIRATION, ARTIFICIAL) using an oxygenated fluid.
The diffusion or accumulation of neutrophils in tissues or cells in response to a wide variety of substances released at the sites of inflammatory reactions.
A strong corrosive acid that is commonly used as a laboratory reagent. It is formed by dissolving hydrogen chloride in water. GASTRIC ACID is the hydrochloric acid component of GASTRIC JUICE.
Washing out of the lungs with saline or mucolytic agents for diagnostic or therapeutic purposes. It is very useful in the diagnosis of diffuse pulmonary infiltrates in immunosuppressed patients.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Tumors or cancer of the LUNG.
Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells.
Mechanical devices used to produce or assist pulmonary ventilation.
The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562)
The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc.
Disease having a short and relatively severe course.
Injuries incurred during participation in competitive or non-competitive sports.
Measurement of oxygen and carbon dioxide in the blood.
A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors.
Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.).
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
The circulation of the BLOOD through the LUNGS.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
The posture of an individual lying face down.
A process in which normal lung tissues are progressively replaced by FIBROBLASTS and COLLAGEN causing an irreversible loss of the ability to transfer oxygen into the bloodstream via PULMONARY ALVEOLI. Patients show progressive DYSPNEA finally resulting in death.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A CXC chemokine that is synthesized by activated MONOCYTES and NEUTROPHILS. It has specificity for CXCR2 RECEPTORS.
A type of lung inflammation resulting from the aspiration of food, liquid, or gastric contents into the upper RESPIRATORY TRACT.
The transference of either one or both of the lungs from one human or animal to another.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
An anatomic severity scale based on the Abbreviated Injury Scale (AIS) and developed specifically to score multiple traumatic injuries. It has been used as a predictor of mortality.
Acute hemorrhage or excessive fluid loss resulting in HYPOVOLEMIA.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The process in which the neutrophil is stimulated by diverse substances, resulting in degranulation and/or generation of reactive oxygen products, and culminating in the destruction of invading pathogens. The stimulatory substances, including opsonized particles, immune complexes, and chemotactic factors, bind to specific cell-surface receptors on the neutrophil.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
Hospital units providing continuous surveillance and care to acutely ill patients.
The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract.
An acronym for Acute Physiology and Chronic Health Evaluation, a scoring system using routinely collected data and providing an accurate, objective description for a broad range of intensive care unit admissions, measuring severity of illness in critically ill patients.
Ventilatory support system using frequencies from 60-900 cycles/min or more. Three types of systems have been distinguished on the basis of rates, volumes, and the system used. They are high frequency positive-pressure ventilation (HFPPV); HIGH-FREQUENCY JET VENTILATION; (HFJV); and high-frequency oscillation (HFO).
Elements of limited time intervals, contributing to particular results or situations.
The endogenous compounds that mediate inflammation (AUTACOIDS) and related exogenous compounds including the synthetic prostaglandins (PROSTAGLANDINS, SYNTHETIC).
A heterogeneous aggregate of at least three distinct histological types of lung cancer, including SQUAMOUS CELL CARCINOMA; ADENOCARCINOMA; and LARGE CELL CARCINOMA. They are dealt with collectively because of their shared treatment strategy.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells.
A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.
Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions and fluorocarbon blood substitutes.
A condition characterized by the presence of ENDOTOXINS in the blood. On lysis, the outer cell wall of gram-negative bacteria enters the systemic circulation and initiates a pathophysiologic cascade of pro-inflammatory mediators.
General or unspecified injuries involving the leg.
Abrupt reduction in kidney function. Acute kidney injury encompasses the entire spectrum of the syndrome including acute kidney failure; ACUTE KIDNEY TUBULAR NECROSIS; and other less severe conditions.
That part of the RESPIRATORY TRACT or the air within the respiratory tract that does not exchange OXYGEN and CARBON DIOXIDE with pulmonary capillary blood.
Techniques for supplying artificial respiration to a single lung.
An alkylating carcinogen that produces gastrointestinal and probably lung and nervous system tumors.
The transfer of blood components such as erythrocytes, leukocytes, platelets, and plasma from a donor to a recipient or back to the donor. This process differs from the procedures undertaken in PLASMAPHERESIS and types of CYTAPHERESIS; (PLATELETPHERESIS and LEUKAPHERESIS) where, following the removal of plasma or the specific cell components, the remainder is transfused back to the donor.
A disease or state in which death is possible or imminent.
A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects.
Injuries to tissues caused by contact with heat, steam, chemicals (BURNS, CHEMICAL), electricity (BURNS, ELECTRIC), or the like.
Class of pro-inflammatory cytokines that have the ability to attract and activate leukocytes. They can be divided into at least three structural branches: C; (CHEMOKINES, C); CC; (CHEMOKINES, CC); and CXC; (CHEMOKINES, CXC); according to variations in a shared cysteine motif.
The number of times an organism breathes with the lungs (RESPIRATION) per unit time, usually per minute.
The force per unit area that the air exerts on any surface in contact with it. Primarily used for articles pertaining to air pressure within a closed environment.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Health care provided to a critically ill patient during a medical emergency or crisis.
Drugs used for their effects on the respiratory system.
A pulmonary surfactant associated-protein that plays an essential role in alveolar stability by lowering the surface tension at the air-liquid interface. Inherited deficiency of pulmonary surfactant-associated protein B is one cause of RESPIRATORY DISTRESS SYNDROME, NEWBORN.
A steroid-inducible protein that was originally identified in uterine fluid. It is a secreted homodimeric protein with identical 70-amino acid subunits that are joined in an antiparallel orientation by two disulfide bridges. A variety of activities are associated with uteroglobin including the sequestering of hydrophobic ligands and the inhibition of SECRETORY PHOSPHOLIPASE A2.
Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Damage or trauma inflicted to the eye by external means. The concept includes both surface injuries and intraocular injuries.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens and enhances their opsinization and killing by phagocytic cells. Surfactant protein D contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
The administration of therapeutic agents drop by drop, as eye drops, ear drops, or nose drops. It is also administered into a body space or cavity through a catheter. It differs from THERAPEUTIC IRRIGATION in that the irrigate is removed within minutes, but the instillate is left in place.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A pathological condition manifested by failure to perfuse or oxygenate vital organs.
The volume of air contained in the lungs at the end of a maximal inspiration. It is the equivalent to each of the following sums: VITAL CAPACITY plus RESIDUAL VOLUME; INSPIRATORY CAPACITY plus FUNCTIONAL RESIDUAL CAPACITY; TIDAL VOLUME plus INSPIRATORY RESERVE VOLUME plus functional residual capacity; or tidal volume plus inspiratory reserve volume plus EXPIRATORY RESERVE VOLUME plus residual volume.
A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells.
The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A progressive condition usually characterized by combined failure of several organs such as the lungs, liver, kidney, along with some clotting mechanisms, usually postinjury or postoperative.
Burns of the respiratory tract caused by heat or inhaled chemicals.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
General or unspecified injuries to the neck. It includes injuries to the skin, muscles, and other soft tissues of the neck.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.
A diverse group of lung diseases that affect the lung parenchyma. They are characterized by an initial inflammation of PULMONARY ALVEOLI that extends to the interstitium and beyond leading to diffuse PULMONARY FIBROSIS. Interstitial lung diseases are classified by their etiology (known or unknown causes), and radiological-pathological features.
Injuries resulting when a person is struck by particles impelled with violent force from an explosion. Blast causes pulmonary concussion and hemorrhage, laceration of other thoracic and abdominal viscera, ruptured ear drums, and minor effects in the central nervous system. (From Dorland, 27th ed)
Substances that reduce or suppress INFLAMMATION.
A procedure involving placement of a tube into the trachea through the mouth or nose in order to provide a patient with oxygen and anesthesia.
Therapy whose basic objective is to restore the volume and composition of the body fluids to normal with respect to WATER-ELECTROLYTE BALANCE. Fluids may be administered intravenously, orally, by intermittent gavage, or by HYPODERMOCLYSIS.
Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed)
General or unspecified injuries to the chest area.
An interleukin-1 subtype that is synthesized as an inactive membrane-bound pro-protein. Proteolytic processing of the precursor form by CASPASE 1 results in release of the active form of interleukin-1beta from the membrane.
Inflammation of the lung parenchyma that is caused by bacterial infections.
General or unspecified injuries involving organs in the abdominal cavity.
The dialdehyde of malonic acid.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
An enzyme that catalyzes the hydrolysis of proteins, including elastin. It cleaves preferentially bonds at the carboxyl side of Ala and Val, with greater specificity for Ala. EC 3.4.21.37.
The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs.
Relatively complete absence of oxygen in one or more tissues.
General or unspecified injuries involving the arm.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Absence of air in the entire or part of a lung, such as an incompletely inflated neonate lung or a collapsed adult lung. Pulmonary atelectasis can be caused by airway obstruction, lung compression, fibrotic contraction, or other factors.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
A highly toxic gas that has been used as a chemical warfare agent. It is an insidious poison as it is not irritating immediately, even when fatal concentrations are inhaled. (From The Merck Index, 11th ed, p7304)
Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing.
General or unspecified injuries to the hand.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
A pattern recognition receptor that interacts with LYMPHOCYTE ANTIGEN 96 and LIPOPOLYSACCHARIDES. It mediates cellular responses to GRAM-NEGATIVE BACTERIA.
A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
Systems for assessing, classifying, and coding injuries. These systems are used in medical records, surveillance systems, and state and national registries to aid in the collection and reporting of trauma.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
A greenish-yellow, diatomic gas that is a member of the halogen family of elements. It has the atomic symbol Cl, atomic number 17, and atomic weight 70.906. It is a powerful irritant that can cause fatal pulmonary edema. Chlorine is used in manufacturing, as a reagent in synthetic chemistry, for water purification, and in the production of chlorinated lime, which is used in fabric bleaching.
Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.
Hospital units providing continuous surveillance and care to acutely ill infants and children. Neonates are excluded since INTENSIVE CARE UNITS, NEONATAL is available.
Epithelial cells that line the PULMONARY ALVEOLI.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A vital statistic measuring or recording the rate of death from any cause in hospitalized populations.
Injuries involving the vertebral column.
A fibroblast growth factor that is a specific mitogen for EPITHELIAL CELLS. It binds a complex of HEPARAN SULFATE and FIBROBLAST GROWTH FACTOR RECEPTOR 2B.
A CXC chemokine with specificity for CXCR2 RECEPTORS. It has growth factor activities and is implicated as a oncogenic factor in several tumor types.
X-ray visualization of the chest and organs of the thoracic cavity. It is not restricted to visualization of the lungs.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A 24-kDa HMGB protein that binds to and distorts the minor grove of DNA.
Injuries to the knee or the knee joint.
A class of organic compounds containing two ring structures, one of which is made up of more than one kind of atom, usually carbon plus another atom. The heterocycle may be either aromatic or nonaromatic.
A cell-surface ligand involved in leukocyte adhesion and inflammation. Its production is induced by gamma-interferon and it is required for neutrophil migration into inflamed tissue.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Synthetic or natural substances which are given to prevent a disease or disorder or are used in the process of treating a disease or injury due to a poisonous agent.
A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES.
The measurement of an organ in volume, mass, or heaviness.
Advanced and highly specialized care provided to medical or surgical patients whose conditions are life-threatening and require comprehensive care and constant monitoring. It is usually administered in specially equipped units of a health care facility.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The preparation of platelet concentrates with the return of red cells and platelet-poor plasma to the donor.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI.
General or unspecified injuries to the heart.
Liquid components of living organisms.
Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE.
High-affinity G-protein-coupled receptors for INTERLEUKIN-8 present on NEUTROPHILS; MONOCYTES; and T-LYMPHOCYTES. These receptors also bind several other CXC CHEMOKINES.
A condition of the newborn marked by DYSPNEA with CYANOSIS, heralded by such prodromal signs as dilatation of the alae nasi, expiratory grunt, and retraction of the suprasternal notch or costal margins, mostly frequently occurring in premature infants, children of diabetic mothers, and infants delivered by cesarean section, and sometimes with no apparent predisposing cause.
Classification system for assessing impact injury severity developed and published by the American Association for Automotive Medicine. It is the system of choice for coding single injuries and is the foundation for methods assessing multiple injuries or for assessing cumulative effects of more than one injury. These include Maximum AIS (MAIS), Injury Severity Score (ISS), and Probability of Death Score (PODS).
An angiopoietin that is closely related to ANGIOPOIETIN-1. It binds to the TIE-2 RECEPTOR without receptor stimulation and antagonizes the effect of ANGIOPOIETIN-1. However its antagonistic effect may be limited to cell receptors that occur within the vasculature. Angiopoietin-2 may therefore play a role in down-regulation of BLOOD VESSEL branching and sprouting.
The washing of a body cavity or surface by flowing water or solution for therapy or diagnosis.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
The transfer of erythrocytes from a donor to a recipient or reinfusion to the donor.
A respiratory stimulant that enhances respiration by acting as an agonist of peripheral chemoreceptors located on the carotid bodies. The drug increases arterial oxygen tension while decreasing arterial carbon dioxide tension in patients with chronic obstructive pulmonary disease. It may also prove useful in the treatment of nocturnal oxygen desaturation without impairing the quality of sleep.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The transfer of blood platelets from a donor to a recipient or reinfusion to the donor.
A systemic inflammatory response to a variety of clinical insults, characterized by two or more of the following conditions: (1) fever >38 degrees C or HYPOTHERMIA 90 beat/minute; (3) tachypnea >24 breaths/minute; (4) LEUKOCYTOSIS >12,000 cells/cubic mm or 10% immature forms. While usually related to infection, SIRS can also be associated with noninfectious insults such as TRAUMA; BURNS; or PANCREATITIS. If infection is involved, a patient with SIRS is said to have SEPSIS.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
The relationship between the dose of an administered drug and the response of the organism to the drug.
Bleeding or escape of blood from a vessel.
The total volume of gas inspired or expired per unit of time, usually measured in liters per minute.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds.
A condition caused by inhalation of MECONIUM into the LUNG of FETUS or NEWBORN, usually due to vigorous respiratory movements during difficult PARTURITION or respiratory system abnormalities. Meconium aspirate may block small airways leading to difficulties in PULMONARY GAS EXCHANGE and ASPIRATION PNEUMONIA.
General or unspecified injuries to the soft tissue or bony portions of the face.
The exposure to potentially harmful chemical, physical, or biological agents by inhaling them.
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE).
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens, resulting in their opsinization. It also stimulates MACROPHAGES to undergo PHAGOCYTOSIS of microorganisms. Surfactant protein A contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
A type of shock that occurs as a result of a surgical procedure.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
A cell surface glycoprotein of endothelial cells that binds thrombin and serves as a cofactor in the activation of protein C and its regulation of blood coagulation.
The natural enzymatic dissolution of FIBRIN.
Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.

Transfusion related acute lung injury (TRALI) caused by red blood cell transfusion involving residual plasma anti-HLA antibodies: a report on two cases and general considerations. (1/1061)

TRALI is considered a serious hazard among immune complications of blood transfusion and its occurrence is admitted to be globally underestimated. Each type of blood product is likely to cause TRALI. We report here on two consecutive observations of TRALI caused by red blood cell concentrates, in which anti-HLA class I and class II antibodies resulting from post-gravitational allo-immunization were evidenced in donors. HLA class I and II antigenic community between recipients and donors' husbands were found and strong reacting IgG antibodies directed at several of those common antigens were detected in the donors' serum. Both donors had more than 3 pregnancies, raising the issue of blood donor selection or of plasma reduction for cellular products.  (+info)

Mechanisms of pulmonary dysfunction after on-pump and off-pump cardiac surgery: a prospective cohort study. (2/1061)

BACKGROUND: Pulmonary dysfunction following cardiac surgery is believed to be caused, at least in part, by a lung vascular injury and/or atelectasis following cardiopulmonary bypass (CPB) perfusion and collapse of non-ventilated lungs. METHODS: To test this hypothesis, we studied the postoperative pulmonary leak index (PLI) for 67Ga-transferrin and (transpulmonary) extravascular lung water (EVLW) in consecutive patients undergoing on-pump (n = 31) and off-pump (n = 8) cardiac surgery. We also studied transfusion history, radiographs, ventilatory and gas exchange variables. RESULTS: The postoperative PLI and EVLW were elevated above normal in 42 and 29% after on-pump surgery and 63 and 37% after off-pump surgery, respectively (ns). Transfusion of red blood cell (RBC) concentrates, PLI, EVLW, occurrence of atelectasis, ventilatory variables and duration of mechanical ventilation did not differ between groups, whereas patients with atelectasis had higher venous admixture and airway pressures than patients without atelectasis (P = 0.037 and 0.049). The PLI related to number of RBC concentrates infused (P = 0.025). CONCLUSION: The lung vascular injury in about half of patients after cardiac surgery is not caused by CPB perfusion but by trauma necessitating RBC transfusion, so that off-pump surgery may not afford a benefit in this respect. However, atelectasis rather than lung vascular injury is a major determinant of postoperative pulmonary dysfunction, irrespective of CPB perfusion.  (+info)

Toward early identification of acute lung injury in the emergency department. (3/1061)

BACKGROUND: There are no studies evaluating the epidemiology of pediatric acute lung injury (ALI) in the emergency department (ED), where early identification and interventions are most likely to be helpful. The purpose of this study was to describe the epidemiology of the ALI precursor acute hypoxemic respiratory failure (AHRF) in the ED. METHODS: We analyzed 11,664 pediatric patient records from 16 EDs. Records were selected if oxygen saturation (SpO(2)) was recorded during the visit. Virtual partial pressure of oxygen (pO(2)) was calculated from SpO(2), thus allowing calculation of ratios of pO(2) to fraction of inspired oxygen (FiO(2)) (PFRs). Patients with a PFR < 300 were classified as having AHRF. Univariate analyses and logistic regression were used to test the association of clinical factors with the presence of AHRF and intubation. RESULTS: AHRF criteria (ie, PFR < 300) were met in 121 (2.9%) of the 4,184 patients with an oxygenation measurement. The following variables were independently associated with ALI: higher Pediatric Risk of Admission II score (adjusted odds ratio [95% confidence interval (CI)] = 1.12 [1.08-1.16]; p < .001), higher heart rate (1.02 [1.01-1.03]; p = .009), a positive chest radiograph (2.35 [1.02-5.43]; p = .045), and lower temperature (0.49 [0.36-0.68]; p < .001).The final model had an R(2) = .20. CONCLUSION: We found nonintubated AHRF to be prevalent in the ED. The low R(2) for the regression model for AHRF underscores the lack of criteria for early identification of patients with respiratory compromise. Our findings represent an important first step toward establishing the true incidence of ALI in the pediatric ED.  (+info)

Keratinocyte growth factor protects against Clara cell injury induced by naphthalene. (4/1061)

 (+info)

NKG2D-dependent effector function of bronchial epithelium-activated alloreactive T-cells. (5/1061)

 (+info)

Low tidal volume ventilation is associated with reduced mortality in HIV-infected patients with acute lung injury. (6/1061)

 (+info)

Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. (7/1061)

 (+info)

Predictors of mortality in acute lung injury during the era of lung protective ventilation. (8/1061)

 (+info)

Acute Lung Injury (ALI) is a medical condition characterized by inflammation and damage to the lung tissue, which can lead to difficulty breathing and respiratory failure. It is often caused by direct or indirect injury to the lungs, such as pneumonia, sepsis, trauma, or inhalation of harmful substances.

The symptoms of ALI include shortness of breath, rapid breathing, cough, and low oxygen levels in the blood. The condition can progress rapidly and may require mechanical ventilation to support breathing. Treatment typically involves addressing the underlying cause of the injury, providing supportive care, and managing symptoms.

In severe cases, ALI can lead to Acute Respiratory Distress Syndrome (ARDS), a more serious and life-threatening condition that requires intensive care unit (ICU) treatment.

Lung injury, also known as pulmonary injury, refers to damage or harm caused to the lung tissue, blood vessels, or air sacs (alveoli) in the lungs. This can result from various causes such as infection, trauma, exposure to harmful substances, or systemic diseases. Common types of lung injuries include acute respiratory distress syndrome (ARDS), pneumonia, and chemical pneumonitis. Symptoms may include difficulty breathing, cough, chest pain, and decreased oxygen levels in the blood. Treatment depends on the underlying cause and may include medications, oxygen therapy, or mechanical ventilation.

Respiratory Distress Syndrome, Adult (RDSa or ARDS), also known as Acute Respiratory Distress Syndrome, is a severe form of acute lung injury characterized by rapid onset of widespread inflammation in the lungs. This results in increased permeability of the alveolar-capillary membrane, pulmonary edema, and hypoxemia (low oxygen levels in the blood). The inflammation can be triggered by various direct or indirect insults to the lung, such as sepsis, pneumonia, trauma, or aspiration.

The hallmark of ARDS is the development of bilateral pulmonary infiltrates on chest X-ray, which can resemble pulmonary edema, but without evidence of increased left atrial pressure. The condition can progress rapidly and may require mechanical ventilation with positive end-expiratory pressure (PEEP) to maintain adequate oxygenation and prevent further lung injury.

The management of ARDS is primarily supportive, focusing on protecting the lungs from further injury, optimizing oxygenation, and providing adequate nutrition and treatment for any underlying conditions. The use of low tidal volumes and limiting plateau pressures during mechanical ventilation have been shown to improve outcomes in patients with ARDS.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Lung diseases refer to a broad category of disorders that affect the lungs and other structures within the respiratory system. These diseases can impair lung function, leading to symptoms such as coughing, shortness of breath, chest pain, and wheezing. They can be categorized into several types based on the underlying cause and nature of the disease process. Some common examples include:

1. Obstructive lung diseases: These are characterized by narrowing or blockage of the airways, making it difficult to breathe out. Examples include chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis, and cystic fibrosis.
2. Restrictive lung diseases: These involve stiffening or scarring of the lungs, which reduces their ability to expand and take in air. Examples include idiopathic pulmonary fibrosis, sarcoidosis, and asbestosis.
3. Infectious lung diseases: These are caused by bacteria, viruses, fungi, or parasites that infect the lungs. Examples include pneumonia, tuberculosis, and influenza.
4. Vascular lung diseases: These affect the blood vessels in the lungs, impairing oxygen exchange. Examples include pulmonary embolism, pulmonary hypertension, and chronic thromboembolic pulmonary hypertension (CTEPH).
5. Neoplastic lung diseases: These involve abnormal growth of cells within the lungs, leading to cancer. Examples include small cell lung cancer, non-small cell lung cancer, and mesothelioma.
6. Other lung diseases: These include interstitial lung diseases, pleural effusions, and rare disorders such as pulmonary alveolar proteinosis and lymphangioleiomyomatosis (LAM).

It is important to note that this list is not exhaustive, and there are many other conditions that can affect the lungs. Proper diagnosis and treatment of lung diseases require consultation with a healthcare professional, such as a pulmonologist or respiratory therapist.

Ventilator-Induced Lung Injury (VILI) is a type of lung injury that can occur in patients who require mechanical ventilation to assist their breathing. It's caused by the application of excessive pressure or volume to the lungs during the process of mechanical ventilation, which can lead to damage of the alveoli (tiny air sacs in the lungs). This can result in inflammation, increased permeability of the alveolar-capillary membrane, and potentially even progressive lung dysfunction.

The risk factors for VILI include high tidal volumes (the amount of air moved into and out of the lungs during each breath), high inspiratory pressures, and high levels of positive end-expiratory pressure (PEEP). To minimize the risk of VILI, clinicians often use a lung protective ventilation strategy that involves using lower tidal volumes and limiting inspiratory pressures.

It's important to note that while mechanical ventilation is a lifesaving intervention for many critically ill patients, it is not without risks. VILI is one of the potential complications of this therapy, and clinicians must be mindful of this risk when managing mechanically ventilated patients.

Pulmonary edema is a medical condition characterized by the accumulation of fluid in the alveoli (air sacs) and interstitial spaces (the area surrounding the alveoli) within the lungs. This buildup of fluid can lead to impaired gas exchange, resulting in shortness of breath, coughing, and difficulty breathing, especially when lying down. Pulmonary edema is often a complication of heart failure, but it can also be caused by other conditions such as pneumonia, trauma, or exposure to certain toxins.

In the early stages of pulmonary edema, patients may experience mild symptoms such as shortness of breath during physical activity. However, as the condition progresses, symptoms can become more severe and include:

* Severe shortness of breath, even at rest
* Wheezing or coughing up pink, frothy sputum
* Rapid breathing and heart rate
* Anxiety or restlessness
* Bluish discoloration of the skin (cyanosis) due to lack of oxygen

Pulmonary edema can be diagnosed through a combination of physical examination, medical history, chest X-ray, and other diagnostic tests such as echocardiography or CT scan. Treatment typically involves addressing the underlying cause of the condition, as well as providing supportive care such as supplemental oxygen, diuretics to help remove excess fluid from the body, and medications to help reduce anxiety and improve breathing. In severe cases, mechanical ventilation may be necessary to support respiratory function.

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Artificial respiration is an emergency procedure that can be used to provide oxygen to a person who is not breathing or is breathing inadequately. It involves manually forcing air into the lungs, either by compressing the chest or using a device to deliver breaths. The goal of artificial respiration is to maintain adequate oxygenation of the body's tissues and organs until the person can breathe on their own or until advanced medical care arrives. Artificial respiration may be used in conjunction with cardiopulmonary resuscitation (CPR) in cases of cardiac arrest.

A wound is a type of injury that occurs when the skin or other tissues are cut, pierced, torn, or otherwise broken. Wounds can be caused by a variety of factors, including accidents, violence, surgery, or certain medical conditions. There are several different types of wounds, including:

* Incisions: These are cuts that are made deliberately, often during surgery. They are usually straight and clean.
* Lacerations: These are tears in the skin or other tissues. They can be irregular and jagged.
* Abrasions: These occur when the top layer of skin is scraped off. They may look like a bruise or a scab.
* Punctures: These are wounds that are caused by sharp objects, such as needles or knives. They are usually small and deep.
* Avulsions: These occur when tissue is forcibly torn away from the body. They can be very serious and require immediate medical attention.

Injuries refer to any harm or damage to the body, including wounds. Injuries can range from minor scrapes and bruises to more severe injuries such as fractures, dislocations, and head trauma. It is important to seek medical attention for any injury that is causing significant pain, swelling, or bleeding, or if there is a suspected bone fracture or head injury.

In general, wounds and injuries should be cleaned and covered with a sterile bandage to prevent infection. Depending on the severity of the wound or injury, additional medical treatment may be necessary. This may include stitches for deep cuts, immobilization for broken bones, or surgery for more serious injuries. It is important to follow your healthcare provider's instructions carefully to ensure proper healing and to prevent complications.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

Hyperoxia is a medical term that refers to an abnormally high concentration of oxygen in the body or in a specific organ or tissue. It is often defined as the partial pressure of oxygen (PaO2) in arterial blood being greater than 100 mmHg.

This condition can occur due to various reasons such as exposure to high concentrations of oxygen during medical treatments, like mechanical ventilation, or due to certain diseases and conditions that cause the body to produce too much oxygen.

While oxygen is essential for human life, excessive levels can be harmful and lead to oxidative stress, which can damage cells and tissues. Hyperoxia has been linked to various complications, including lung injury, retinopathy of prematurity, and impaired wound healing.

Extravascular lung water (EVLW) refers to the amount of fluid that has accumulated in the lungs outside of the pulmonary vasculature. It is not a part of the normal physiology and can be a sign of various pathological conditions, such as heart failure, sepsis, or acute respiratory distress syndrome (ARDS).

EVLW can be measured using various techniques, including transpulmonary thermodilution and pulmonary artery catheterization. Increased EVLW is associated with worse outcomes in critically ill patients, as it can lead to impaired gas exchange, decreased lung compliance, and increased work of breathing.

It's important to note that while EVLW can provide valuable information about a patient's condition, it should be interpreted in the context of other clinical findings and used as part of a comprehensive assessment.

Tidal volume (Vt) is the amount of air that moves into or out of the lungs during normal, resting breathing. It is the difference between the volume of air in the lungs at the end of a normal expiration and the volume at the end of a normal inspiration. In other words, it's the volume of each breath you take when you are not making any effort to breathe more deeply.

The average tidal volume for an adult human is around 500 milliliters (ml) per breath, but this can vary depending on factors such as age, sex, size, and fitness level. During exercise or other activities that require increased oxygen intake, tidal volume may increase to meet the body's demands for more oxygen.

Tidal volume is an important concept in respiratory physiology and clinical medicine, as it can be used to assess lung function and diagnose respiratory disorders such as chronic obstructive pulmonary disease (COPD) or asthma.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Smoke inhalation injury is a type of damage that occurs to the respiratory system when an individual breathes in smoke, most commonly during a fire. This injury can affect both the upper and lower airways and can cause a range of symptoms, including coughing, wheezing, shortness of breath, and chest pain.

Smoke inhalation injury can also lead to more severe complications, such as chemical irritation of the airways, swelling of the throat and lungs, and respiratory failure. In some cases, it can even be fatal. The severity of the injury depends on several factors, including the duration and intensity of the exposure, the individual's underlying health status, and the presence of any pre-existing lung conditions.

Smoke inhalation injury is caused by a combination of thermal injury (heat damage) and chemical injury (damage from toxic substances present in the smoke). The heat from the smoke can cause direct damage to the airways, leading to inflammation and swelling. At the same time, the chemicals in the smoke can irritate and corrode the lining of the airways, causing further damage.

Some of the toxic substances found in smoke include carbon monoxide, cyanide, and various other chemicals released by burning materials. These substances can interfere with the body's ability to transport oxygen and can cause metabolic acidosis, a condition characterized by an excessively acidic environment in the body.

Treatment for smoke inhalation injury typically involves providing supportive care to help the individual breathe more easily, such as administering oxygen or using mechanical ventilation. In some cases, medications may be used to reduce inflammation and swelling in the airways. Severe cases of smoke inhalation injury may require hospitalization and intensive care.

Pulmonary gas exchange is the process by which oxygen (O2) from inhaled air is transferred to the blood, and carbon dioxide (CO2), a waste product of metabolism, is removed from the blood and exhaled. This process occurs in the lungs, primarily in the alveoli, where the thin walls of the alveoli and capillaries allow for the rapid diffusion of gases between them. The partial pressure gradient between the alveolar air and the blood in the pulmonary capillaries drives this diffusion process. Oxygen-rich blood is then transported to the body's tissues, while CO2-rich blood returns to the lungs to be exhaled.

Positive-pressure respiration is a type of mechanical ventilation where positive pressure is applied to the airway and lungs, causing them to expand and inflate. This can be used to support or replace spontaneous breathing in patients who are unable to breathe effectively on their own due to conditions such as respiratory failure, neuromuscular disorders, or sedation for surgery.

During positive-pressure ventilation, a mechanical ventilator delivers breaths to the patient through an endotracheal tube or a tracheostomy tube. The ventilator is set to deliver a specific volume or pressure of air with each breath, and the patient's breathing is synchronized with the ventilator to ensure proper delivery of the breaths.

Positive-pressure ventilation can help improve oxygenation and remove carbon dioxide from the lungs, but it can also have potential complications such as barotrauma (injury to lung tissue due to excessive pressure), volutrauma (injury due to overdistention of the lungs), hemodynamic compromise (decreased blood pressure and cardiac output), and ventilator-associated pneumonia. Therefore, careful monitoring and adjustment of ventilator settings are essential to minimize these risks and provide safe and effective respiratory support.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

I am not aware of a widely recognized or established medical term called "Blood-Air Barrier." It is possible that you may be referring to a concept or phenomenon that goes by a different name, or it could be a term that is specific to certain context or field within medicine.

In general, the terms "blood" and "air" refer to two distinct and separate compartments in the body, and there are various physiological barriers that prevent them from mixing with each other under normal circumstances. For example, the alveolar-capillary membrane in the lungs serves as a barrier that allows for the exchange of oxygen and carbon dioxide between the air in the alveoli and the blood in the capillaries, while preventing the two from mixing together.

If you could provide more context or clarify what you mean by "Blood-Air Barrier," I may be able to provide a more specific answer.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Capillary permeability refers to the ability of substances to pass through the walls of capillaries, which are the smallest blood vessels in the body. These tiny vessels connect the arterioles and venules, allowing for the exchange of nutrients, waste products, and gases between the blood and the surrounding tissues.

The capillary wall is composed of a single layer of endothelial cells that are held together by tight junctions. The permeability of these walls varies depending on the size and charge of the molecules attempting to pass through. Small, uncharged molecules such as water, oxygen, and carbon dioxide can easily diffuse through the capillary wall, while larger or charged molecules such as proteins and large ions have more difficulty passing through.

Increased capillary permeability can occur in response to inflammation, infection, or injury, allowing larger molecules and immune cells to enter the surrounding tissues. This can lead to swelling (edema) and tissue damage if not controlled. Decreased capillary permeability, on the other hand, can lead to impaired nutrient exchange and tissue hypoxia.

Overall, the permeability of capillaries is a critical factor in maintaining the health and function of tissues throughout the body.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Peroxidase is a type of enzyme that catalyzes the chemical reaction in which hydrogen peroxide (H2O2) is broken down into water (H2O) and oxygen (O2). This enzymatic reaction also involves the oxidation of various organic and inorganic compounds, which can serve as electron donors.

Peroxidases are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They play important roles in various biological processes, such as defense against oxidative stress, breakdown of toxic substances, and participation in metabolic pathways.

The peroxidase-catalyzed reaction can be represented by the following chemical equation:

H2O2 + 2e- + 2H+ → 2H2O

In this reaction, hydrogen peroxide is reduced to water, and the electron donor is oxidized. The peroxidase enzyme facilitates the transfer of electrons between the substrate (hydrogen peroxide) and the electron donor, making the reaction more efficient and specific.

Peroxidases have various applications in medicine, industry, and research. For example, they can be used for diagnostic purposes, as biosensors, and in the treatment of wastewater and medical wastes. Additionally, peroxidases are involved in several pathological conditions, such as inflammation, cancer, and neurodegenerative diseases, making them potential targets for therapeutic interventions.

A brain injury is defined as damage to the brain that occurs following an external force or trauma, such as a blow to the head, a fall, or a motor vehicle accident. Brain injuries can also result from internal conditions, such as lack of oxygen or a stroke. There are two main types of brain injuries: traumatic and acquired.

Traumatic brain injury (TBI) is caused by an external force that results in the brain moving within the skull or the skull being fractured. Mild TBIs may result in temporary symptoms such as headaches, confusion, and memory loss, while severe TBIs can cause long-term complications, including physical, cognitive, and emotional impairments.

Acquired brain injury (ABI) is any injury to the brain that occurs after birth and is not hereditary, congenital, or degenerative. ABIs are often caused by medical conditions such as strokes, tumors, anoxia (lack of oxygen), or infections.

Both TBIs and ABIs can range from mild to severe and may result in a variety of physical, cognitive, and emotional symptoms that can impact a person's ability to perform daily activities and function independently. Treatment for brain injuries typically involves a multidisciplinary approach, including medical management, rehabilitation, and supportive care.

Reperfusion injury is a complex pathophysiological process that occurs when blood flow is restored to previously ischemic tissues, leading to further tissue damage. This phenomenon can occur in various clinical settings such as myocardial infarction (heart attack), stroke, or peripheral artery disease after an intervention aimed at restoring perfusion.

The restoration of blood flow leads to the generation of reactive oxygen species (ROS) and inflammatory mediators, which can cause oxidative stress, cellular damage, and activation of the immune system. This results in a cascade of events that may lead to microvascular dysfunction, capillary leakage, and tissue edema, further exacerbating the injury.

Reperfusion injury is an important consideration in the management of ischemic events, as interventions aimed at restoring blood flow must be carefully balanced with potential harm from reperfusion injury. Strategies to mitigate reperfusion injury include ischemic preconditioning (exposing the tissue to short periods of ischemia before a prolonged ischemic event), ischemic postconditioning (applying brief periods of ischemia and reperfusion after restoring blood flow), remote ischemic preconditioning (ischemia applied to a distant organ or tissue to protect the target organ), and pharmacological interventions that scavenge ROS, reduce inflammation, or improve microvascular function.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Liquid ventilation is a medical procedure that involves the use of an oxygen-rich liquid, such as perfluorocarbons (PFCs), to replace air in the lungs. This technique is used to improve gas exchange and lung function in patients with severe respiratory distress syndrome (RDS) or other forms of acute lung injury.

During liquid ventilation, the liquid is instilled into the lungs through a special endotracheal tube, causing the alveoli (tiny air sacs in the lungs) to fill up and float in the liquid. The PFCs used in liquid ventilation are capable of dissolving large amounts of oxygen and carbon dioxide, allowing for efficient gas exchange between the lungs and the bloodstream.

The use of liquid ventilation has been shown to improve lung compliance, reduce lung injury, and decrease the need for mechanical ventilation in some patients with severe respiratory distress. However, further research is needed to fully understand its potential benefits and risks.

Neutrophil infiltration is a pathological process characterized by the accumulation of neutrophils, a type of white blood cell, in tissue. It is a common feature of inflammation and occurs in response to infection, injury, or other stimuli that trigger an immune response. Neutrophils are attracted to the site of tissue damage by chemical signals called chemokines, which are released by damaged cells and activated immune cells. Once they reach the site of inflammation, neutrophils help to clear away damaged tissue and microorganisms through a process called phagocytosis. However, excessive or prolonged neutrophil infiltration can also contribute to tissue damage and may be associated with various disease states, including cancer, autoimmune disorders, and ischemia-reperfusion injury.

Hydrochloric acid, also known as muriatic acid, is not a substance that is typically found within the human body. It is a strong mineral acid with the chemical formula HCl. In a medical context, it might be mentioned in relation to gastric acid, which helps digest food in the stomach. Gastric acid is composed of hydrochloric acid, potassium chloride and sodium chloride dissolved in water. The pH of hydrochloric acid is very low (1-2) due to its high concentration of H+ ions, making it a strong acid. However, it's important to note that the term 'hydrochloric acid' does not directly refer to a component of human bodily fluids or tissues.

Bronchoalveolar lavage (BAL) is a medical procedure in which a small amount of fluid is introduced into a segment of the lung and then gently suctioned back out. The fluid contains cells and other materials that can be analyzed to help diagnose various lung conditions, such as inflammation, infection, or cancer.

The procedure is typically performed during bronchoscopy, which involves inserting a thin, flexible tube with a light and camera on the end through the nose or mouth and into the lungs. Once the bronchoscope is in place, a small catheter is passed through the bronchoscope and into the desired lung segment. The fluid is then introduced and suctioned back out, and the sample is sent to a laboratory for analysis.

BAL can be helpful in diagnosing various conditions such as pneumonia, interstitial lung diseases, alveolar proteinosis, and some types of cancer. It can also be used to monitor the effectiveness of treatment for certain lung conditions. However, like any medical procedure, it carries some risks, including bleeding, infection, and respiratory distress. Therefore, it is important that the procedure is performed by a qualified healthcare professional in a controlled setting.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

Alveolar macrophages are a type of macrophage (a large phagocytic cell) that are found in the alveoli of the lungs. They play a crucial role in the immune defense system of the lungs by engulfing and destroying any foreign particles, such as dust, microorganisms, and pathogens, that enter the lungs through the process of inhalation. Alveolar macrophages also produce cytokines, which are signaling molecules that help to coordinate the immune response. They are important for maintaining the health and function of the lungs by removing debris and preventing infection.

Mechanical Ventilators are medical devices that assist with breathing by providing mechanical ventilation to patients who are unable to breathe sufficiently on their own. These machines deliver breaths to the patient through an endotracheal tube or a tracheostomy tube, which is placed in the windpipe (trachea). Mechanical Ventilators can be set to deliver breaths at specific rates and volumes, and they can also be adjusted to provide varying levels of positive end-expiratory pressure (PEEP) to help keep the alveoli open and improve oxygenation.

Mechanical ventilation is typically used in critical care settings such as intensive care units (ICUs), and it may be employed for a variety of reasons, including respiratory failure, sedation, neuromuscular disorders, or surgery. Prolonged use of mechanical ventilation can lead to complications such as ventilator-associated pneumonia, muscle weakness, and decreased cardiac function, so the goal is usually to wean patients off the ventilator as soon as possible.

Lung compliance is a measure of the ease with which the lungs expand and is defined as the change in lung volume for a given change in transpulmonary pressure. It is often expressed in units of liters per centimeter of water (L/cm H2O). A higher compliance indicates that the lungs are more easily distensible, while a lower compliance suggests that the lungs are stiffer and require more force to expand. Lung compliance can be affected by various conditions such as pulmonary fibrosis, pneumonia, acute respiratory distress syndrome (ARDS), and chronic obstructive pulmonary disease (COPD).

Respiratory mechanics refers to the biomechanical properties and processes that involve the movement of air through the respiratory system during breathing. It encompasses the mechanical behavior of the lungs, chest wall, and the muscles of respiration, including the diaphragm and intercostal muscles.

Respiratory mechanics includes several key components:

1. **Compliance**: The ability of the lungs and chest wall to expand and recoil during breathing. High compliance means that the structures can easily expand and recoil, while low compliance indicates greater resistance to expansion and recoil.
2. **Resistance**: The opposition to airflow within the respiratory system, primarily due to the friction between the air and the airway walls. Airway resistance is influenced by factors such as airway diameter, length, and the viscosity of the air.
3. **Lung volumes and capacities**: These are the amounts of air present in the lungs during different phases of the breathing cycle. They include tidal volume (the amount of air inspired or expired during normal breathing), inspiratory reserve volume (additional air that can be inspired beyond the tidal volume), expiratory reserve volume (additional air that can be exhaled beyond the tidal volume), and residual volume (the air remaining in the lungs after a forced maximum exhalation).
4. **Work of breathing**: The energy required to overcome the resistance and elastic forces during breathing. This work is primarily performed by the respiratory muscles, which contract to generate negative intrathoracic pressure and expand the chest wall, allowing air to flow into the lungs.
5. **Pressure-volume relationships**: These describe how changes in lung volume are associated with changes in pressure within the respiratory system. Important pressure components include alveolar pressure (the pressure inside the alveoli), pleural pressure (the pressure between the lungs and the chest wall), and transpulmonary pressure (the difference between alveolar and pleural pressures).

Understanding respiratory mechanics is crucial for diagnosing and managing various respiratory disorders, such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Athletic injuries are damages or injuries to the body that occur while participating in sports, physical activities, or exercise. These injuries can be caused by a variety of factors, including:

1. Trauma: Direct blows, falls, collisions, or crushing injuries can cause fractures, dislocations, contusions, lacerations, or concussions.
2. Overuse: Repetitive motions or stress on a particular body part can lead to injuries such as tendonitis, stress fractures, or muscle strains.
3. Poor technique: Using incorrect form or technique during exercise or sports can put additional stress on muscles, joints, and ligaments, leading to injury.
4. Inadequate warm-up or cool-down: Failing to properly prepare the body for physical activity or neglecting to cool down afterwards can increase the risk of injury.
5. Lack of fitness or flexibility: Insufficient strength, endurance, or flexibility can make individuals more susceptible to injuries during sports and exercise.
6. Environmental factors: Extreme weather conditions, poor field or court surfaces, or inadequate equipment can contribute to the risk of athletic injuries.

Common athletic injuries include ankle sprains, knee injuries, shoulder dislocations, tennis elbow, shin splints, and concussions. Proper training, warm-up and cool-down routines, use of appropriate protective gear, and attention to technique can help prevent many athletic injuries.

Blood gas analysis is a medical test that measures the levels of oxygen and carbon dioxide in the blood, as well as the pH level, which indicates the acidity or alkalinity of the blood. This test is often used to evaluate lung function, respiratory disorders, and acid-base balance in the body. It can also be used to monitor the effectiveness of treatments for conditions such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory illnesses. The analysis is typically performed on a sample of arterial blood, although venous blood may also be used in some cases.

Bleomycin is a type of chemotherapeutic agent used to treat various types of cancer, including squamous cell carcinoma, testicular cancer, and lymphomas. It works by causing DNA damage in rapidly dividing cells, which can inhibit the growth and proliferation of cancer cells.

Bleomycin is an antibiotic derived from Streptomyces verticillus and is often administered intravenously or intramuscularly. While it can be effective in treating certain types of cancer, it can also have serious side effects, including lung toxicity, which can lead to pulmonary fibrosis and respiratory failure. Therefore, bleomycin should only be used under the close supervision of a healthcare professional who is experienced in administering chemotherapy drugs.

Spinal cord injuries (SCI) refer to damage to the spinal cord that results in a loss of function, such as mobility or feeling. This injury can be caused by direct trauma to the spine or by indirect damage resulting from disease or degeneration of surrounding bones, tissues, or blood vessels. The location and severity of the injury on the spinal cord will determine which parts of the body are affected and to what extent.

The effects of SCI can range from mild sensory changes to severe paralysis, including loss of motor function, autonomic dysfunction, and possible changes in sensation, strength, and reflexes below the level of injury. These injuries are typically classified as complete or incomplete, depending on whether there is any remaining function below the level of injury.

Immediate medical attention is crucial for spinal cord injuries to prevent further damage and improve the chances of recovery. Treatment usually involves immobilization of the spine, medications to reduce swelling and pressure, surgery to stabilize the spine, and rehabilitation to help regain lost function. Despite advances in treatment, SCI can have a significant impact on a person's quality of life and ability to perform daily activities.

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

Pulmonary circulation refers to the process of blood flow through the lungs, where blood picks up oxygen and releases carbon dioxide. This is a vital part of the overall circulatory system, which delivers nutrients and oxygen to the body's cells while removing waste products like carbon dioxide.

In pulmonary circulation, deoxygenated blood from the systemic circulation returns to the right atrium of the heart via the superior and inferior vena cava. The blood then moves into the right ventricle through the tricuspid valve and gets pumped into the pulmonary artery when the right ventricle contracts.

The pulmonary artery divides into smaller vessels called arterioles, which further branch into a vast network of tiny capillaries in the lungs. Here, oxygen from the alveoli diffuses into the blood, binding to hemoglobin in red blood cells, while carbon dioxide leaves the blood and is exhaled through the nose or mouth.

The now oxygenated blood collects in venules, which merge to form pulmonary veins. These veins transport the oxygen-rich blood back to the left atrium of the heart, where it enters the systemic circulation once again. This continuous cycle enables the body's cells to receive the necessary oxygen and nutrients for proper functioning while disposing of waste products.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

The prone position is a body posture in which an individual lies on their stomach, with their face down and chest facing the floor or bed. This position is often used in medical settings for various purposes, such as during certain surgical procedures, respiratory support, or to alleviate pressure ulcers. It's also important to note that the prone position can have implications for patient safety, particularly in critically ill patients, and should be carefully monitored.

Pulmonary fibrosis is a specific type of lung disease that results from the thickening and scarring of the lung tissues, particularly those in the alveoli (air sacs) and interstitium (the space around the air sacs). This scarring makes it harder for the lungs to properly expand and transfer oxygen into the bloodstream, leading to symptoms such as shortness of breath, coughing, fatigue, and eventually respiratory failure. The exact cause of pulmonary fibrosis can vary, with some cases being idiopathic (without a known cause) or related to environmental factors, medications, medical conditions, or genetic predisposition.

Pulmonary surfactants are a complex mixture of lipids and proteins that are produced by the alveolar type II cells in the lungs. They play a crucial role in reducing the surface tension at the air-liquid interface within the alveoli, which helps to prevent collapse of the lungs during expiration. Surfactants also have important immunological functions, such as inhibiting the growth of certain bacteria and modulating the immune response. Deficiency or dysfunction of pulmonary surfactants can lead to respiratory distress syndrome (RDS) in premature infants and other lung diseases.

Lung volume measurements are clinical tests that determine the amount of air inhaled, exhaled, and present in the lungs at different times during the breathing cycle. These measurements include:

1. Tidal Volume (TV): The amount of air inhaled or exhaled during normal breathing, usually around 500 mL in resting adults.
2. Inspiratory Reserve Volume (IRV): The additional air that can be inhaled after a normal inspiration, approximately 3,000 mL in adults.
3. Expiratory Reserve Volume (ERV): The extra air that can be exhaled after a normal expiration, about 1,000-1,200 mL in adults.
4. Residual Volume (RV): The air remaining in the lungs after a maximal exhalation, approximately 1,100-1,500 mL in adults.
5. Total Lung Capacity (TLC): The total amount of air the lungs can hold at full inflation, calculated as TV + IRV + ERV + RV, around 6,000 mL in adults.
6. Functional Residual Capacity (FRC): The volume of air remaining in the lungs after a normal expiration, equal to ERV + RV, about 2,100-2,700 mL in adults.
7. Inspiratory Capacity (IC): The maximum amount of air that can be inhaled after a normal expiration, equal to TV + IRV, around 3,500 mL in adults.
8. Vital Capacity (VC): The total volume of air that can be exhaled after a maximal inspiration, calculated as IC + ERV, approximately 4,200-5,600 mL in adults.

These measurements help assess lung function and identify various respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Chemokine (C-X-C motif) ligand 2, also known as CXCL2, is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or cell signaling molecules, that play crucial roles in immune responses and inflammation. They mediate their effects by interacting with specific receptors on the surface of target cells, guiding the migration of various immune cells to sites of infection, injury, or inflammation.

CXCL2 is primarily produced by activated monocytes, macrophages, and neutrophils, as well as endothelial cells, fibroblasts, and certain types of tumor cells. Its primary function is to attract and activate neutrophils, which are key effector cells in the early stages of inflammation and host defense against invading pathogens. CXCL2 exerts its effects by binding to its specific receptor, CXCR2, which is expressed on the surface of neutrophils and other immune cells.

In addition to its role in inflammation and immunity, CXCL2 has been implicated in various pathological conditions, including cancer, atherosclerosis, and autoimmune diseases. Its expression can be regulated by several factors, such as pro-inflammatory cytokines, bacterial products, and growth factors. Understanding the role of CXCL2 in health and disease may provide insights into the development of novel therapeutic strategies for treating inflammation-associated disorders.

Aspiration pneumonia is a type of pneumonia that occurs when foreign materials such as food, liquid, or vomit enter the lungs, resulting in inflammation or infection. It typically happens when a person inhales these materials involuntarily due to impaired swallowing mechanisms, which can be caused by various conditions such as stroke, dementia, Parkinson's disease, or general anesthesia. The inhalation of foreign materials can cause bacterial growth in the lungs, leading to symptoms like cough, chest pain, fever, and difficulty breathing. Aspiration pneumonia can be a serious medical condition, particularly in older adults or individuals with weakened immune systems, and may require hospitalization and antibiotic treatment.

Lung transplantation is a surgical procedure where one or both diseased lungs are removed and replaced with healthy lungs from a deceased donor. It is typically considered as a treatment option for patients with end-stage lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis, idiopathic pulmonary fibrosis, and alpha-1 antitrypsin deficiency, who have exhausted all other medical treatments and continue to suffer from severe respiratory failure.

The procedure involves several steps, including evaluating the patient's eligibility for transplantation, matching the donor's lung size and blood type with the recipient, and performing the surgery under general anesthesia. After the surgery, patients require close monitoring and lifelong immunosuppressive therapy to prevent rejection of the new lungs.

Lung transplantation can significantly improve the quality of life and survival rates for some patients with end-stage lung disease, but it is not without risks, including infection, bleeding, and rejection. Therefore, careful consideration and thorough evaluation are necessary before pursuing this treatment option.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

The Injury Severity Score (ISS) is a medical scoring system used to assess the severity of trauma in patients with multiple injuries. It's based on the Abbreviated Injury Scale (AIS), which classifies each injury by body region on a scale from 1 (minor) to 6 (maximum severity).

The ISS is calculated by summing the squares of the highest AIS score in each of the three most severely injured body regions. The possible ISS ranges from 0 to 75, with higher scores indicating more severe injuries. An ISS over 15 is generally considered a significant injury, and an ISS over 25 is associated with a high risk of mortality. It's important to note that the ISS has limitations, as it doesn't consider the number or type of injuries within each body region, only the most severe one.

Hemorrhagic shock is a type of shock that occurs when there is significant blood loss leading to inadequate perfusion of tissues and organs. It is characterized by hypovolemia (low blood volume), hypotension (low blood pressure), tachycardia (rapid heart rate), and decreased urine output. Hemorrhagic shock can be classified into four stages based on the amount of blood loss and hemodynamic changes. In severe cases, it can lead to multi-organ dysfunction and death if not treated promptly and effectively.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Neutrophil activation refers to the process by which neutrophils, a type of white blood cell, become activated in response to a signal or stimulus, such as an infection or inflammation. This activation triggers a series of responses within the neutrophil that enable it to carry out its immune functions, including:

1. Degranulation: The release of granules containing enzymes and other proteins that can destroy microbes.
2. Phagocytosis: The engulfment and destruction of microbes through the use of reactive oxygen species (ROS) and other toxic substances.
3. Formation of neutrophil extracellular traps (NETs): A process in which neutrophils release DNA and proteins to trap and kill microbes outside the cell.
4. Release of cytokines and chemokines: Signaling molecules that recruit other immune cells to the site of infection or inflammation.

Neutrophil activation is a critical component of the innate immune response, but excessive or uncontrolled activation can contribute to tissue damage and chronic inflammation.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

An Intensive Care Unit (ICU) is a specialized hospital department that provides continuous monitoring and advanced life support for critically ill patients. The ICU is equipped with sophisticated technology and staffed by highly trained healthcare professionals, including intensivists, nurses, respiratory therapists, and other specialists.

Patients in the ICU may require mechanical ventilation, invasive monitoring, vasoactive medications, and other advanced interventions due to conditions such as severe infections, trauma, cardiac arrest, respiratory failure, or post-surgical complications. The goal of the ICU is to stabilize patients' condition, prevent further complications, and support organ function while the underlying illness is treated.

ICUs may be organized into different units based on the type of care provided, such as medical, surgical, cardiac, neurological, or pediatric ICUs. The length of stay in the ICU can vary widely depending on the patient's condition and response to treatment.

"Inhalation administration" is a medical term that refers to the method of delivering medications or therapeutic agents directly into the lungs by inhaling them through the airways. This route of administration is commonly used for treating respiratory conditions such as asthma, COPD (chronic obstructive pulmonary disease), and cystic fibrosis.

Inhalation administration can be achieved using various devices, including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and soft-mist inhalers. Each device has its unique mechanism of delivering the medication into the lungs, but they all aim to provide a high concentration of the drug directly to the site of action while minimizing systemic exposure and side effects.

The advantages of inhalation administration include rapid onset of action, increased local drug concentration, reduced systemic side effects, and improved patient compliance due to the ease of use and non-invasive nature of the delivery method. However, proper technique and device usage are crucial for effective therapy, as incorrect usage may result in suboptimal drug deposition and therapeutic outcomes.

"APACHE" stands for "Acute Physiology And Chronic Health Evaluation." It is a system used to assess the severity of illness in critically ill patients and predict their risk of mortality. The APACHE score is calculated based on various physiological parameters, such as heart rate, blood pressure, temperature, respiratory rate, and laboratory values, as well as age and chronic health conditions.

There are different versions of the APACHE system, including APACHE II, III, and IV, each with its own set of variables and scoring system. The most commonly used version is APACHE II, which includes 12 physiological variables measured during the first 24 hours of ICU admission, as well as age and chronic health points.

The APACHE score is widely used in research and clinical settings to compare the severity of illness and outcomes between different patient populations, evaluate the effectiveness of treatments and interventions, and make informed decisions about resource allocation and triage.

High-frequency ventilation (HFV) is a specialized mode of mechanical ventilation that delivers breaths at higher rates (usually 120-900 breaths per minute) and smaller tidal volumes (1-3 mL/kg) compared to conventional ventilation. This technique aims to reduce lung injury caused by overdistension and atelectasis, which can occur with traditional ventilator settings. It is often used in neonatal and pediatric intensive care units for the management of severe respiratory distress syndrome, meconium aspiration syndrome, and other conditions where conventional ventilation may be harmful.

There are two main types of high-frequency ventilation: high-frequency oscillatory ventilation (HFOV) and high-frequency jet ventilation (HFJV). Both techniques use different methods to generate the high-frequency breaths but share similar principles in delivering small tidal volumes at rapid rates.

In summary, high-frequency ventilation is a medical intervention that utilizes specialized ventilators to deliver faster and smaller breaths, minimizing lung injury and improving oxygenation for critically ill patients with severe respiratory distress.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Inflammation mediators are substances that are released by the body in response to injury or infection, which contribute to the inflammatory response. These mediators include various chemical factors such as cytokines, chemokines, prostaglandins, leukotrienes, and histamine, among others. They play a crucial role in regulating the inflammatory process by attracting immune cells to the site of injury or infection, increasing blood flow to the area, and promoting the repair and healing of damaged tissues. However, an overactive or chronic inflammatory response can also contribute to the development of various diseases and conditions, such as autoimmune disorders, cardiovascular disease, and cancer.

Carcinoma, non-small-cell lung (NSCLC) is a type of lung cancer that includes several subtypes of malignant tumors arising from the epithelial cells of the lung. These subtypes are classified based on the appearance of the cancer cells under a microscope and include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. NSCLC accounts for about 85% of all lung cancers and tends to grow and spread more slowly than small-cell lung cancer (SCLC).

NSCLC is often asymptomatic in its early stages, but as the tumor grows, symptoms such as coughing, chest pain, shortness of breath, hoarseness, and weight loss may develop. Treatment options for NSCLC depend on the stage and location of the cancer, as well as the patient's overall health and lung function. Common treatments include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Endotoxins are toxic substances that are associated with the cell walls of certain types of bacteria. They are released when the bacterial cells die or divide, and can cause a variety of harmful effects in humans and animals. Endotoxins are made up of lipopolysaccharides (LPS), which are complex molecules consisting of a lipid and a polysaccharide component.

Endotoxins are particularly associated with gram-negative bacteria, which have a distinctive cell wall structure that includes an outer membrane containing LPS. These toxins can cause fever, inflammation, and other symptoms when they enter the bloodstream or other tissues of the body. They are also known to play a role in the development of sepsis, a potentially life-threatening condition characterized by a severe immune response to infection.

Endotoxins are resistant to heat, acid, and many disinfectants, making them difficult to eliminate from contaminated environments. They can also be found in a variety of settings, including hospitals, industrial facilities, and agricultural operations, where they can pose a risk to human health.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

I'm sorry for any confusion, but "Fluorocarbons" are not typically associated with medical definitions. Fluorocarbons are chemical compounds that contain carbon atoms bonded to fluorine atoms. They are often used in a variety of applications including refrigerants, fire extinguishing agents, and in the manufacturing of Teflon and other non-stick coatings.

If you have any medical terms or concepts you'd like me to define or explain, please let me know!

Endotoxemia is a medical condition characterized by the presence of endotoxins in the bloodstream. Endotoxins are toxic substances that are found in the cell walls of certain types of bacteria, particularly gram-negative bacteria. They are released into the circulation when the bacteria die or multiply, and can cause a variety of symptoms such as fever, inflammation, low blood pressure, and organ failure.

Endotoxemia is often seen in patients with severe bacterial infections, sepsis, or septic shock. It can also occur after certain medical procedures, such as surgery or dialysis, that may allow bacteria from the gut to enter the bloodstream. In some cases, endotoxemia may be a result of a condition called "leaky gut syndrome," in which the lining of the intestines becomes more permeable, allowing endotoxins and other harmful substances to pass into the bloodstream.

Endotoxemia can be diagnosed through various tests, including blood cultures, measurement of endotoxin levels in the blood, and assessment of inflammatory markers such as c-reactive protein (CRP) and procalcitonin (PCT). Treatment typically involves antibiotics to eliminate the underlying bacterial infection, as well as supportive care to manage symptoms and prevent complications.

Leg injuries refer to damages or harm caused to any part of the lower extremity, including the bones, muscles, tendons, ligaments, blood vessels, and other soft tissues. These injuries can result from various causes such as trauma, overuse, or degenerative conditions. Common leg injuries include fractures, dislocations, sprains, strains, contusions, and cuts. Symptoms may include pain, swelling, bruising, stiffness, weakness, or difficulty walking. The specific treatment for a leg injury depends on the type and severity of the injury.

Acute kidney injury (AKI), also known as acute renal failure, is a rapid loss of kidney function that occurs over a few hours or days. It is defined as an increase in the serum creatinine level by 0.3 mg/dL within 48 hours or an increase in the creatinine level to more than 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days, or a urine volume of less than 0.5 mL/kg per hour for six hours.

AKI can be caused by a variety of conditions, including decreased blood flow to the kidneys, obstruction of the urinary tract, exposure to toxic substances, and certain medications. Symptoms of AKI may include decreased urine output, fluid retention, electrolyte imbalances, and metabolic acidosis. Treatment typically involves addressing the underlying cause of the injury and providing supportive care, such as dialysis, to help maintain kidney function until the injury resolves.

Respiratory dead space is the portion of each tidal volume (the amount of air that moves in and out of the lungs during normal breathing) that does not participate in gas exchange. It mainly consists of the anatomical dead space, which includes the conducting airways such as the trachea, bronchi, and bronchioles, where no alveoli are present for gas exchange to occur.

Additionally, alveolar dead space can also contribute to respiratory dead space when alveoli are perfused inadequately or not at all due to conditions like pulmonary embolism, lung consolidation, or impaired circulation. In these cases, even though air reaches the alveoli, insufficient blood flow prevents efficient gas exchange from taking place.

The sum of anatomical and alveolar dead space is referred to as physiological dead space. An increased respiratory dead space can lead to ventilation-perfusion mismatch and impaired oxygenation, making it a critical parameter in assessing respiratory function, particularly during mechanical ventilation in critically ill patients.

One-Lung Ventilation (OLV) is a medical procedure that involves the selective ventilation of one lung, while the other lung is either collapsed or not ventilated. This technique is often used during thoracic surgeries to provide a clear surgical field and improve exposure, especially for procedures involving the lower lobes of the lung or the mediastinum.

During OLV, a double-lumen endotracheal tube or a bronchial blocker is inserted into the trachea to isolate and ventilate one lung, while the other lung is deflated and not ventilated. This allows the surgical team to operate on the non-ventilated lung without the risk of contamination from secretions or debris from the operative site.

OLV requires careful monitoring of the patient's respiratory status, including oxygenation, ventilation, and carbon dioxide elimination. It may also increase the risk of hypoxemia, atelectasis, and pneumothorax, so it is important to closely monitor the patient's condition throughout the procedure and take appropriate measures to minimize these risks.

Nitrosomethylurethane (NMU) is not typically considered a medical term, but it is a chemical compound that has been used in research and industrial applications. It's an alkylating agent and a nitrosourea compound.

In toxicology and oncology, NMU is known as a potent carcinogen. It has been used in animal studies to induce tumors and study the mechanisms of cancer development. However, due to its high toxicity and carcinogenicity, it is not used in human medicine.

So, a medical definition might be: "Nitrosomethylurethane (NMU) is a highly toxic and carcinogenic nitrosourea compound that has been used in experimental cancer research to induce tumors in animals."

A blood component transfusion is the process of transferring a specific component of donated blood into a recipient's bloodstream. Blood components include red blood cells, plasma, platelets, and cryoprecipitate (a fraction of plasma that contains clotting factors). These components can be separated from whole blood and stored separately to allow for targeted transfusions based on the individual needs of the patient.

For example, a patient who is anemic may only require a red blood cell transfusion, while a patient with severe bleeding may need both red blood cells and plasma to replace lost volume and clotting factors. Platelet transfusions are often used for patients with low platelet counts or platelet dysfunction, and cryoprecipitate is used for patients with factor VIII or fibrinogen deficiencies.

Blood component transfusions must be performed under strict medical supervision to ensure compatibility between the donor and recipient blood types and to monitor for any adverse reactions. Proper handling, storage, and administration of blood components are also critical to ensure their safety and efficacy.

A critical illness is a serious condition that has the potential to cause long-term or permanent disability, or even death. It often requires intensive care and life support from medical professionals. Critical illnesses can include conditions such as:

1. Heart attack
2. Stroke
3. Organ failure (such as kidney, liver, or lung)
4. Severe infections (such as sepsis)
5. Coma or brain injury
6. Major trauma
7. Cancer that has spread to other parts of the body

These conditions can cause significant physical and emotional stress on patients and their families, and often require extensive medical treatment, rehabilitation, and long-term care. Critical illness insurance is a type of insurance policy that provides financial benefits to help cover the costs associated with treating these serious medical conditions.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

Burns are injuries to tissues caused by heat, electricity, chemicals, friction, or radiation. They are classified based on their severity:

1. First-degree burns (superficial burns) affect only the outer layer of skin (epidermis), causing redness, pain, and swelling.
2. Second-degree burns (partial-thickness burns) damage both the epidermis and the underlying layer of skin (dermis). They result in redness, pain, swelling, and blistering.
3. Third-degree burns (full-thickness burns) destroy the entire depth of the skin and can also damage underlying muscles, tendons, and bones. These burns appear white or blackened and charred, and they may be painless due to destroyed nerve endings.

Immediate medical attention is required for second-degree and third-degree burns, as well as for large area first-degree burns, to prevent infection, manage pain, and ensure proper healing. Treatment options include wound care, antibiotics, pain management, and possibly skin grafting or surgery in severe cases.

Chemokines are a family of small cytokines, or signaling proteins, that are secreted by cells and play an important role in the immune system. They are chemotactic, meaning they can attract and guide the movement of various immune cells to specific locations within the body. Chemokines do this by binding to G protein-coupled receptors on the surface of target cells, initiating a signaling cascade that leads to cell migration.

There are four main subfamilies of chemokines, classified based on the arrangement of conserved cysteine residues near the amino terminus: CXC, CC, C, and CX3C. Different chemokines have specific roles in inflammation, immune surveillance, hematopoiesis, and development. Dysregulation of chemokine function has been implicated in various diseases, including autoimmune disorders, infections, and cancer.

In summary, Chemokines are a group of signaling proteins that play a crucial role in the immune system by directing the movement of immune cells to specific locations within the body, thus helping to coordinate the immune response.

Respiratory rate is the number of breaths a person takes per minute. It is typically measured by counting the number of times the chest rises and falls in one minute. Normal respiratory rate at rest for an adult ranges from 12 to 20 breaths per minute. An increased respiratory rate (tachypnea) or decreased respiratory rate (bradypnea) can be a sign of various medical conditions, such as lung disease, heart failure, or neurological disorders. It is an important vital sign that should be regularly monitored in clinical settings.

Air pressure, also known as atmospheric pressure, is the force exerted by the weight of air in the atmosphere on a surface. It is measured in units such as pounds per square inch (psi), hectopascals (hPa), or inches of mercury (inHg). The standard atmospheric pressure at sea level is defined as 101,325 Pa (14.7 psi/1013 hPa/29.92 inHg). Changes in air pressure can be used to predict weather patterns and are an important factor in the study of aerodynamics and respiratory physiology.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Critical care, also known as intensive care, is a medical specialty that deals with the diagnosis and management of life-threatening conditions that require close monitoring and organ support. Critical care medicine is practiced in critical care units (ICUs) or intensive care units of hospitals. The goal of critical care is to prevent further deterioration of the patient's condition, to support failing organs, and to treat any underlying conditions that may have caused the patient to become critically ill.

Critical care involves a multidisciplinary team approach, including intensivists (specialist doctors trained in critical care), nurses, respiratory therapists, pharmacists, and other healthcare professionals. The care provided in the ICU is highly specialized and often involves advanced medical technology such as mechanical ventilation, dialysis, and continuous renal replacement therapy.

Patients who require critical care may have a wide range of conditions, including severe infections, respiratory failure, cardiovascular instability, neurological emergencies, and multi-organ dysfunction syndrome (MODS). Critical care is an essential component of modern healthcare and has significantly improved the outcomes of critically ill patients.

Respiratory system agents are substances that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These agents can be classified into different categories based on their effects:

1. Respiratory Stimulants: Agents that increase respiratory rate or depth by acting on the respiratory center in the brainstem.
2. Respiratory Depressants: Agents that decrease respiratory rate or depth, often as a side effect of their sedative or analgesic effects. Examples include opioids, benzodiazepines, and barbiturates.
3. Bronchodilators: Agents that widen the airways (bronchioles) in the lungs by relaxing the smooth muscle around them. They are used to treat asthma, chronic obstructive pulmonary disease (COPD), and other respiratory conditions. Examples include albuterol, ipratropium, and theophylline.
4. Anti-inflammatory Agents: Agents that reduce inflammation in the airways, which can help relieve symptoms of asthma, COPD, and other respiratory conditions. Examples include corticosteroids, leukotriene modifiers, and mast cell stabilizers.
5. Antitussives: Agents that suppress coughing, often by numbing the throat or acting on the cough center in the brainstem. Examples include dextromethorphan and codeine.
6. Expectorants: Agents that help thin and loosen mucus in the airways, making it easier to cough up and clear. Examples include guaifenesin and iodinated glycerol.
7. Decongestants: Agents that narrow blood vessels in the nose and throat, which can help relieve nasal congestion and sinus pressure. Examples include pseudoephedrine and phenylephrine.
8. Antimicrobial Agents: Agents that kill or inhibit the growth of microorganisms such as bacteria, viruses, and fungi that can cause respiratory infections. Examples include antibiotics, antiviral drugs, and antifungal agents.

Pulmonary Surfactant-Associated Protein B (SP-B) is a small, hydrophobic protein that is an essential component of pulmonary surfactant. Surfactant is a complex mixture of lipids and proteins that reduces surface tension at the air-liquid interface in the alveoli of the lungs, thereby preventing collapse of the alveoli during expiration and facilitating lung expansion during inspiration. SP-B plays a crucial role in the biophysical function of surfactant by promoting its spreading and stability. It is synthesized and processed within type II alveolar epithelial cells and secreted as a part of lamellar bodies, which are lipoprotein complexes that store and release surfactant. Deficiency or dysfunction of SP-B can lead to severe respiratory distress syndrome (RDS) in infants and other lung diseases in both children and adults.

Uteroglobin, also known as blastokinin or Clara cell 10-kDa protein (CC10), is a small molecular weight protein that is abundantly present in the respiratory tract and reproductive system of many mammals. It was first identified in the uterine fluid of pregnant animals, hence its name.

In the human body, uteroglobin is primarily produced by non-ciliated bronchial epithelial cells known as Clara cells, which are located in the respiratory tract. Uteroglobin has been found to have anti-inflammatory and immunomodulatory properties, and it may play a role in protecting the lungs from injury and inflammation.

In the reproductive system, uteroglobin is produced by the endometrial glands of the uterus during pregnancy, and it has been suggested to have a role in maintaining pregnancy and promoting fetal growth. However, its precise functions in both the respiratory and reproductive systems are not fully understood and are still the subject of ongoing research.

Respiratory Function Tests (RFTs) are a group of medical tests that measure how well your lungs take in and exhale air, and how well they transfer oxygen and carbon dioxide into and out of your blood. They can help diagnose certain lung disorders, measure the severity of lung disease, and monitor response to treatment.

RFTs include several types of tests, such as:

1. Spirometry: This test measures how much air you can exhale and how quickly you can do it. It's often used to diagnose and monitor conditions like asthma, chronic obstructive pulmonary disease (COPD), and other lung diseases.
2. Lung volume testing: This test measures the total amount of air in your lungs. It can help diagnose restrictive lung diseases, such as pulmonary fibrosis or sarcoidosis.
3. Diffusion capacity testing: This test measures how well oxygen moves from your lungs into your bloodstream. It's often used to diagnose and monitor conditions like pulmonary fibrosis, interstitial lung disease, and other lung diseases that affect the ability of the lungs to transfer oxygen to the blood.
4. Bronchoprovocation testing: This test involves inhaling a substance that can cause your airways to narrow, such as methacholine or histamine. It's often used to diagnose and monitor asthma.
5. Exercise stress testing: This test measures how well your lungs and heart work together during exercise. It's often used to diagnose lung or heart disease.

Overall, Respiratory Function Tests are an important tool for diagnosing and managing a wide range of lung conditions.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Eye injuries refer to any damage or trauma caused to the eye or its surrounding structures. These injuries can vary in severity and may include:

1. Corneal abrasions: A scratch or scrape on the clear surface of the eye (cornea).
2. Chemical burns: Occurs when chemicals come into contact with the eye, causing damage to the cornea and other structures.
3. Eyelid lacerations: Cuts or tears to the eyelid.
4. Subconjunctival hemorrhage: Bleeding under the conjunctiva, the clear membrane that covers the white part of the eye.
5. Hyphema: Accumulation of blood in the anterior chamber of the eye, which is the space between the cornea and iris.
6. Orbital fractures: Breaks in the bones surrounding the eye.
7. Retinal detachment: Separation of the retina from its underlying tissue, which can lead to vision loss if not treated promptly.
8. Traumatic uveitis: Inflammation of the uvea, the middle layer of the eye, caused by trauma.
9. Optic nerve damage: Damage to the optic nerve, which transmits visual information from the eye to the brain.

Eye injuries can result from a variety of causes, including accidents, sports-related injuries, violence, and chemical exposure. It is important to seek medical attention promptly for any suspected eye injury to prevent further damage and potential vision loss.

Pulmonary Surfactant-Associated Protein D, also known as SP-D or surfactant protein D, is a protein that belongs to the collectin family. It is produced by specialized cells called type II alveolar epithelial cells and is found in the lungs, where it plays an important role in maintaining lung homeostasis and host defense.

SP-D has several functions in the lungs, including:

1. Reducing surface tension: SP-D helps to reduce surface tension in the alveoli, which facilitates breathing by preventing the collapse of the lungs during expiration.
2. Host defense: SP-D plays a crucial role in innate immunity by recognizing and binding to pathogens such as bacteria, viruses, and fungi. This helps to neutralize and clear these microorganisms from the lungs.
3. Inflammation regulation: SP-D has anti-inflammatory properties and can help to regulate the immune response in the lungs. It does this by modulating the activation of immune cells such as macrophages and neutrophils.
4. Tissue repair: SP-D may also play a role in tissue repair and remodeling in the lungs, although its exact mechanisms are not fully understood.

Abnormalities in SP-D have been implicated in several lung diseases, including respiratory distress syndrome, asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung diseases.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Instillation, in the context of drug administration, refers to the process of introducing a medication or therapeutic agent into a body cavity or onto a mucous membrane surface using gentle, steady pressure. This is typically done with the help of a device such as an eyedropper, pipette, or catheter. The goal is to ensure that the drug is distributed evenly over the surface or absorbed through the mucous membrane for localized or systemic effects. Instillation can be used for various routes of administration including ocular (eye), nasal, auricular (ear), vaginal, and intra-articular (joint space) among others. The choice of instillation as a route of administration depends on the drug's properties, the desired therapeutic effect, and the patient's overall health status.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

In medical terms, shock is a life-threatening condition that occurs when the body is not getting enough blood flow or when the circulatory system is not functioning properly to distribute oxygen and nutrients to the tissues and organs. This results in a state of hypoxia (lack of oxygen) and cellular dysfunction, which can lead to multiple organ failure and death if left untreated.

Shock can be caused by various factors such as severe blood loss, infection, trauma, heart failure, allergic reactions, and severe burns. The symptoms of shock include low blood pressure, rapid pulse, cool and clammy skin, rapid and shallow breathing, confusion, weakness, and a bluish color to the lips and nails. Immediate medical attention is required for proper diagnosis and treatment of shock.

Total Lung Capacity (TLC) is the maximum volume of air that can be contained within the lungs at the end of a maximal inspiration. It includes all of the following lung volumes: tidal volume, inspiratory reserve volume, expiratory reserve volume, and residual volume. TLC can be measured directly using gas dilution techniques or indirectly by adding residual volume to vital capacity. Factors that affect TLC include age, sex, height, and lung health status.

Interleukin-8 (IL-8) is a type of cytokine, which is a small signaling protein involved in immune response and inflammation. IL-8 is also known as neutrophil chemotactic factor or NCF because it attracts neutrophils, a type of white blood cell, to the site of infection or injury.

IL-8 is produced by various cells including macrophages, epithelial cells, and endothelial cells in response to bacterial or inflammatory stimuli. It acts by binding to specific receptors called CXCR1 and CXCR2 on the surface of neutrophils, which triggers a series of intracellular signaling events leading to neutrophil activation, migration, and degranulation.

IL-8 plays an important role in the recruitment of neutrophils to the site of infection or tissue damage, where they can phagocytose and destroy invading microorganisms. However, excessive or prolonged production of IL-8 has been implicated in various inflammatory diseases such as chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, and cancer.

In the context of medicine, and specifically in physiology and respiratory therapy, partial pressure (P or p) is a measure of the pressure exerted by an individual gas in a mixture of gases. It's commonly used to describe the concentrations of gases in the body, such as oxygen (PO2), carbon dioxide (PCO2), and nitrogen (PN2).

The partial pressure of a specific gas is calculated as the fraction of that gas in the total mixture multiplied by the total pressure of the mixture. This concept is based on Dalton's law, which states that the total pressure exerted by a mixture of gases is equal to the sum of the pressures exerted by each individual gas.

For example, in room air at sea level, the partial pressure of oxygen (PO2) is approximately 160 mmHg (mm of mercury), which represents about 21% of the total barometric pressure (760 mmHg). This concept is crucial for understanding gas exchange in the lungs and how gases move across membranes, such as from alveoli to blood and vice versa.

Multiple Organ Failure (MOF) is a severe condition characterized by the dysfunction or failure of more than one organ system in the body. It often occurs as a result of serious illness, trauma, or infection, such as sepsis. The organs that commonly fail include the lungs, kidneys, liver, and heart. This condition can lead to significant morbidity and mortality if not promptly diagnosed and treated.

The definition of MOF has evolved over time, but a widely accepted one is the "Sequential Organ Failure Assessment" (SOFA) score, which evaluates six organ systems: respiratory, coagulation, liver, cardiovascular, renal, and neurologic. A SOFA score of 10 or more indicates MOF, and a higher score is associated with worse outcomes.

MOF can be classified as primary or secondary. Primary MOF occurs when the initial insult directly causes organ dysfunction, such as in severe trauma or septic shock. Secondary MOF occurs when the initial injury or illness has been controlled, but organ dysfunction develops later due to ongoing inflammation and other factors.

Early recognition and aggressive management of MOF are crucial for improving outcomes. Treatment typically involves supportive care, such as mechanical ventilation, dialysis, and medication to support cardiovascular function. In some cases, surgery or other interventions may be necessary to address the underlying cause of organ dysfunction.

Inhalation burns, also known as respiratory or pulmonary burns, refer to damage to the airways and lungs caused by inhaling hot gases, smoke, steam, or toxic fumes. This type of injury can occur during a fire or other thermal incidents and can result in significant morbidity and mortality.

Inhalation burns are classified into three categories based on the location and severity of the injury:

1. Upper airway burns: These involve the nose, throat, and voice box (larynx) and are usually caused by inhaling hot gases or steam. Symptoms may include singed nasal hairs, soot in the nose or mouth, coughing, wheezing, and difficulty speaking or swallowing.
2. Lower airway burns: These involve the trachea, bronchi, and bronchioles and are usually caused by inhaling smoke or toxic fumes. Symptoms may include coughing, chest pain, shortness of breath, and wheezing.
3. Systemic burns: These occur when toxic substances are absorbed into the bloodstream and can affect multiple organs. Symptoms may include nausea, vomiting, confusion, and organ failure.

Inhalation burns can lead to complications such as pneumonia, respiratory failure, and acute respiratory distress syndrome (ARDS). Treatment typically involves providing oxygen therapy, removing secretions from the airways, and administering bronchodilators and corticosteroids to reduce inflammation. Severe cases may require intubation and mechanical ventilation.

Prevention of inhalation burns includes avoiding smoke-filled areas during a fire, staying close to the ground where the air is cooler and cleaner, and using appropriate respiratory protection devices when exposed to toxic fumes or gases.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Neck injuries refer to damages or traumas that occur in any part of the neck, including soft tissues (muscles, ligaments, tendons), nerves, bones (vertebrae), and joints (facet joints, intervertebral discs). These injuries can result from various incidents such as road accidents, falls, sports-related activities, or work-related tasks. Common neck injuries include whiplash, strain or sprain of the neck muscles, herniated discs, fractured vertebrae, and pinched nerves, which may cause symptoms like pain, stiffness, numbness, tingling, or weakness in the neck, shoulders, arms, or hands. Immediate medical attention is necessary for proper diagnosis and treatment to prevent further complications and ensure optimal recovery.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) is a protein complex that plays a crucial role in regulating the immune response to infection and inflammation, as well as in cell survival, differentiation, and proliferation. It is composed of several subunits, including p50, p52, p65 (RelA), c-Rel, and RelB, which can form homodimers or heterodimers that bind to specific DNA sequences called κB sites in the promoter regions of target genes.

Under normal conditions, NF-κB is sequestered in the cytoplasm by inhibitory proteins known as IκBs (inhibitors of κB). However, upon stimulation by various signals such as cytokines, bacterial or viral products, and stress, IκBs are phosphorylated, ubiquitinated, and degraded, leading to the release and activation of NF-κB. Activated NF-κB then translocates to the nucleus, where it binds to κB sites and regulates the expression of target genes involved in inflammation, immunity, cell survival, and proliferation.

Dysregulation of NF-κB signaling has been implicated in various pathological conditions such as cancer, chronic inflammation, autoimmune diseases, and neurodegenerative disorders. Therefore, targeting NF-κB signaling has emerged as a potential therapeutic strategy for the treatment of these diseases.

Interstitial lung diseases (ILDs) are a group of disorders characterized by inflammation and scarring (fibrosis) in the interstitium, the tissue and space around the air sacs (alveoli) of the lungs. The interstitium is where the blood vessels that deliver oxygen to the lungs are located. ILDs can be caused by a variety of factors, including environmental exposures, medications, connective tissue diseases, and autoimmune disorders.

The scarring and inflammation in ILDs can make it difficult for the lungs to expand and contract normally, leading to symptoms such as shortness of breath, cough, and fatigue. The scarring can also make it harder for oxygen to move from the air sacs into the bloodstream.

There are many different types of ILDs, including:

* Idiopathic pulmonary fibrosis (IPF): a type of ILD that is caused by unknown factors and tends to progress rapidly
* Hypersensitivity pneumonitis: an ILD that is caused by an allergic reaction to inhaled substances, such as mold or bird droppings
* Connective tissue diseases: ILDs can be a complication of conditions such as rheumatoid arthritis and scleroderma
* Sarcoidosis: an inflammatory disorder that can affect multiple organs, including the lungs
* Asbestosis: an ILD caused by exposure to asbestos fibers

Treatment for ILDs depends on the specific type of disease and its underlying cause. Some treatments may include corticosteroids, immunosuppressive medications, and oxygen therapy. In some cases, a lung transplant may be necessary.

Blast injuries are traumas that result from the exposure to blast overpressure waves, typically generated by explosions. These injuries can be categorized into primary, secondary, tertiary, and quaternary blast injuries.

1. Primary Blast Injuries: These occur due to the direct effect of the blast wave on the body, which can cause barotrauma to organs with air-filled spaces such as the lungs, middle ear, and gastrointestinal tract. This can lead to conditions like pulmonary contusion, traumatic rupture of the eardrums, or bowel perforation.

2. Secondary Blast Injuries: These result from flying debris or objects that become projectiles due to the blast, which can cause penetrating trauma or blunt force injuries.

3. Tertiary Blast Injuries: These occur when individuals are thrown by the blast wind against solid structures or the ground, resulting in blunt force trauma, fractures, and head injuries.

4. Quaternary Blast Injuries: This category includes all other injuries or illnesses that are not classified under primary, secondary, or tertiary blast injuries. These may include burns, crush injuries, inhalation of toxic fumes, or psychological trauma.

It is important to note that blast injuries can be complex and often involve a combination of these categories, requiring comprehensive medical evaluation and management.

Anti-inflammatory agents are a class of drugs or substances that reduce inflammation in the body. They work by inhibiting the production of inflammatory mediators, such as prostaglandins and leukotrienes, which are released during an immune response and contribute to symptoms like pain, swelling, redness, and warmth.

There are two main types of anti-inflammatory agents: steroidal and nonsteroidal. Steroidal anti-inflammatory drugs (SAIDs) include corticosteroids, which mimic the effects of hormones produced by the adrenal gland. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a larger group that includes both prescription and over-the-counter medications, such as aspirin, ibuprofen, naproxen, and celecoxib.

While both types of anti-inflammatory agents can be effective in reducing inflammation and relieving symptoms, they differ in their mechanisms of action, side effects, and potential risks. Long-term use of NSAIDs, for example, can increase the risk of gastrointestinal bleeding, kidney damage, and cardiovascular events. Corticosteroids can have significant side effects as well, particularly with long-term use, including weight gain, mood changes, and increased susceptibility to infections.

It's important to use anti-inflammatory agents only as directed by a healthcare provider, and to be aware of potential risks and interactions with other medications or health conditions.

Intubation, intratracheal is a medical procedure in which a flexible plastic or rubber tube called an endotracheal tube (ETT) is inserted through the mouth or nose, passing through the vocal cords and into the trachea (windpipe). This procedure is performed to establish and maintain a patent airway, allowing for the delivery of oxygen and the removal of carbon dioxide during mechanical ventilation in various clinical scenarios, such as:

1. Respiratory failure or arrest
2. Procedural sedation
3. Surgery under general anesthesia
4. Neuromuscular disorders
5. Ingestion of toxic substances
6. Head and neck trauma
7. Critical illness or injury affecting the airway

The process of intubation is typically performed by trained medical professionals, such as anesthesiologists, emergency medicine physicians, or critical care specialists, using direct laryngoscopy or video laryngoscopy to visualize the vocal cords and guide the ETT into the correct position. Once placed, the ETT is secured to prevent dislodgement, and the patient's respiratory status is continuously monitored to ensure proper ventilation and oxygenation.

Fluid therapy, in a medical context, refers to the administration of fluids into a patient's circulatory system for various therapeutic purposes. This can be done intravenously (through a vein), intraosseously (through a bone), or subcutaneously (under the skin). The goal of fluid therapy is to correct or prevent imbalances in the body's fluids and electrolytes, maintain or restore blood volume, and support organ function.

The types of fluids used in fluid therapy can include crystalloids (which contain electrolytes and water) and colloids (which contain larger molecules like proteins). The choice of fluid depends on the patient's specific needs and condition. Fluid therapy is commonly used in the treatment of dehydration, shock, sepsis, trauma, surgery, and other medical conditions that can affect the body's fluid balance.

Proper administration of fluid therapy requires careful monitoring of the patient's vital signs, urine output, electrolyte levels, and overall clinical status to ensure that the therapy is effective and safe.

Respiratory insufficiency is a condition characterized by the inability of the respiratory system to maintain adequate gas exchange, resulting in an inadequate supply of oxygen and/or removal of carbon dioxide from the body. This can occur due to various causes, such as lung diseases (e.g., chronic obstructive pulmonary disease, pneumonia), neuromuscular disorders (e.g., muscular dystrophy, spinal cord injury), or other medical conditions that affect breathing mechanics and/or gas exchange.

Respiratory insufficiency can manifest as hypoxemia (low oxygen levels in the blood) and/or hypercapnia (high carbon dioxide levels in the blood). Symptoms of respiratory insufficiency may include shortness of breath, rapid breathing, fatigue, confusion, and in severe cases, loss of consciousness or even death. Treatment depends on the underlying cause and severity of the condition and may include oxygen therapy, mechanical ventilation, medications, and/or other supportive measures.

Thoracic injuries refer to damages or traumas that occur in the thorax, which is the part of the body that contains the chest cavity. The thorax houses vital organs such as the heart, lungs, esophagus, trachea, and major blood vessels. Thoracic injuries can range from blunt trauma, caused by impacts or compressions, to penetrating trauma, resulting from stabbing or gunshot wounds. These injuries may cause various complications, including but not limited to:

1. Hemothorax - bleeding into the chest cavity
2. Pneumothorax - collapsed lung due to air accumulation in the chest cavity
3. Tension pneumothorax - a life-threatening condition where trapped air puts pressure on the heart and lungs, impairing their function
4. Cardiac tamponade - compression of the heart caused by blood or fluid accumulation in the pericardial sac
5. Rib fractures, which can lead to complications like punctured lungs or internal bleeding
6. Tracheobronchial injuries, causing air leaks and difficulty breathing
7. Great vessel injuries, potentially leading to massive hemorrhage and hemodynamic instability

Immediate medical attention is required for thoracic injuries, as they can quickly become life-threatening due to the vital organs involved. Treatment may include surgery, chest tubes, medications, or supportive care, depending on the severity and type of injury.

Interleukin-1 beta (IL-1β) is a member of the interleukin-1 cytokine family and is primarily produced by activated macrophages in response to inflammatory stimuli. It is a crucial mediator of the innate immune response and plays a key role in the regulation of various biological processes, including cell proliferation, differentiation, and apoptosis. IL-1β is involved in the pathogenesis of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and atherosclerosis. It exerts its effects by binding to the interleukin-1 receptor, which triggers a signaling cascade that leads to the activation of various transcription factors and the expression of target genes.

Bacterial pneumonia is a type of lung infection that's caused by bacteria. It can affect people of any age, but it's more common in older adults, young children, and people with certain health conditions or weakened immune systems. The symptoms of bacterial pneumonia can vary, but they often include cough, chest pain, fever, chills, and difficulty breathing.

The most common type of bacteria that causes pneumonia is Streptococcus pneumoniae (pneumococcus). Other types of bacteria that can cause pneumonia include Haemophilus influenzae, Staphylococcus aureus, and Mycoplasma pneumoniae.

Bacterial pneumonia is usually treated with antibiotics, which are medications that kill bacteria. The specific type of antibiotic used will depend on the type of bacteria causing the infection. It's important to take all of the prescribed medication as directed, even if you start feeling better, to ensure that the infection is completely cleared and to prevent the development of antibiotic resistance.

In severe cases of bacterial pneumonia, hospitalization may be necessary for close monitoring and treatment with intravenous antibiotics and other supportive care.

Abdominal injuries refer to damages or traumas that occur in the abdomen, an area of the body that is located between the chest and the pelvis. This region contains several vital organs such as the stomach, liver, spleen, pancreas, small intestine, large intestine, kidneys, and reproductive organs. Abdominal injuries can range from minor bruises and cuts to severe internal bleeding and organ damage, depending on the cause and severity of the trauma.

Common causes of abdominal injuries include:

* Blunt force trauma, such as that caused by car accidents, falls, or physical assaults
* Penetrating trauma, such as that caused by gunshot wounds or stabbing
* Deceleration injuries, which occur when the body is moving at a high speed and suddenly stops, causing internal organs to continue moving and collide with each other or the abdominal wall

Symptoms of abdominal injuries may include:

* Pain or tenderness in the abdomen
* Swelling or bruising in the abdomen
* Nausea or vomiting
* Dizziness or lightheadedness
* Blood in the urine or stool
* Difficulty breathing or shortness of breath
* Rapid heartbeat or low blood pressure

Abdominal injuries can be life-threatening if left untreated, and immediate medical attention is necessary to prevent complications such as infection, internal bleeding, organ failure, or even death. Treatment may include surgery, medication, or other interventions depending on the severity and location of the injury.

Malondialdehyde (MDA) is a naturally occurring organic compound that is formed as a byproduct of lipid peroxidation, a process in which free radicals or reactive oxygen species react with polyunsaturated fatty acids. MDA is a highly reactive aldehyde that can modify proteins, DNA, and other biomolecules, leading to cellular damage and dysfunction. It is often used as a marker of oxidative stress in biological systems and has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Leukocyte elastase is a type of enzyme that is released by white blood cells (leukocytes), specifically neutrophils, during inflammation. Its primary function is to help fight infection by breaking down the proteins in bacteria and viruses. However, if not properly regulated, leukocyte elastase can also damage surrounding tissues, contributing to the progression of various diseases such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and cystic fibrosis.

Leukocyte elastase is often measured in clinical settings as a marker of inflammation and neutrophil activation, particularly in patients with lung diseases. Inhibitors of leukocyte elastase have been developed as potential therapeutic agents for these conditions.

The pulmonary artery is a large blood vessel that carries deoxygenated blood from the right ventricle of the heart to the lungs for oxygenation. It divides into two main branches, the right and left pulmonary arteries, which further divide into smaller vessels called arterioles, and then into a vast network of capillaries in the lungs where gas exchange occurs. The thin walls of these capillaries allow oxygen to diffuse into the blood and carbon dioxide to diffuse out, making the blood oxygen-rich before it is pumped back to the left side of the heart through the pulmonary veins. This process is crucial for maintaining proper oxygenation of the body's tissues and organs.

Anoxia is a medical condition that refers to the absence or complete lack of oxygen supply in the body or a specific organ, tissue, or cell. This can lead to serious health consequences, including damage or death of cells and tissues, due to the vital role that oxygen plays in supporting cellular metabolism and energy production.

Anoxia can occur due to various reasons, such as respiratory failure, cardiac arrest, severe blood loss, carbon monoxide poisoning, or high altitude exposure. Prolonged anoxia can result in hypoxic-ischemic encephalopathy, a serious condition that can cause brain damage and long-term neurological impairments.

Medical professionals use various diagnostic tests, such as blood gas analysis, pulse oximetry, and electroencephalography (EEG), to assess oxygen levels in the body and diagnose anoxia. Treatment for anoxia typically involves addressing the underlying cause, providing supplemental oxygen, and supporting vital functions, such as breathing and circulation, to prevent further damage.

Arm injuries refer to any damage or harm sustained by the structures of the upper limb, including the bones, muscles, tendons, ligaments, nerves, and blood vessels. These injuries can occur due to various reasons such as trauma, overuse, or degenerative conditions. Common arm injuries include fractures, dislocations, sprains, strains, tendonitis, and nerve damage. Symptoms may include pain, swelling, bruising, limited mobility, numbness, or weakness in the affected area. Treatment varies depending on the type and severity of the injury, and may include rest, ice, compression, elevation, physical therapy, medication, or surgery.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Pulmonary atelectasis is a medical condition characterized by the collapse or closure of the alveoli (tiny air sacs) in the lungs, leading to reduced or absent gas exchange in the affected area. This results in decreased lung volume and can cause hypoxemia (low oxygen levels in the blood). Atelectasis can be caused by various factors such as obstruction of the airways, surfactant deficiency, pneumothorax, or compression from outside the lung. It can also occur after surgical procedures, particularly when the patient is lying in one position for a long time. Symptoms may include shortness of breath, cough, and chest discomfort, but sometimes it may not cause any symptoms, especially if only a small area of the lung is affected. Treatment depends on the underlying cause and may include bronchodilators, chest physiotherapy, or even surgery in severe cases.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Phosgene is not a medical condition, but it is an important chemical compound with significant medical implications. Medically, phosgene is most relevant as a potent chemical warfare agent and a severe pulmonary irritant. Here's the medical definition of phosgene:

Phosgene (COCl2): A highly toxic and reactive gas at room temperature with a characteristic odor reminiscent of freshly cut hay or grass. It is denser than air, allowing it to accumulate in low-lying areas. Exposure to phosgene primarily affects the respiratory system, causing symptoms ranging from mild irritation to severe pulmonary edema and potentially fatal respiratory failure.

Inhaling high concentrations of phosgene can lead to immediate choking sensations, coughing, chest pain, and difficulty breathing. Delayed symptoms may include fever, cyanosis (bluish discoloration of the skin due to insufficient oxygen), and pulmonary edema (fluid accumulation in the lungs). The onset of these severe symptoms can be rapid or take up to 48 hours after exposure.

Medical management of phosgene exposure primarily focuses on supportive care, including administering supplemental oxygen, bronchodilators, and corticosteroids to reduce inflammation. In severe cases, mechanical ventilation may be necessary to maintain adequate gas exchange in the lungs.

An animal model in medicine refers to the use of non-human animals in experiments to understand, predict, and test responses and effects of various biological and chemical interactions that may also occur in humans. These models are used when studying complex systems or processes that cannot be easily replicated or studied in human subjects, such as genetic manipulation or exposure to harmful substances. The choice of animal model depends on the specific research question being asked and the similarities between the animal's and human's biological and physiological responses. Examples of commonly used animal models include mice, rats, rabbits, guinea pigs, and non-human primates.

Hand injuries refer to any damage or harm caused to the structures of the hand, including the bones, joints, muscles, tendons, ligaments, nerves, blood vessels, and skin. These injuries can result from various causes such as trauma, overuse, or degenerative conditions. Examples of hand injuries include fractures, dislocations, sprains, strains, cuts, burns, and insect bites. Symptoms may vary depending on the type and severity of the injury, but they often include pain, swelling, stiffness, numbness, weakness, or loss of function in the hand. Proper diagnosis and treatment are crucial to ensure optimal recovery and prevent long-term complications.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Toll-Like Receptor 4 (TLR4) is a type of protein found on the surface of some cells in the human body, including immune cells like macrophages and dendritic cells. It belongs to a class of proteins called pattern recognition receptors (PRRs), which play a crucial role in the innate immune system's response to infection.

TLR4 recognizes and responds to specific molecules found on gram-negative bacteria, such as lipopolysaccharide (LPS), also known as endotoxin. When TLR4 binds to LPS, it triggers a signaling cascade that leads to the activation of immune cells, production of pro-inflammatory cytokines and chemokines, and initiation of the adaptive immune response.

TLR4 is an essential component of the body's defense against gram-negative bacterial infections, but its overactivation can also contribute to the development of various inflammatory diseases, such as sepsis, atherosclerosis, and certain types of cancer.

Protein C is a vitamin K-dependent protease that functions as an important regulator of coagulation and inflammation. It is a plasma protein produced in the liver that, when activated, degrades clotting factors Va and VIIIa to limit thrombus formation and prevent excessive blood clotting. Protein C also has anti-inflammatory properties by inhibiting the release of pro-inflammatory cytokines and reducing endothelial cell activation. Inherited or acquired deficiencies in Protein C can lead to an increased risk of thrombosis, a condition characterized by abnormal blood clot formation within blood vessels.

"Trauma severity indices" refer to various scoring systems used by healthcare professionals to evaluate the severity of injuries in trauma patients. These tools help standardize the assessment and communication of injury severity among different members of the healthcare team, allowing for more effective and consistent treatment planning, resource allocation, and prognosis estimation.

There are several commonly used trauma severity indices, including:

1. Injury Severity Score (ISS): ISS is an anatomical scoring system that evaluates the severity of injuries based on the Abbreviated Injury Scale (AIS). The body is divided into six regions, and the square of the highest AIS score in each region is summed to calculate the ISS. Scores range from 0 to 75, with higher scores indicating more severe injuries.
2. New Injury Severity Score (NISS): NISS is a modification of the ISS that focuses on the three most severely injured body regions, regardless of their anatomical location. The three highest AIS scores are squared and summed to calculate the NISS. This scoring system tends to correlate better with mortality than the ISS in some studies.
3. Revised Trauma Score (RTS): RTS is a physiological scoring system that evaluates the patient's respiratory, cardiovascular, and neurological status upon arrival at the hospital. It uses variables such as Glasgow Coma Scale (GCS), systolic blood pressure, and respiratory rate to calculate a score between 0 and 7.84, with lower scores indicating more severe injuries.
4. Trauma and Injury Severity Score (TRISS): TRISS is a combined anatomical and physiological scoring system that estimates the probability of survival based on ISS or NISS, RTS, age, and mechanism of injury (blunt or penetrating). It uses logistic regression equations to calculate the predicted probability of survival.
5. Pediatric Trauma Score (PTS): PTS is a physiological scoring system specifically designed for children under 14 years old. It evaluates six variables, including respiratory rate, oxygen saturation, systolic blood pressure, capillary refill time, GCS, and temperature to calculate a score between -6 and +12, with lower scores indicating more severe injuries.

These scoring systems help healthcare professionals assess the severity of trauma, predict outcomes, allocate resources, and compare patient populations in research settings. However, they should not replace clinical judgment or individualized care for each patient.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Chlorine is a chemical element with the symbol Cl and atomic number 17. It is a member of the halogen group of elements and is the second-lightest halogen after fluorine. In its pure form, chlorine is a yellow-green gas under standard conditions.

Chlorine is an important chemical compound that has many uses in various industries, including water treatment, disinfection, and bleaching. It is also used in the production of a wide range of products, such as plastics, solvents, and pesticides.

In medicine, chlorine compounds are sometimes used for their antimicrobial properties. For example, sodium hypochlorite (bleach) is a common disinfectant used to clean surfaces and equipment in healthcare settings. Chlorhexidine is another chlorine compound that is widely used as an antiseptic and disinfectant in medical and dental procedures.

However, it's important to note that exposure to high concentrations of chlorine gas can be harmful to human health, causing respiratory irritation, coughing, and shortness of breath. Long-term exposure to chlorine can also lead to more serious health effects, such as damage to the lungs and other organs.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

A Pediatric Intensive Care Unit (PICU) is a specialized hospital unit that provides intensive care to critically ill or injured infants, children, and adolescents. The PICU is equipped with advanced medical technology and staffed by healthcare professionals trained in pediatrics, including pediatric intensivists, pediatric nurses, respiratory therapists, and other specialists as needed.

The primary goal of the PICU is to closely monitor and manage the most critical patients, providing around-the-clock care and interventions to support organ function, treat life-threatening conditions, and prevent complications. The PICU team works together to provide family-centered care, keeping parents informed about their child's condition and involving them in decision-making processes.

Common reasons for admission to the PICU include respiratory failure, shock, sepsis, severe trauma, congenital heart disease, neurological emergencies, and post-operative monitoring after complex surgeries. The length of stay in the PICU can vary widely depending on the severity of the child's illness or injury and their response to treatment.

Pneumocytes are specialized epithelial cells that line the alveoli, which are the tiny air sacs in the lungs where gas exchange occurs. There are two main types of pneumocytes: type I and type II.

Type I pneumocytes are flat, thin cells that cover about 95% of the alveolar surface area. They play a crucial role in facilitating the diffusion of oxygen and carbon dioxide between the alveoli and the bloodstream. Type I pneumocytes also contribute to maintaining the structural integrity of the alveoli.

Type II pneumocytes are smaller, more cuboidal cells that produce and secrete surfactant, a substance composed of proteins and lipids that reduces surface tension within the alveoli, preventing their collapse and facilitating breathing. Type II pneumocytes can also function as progenitor cells, capable of differentiating into type I pneumocytes to help repair damaged lung tissue.

In summary, pneumocytes are essential for maintaining proper gas exchange in the lungs and contributing to the overall health and functioning of the respiratory system.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Hospital mortality is a term used to describe the number or rate of deaths that occur in a hospital setting during a specific period. It is often used as a measure of the quality of healthcare provided by a hospital, as a higher hospital mortality rate may indicate poorer care or more complex cases being treated. However, it's important to note that hospital mortality rates can be influenced by many factors, including the severity of illness of the patients being treated, patient demographics, and the availability of resources and specialized care. Therefore, hospital mortality rates should be interpreted with caution and in the context of other quality metrics.

Spinal injuries refer to damages or traumas that occur to the vertebral column, which houses and protects the spinal cord. These injuries can be caused by various factors such as trauma from accidents (motor vehicle, sports-related, falls, etc.), violence, or degenerative conditions like arthritis, disc herniation, or spinal stenosis.

Spinal injuries can result in bruising, fractures, dislocations, or compression of the vertebrae, which may then cause damage to the spinal cord and its surrounding tissues, nerves, and blood vessels. The severity of a spinal injury can range from mild, with temporary symptoms, to severe, resulting in permanent impairment or paralysis below the level of injury.

Symptoms of spinal injuries may include:
- Pain or stiffness in the neck or back
- Numbness, tingling, or weakness in the limbs
- Loss of bladder or bowel control
- Difficulty walking or maintaining balance
- Paralysis or loss of sensation below the level of injury
- In severe cases, respiratory problems and difficulty in breathing

Immediate medical attention is crucial for spinal injuries to prevent further damage and ensure proper treatment. Treatment options may include immobilization, surgery, medication, rehabilitation, and physical therapy.

Fibroblast Growth Factor 7 (FGF-7), also known as Keratinocyte Growth Factor (KGF), is a protein that belongs to the fibroblast growth factor family. It plays an essential role in the regulation of cell growth, survival, and differentiation. Specifically, FGF-7/KGF primarily targets epithelial cells, including those found in the skin, lungs, and gastrointestinal tract. In the skin, FGF-7/KGF is produced by fibroblasts and stimulates the growth and migration of keratinocytes, which are crucial for wound healing and epidermal maintenance. Additionally, FGF-7/KGF has been implicated in various physiological and pathological processes, such as tissue repair, development, and cancer progression.

Chemokine (C-X-C motif) ligand 1 (CXCL1), also known as growth-regulated oncogene-alpha (GRO-α), is a small signaling protein belonging to the chemokine family. Chemokines are a group of cytokines, or cell signaling molecules, that play important roles in immune responses and inflammation by recruiting immune cells to sites of infection or tissue injury.

CXCL1 specifically binds to and activates the CXCR2 receptor, which is found on various types of immune cells, such as neutrophils, monocytes, and lymphocytes. The activation of the CXCR2 receptor by CXCL1 leads to a series of intracellular signaling events that result in the directed migration of these immune cells towards the site of chemokine production.

CXCL1 is involved in various physiological and pathological processes, including wound healing, angiogenesis, and tumor growth and metastasis. It has been implicated in several inflammatory diseases, such as rheumatoid arthritis, psoriasis, and atherosclerosis, as well as in cancer progression and metastasis.

Thoracic radiography is a type of diagnostic imaging that involves using X-rays to produce images of the chest, including the lungs, heart, bronchi, great vessels, and the bones of the spine and chest wall. It is a commonly used tool in the diagnosis and management of various respiratory, cardiovascular, and thoracic disorders such as pneumonia, lung cancer, heart failure, and rib fractures.

During the procedure, the patient is positioned between an X-ray machine and a cassette containing a film or digital detector. The X-ray beam is directed at the chest, and the resulting image is captured on the film or detector. The images produced can help identify any abnormalities in the structure or function of the organs within the chest.

Thoracic radiography may be performed as a routine screening test for certain conditions, such as lung cancer, or it may be ordered when a patient presents with symptoms suggestive of a respiratory or cardiovascular disorder. It is a safe and non-invasive procedure that can provide valuable information to help guide clinical decision making and improve patient outcomes.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

High Mobility Group Box 1 (HMGB1) protein is a non-histone chromosomal protein that is widely expressed in various cell types, including immune cells and nucleated cells. It plays a crucial role in the maintenance of nucleosome structure and stability, regulation of gene transcription, and DNA replication and repair. HMGB1 can be actively secreted by activated immune cells or passively released from necrotic or damaged cells. Once outside the cell, it functions as a damage-associated molecular pattern (DAMP) molecule that binds to various receptors, such as Toll-like receptors and the receptor for advanced glycation end products (RAGE), on immune cells, leading to the activation of inflammatory responses and the induction of innate and adaptive immunity. HMGB1 has been implicated in various physiological and pathological processes, including inflammation, infection, autoimmunity, cancer, and neurological disorders.

Knee injuries refer to damages or harm caused to the structures surrounding or within the knee joint, which may include the bones (femur, tibia, and patella), cartilage (meniscus and articular cartilage), ligaments (ACL, PCL, MCL, and LCL), tendons (patellar and quadriceps), muscles, bursae, and other soft tissues. These injuries can result from various causes, such as trauma, overuse, degeneration, or sports-related activities. Symptoms may include pain, swelling, stiffness, instability, reduced range of motion, and difficulty walking or bearing weight on the affected knee. Common knee injuries include fractures, dislocations, meniscal tears, ligament sprains or ruptures, and tendonitis. Proper diagnosis and treatment are crucial to ensure optimal recovery and prevent long-term complications.

Heterocyclic compounds are organic molecules that contain a ring structure made up of at least one atom that is not carbon, known as a heteroatom. These heteroatoms can include nitrogen, oxygen, sulfur, or other elements. In the case of "2-ring" heterocyclic compounds, the molecule contains two separate ring structures, each of which includes at least one heteroatom.

The term "heterocyclic compound" is used to describe a broad class of organic molecules that are found in many natural and synthetic substances. They play important roles in biology, medicine, and materials science. Heterocyclic compounds can be classified based on the number of rings they contain, as well as the types and arrangements of heteroatoms within those rings.

Two-ring heterocyclic compounds can exhibit a wide range of chemical and physical properties, depending on the nature of the rings and the heteroatoms present. Some examples of two-ring heterocyclic compounds include quinoline, isoquinoline, benzothiazole, and benzoxazole, among many others. These compounds have important applications in pharmaceuticals, dyes, pigments, and other industrial products.

Intercellular Adhesion Molecule-1 (ICAM-1), also known as CD54, is a transmembrane glycoprotein expressed on the surface of various cell types including endothelial cells, fibroblasts, and immune cells. ICAM-1 plays a crucial role in the inflammatory response and the immune system by mediating the adhesion of leukocytes (white blood cells) to the endothelium, allowing them to migrate into surrounding tissues during an immune response or inflammation.

ICAM-1 contains five immunoglobulin-like domains in its extracellular region and binds to several integrins present on leukocytes, such as LFA-1 (lymphocyte function-associated antigen 1) and Mac-1 (macrophage-1 antigen). This interaction facilitates the firm adhesion of leukocytes to the endothelium, which is a critical step in the extravasation process.

In addition to its role in inflammation and immunity, ICAM-1 has been implicated in several pathological conditions, including atherosclerosis, cancer, and autoimmune diseases. Increased expression of ICAM-1 on endothelial cells is associated with the recruitment of immune cells to sites of injury or infection, making it an important target for therapeutic interventions in various inflammatory disorders.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

In the context of medicine and toxicology, protective agents are substances that provide protection against harmful or damaging effects of other substances. They can work in several ways, such as:

1. Binding to toxic substances: Protective agents can bind to toxic substances, rendering them inactive or less active, and preventing them from causing harm. For example, activated charcoal is sometimes used in the emergency treatment of certain types of poisoning because it can bind to certain toxins in the stomach and intestines and prevent their absorption into the body.
2. Increasing elimination: Protective agents can increase the elimination of toxic substances from the body, for example by promoting urinary or biliary excretion.
3. Reducing oxidative stress: Antioxidants are a type of protective agent that can reduce oxidative stress caused by free radicals and reactive oxygen species (ROS). These agents can protect cells and tissues from damage caused by oxidation.
4. Supporting organ function: Protective agents can support the function of organs that have been damaged by toxic substances, for example by improving blood flow or reducing inflammation.

Examples of protective agents include chelating agents, antidotes, free radical scavengers, and anti-inflammatory drugs.

Nitric Oxide Synthase Type II (NOS2), also known as Inducible Nitric Oxide Synthase (iNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. Unlike other isoforms of NOS, NOS2 is not constitutively expressed and its expression can be induced by various stimuli such as cytokines, lipopolysaccharides, and bacterial products. Once induced, NOS2 produces large amounts of NO, which plays a crucial role in the immune response against invading pathogens. However, excessive or prolonged production of NO by NOS2 has been implicated in various pathological conditions such as inflammation, septic shock, and neurodegenerative disorders.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Intensive care is a specialized level of medical care that is provided to critically ill patients. It's usually given in a dedicated unit of a hospital called the Intensive Care Unit (ICU) or Critical Care Unit (CCU). The goal of intensive care is to closely monitor and manage life-threatening conditions, stabilize vital functions, and support organs until they recover or the patient can be moved to a less acute level of care.

Intensive care involves advanced medical equipment and technologies, such as ventilators to assist with breathing, dialysis machines for kidney support, intravenous lines for medication administration, and continuous monitoring devices for heart rate, blood pressure, oxygen levels, and other vital signs.

The ICU team typically includes intensive care specialists (intensivists), critical care nurses, respiratory therapists, and other healthcare professionals who work together to provide comprehensive, round-the-clock care for critically ill patients.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Plateletpheresis is a medical procedure that involves the collection of platelets from a donor's blood through a process called apheresis. In this process, whole blood is withdrawn from the donor, and the platelets are separated from other blood components using a specialized machine. The separated platelets are then collected in a sterile bag, while the remaining blood components (red blood cells, white blood cells, and plasma) are returned to the donor's body.

Plateletpheresis is often used to collect platelets for transfusion purposes, particularly for patients who require large volumes of platelets due to conditions such as leukemia, aplastic anemia, or other forms of cancer. It is also used in the treatment of thrombocytopenia, a condition characterized by abnormally low levels of platelets in the blood.

The procedure typically takes between one to two hours and requires the use of a specialized machine and trained medical staff. Donors may experience mild side effects such as fatigue, bruising, or discomfort at the site where the needle was inserted, but serious complications are rare.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

"Bronchi" are a pair of airways in the respiratory system that branch off from the trachea (windpipe) and lead to the lungs. They are responsible for delivering oxygen-rich air to the lungs and removing carbon dioxide during exhalation. The right bronchus is slightly larger and more vertical than the left, and they further divide into smaller branches called bronchioles within the lungs. Any abnormalities or diseases affecting the bronchi can impact lung function and overall respiratory health.

Heart injuries, also known as cardiac injuries, refer to any damage or harm caused to the heart muscle, valves, or surrounding structures. This can result from various causes such as blunt trauma (e.g., car accidents, falls), penetrating trauma (e.g., gunshot wounds, stabbing), or medical conditions like heart attacks (myocardial infarction) and infections (e.g., myocarditis, endocarditis).

Some common types of heart injuries include:

1. Contusions: Bruising of the heart muscle due to blunt trauma.
2. Myocardial infarctions: Damage to the heart muscle caused by insufficient blood supply, often due to blocked coronary arteries.
3. Cardiac rupture: A rare but life-threatening condition where the heart muscle tears or breaks open, usually resulting from severe trauma or complications from a myocardial infarction.
4. Valvular damage: Disruption of the heart valves' function due to injury or infection, leading to leakage (regurgitation) or narrowing (stenosis).
5. Pericardial injuries: Damage to the pericardium, the sac surrounding the heart, which can result in fluid accumulation (pericardial effusion), inflammation (pericarditis), or tamponade (compression of the heart by excess fluid).
6. Arrhythmias: Irregular heart rhythms caused by damage to the heart's electrical conduction system.

Timely diagnosis and appropriate treatment are crucial for managing heart injuries, as they can lead to severe complications or even be fatal if left untreated.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Edema is the medical term for swelling caused by excess fluid accumulation in the body tissues. It can affect any part of the body, but it's most commonly noticed in the hands, feet, ankles, and legs. Edema can be a symptom of various underlying medical conditions, such as heart failure, kidney disease, liver disease, or venous insufficiency.

The swelling occurs when the capillaries leak fluid into the surrounding tissues, causing them to become swollen and puffy. The excess fluid can also collect in the cavities of the body, leading to conditions such as pleural effusion (fluid around the lungs) or ascites (fluid in the abdominal cavity).

The severity of edema can vary from mild to severe, and it may be accompanied by other symptoms such as skin discoloration, stiffness, and pain. Treatment for edema depends on the underlying cause and may include medications, lifestyle changes, or medical procedures.

Interleukin-8 (IL-8) receptors are a type of G protein-coupled receptor that bind to and are activated by the cytokine IL-8. There are two main types of IL-8 receptors, known as CXCR1 and CXCR2.

IL-8B, also known as CXCR2, is a gene that encodes for the Interleukin-8 receptor B. This receptor is found on the surface of various cells, including neutrophils, monocytes, and endothelial cells. It plays a crucial role in the immune response, particularly in the recruitment and activation of neutrophils to sites of infection or inflammation.

IL-8B has a high affinity for IL-8 and other related chemokines, such as CXCL1, CXCL5, and CXCL7. Upon binding to its ligand, IL-8B activates various signaling pathways that lead to the mobilization and migration of neutrophils towards the site of inflammation. This process is critical for the elimination of invading pathogens and the resolution of inflammation.

However, excessive or prolonged activation of IL-8B has been implicated in various pathological conditions, including chronic inflammation, cancer, and autoimmune diseases. Therefore, targeting IL-8B with therapeutic agents has emerged as a promising strategy for the treatment of these conditions.

Respiratory Distress Syndrome (RDS), Newborn is a common lung disorder in premature infants. It occurs when the lungs lack a substance called surfactant, which helps keep the tiny air sacs in the lungs open. This results in difficulty breathing and oxygenation, causing symptoms such as rapid, shallow breathing, grunting noises, flaring of the nostrils, and retractions (the skin between the ribs pulls in with each breath). RDS is more common in infants born before 34 weeks of gestation and is treated with surfactant replacement therapy, oxygen support, and mechanical ventilation if necessary. In severe cases, it can lead to complications such as bronchopulmonary dysplasia or even death.

The Abbreviated Injury Scale (AIS) is a standardized system used by healthcare professionals to classify the severity of traumatic injuries. The scale assigns a score from 1 to 6 to each injury, with 1 indicating minor injuries and 6 indicating maximal severity or currently untreatable injuries.

The AIS scores are based on anatomical location, type of injury, and physiological response to the injury. For example, a simple fracture may be assigned an AIS score of 2, while a life-threatening head injury may be assigned a score of 5 or 6.

The AIS is used in conjunction with other scoring systems, such as the Injury Severity Score (ISS) and the New Injury Severity Score (NISS), to assess the overall severity of injuries sustained in a traumatic event. These scores can help healthcare professionals make informed decisions about patient care, triage, and resource allocation.

Angiopoietin-2 (Ang-2) is a protein that is involved in the regulation of blood vessel formation and maintenance. It is a member of the angiopoietin family, which includes Ang-1, Ang-2, Ang-3, and Ang-4. These proteins bind to the Tie receptor tyrosine kinases (Tie1 and Tie2) on the surface of endothelial cells, which line the interior of blood vessels.

Ang-2 is primarily produced by endothelial cells and has context-dependent roles in angiogenesis, which is the growth of new blood vessels from pre-existing ones. In general, Ang-2 is thought to act as an antagonist of Ang-1, which promotes vessel stability and maturation.

Ang-2 can destabilize existing blood vessels by binding to Tie2 receptors and blocking the stabilizing effects of Ang-1. This can lead to increased vascular permeability and inflammation. However, in the presence of pro-angiogenic factors such as VEGF (vascular endothelial growth factor), Ang-2 can also promote the formation of new blood vessels by stimulating endothelial cell migration and proliferation.

Abnormal regulation of Ang-2 has been implicated in various diseases, including cancer, diabetic retinopathy, and age-related macular degeneration. In these conditions, increased levels of Ang-2 can contribute to the development of abnormal blood vessels, which can lead to tissue damage and loss of function.

Therapeutic irrigation, also known as lavage, is a medical procedure that involves the introduction of fluids or other agents into a body cavity or natural passageway for therapeutic purposes. This technique is used to cleanse, flush out, or introduce medication into various parts of the body, such as the bladder, lungs, stomach, or colon.

The fluid used in therapeutic irrigation can be sterile saline solution, distilled water, or a medicated solution, depending on the specific purpose of the procedure. The flow and pressure of the fluid are carefully controlled to ensure that it reaches the desired area without causing damage to surrounding tissues.

Therapeutic irrigation is used to treat a variety of medical conditions, including infections, inflammation, obstructions, and toxic exposures. It can also be used as a diagnostic tool to help identify abnormalities or lesions within body cavities.

Overall, therapeutic irrigation is a valuable technique in modern medicine that allows healthcare providers to deliver targeted treatment directly to specific areas of the body, improving patient outcomes and quality of life.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

An erythrocyte transfusion, also known as a red blood cell (RBC) transfusion, is the process of transferring compatible red blood cells from a donor to a recipient. This procedure is typically performed to increase the recipient's oxygen-carrying capacity, usually in situations where there is significant blood loss, anemia, or impaired red blood cell production.

During the transfusion, the donor's red blood cells are collected, typed, and tested for compatibility with the recipient's blood to minimize the risk of a transfusion reaction. Once compatible units are identified, they are infused into the recipient's circulation through a sterile intravenous (IV) line. The recipient's body will eventually eliminate the donated red blood cells within 100-120 days as part of its normal turnover process.

Erythrocyte transfusions can be lifesaving in various clinical scenarios, such as trauma, surgery, severe anemia due to chronic diseases, and hematologic disorders. However, they should only be used when necessary, as there are potential risks associated with the procedure, including allergic reactions, transmission of infectious diseases, transfusion-related acute lung injury (TRALI), and iron overload in cases of multiple transfusions.

Almitrine is a medication that was used in the past to treat chronic obstructive pulmonary disease (COPD). It works as a respiratory stimulant, increasing the respiratory drive and improving oxygenation. However, its use has been limited due to its potential cardiovascular side effects, including increased blood pressure and heart rate. Almitrine is no longer approved for use in many countries, including the United States.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

In medical terms, pressure is defined as the force applied per unit area on an object or body surface. It is often measured in millimeters of mercury (mmHg) in clinical settings. For example, blood pressure is the force exerted by circulating blood on the walls of the arteries and is recorded as two numbers: systolic pressure (when the heart beats and pushes blood out) and diastolic pressure (when the heart rests between beats).

Pressure can also refer to the pressure exerted on a wound or incision to help control bleeding, or the pressure inside the skull or spinal canal. High or low pressure in different body systems can indicate various medical conditions and require appropriate treatment.

A platelet transfusion is the process of medically administering platelets, which are small blood cells that help your body form clots to stop bleeding. Platelet transfusions are often given to patients with low platelet counts or dysfunctional platelets due to various reasons such as chemotherapy, bone marrow transplantation, disseminated intravascular coagulation (DIC), and other medical conditions leading to increased consumption or destruction of platelets. This procedure helps to prevent or treat bleeding complications in these patients. It's important to note that platelet transfusions should be given under the supervision of a healthcare professional, taking into account the patient's clinical condition, platelet count, and potential risks associated with transfusion reactions.

Systemic Inflammatory Response Syndrome (SIRS) is not a specific disease, but rather a systemic response to various insults or injuries within the body. It is defined as a combination of clinical signs that indicate a widespread inflammatory response in the body. According to the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) consensus criteria, SIRS is characterized by the presence of at least two of the following conditions:

1. Body temperature >38°C (100.4°F) or 90 beats per minute
3. Respiratory rate >20 breaths per minute or arterial carbon dioxide tension (PaCO2) 12,000 cells/mm3, 10% bands (immature white blood cells)

SIRS can be caused by various factors, including infections (sepsis), trauma, burns, pancreatitis, and immune-mediated reactions. Prolonged SIRS may lead to organ dysfunction and failure, which can progress to severe sepsis or septic shock if not treated promptly and effectively.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

Pulmonary ventilation, also known as pulmonary respiration or simply ventilation, is the process of moving air into and out of the lungs to facilitate gas exchange. It involves two main phases: inhalation (or inspiration) and exhalation (or expiration). During inhalation, the diaphragm and external intercostal muscles contract, causing the chest volume to increase and the pressure inside the chest to decrease, which then draws air into the lungs. Conversely, during exhalation, these muscles relax, causing the chest volume to decrease and the pressure inside the chest to increase, which pushes air out of the lungs. This process ensures that oxygen-rich air from the atmosphere enters the alveoli (air sacs in the lungs), where it can diffuse into the bloodstream, while carbon dioxide-rich air from the bloodstream in the capillaries surrounding the alveoli is expelled out of the body.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Paraquat is a highly toxic herbicide that is used for controlling weeds and grasses in agricultural settings. It is a non-selective contact weed killer, meaning it kills any green plant it comes into contact with. Paraquat is a fast-acting chemical that causes rapid desiccation of plant tissues upon contact.

In a medical context, paraquat is classified as a toxicological emergency and can cause severe poisoning in humans if ingested, inhaled, or comes into contact with the skin or eyes. Paraquat poisoning can lead to multiple organ failure, including the lungs, kidneys, and liver, and can be fatal in severe cases. There is no specific antidote for paraquat poisoning, and treatment typically focuses on supportive care and managing symptoms.

It's important to note that paraquat is highly regulated and its use is restricted to licensed professionals due to its high toxicity. Proper protective equipment, including gloves, goggles, and respiratory protection, should be used when handling paraquat to minimize the risk of exposure.

Meconium Aspiration Syndrome (MAS) is a medical condition that occurs in newborns when meconium, which is the first stool of an infant, is present in the amniotic fluid and is breathed into the lungs around the time of delivery. This can cause respiratory distress, pneumonia, and in severe cases, persistent pulmonary hypertension and death.

The meconium can be inhaled into the lungs before, during, or after birth, and it can block the airways, causing a lack of oxygen to the lungs and other organs. This can lead to several complications such as infection, inflammation, and damage to the lung tissue.

MAS is more likely to occur in babies who are born past their due date or those who experience fetal distress during labor and delivery. Treatment for MAS may include oxygen therapy, suctioning of the airways, antibiotics, and in severe cases, mechanical ventilation.

Facial injuries refer to any damage or trauma caused to the face, which may include the bones of the skull that form the face, teeth, salivary glands, muscles, nerves, and skin. Facial injuries can range from minor cuts and bruises to severe fractures and disfigurement. They can be caused by a variety of factors such as accidents, falls, sports-related injuries, physical assaults, or animal attacks.

Facial injuries can affect one or more areas of the face, including the forehead, eyes, nose, cheeks, ears, mouth, and jaw. Common types of facial injuries include lacerations (cuts), contusions (bruises), abrasions (scrapes), fractures (broken bones), and burns.

Facial injuries can have significant psychological and emotional impacts on individuals, in addition to physical effects. Treatment for facial injuries may involve simple first aid, suturing of wounds, splinting or wiring of broken bones, reconstructive surgery, or other medical interventions. It is essential to seek prompt medical attention for any facial injury to ensure proper healing and minimize the risk of complications.

Inhalation exposure is a term used in occupational and environmental health to describe the situation where an individual breathes in substances present in the air, which could be gases, vapors, fumes, mist, or particulate matter. These substances can originate from various sources, such as industrial processes, chemical reactions, or natural phenomena.

The extent of inhalation exposure is determined by several factors, including:

1. Concentration of the substance in the air
2. Duration of exposure
3. Frequency of exposure
4. The individual's breathing rate
5. The efficiency of the individual's respiratory protection, if any

Inhalation exposure can lead to adverse health effects, depending on the toxicity and concentration of the inhaled substances. Short-term or acute health effects may include irritation of the eyes, nose, throat, or lungs, while long-term or chronic exposure can result in more severe health issues, such as respiratory diseases, neurological disorders, or cancer.

It is essential to monitor and control inhalation exposures in occupational settings to protect workers' health and ensure compliance with regulatory standards. Various methods are employed for exposure assessment, including personal air sampling, area monitoring, and biological monitoring. Based on the results of these assessments, appropriate control measures can be implemented to reduce or eliminate the risks associated with inhalation exposure.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Ozone (O3) is not a substance that is typically considered a component of health or medicine in the context of human body or physiology. It's actually a form of oxygen, but with three atoms instead of two, making it unstable and reactive. Ozone is naturally present in the Earth's atmosphere, where it forms a protective layer in the stratosphere that absorbs harmful ultraviolet (UV) radiation from the sun.

However, ozone can have both beneficial and detrimental effects on human health depending on its location and concentration. At ground level or in indoor environments, ozone is considered an air pollutant that can irritate the respiratory system and aggravate asthma symptoms when inhaled at high concentrations. It's important to note that ozone should not be confused with oxygen (O2), which is essential for human life and breathing.

Pulmonary Surfactant-Associated Protein A (SP-A) is a protein that is a major component of pulmonary surfactant, which is a complex mixture of lipids and proteins found in the alveoli of the lungs. SP-A is produced by specialized cells called type II alveolar epithelial cells and has several important functions in the lung.

SP-A plays a role in innate immunity by binding to pathogens, such as bacteria and viruses, and facilitating their clearance from the lungs. It also helps to regulate surfactant homeostasis by participating in the reuptake and recycling of surfactant components. Additionally, SP-A has been shown to have anti-inflammatory effects and may help to modulate the immune response in the lung.

Deficiencies or mutations in SP-A have been associated with various respiratory diseases, including acute respiratory distress syndrome (ARDS), pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).

Surgical shock is not a specific type of shock but rather a term used to describe the development of shock as a complication following surgical procedures. It is a life-threatening condition characterized by inadequate tissue perfusion and oxygenation due to various causes, such as severe blood loss, sepsis, trauma, or severe infection.

In the context of surgery, surgical shock can occur due to several reasons, including:

1. Hemorrhagic shock: This is the most common cause of surgical shock and results from significant blood loss during or after surgery, leading to a decrease in circulating blood volume and subsequent inadequate tissue perfusion.
2. Septic shock: Surgical procedures can sometimes introduce bacteria into the body, leading to severe infection and sepsis. This can result in widespread inflammation, vasodilation, and increased capillary permeability, causing hypotension, organ dysfunction, and shock.
3. Cardiogenic shock: Surgical interventions on the heart or major blood vessels can sometimes lead to impaired cardiac function, resulting in reduced cardiac output and tissue perfusion.
4. Obstructive shock: This type of shock can occur when there is an obstruction in the circulatory system, such as a pulmonary embolism or tension pneumothorax, leading to decreased venous return and impaired tissue perfusion.

The treatment for surgical shock involves addressing the underlying cause, providing supportive care, and ensuring adequate oxygenation and tissue perfusion. This may include fluid resuscitation, blood transfusions, vasopressors, antibiotics, and surgical interventions to control bleeding or remove sources of infection.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Thrombomodulin is a protein that is found on the surface of endothelial cells, which line the interior surface of blood vessels. It plays an important role in the regulation of blood coagulation (clotting) and the activation of natural anticoagulant pathways. Thrombomodulin binds to thrombin, a protein involved in blood clotting, and changes its function from promoting coagulation to inhibiting it. This interaction also activates protein C, an important anticoagulant protein, which helps to prevent the excessive formation of blood clots. Thrombomodulin also has anti-inflammatory properties and is involved in the maintenance of the integrity of the endothelial cell lining.

Fibrinolysis is the natural process in the body that leads to the dissolution of blood clots. It is a vital part of hemostasis, the process that regulates bleeding and wound healing. Fibrinolysis occurs when plasminogen activators convert plasminogen to plasmin, an enzyme that breaks down fibrin, the insoluble protein mesh that forms the structure of a blood clot. This process helps to prevent excessive clotting and maintains the fluidity of the blood. In medical settings, fibrinolysis can also refer to the therapeutic use of drugs that stimulate this process to dissolve unwanted or harmful blood clots, such as those that cause deep vein thrombosis or pulmonary embolism.

Airway resistance is a measure of the opposition to airflow during breathing, which is caused by the friction between the air and the walls of the respiratory tract. It is an important parameter in respiratory physiology because it can affect the work of breathing and gas exchange.

Airway resistance is usually expressed in units of cm H2O/L/s or Pa·s/m, and it can be measured during spontaneous breathing or during forced expiratory maneuvers, such as those used in pulmonary function testing. Increased airway resistance can result from a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and bronchiectasis. Decreased airway resistance can be seen in conditions such as emphysema or after a successful bronchodilator treatment.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

A puncture, in medical terms, refers to a small hole or wound that is caused by a sharp object penetrating the skin or other body tissues. This can result in damage to underlying structures such as blood vessels, nerves, or organs, and may lead to complications such as bleeding, infection, or inflammation.

Punctures can occur accidentally, such as from stepping on a nail or getting pricked by a needle, or they can be inflicted intentionally, such as during medical procedures like injections or blood draws. In some cases, puncture wounds may require medical attention to clean and close the wound, prevent infection, and promote healing.

Organ dysfunction scores are measurement tools used in critical care medicine to assess and quantify the degree of physiological derangement or failure in multiple organ systems. These scoring systems are designed to evaluate the overall severity of illness in critically ill patients, providing a standardized method for comparing patient outcomes and evaluating the effectiveness of different treatments.

There are several commonly used organ dysfunction scores, including:

1. Sequential Organ Failure Assessment (SOFA) score: This score assesses six organ systems (respiratory, cardiovascular, hepatic, coagulation, renal, and neurologic) on a scale of 0 to 4, with higher scores indicating more severe dysfunction or failure.
2. Multiple Organ Dysfunction Score (MODS): This score evaluates seven organ systems (respiratory, cardiovascular, hepatic, coagulation, renal, gastrointestinal, and neurologic) on a scale of 0 to 4, with higher scores indicating more severe dysfunction or failure.
3. Logistic Organ Dysfunction Score (LODS): This score assesses six organ systems (respiratory, cardiovascular, hepatic, coagulation, renal, and neurologic) on a scale of 0 to 100, with higher scores indicating more severe dysfunction or failure.
4. Acute Physiology And Chronic Health Evaluation II (APACHE II): While not strictly an organ dysfunction score, APACHE II includes components that assess organ dysfunction and is widely used in critical care settings to predict mortality risk.

These scores are typically calculated based on clinical data such as laboratory values, vital signs, and physiological measurements, and are often used to guide clinical decision-making, allocate resources, and compare outcomes across different patient populations or treatment strategies.

Myocardial reperfusion injury is a pathological process that occurs when blood flow is restored to the heart muscle (myocardium) after a period of ischemia or reduced oxygen supply, such as during a myocardial infarction (heart attack). The restoration of blood flow, although necessary to salvage the dying tissue, can itself cause further damage to the heart muscle. This paradoxical phenomenon is known as myocardial reperfusion injury.

The mechanisms behind myocardial reperfusion injury are complex and involve several processes, including:

1. Oxidative stress: The sudden influx of oxygen into the previously ischemic tissue leads to an overproduction of reactive oxygen species (ROS), which can damage cellular structures, such as proteins, lipids, and DNA.
2. Calcium overload: During reperfusion, there is an increase in calcium influx into the cardiomyocytes (heart muscle cells). This elevated intracellular calcium level can disrupt normal cellular functions, leading to further damage.
3. Inflammation: Reperfusion triggers an immune response, with the recruitment of inflammatory cells, such as neutrophils and monocytes, to the site of injury. These cells release cytokines and other mediators that can exacerbate tissue damage.
4. Mitochondrial dysfunction: The restoration of blood flow can cause mitochondria, the powerhouses of the cell, to malfunction, leading to the release of pro-apoptotic factors and contributing to cell death.
5. Vasoconstriction and microvascular obstruction: During reperfusion, there may be vasoconstriction of the small blood vessels (microvasculature) in the heart, which can further limit blood flow and contribute to tissue damage.

Myocardial reperfusion injury is a significant concern because it can negate some of the benefits of early reperfusion therapy, such as thrombolysis or primary percutaneous coronary intervention (PCI), used to treat acute myocardial infarction. Strategies to minimize myocardial reperfusion injury are an area of active research and include pharmacological interventions, ischemic preconditioning, and remote ischemic conditioning.

Hydrogen sulfide (H2S) is a colorless, flammable, and extremely toxic gas with a strong odor of rotten eggs. It is a naturally occurring compound that is produced in various industrial processes and is also found in some natural sources like volcanoes, hot springs, and swamps.

In the medical context, hydrogen sulfide is known to have both toxic and therapeutic effects on the human body. At high concentrations, it can cause respiratory failure, unconsciousness, and even death. However, recent studies have shown that at low levels, hydrogen sulfide may act as a signaling molecule in the human body, playing a role in various physiological processes such as regulating blood flow, reducing inflammation, and protecting against oxidative stress.

It's worth noting that exposure to high levels of hydrogen sulfide can be life-threatening, and immediate medical attention is required in case of exposure.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Adenosine A2B receptor (A2BAR) is a type of G protein-coupled receptor that binds the endogenous purine nucleoside adenosine. It is a subtype of the A2 class of adenosine receptors, which also includes A2A receptor.

The A2BAR is widely expressed in various tissues and cells, including vascular smooth muscle cells, endothelial cells, fibroblasts, immune cells, and epithelial cells. Activation of the A2BAR by adenosine leads to a variety of cellular responses, such as relaxation of vascular smooth muscle, inhibition of platelet aggregation, modulation of inflammatory responses, and stimulation of fibroblast proliferation and collagen production.

The A2BAR has been implicated in several physiological and pathophysiological processes, such as cardiovascular function, pain perception, neuroprotection, tumor growth and metastasis, and pulmonary fibrosis. Therefore, the development of selective A2BAR agonists or antagonists has been an area of active research for therapeutic interventions in these conditions.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Back injuries refer to damages or traumas that affect the structures of the back, including the muscles, nerves, ligaments, bones, and other tissues. These injuries can occur due to various reasons such as sudden trauma (e.g., falls, accidents), repetitive stress, or degenerative conditions. Common types of back injuries include strains, sprains, herniated discs, fractured vertebrae, and spinal cord injuries. Symptoms may vary from mild discomfort to severe pain, numbness, tingling, or weakness, depending on the severity and location of the injury. Treatment options range from conservative measures like physical therapy and medication to surgical intervention in severe cases.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

A closed head injury is a type of traumatic brain injury (TBI) that occurs when there is no penetration or breakage of the skull. The brain is encased in the skull and protected by cerebrospinal fluid, but when the head experiences a sudden impact or jolt, the brain can move back and forth within the skull, causing it to bruise, tear blood vessels, or even cause nerve damage. This type of injury can result from various incidents such as car accidents, sports injuries, falls, or any other event that causes the head to suddenly stop or change direction quickly.

Closed head injuries can range from mild (concussion) to severe (diffuse axonal injury, epidural hematoma, subdural hematoma), and symptoms may not always be immediately apparent. They can include headache, dizziness, nausea, vomiting, confusion, memory loss, difficulty concentrating, mood changes, sleep disturbances, and in severe cases, loss of consciousness, seizures, or even coma. It is essential to seek medical attention immediately if you suspect a closed head injury, as prompt diagnosis and treatment can significantly improve the outcome.

Soft tissue injuries refer to damages that occur in the body's connective tissues, such as ligaments, tendons, and muscles. These injuries can be caused by various events, including accidents, falls, or sports-related impacts. Common soft tissue injuries include sprains, strains, and contusions (bruises).

Sprains occur when the ligaments, which connect bones to each other, are stretched or torn. This usually happens in the joints like ankles, knees, or wrists. Strains, on the other hand, involve injuries to the muscles or tendons, often resulting from overuse or sudden excessive force. Contusions occur when blood vessels within the soft tissues get damaged due to a direct blow or impact, causing bleeding and subsequent bruising in the affected area.

Soft tissue injuries can cause pain, swelling, stiffness, and limited mobility. In some cases, these injuries may require medical treatment, including physical therapy, medication, or even surgery, depending on their severity and location. It is essential to seek proper medical attention for soft tissue injuries to ensure appropriate healing and prevent long-term complications or chronic pain.

Adenosine A2 receptor agonists are pharmaceutical agents that bind to and activate the A2 subtype of adenosine receptors, which are G-protein coupled receptors found in various tissues throughout the body. Activation of these receptors leads to a variety of physiological effects, including vasodilation, increased coronary blood flow, and inhibition of platelet aggregation.

A2 receptor agonists have been studied for their potential therapeutic benefits in several medical conditions, such as:

1. Heart failure: A2 receptor agonists can improve cardiac function and reduce symptoms in patients with heart failure by increasing coronary blood flow and reducing oxygen demand.
2. Atrial fibrillation: These agents have been shown to terminate or prevent atrial fibrillation, a common abnormal heart rhythm disorder, through their effects on the electrical properties of cardiac cells.
3. Asthma and COPD: A2 receptor agonists can help relax airway smooth muscle and reduce inflammation in patients with asthma and chronic obstructive pulmonary disease (COPD).
4. Pain management: Some A2 receptor agonists have been found to have analgesic properties, making them potential candidates for pain relief in various clinical settings.

Examples of A2 receptor agonists include regadenoson, which is used as a pharmacological stress agent during myocardial perfusion imaging, and dipyridamole, which is used to prevent blood clots in patients with certain heart conditions. However, it's important to note that these agents can have side effects, such as hypotension, bradycardia, and bronchoconstriction, so their use must be carefully monitored and managed by healthcare professionals.

Nonpenetrating wounds are a type of trauma or injury to the body that do not involve a break in the skin or underlying tissues. These wounds can result from blunt force trauma, such as being struck by an object or falling onto a hard surface. They can also result from crushing injuries, where significant force is applied to a body part, causing damage to internal structures without breaking the skin.

Nonpenetrating wounds can cause a range of injuries, including bruising, swelling, and damage to internal organs, muscles, bones, and other tissues. The severity of the injury depends on the force of the trauma, the location of the impact, and the individual's overall health and age.

While nonpenetrating wounds may not involve a break in the skin, they can still be serious and require medical attention. If you have experienced blunt force trauma or suspect a nonpenetrating wound, it is important to seek medical care to assess the extent of the injury and receive appropriate treatment.

Diffuse axonal injury (DAI) is a type of traumatic brain injury that occurs when there is extensive damage to the nerve fibers (axons) in the brain. It is often caused by rapid acceleration or deceleration forces, such as those experienced during motor vehicle accidents or falls. In DAI, the axons are stretched and damaged, leading to disruption of communication between different parts of the brain. This can result in a wide range of symptoms, including cognitive impairment, loss of consciousness, and motor dysfunction. DAI is often difficult to diagnose and can have long-term consequences, making it an important area of study in traumatic brain injury research.

Drug-Induced Liver Injury (DILI) is a medical term that refers to liver damage or injury caused by the use of medications or drugs. This condition can vary in severity, from mild abnormalities in liver function tests to severe liver failure, which may require a liver transplant.

The exact mechanism of DILI can differ depending on the drug involved, but it generally occurs when the liver metabolizes the drug into toxic compounds that damage liver cells. This can happen through various pathways, including direct toxicity to liver cells, immune-mediated reactions, or metabolic idiosyncrasies.

Symptoms of DILI may include jaundice (yellowing of the skin and eyes), fatigue, abdominal pain, nausea, vomiting, loss of appetite, and dark urine. In severe cases, it can lead to complications such as ascites, encephalopathy, and bleeding disorders.

The diagnosis of DILI is often challenging because it requires the exclusion of other potential causes of liver injury. Liver function tests, imaging studies, and sometimes liver biopsies may be necessary to confirm the diagnosis. Treatment typically involves discontinuing the offending drug and providing supportive care until the liver recovers. In some cases, medications that protect the liver or promote its healing may be used.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Pseudomonas infections are infections caused by the bacterium Pseudomonas aeruginosa or other species of the Pseudomonas genus. These bacteria are gram-negative, opportunistic pathogens that can cause various types of infections, including respiratory, urinary tract, gastrointestinal, dermatological, and bloodstream infections.

Pseudomonas aeruginosa is a common cause of healthcare-associated infections, particularly in patients with weakened immune systems, chronic lung diseases, or those who are hospitalized for extended periods. The bacteria can also infect wounds, burns, and medical devices such as catheters and ventilators.

Pseudomonas infections can be difficult to treat due to the bacteria's resistance to many antibiotics. Treatment typically involves the use of multiple antibiotics that are effective against Pseudomonas aeruginosa. In severe cases, intravenous antibiotics or even hospitalization may be necessary.

Prevention measures include good hand hygiene, contact precautions for patients with known Pseudomonas infections, and proper cleaning and maintenance of medical equipment.

Albumins are a type of protein found in various biological fluids, including blood plasma. The most well-known albumin is serum albumin, which is produced by the liver and is the most abundant protein in blood plasma. Serum albumin plays several important roles in the body, such as maintaining oncotic pressure (which helps to regulate fluid balance in the body), transporting various substances (such as hormones, fatty acids, and drugs), and acting as an antioxidant.

Albumins are soluble in water and have a molecular weight ranging from 65,000 to 69,000 daltons. They are composed of a single polypeptide chain that contains approximately 585 amino acid residues. The structure of albumin is characterized by a high proportion of alpha-helices and beta-sheets, which give it a stable, folded conformation.

In addition to their role in human physiology, albumins are also used as diagnostic markers in medicine. For example, low serum albumin levels may indicate liver disease, malnutrition, or inflammation, while high levels may be seen in dehydration or certain types of kidney disease. Albumins may also be used as a replacement therapy in patients with severe protein loss, such as those with nephrotic syndrome or burn injuries.

Craniocerebral trauma, also known as traumatic brain injury (TBI), is a type of injury that occurs to the head and brain. It can result from a variety of causes, including motor vehicle accidents, falls, sports injuries, violence, or other types of trauma. Craniocerebral trauma can range in severity from mild concussions to severe injuries that cause permanent disability or death.

The injury typically occurs when there is a sudden impact to the head, causing the brain to move within the skull and collide with the inside of the skull. This can result in bruising, bleeding, swelling, or tearing of brain tissue, as well as damage to blood vessels and nerves. In severe cases, the skull may be fractured or penetrated, leading to direct injury to the brain.

Symptoms of craniocerebral trauma can vary widely depending on the severity and location of the injury. They may include headache, dizziness, confusion, memory loss, difficulty speaking or understanding speech, changes in vision or hearing, weakness or numbness in the limbs, balance problems, and behavioral or emotional changes. In severe cases, the person may lose consciousness or fall into a coma.

Treatment for craniocerebral trauma depends on the severity of the injury. Mild injuries may be treated with rest, pain medication, and close monitoring, while more severe injuries may require surgery, intensive care, and rehabilitation. Prevention is key to reducing the incidence of craniocerebral trauma, including measures such as wearing seat belts and helmets, preventing falls, and avoiding violent situations.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

... (TRALI) is the serious complication of transfusion of blood products that is ... It is often impossible to distinguish TRALI from acute respiratory distress syndrome (ARDS). The typical presentation of TRALI ... characterized by the rapid onset of excess fluid in the lungs. It can cause dangerous drops in the supply of oxygen to body ...
Kallet RH, Matthay MA (January 2013). "Hyperoxic acute lung injury". Respiratory Care. 58 (1): 123-41. doi:10.4187/respcare. ... "Reactive oxygen species contribute to oxygen-related lung injury after acid aspiration". Anesthesia and Analgesia. 87 (1): 127- ... In context of acute hypoxemia, oxygen therapy should be titrated to a target level based on pulse oximetry (94-96% in most ... Within the lungs, hypoxia is observed to be a potent pulmonary vasoconstrictor, due to inhibition of an outward potassium ...
Neutrophils also play a key role in the development of most forms of acute lung injury. Here, activated neutrophils release the ... Experiments have shown that a reduction in the number of neutrophils lessens the effects of acute lung injury, but treatment by ... Lee WL, Downey GP (February 2001). "Neutrophil activation and acute lung injury". Curr Opin Crit Care. 7 (1): 1-7. doi:10.1097/ ... Abraham E (April 2003). "Neutrophils and acute lung injury". Crit. Care Med. 31 (4 Suppl): S195-99. doi:10.1097/01.CCM. ...
Transfusion-related acute lung injury (TRALI) is a syndrome that is similar to acute respiratory distress syndrome (ARDS), ... Kim J, Na S (April 2015). "Transfusion-related acute lung injury; clinical perspectives". Korean Journal of Anesthesiology. 68 ... Acute hemolytic reactions are defined according to Serious Hazards of Transfusion (SHOT) as "fever and other symptoms/signs of ... Kidney injury may occur because of the effects of the hemolytic reaction (pigment nephropathy). The severity of the transfusion ...
Christiani, David C. (2020-03-05). "Vaping-Induced Acute Lung Injury". New England Journal of Medicine. 382 (10): 960-962. doi: ... By late 2019, the life-threatening 'vaping associated lung injury' syndrome was described, it is a form of Lipoid pneumonia ... Smith, Maxwell L.; Gotway, Michael B.; Crotty Alexander, Laura E.; Hariri, Lida P. (2021). "Vaping-related lung injury". ... Isaac Adler was the first to strongly suggest that lung cancer was related to smoking. Prior to World War I, lung cancer was a ...
One of the primary complications that presents in patients mechanically ventilated is acute lung injury (ALI)/acute respiratory ... Common specific medical indications for mechanical ventilation include: Surgical procedures Acute lung injury, including acute ... "Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory ... Hoesch RE, Lin E, Young M, Gottesman RF, Altaweel L, Nyquist PA, Stevens RD (February 2012). "Acute lung injury in critical ...
ARDS is the severe form of acute lung injury (ALI), and of transfusion-related acute lung injury (TRALI), though there are ... "acute lung injury" or ALI, as the term was commonly being misused to characterize a less severe degree of lung injury. Instead ... June 2015). "Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury ... Bakowitz, Magdalena (August 2012). "Acute lung injury and the acute respiratory distress syndrome in the injured patient". ...
... transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion-related acute lung injury: a ... "Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside". Blood Reviews. 29 (1): 51- ... "Antibody-mediated transfusion-related acute lung injury; from discovery to prevention". British Journal of Haematology. 170 (5 ... infections through better skin cleansing procedures and the incidence of life-threatening transfusion-related acute lung injury ...
These gaseous products can cause acute lung injury. Chronic exposure, for example, from the air at swimming pools where ...
Kawabata K, Hagio T, Matsuoka S (September 2002). "The role of neutrophil elastase in acute lung injury". European Journal of ... of neutrophil elastase can lead to disruption of pulmonary barrier showing symptoms corresponding with acute lung injury. The ... Neutrophils are recruited to the site of injury within minutes following trauma and are the hallmark of acute inflammation; ... When there is a metabolic shift in TANS this can lead to tumor progression in certain areas of the body, such as the lungs. In ...
A 2006 issue of Awake! highlighted dangers from transfusion-related acute lung injury (TRALI). Opposition to the Watch Tower ... Cardiopulmonary bypass, a method in which blood is diverted to an artificial heart-lung machine and directed back into the ...
2005). "Transfusion-related acute lung injury: definition and review". Crit Care Med. 33 (4): 721-6. doi:10.1097/01.ccm. ... 2009). "FIO2 and acute respiratory distress syndrome definition during lung protective ventilation". Crit Care Med. 37 (1): 202 ... and FIO2 is used as an indicator of hypoxemia per the American-European Consensus Conference on lung injury. A high FIO2 has ... This helps to determine the degree of any problems with how the lungs transfer oxygen to the blood. A sample of arterial blood ...
... especially in the context of ARDS and acute lung injury. This is commonly referred to as lung protective ventilation. There are ... Krishnan JA, Brower RG (2000). "High-frequency ventilation for acute lung injury and ARDS". Chest. 118 (3): 795-807. doi: ... Jet ventilation has been shown to reduce ventilator induced lung injury by as much as 20%. Usage of high-frequency jet ... High frequency ventilation is thought to reduce ventilator-associated lung injury (VALI), ...
Kawabata K, Hagio T, Matsuoka S (September 2002). "The role of neutrophil elastase in acute lung injury". European Journal of ... Moraes TJ, Chow CW, Downey GP (April 2003). "Proteases and lung injury". Critical Care Medicine. 31 (4 Suppl): S189-94. doi: ... acute respiratory distress syndrome, and cystic fibrosis. A recent study shows that patients with CTSG gene polymorphisms have ... ischemic reperfusion injury, and bone metastasis. It is also implicated in a variety of infectious inflammatory diseases, ...
... (VALI) is an acute lung injury that develops during mechanical ventilation and is termed ... ventilator-associated lung injury VALI is most common in people receiving mechanical ventilation for acute lung injury or acute ... lengths of stay and lung injury in adults without acute lung injury". Cochrane Database of Systematic Reviews. 7 (10): CD011151 ... ventilator-induced lung injury (VILI) if it can be proven that the mechanical ventilation caused the acute lung injury. In ...
Brochard LJ (November 2009). "Tidal volume during acute lung injury: let the patient choose?". Intensive Care Medicine. 35 (11 ... As a result, the pressure in the airway drops, causing an inflow of air into the lungs. With NAVA, the electrical activity of ... Del Sorbo L, Slutsky AS (February 2010). "Ventilatory support for acute respiratory failure: new and ongoing pathophysiological ... March 2010). "Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory ...
In a mouse model for acute lung injury (ALI), ELOM-080 reduced LPS-induced lung injury, among other actions by inhibiting the ... December 2016). "Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice". Pharmaceutical Biology. ... These species are considered to be the most frequent bacterial pathogens of acute bronchitis and are also suspected in acute ... ELOM-080 and an essential oil were administered to a total of 331 adults with acute nasal sinus inflammations (acute sinusitis ...
It includes acute lung injury and acute respiratory distress syndrome. (ALI-ARDS) cover many of these causes, but they may also ... Transfusion associated Acute Lung Injury is a specific type of blood-product transfusion injury that occurs when the donors ... embolism Acute lung injury may also cause pulmonary edema directly through injury to the vasculature and parenchyma of the lung ... This is the classical form of acute lung injury-adult respiratory distress syndrome. Some causes of pulmonary edema are less ...
Death TACO and transfusion-related acute lung injury (TRALI) are both complications following a transfusion, and both can ... Skeate, Robert C; Eastlund, Ted (November 2007). "Distinguishing between transfusion related acute lung injury and transfusion ... "Transfusion-related acute lung injury and transfusion-associated circulatory overload". ISBT Science Series. 1 (1): 107-111. ... It is often confused with transfusion-related acute lung injury (TRALI), another transfusion reaction. The difference between ...
"Long pentraxin 3 in pulmonary infection and acute lung injury". American Journal of Physiology. Lung Cellular and Molecular ... PTX3 behaves as an acute phase response protein, as the blood levels of PTX3, low in normal conditions (about 25 ng/mL in the ... Lee GW, Goodman AR, Lee TH, Vilcek J (October 1994). "Relationship of TSG-14 protein to the pentraxin family of major acute ... is a novel member of the pentaxin family of acute phase proteins". Journal of Immunology. 150 (5): 1804-12. PMID 7679696. Alles ...
November 2021). "A highly conserved host lipase deacylates oxidized phospholipids and ameliorates acute lung injury in mice". ... June 2017). "Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury". PLOS Pathogens. 13 ... Absence of the enzyme renders mice more likely to develop severe lung injury and die if they are challenged with intratracheal ... September 2018). "LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma". The Journal ...
"Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production". Biomedicine & Pharmacotherapy. ...
"Management of acute lung injury: sharing data between adults and children". Respiratory Care. 56 (9): 1258-68, discussion 1268- ... They practice in acute care facilities, long-term acute care facilities, skilled nursing facilities, assisted-living centers, ... Scientific research also takes place to look for causes and possible treatment in diseases such as asthma and lung cancer. The ... Respiratory therapists educate, assist in diagnosis, and treat people who have heart and lung problems. Specialized in both ...
"Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury". The Journal of Clinical ... This effect is seen not only with neutrophils in the blood, but also in various tissues such as the gut, lung, liver, and blood ... specifically in the lung capillaries and liver sinusoids). Intra-vascular NET formation is tightly controlled and is regulated ... "Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke". Stroke. 49 (3): 754- ...
His initial research focused on animal models of acute lung injury. Montaner initially planned on returning to Argentina after ... Montaner, J.G.; Russel, J.; Lawson, L.; Ruedy, J. (1989). "Acute Respiratory Failure Secondary to Pneumocystis Carinii ...
In the case of non-allergic acute lung injury, standard or recommended approaches to treatment have not been defined. The ... "Chemical Pneumonitis and Acute Lung Injury Caused by Inhalation of Nickel Fumes". Internal Medicine. 50 (18): 2035-8. doi: ... Patients may present with wheezing or crackles in the lungs. They typically have an increased white blood cell count, and urine ... When respiratory symptoms are prominent, metal fume fever may be confused with acute bronchitis or pneumonia. The diagnosis is ...
"Female Plasma May Not Increase Risk for Transfusion-Related Acute Lung Injury". Medscape. October 23, 2007. Archived from the ... because of concerns about transfusion related acute lung injury (TRALI) and female donors who may have higher leukocyte ...
Manicone, Anne M (2009-01-01). "Role of the pulmonary epithelium and inflammatory signals in acute lung injury". Expert Review ... "Acute Respiratory Distress Syndrome (ARDS) , American Lung Association , American Lung Association". www.lung.org. Retrieved ... such as acute interstitial pneumonia) and that ARDS can occur without DAD. Diffuse alveolar damage (DAD): an acute lung ... The most important factor for treating DAD or ARDS is to treat the underlying cause of the injury to the lungs, for example ...
2005). "Phosphodiesterase 2 inhibition diminished acute lung injury in murine pneumococcal pneumonia". Critical Care Medicine. ...
Of people who have survived drowning, almost one-third will experience complications such as acute lung injury (ALI) or acute ... Jin, Faguang; Li, Congcong (5 April 2017). "Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential ... These lung injuries can be contributed by water aspiration and also irritants present in the water such as microbial pathogens ... Some literature suggests that occurrences of drowning can lead to acute kidney injury from lack of blood flow and oxygenation ...
Transfusion-related acute lung injury (TRALI) is the serious complication of transfusion of blood products that is ... It is often impossible to distinguish TRALI from acute respiratory distress syndrome (ARDS). The typical presentation of TRALI ... characterized by the rapid onset of excess fluid in the lungs. It can cause dangerous drops in the supply of oxygen to body ...
Acute lung injury has a substantial impact on public health, with an incidence in the United States that is considerably higher ... Background: Acute lung injury is a critical illness syndrome consisting of acute hypoxemic respiratory failure with bilateral ... Incidence and outcomes of acute lung injury N Engl J Med. 2005 Oct 20;353(16):1685-93. doi: 10.1056/NEJMoa050333. ... The incidence of acute lung injury increased with age from 16 per 100,000 person-years for those 15 through 19 years of age to ...
... a key mediator in acute lung injury. They demonstrated inhibition of acute lung injury and cell death in animals with ... In addition, acute lung injury was reduced to near noninjury levels as measured by statistically significant reductions in lung ... "The findings demonstrate a critical role for Ang2 in the pathogenesis of hyperoxic acute lung injury and that silencing the ... The study demonstrated that acute lung injury caused by cell death, hyperoxia, and the resulting pulmonary edema may be ...
... the conservative strategy of fluid management improved lung function and shortened the duration of mechanical ventilation and ... Optimal fluid management in patients with acute lung injury is unknown. Diuresis or fluid restriction may improve lung function ... Comparison of two fluid-management strategies in acute lung injury N Engl J Med. 2006 Jun 15;354(24):2564-75. doi: 10.1056/ ... These results support the use of a conservative strategy of fluid management in patients with acute lung injury. ( ...
... in both rat models and patients of acute pancreatitis (AP) with lung injury (LI). ,i,Methods,/i,. Rats were administrated with ... The upregulation of miR-127 in the lungs of rats was detected in the groups of AP with severe LI at 6 h and 24 h, whereas it ... inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits," Gut, vol. ... Is MicroRNA-127 a Novel Biomarker for Acute Pancreatitis with Lung Injury?. Na Shi. ,1Lihui Deng. ,1Weiwei Chen. ,1,2Xiaoxin ...
It has been observed that even in patients who survive acute lung injury, the quality of life is adversely affected in the long ... Acute lung injury (ALI) comprises acute respiratory distress syndrome (ARDS), a grave and deadly form of acute lung injury, and ... Global Acute Lung Injury Market: Snapshot. Acute lung injury, a common condition characterized by acute severe hypoxia without ... Global Acute Lung Injury Treatment Market: Insight into Key Aspects. Acute lung injury is a part of the systemic inflammatory ...
JG Hay, PL Haslam, M Turner-Warwick, GJ Laurent; The Effects of Methylprednisolone on Acute Lung Injury. Clin Sci (Lond) 1 ... The Effects of Methylprednisolone on Acute Lung Injury JG Hay; JG Hay ... Interleukin-17D produced by alveolar epithelial type II cells alleviates LPS-induced acute lung injury via the Nrf2 pathway ... Myeloid cell-specific deletion of epidermal growth factor receptor aggravates acute cardiac injury ...
Green histology, Histological score system, Acute lung injury, Large animal model. in Bio-protocol. volume. 12. issue. 16. ... A Semi-quantitative Scoring System for Green Histopathological Evaluation of Large Animal Models of Acute Lung Injury. *Mark ... Acute lung injury; Large animal model}}, language = {{eng}}, month = {{08}}, number = {{16}}, publisher = {{Bio-protocol LLC ... A Semi-quantitative Scoring System for Green Histopathological Evaluation of Large Animal Models of Acute Lung Injury}}, url ...
A single-center, randomized controlled trial of pediatric patients with acute lung injury after surgery for congenital heart ... evaluate the feasibility and effectiveness of prone position ventilation in infants who develop postoperative acute lung injury ... feasibility and effectiveness of prone position ventilation techniques in children who develop postoperative acute lung injury ... The main outcome measures will be lung compliance and oxygenation index. The secondary outcomes will be duration of mechanical ...
Acute Lung Injury Market 2023: Discover the inner workings of the industrys growth, analyzing key drivers and trends set by ...
Prone position ventilation in patients with Acute Lung injury/Acute Respiratory Distress syndrome. ... Prone position ventilation in patients with Acute Lung injury/Acute Respiratory Distress syndrome ... Prone position ventilation in patients with Acute Lung injury/Acute Respiratory Distress syndrome ...
7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. *Authors: *Xiao ... 7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. Exp Ther Med 26: ... Endothelial semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury. Int J Mol Sci 15: 19650-19661 ... 7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. Experimental and ...
BACKGROUND: Multiple pharmacologic treatments have been studied for acute lung injury (ALI) and acute respiratory distress ... BACKGROUND: Multiple pharmacologic treatments have been studied for acute lung injury (ALI) and acute respiratory distress ... Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome ... Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome ...
A case of acute respiratory failure in a rheumatoid arthritis patient after the administration of abatacept. European journal ... Rapid development of severe acute respiratory distress syndrome after abatacept treatment in a patient with rheumatoid ...
4] Zhou M. Acute lung injury and ARDS in acute pancreatitis: mechanisms and potential intervention. World Journal of ... To develop an XGBoost model to predict the occurrence of acute lung injury (ALI) in patients with acute pancreatitis (AP). ... XGBoost model predicts acute lung injury after acute pancreatitis. Signa Vitae. 2023. 19(5);206-212. ... Guidelines for the diagnosis and treatment of acute lung injury/acute respiratory distress syndrome (2006). Chinese Journal of ...
Acute lung injury (ALI) can cause acute respiratory distress syndrome (ARDS), a lethal condition with limited treatment options ... PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. ... PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. ... prevented lung injury and increased survival. Treatment with PTP1B inhibitors attenuated the aberrant neutrophil function that ...
The signaling molecule adenosine has been implicated in attenuating acute lung injury (ALI). Adenosine signaling is terminated ... between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. T ... between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury ... between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury ...
... exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n ... Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still ... Our findings regarding lung injury in the three AGMs that were euthanized at 34 dpi during early convalescence are consistent ... Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, Wang J, Hesketh R, Yang L, Zheng C. Time Course of Lung Changes at Chest CT ...
Acute transfusion reactions present as adverse signs or symptoms during or within 24 hours of a blood transfusion. The most ... Acute transfusion reactions are typically classified into the following entities [8] :. * Transfusion-related acute lung injury ... Transfusion-related acute lung injury. Neutrophils are the effector cells that adhere to the pulmonary endothelium to increase ... Transfusion-related acute lung injury: a clinical review. Lancet. 2013 Sep 14. 382 (9896):984-94. [QxMD MEDLINE Link]. ...
Marini, J. J. (1993). Pressure-targeted mechanical ventilation of acute lung injury. Seminars in Respiratory Medicine, 14(4), ... Pressure-targeted mechanical ventilation of acute lung injury. / Marini, J. J. In: Seminars in Respiratory Medicine, Vol. 14, ... Marini, J. J. / Pressure-targeted mechanical ventilation of acute lung injury. In: Seminars in Respiratory Medicine. 1993 ; Vol ... Marini, JJ 1993, Pressure-targeted mechanical ventilation of acute lung injury, Seminars in Respiratory Medicine, vol. 14, no ...
... effect for hyperoxia-induced lung injury and thus is currently the drug conventionally used for hyperoxia-induced lung injury. ... However, hyperoxia causes lung injury and pathological changes. Notably, preclinical data suggest that aspirin modulates ... results from either direct intra-alveolar injury or indirect injury following systemic inflammation and oxidative stress. ... In addition, aspirin reduced reactive oxygen species expression, the number of macrophages, neutrophil infiltration and lung ...
Acute lung injury (ALI) is common after OLV, but the risk can be minimized by using lung-protective strategies ... Preventing acute lung injury. Lung-protective ventilation with low tidal volumes has been clearly demonstrated to minimize ... Acute lung injury. ALI related to OLV is the leading cause of death following thoracic surgery. [9] Multiple factors contribute ... In the nonventilated lung, contributors to ALI include the following:. * Atelectasis and lung reexpansion - Lung reexpansion ...
Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome ... in adults with acute lung injury or acute respiratory distress syndrome (ARDS) have been underpowered to detect small but ... To evaluate the association of higher vs lower PEEP with patient-important outcomes in adults with acute lung injury or ARDS ... Two reviewers independently screened articles to identify studies randomly assigning adults with acute lung injury or ARDS to ...
... is a life-threatening lung condition that prevents enough oxygen from getting to the lungs and into the blood. Infants can also ... is a life-threatening lung condition that prevents enough oxygen from getting to the lungs and into the blood. Infants can also ... Lung damage, such as a collapsed lung (also called pneumothorax) due to injury from the breathing machine needed to treat the ... ARDS can be caused by any major direct or indirect injury to the lung. Common causes include:. *Breathing vomit into the lungs ...
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial ... MicroRNA-1 protects the endothelium in acute lung injury. Korde, Asawari; Haslip, Maria; Pednekar, Prachi; Khan, Alamzeb; ... MicroRNA-1 protects the endothelium in acute lung injury. ... were reduced in the lung endothelium after acute injury. ... illustrate a previously unknown role of miR-1 as a cytoprotective orchestrator of endothelial responses to acute injury with ...
... induced acute lung injury. This finding, which was published in the African Journal of Traditional, Complementary, and ... Acute lung injury is a respiratory failure syndrome often accompanied by symptoms like pulmonary edema, acute respiratory ... Tagged Under: acute lung injury, anti-inflammatory, antioxidant, flavonoids, inflammation, natural remedies, oxidative stress, ... Some of the possible causes for acute lung injury include aspiration, toxic inhalation, drowning, burns, blood transfusions, ...
... instead of ventilation in severe acute respiratory failure. ... This Murray score for Acute Lung Injury calculator assesses the ... Murray Score For Acute Lung Injury Calculator. This Murray score for Acute Lung Injury calculator assesses the need for ... Correlation between lung injury score and serum albumin levels in patients at risk for developing acute lung injury. Nutrition ... 2.5 - severe lung injury (ARDS - Acute respiratory distress syndrome).. ECMO guidelines. The CESAR study is a multicentre ...
Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012 Feb 16. 119 (7):1757-67. [QxMD MEDLINE Link]. ... The two-event model of transfusion-related acute lung injury. Crit Care Med. 2006 May. 34:S124-S131. [QxMD MEDLINE Link]. ... Transfusion-related acute lung injury. AJN. 2006 Jun. 106(6):61-64. [QxMD MEDLINE Link]. ... Lin Y, Saw CL, Hannach B, Goldman M. Transfusion-related acute lung injury prevention measures and their impact at Canadian ...
Acute lung injury. Yes. Yes. Yes. Yes. Yes. 5 (100). Acute kidney injury. Yes. Yes. Yes. Yes. Yes. 5 (100). ...
  • It is often impossible to distinguish TRALI from acute respiratory distress syndrome (ARDS). (wikipedia.org)
  • Lung injury (LI) is commonly involved in 15%~60% of severe AP, and severe LI is likely to trigger acute respiratory distress syndrome (ARDS) and respiratory failure (RF). (hindawi.com)
  • Acute lung injury (ALI) comprises acute respiratory distress syndrome (ARDS), a grave and deadly form of acute lung injury, and other minor degrees of lung injuries. (sbwire.com)
  • Acute respiratory distress syndrome (ARDS) is a life-threatening, high mortality pulmonary condition characterized by acute lung injury (ALI) resulting in diffuse alveolar damage. (lu.se)
  • Experimental models of ALI/ARDS use different methods of injury to acutely induce lung damage in both small and large animals. (lu.se)
  • Therefore, semi-quantitative histological scoring systems designed to evaluate tissue-level injury in large animal models of ALI/ARDS are needed. (lu.se)
  • Prone position has been used to treat severe hypoxemia in patients with acute respiratory distress syndrome (ARDS) since the 1970s. (springer.com)
  • BACKGROUND: Multiple pharmacologic treatments have been studied for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). (soton.ac.uk)
  • 4] Zhou M. Acute lung injury and ARDS in acute pancreatitis: mechanisms and potential intervention. (signavitae.com)
  • If pathological changes were not timely curbed, acute respiratory distress syndrome (ARDS) could be developed [ 8 - 10 ] . (researchsquare.com)
  • The indications of HBO for the treatment of lung diseases include pulmonary edema, ARDS, etc., and the earlier the treatment is implemented, the better results will be achieved. (researchsquare.com)
  • Acute lung injury (ALI) can cause acute respiratory distress syndrome (ARDS), a lethal condition with limited treatment options and currently a common global cause of death due to COVID-19. (jci.org)
  • Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that prevents enough oxygen from getting to the lungs and into the blood. (medlineplus.gov)
  • ARDS can be caused by any major direct or indirect injury to the lung. (medlineplus.gov)
  • Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung , and vascular endothelial growth factor ( VEGF ) is elevated in ARDS. (bvsalud.org)
  • CONTEXT: Trials comparing higher vs lower levels of positive end-expiratory pressure (PEEP) in adults with acute lung injury or acute respiratory distress syndrome (ARDS) have been underpowered to detect small but potentially important effects on mortality or to explore subgroup differences. (mcmaster.ca)
  • OBJECTIVES: To evaluate the association of higher vs lower PEEP with patient-important outcomes in adults with acute lung injury or ARDS who are receiving ventilation with low tidal volumes and to investigate whether these associations differ across prespecified subgroups. (mcmaster.ca)
  • STUDY SELECTION: Two reviewers independently screened articles to identify studies randomly assigning adults with acute lung injury or ARDS to treatment with higher vs lower PEEP (with low tidal volume ventilation) and also reporting mortality. (mcmaster.ca)
  • 2.5 - severe lung injury ( ARDS - Acute respiratory distress syndrome ). (thecalculator.co)
  • Likewise, the lack of any therapeutic treatment for the most devastating clinical course of pulmonary infection, Acute Respiratory Distress Syndrome (ARDS), and an unacceptably high mortality rate, underscore an urgent need for novel, effective therapeutic approaches. (dzl.de)
  • Oxygen therapy was initiated, which had a favorable evolution and complete resolution of bilateral pulmonary infiltrates within 48 h from the onset of symptoms, without requiring mechanical ventilation ( Fig. 1 D). Having excluded other possible causes of ARDS, the diagnosis of acute lung injury secondary to transfusion or TRALI syndrome was made. (journalpulmonology.org)
  • The pathogenesis of organ injury, including acute respiratory distress syndrome (ARDS), includes the liberation of endogenous molecular structures called "danger-associated molecular patterns" that are associated with inflammation and tissue injury. (silverchair.com)
  • In patients with acute respiratory distress syndrome (ARDS), the lung comprises areas of aeration and areas of alveolar collapse, the latter producing intrapulmonary shunt and hypoxemia. (biomedcentral.com)
  • Of note, recent study identified that miR-127 expression was aberrant in the inflammation-related pulmonary disorders [ 36 ] and further revealed that enhanced expression of miR-127 could promote the development of inflammatory macrophages and contribute to the exaggerated lung inflammation and injury [ 37 ]. (hindawi.com)
  • and Zhang M, Wang L, Dong M, Li Z and Jin F: Endothelial semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury. (spandidos-publications.com)
  • Chen X, Wang H, Jia K, Wang H and Ren T: [Retracted] Anti‑Semaphorin‑7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. (spandidos-publications.com)
  • In this model, we demonstrate that inhibitors of PTP1B, a protein tyrosine phosphatase that regulates signaling pathways of fundamental importance to homeostasis and inflammation, prevented lung injury and increased survival. (jci.org)
  • Notably, dipyridamole-dependent attenuation of lung inflammation was abolished in mice with alveolar epithelial Adora2b gene deletion. (ozgene.com)
  • This may involve medicines to treat infections, reduce inflammation, and remove fluid from the lungs. (medlineplus.gov)
  • Extracellular deoxyribonucleic acid (DNA) forms neutrophil extracellular traps (NET), which act like a danger-associated molecular pattern in that they are associated with inflammation and tissue injury. (silverchair.com)
  • Acute lung injury (ALI) is a common clinical manifestation of COVID-19, and this mainly manifests through lung inflammation and epithelial cell damage. (xiahepublishing.com)
  • Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. (unmc.edu)
  • Molecular markers of acute upper airway inflammation in workers exposed to fuel-oil ash. (cdc.gov)
  • Transfusion-related acute lung injury (TRALI) is the serious complication of transfusion of blood products that is characterized by the rapid onset of excess fluid in the lungs. (wikipedia.org)
  • Objective: Acute lung injury (ALI) is a well known complication following the transfusion of blood products and is commonly referred to as transfusion-related acute lung injury (TRALI). (mednemo.it)
  • This syndrome known as transfusion-related acute lung injury (TRALI), is considered the most common and serious complication associated with the transfusion of blood products. (mednemo.it)
  • The lack of a consensus definition of TRALI contributed to its under-recognition as a cause of lung injury. (mednemo.it)
  • A definition emerged from the TRALI consensus conference in 2004 and from the US National Heart, Lung, and Blood Institute. (mednemo.it)
  • Transfusion-related acute lung injury (TRALI) is one of the most serious blood transfusion complications. (journalpulmonology.org)
  • A total of 1113 King County residents undergoing mechanical ventilation met the criteria for acute lung injury and were 15 years of age or older. (nih.gov)
  • Although there was no significant difference in the primary outcome of 60-day mortality, the conservative strategy of fluid management improved lung function and shortened the duration of mechanical ventilation and intensive care without increasing nonpulmonary-organ failures. (nih.gov)
  • Ongoing research in the area of fluid conservation and lung-protective ventilation strategies have demonstrated improvements in survival rate of patients. (sbwire.com)
  • This leads to stiffening of the lungs and eventually triggering mismatch in ventilation-perfusion. (sbwire.com)
  • Prone position ventilation is a widely used lung protection ventilation strategy. (springer.com)
  • Due to the precise mechanism of improving oxygenation function, development of pediatric prone ventilation technology has been largely focused on children with acute respiratory distress syndrome. (springer.com)
  • The purpose of this study is to evaluate the feasibility and effectiveness of prone position ventilation in infants who develop postoperative acute lung injury after surgery for congenital heart disease. (springer.com)
  • A single-center, randomized controlled trial of pediatric patients with acute lung injury after surgery for congenital heart disease who will receive prone position ventilation or usual care (control group). (springer.com)
  • This study will investigate the feasibility and effectiveness of prone position ventilation techniques in children who develop postoperative acute lung injury after surgery for congenital heart disease. (springer.com)
  • Prone position ventilation refers to placement of the patient in the prone position during mechanical ventilation to facilitate lung expansion in the atelectatic area and improve the ventilation-perfusion ratio. (springer.com)
  • Prone position ventilation promotes lung recruitment and improves gas exchange through its effects on pleural pressure and lung compression [ 2 ]. (springer.com)
  • Prone position ventilation can reduce the difference between the dorsal and ventral pleural pressure, thereby improving the uniformity of lung ventilation and reducing alveolar hyperinflation and alveolar collapse. (springer.com)
  • Marini, JJ 1993, ' Pressure-targeted mechanical ventilation of acute lung injury ', Seminars in Respiratory Medicine , vol. 14, no. 4, pp. 262-269. (umn.edu)
  • This Murray score for Acute Lung Injury calculator assesses the need for extracorporeal membrane oxygenation (EMCO) instead of ventilation in severe acute respiratory failure. (thecalculator.co)
  • Acute respiratory failure is currently treated through ventilation techniques and treatments with steroids, bronchoscopy or nitric oxide. (thecalculator.co)
  • Mechanical ventilation practice has changed over the past few decades, with tidal volumes (VT) decreasing significantly, especially in patients with acute lung injury (ALI). (elsevierpure.com)
  • The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. (unmc.edu)
  • Mechanical ventilation is indispensable for the survival of patients with acute lung injury and acute respiratory distress syndrome. (biomedcentral.com)
  • As in the adult with acute lung injury and acute respiratory distress syndrome, the use of lung-protective ventilation has improved outcomes for neonatal lung diseases. (biomedcentral.com)
  • Current protective lung ventilation strategies commonly involve hypercapnia. (biomedcentral.com)
  • Other contributory factors which are likely to lead to acute lung injury comprise pneumonia, sepsis, major trauma, and inhalation of noxious fumes. (sbwire.com)
  • Considering that dysregulated activation of neutrophils has been implicated in sepsis and causes collateral tissue damage, we demonstrate that PTP1B inhibitors improved survival and ameliorated lung injury in an LPS-induced sepsis model and improved survival in the cecal ligation and puncture-induced (CLP-induced) sepsis model. (jci.org)
  • Background: Pre-B-cell colony-enhancing factor (PBEF) is a potential biomarker for acute lung injury (ALI) in sepsis. (elsevierpure.com)
  • Elevated PBEF levels significantly correlated with higher APACHE (Acute Physiology and Chronic Health Evaluation) III scores (R2 = 0.08, P = .003) and failure to reach early sepsis goals within 6 h of severe sepsis (P = .003). (elsevierpure.com)
  • Conclusions: In this study, elevated PBEF did not correlate with lung injury in sepsis. (elsevierpure.com)
  • Lee, KA & Gong, MN 2011, ' Pre-B-cell colony-enhancing factor and its clinical correlates with acute lung injury and sepsis ', Chest , vol. 140, no. 2, pp. 382-390. (elsevierpure.com)
  • Pathogenesis of the condition is explained by injuries to both the alveolar and endothelium epithelium. (sbwire.com)
  • Initial pathological changes that could be noted were alveolar internal homorrhage, atelectasis, edema and parenchymatous degeneration, which could be reversible at early stage and within 12-24 hours after injury they could be progressive. (researchsquare.com)
  • Our newly identified crosstalk pathway between ENT2 and alveolar epithelial Adora2b in lung protection during ALI opens possibilities for combined therapies targeted to this protein set. (ozgene.com)
  • Acute lung injury (ALI) is an important cause of mortality in critically ill patients and is associated with alveolar oedema. (bmj.com)
  • In normal lung, sst2A was expressed by alveolar macrophages, epithelial bronchial cells, arterial and bronchial smooth muscle cells, some endothelial cells and some type 2 pneumocytes (inset). (bmj.com)
  • Acute exposure to higher vapor concentrations may cause severe pulmonary edema and injury to the alveolar walls of the lung and death. (cdc.gov)
  • Acute pancreatitis (AP) is a life-threatening inflammatory disease characterized by significant morbidity and mortality [ 1 - 3 ]. (hindawi.com)
  • Acute lung injury, a common condition characterized by acute severe hypoxia without evidence of hydrostatic pulmonary edema, remains a key source of mortality and morbidity in critically ill patients. (sbwire.com)
  • Acute lung injury (ALI) remains an important cause of illness and mortality among the critically ill patient population. (sbwire.com)
  • 2 - 5 In patients with combined injury, the lung is the critical organ and the progressive respiratory failure associated with pulmonary edema is a pivotal determinant of mortality. (mhmedical.com)
  • Acute lower respiratory tract infections represent an increasing public health problem worldwide, resulting in a disease burden greater than that of any other infection with mortality rates unchanged over the past 50 years. (dzl.de)
  • Allergic reactions The most common complications of transfusion are Febrile nonhemolytic reactions Chill-rigor reactions The most serious complications, which have very high mortality rates, are Acute hemolytic. (msdmanuals.com)
  • Adhikari, Neill K.J. , Burns, Karen E.A. , Meade, Maureen O. and Ratnapalan, Mohana (2004) Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome. (soton.ac.uk)
  • Here, microRNA-127 (miR-127) is one of the miRNAs that focuses on lung diseases [ 31 - 33 ]. (hindawi.com)
  • Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. (signavitae.com)
  • 3] Steer ML. Relationship between pancreatitis and lung diseases. (signavitae.com)
  • The main features of acute lung injury (ALI) are acute, progressive respiratory failure and hypoxemia, which are typical clinical manifestations of thoracic diseases. (xiahepublishing.com)
  • IL-1beta is one of a family of proinflammatory cytokines thought to be involved in many acute and chronic diseases. (ox.ac.uk)
  • We report a patient with chronic GBL abuse who presented with a high anion gap metabolic acidosis and acute lung injury (ALI), a clinical syndrome that has not been described before. (njmonline.nl)
  • NIV has gained the dignity of first line intervention for acute exacerbation of chronic obstructive pulmonary dise. (biomedcentral.com)
  • Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. (ox.ac.uk)
  • Acute lung injury is a critical illness syndrome consisting of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that are not attributed to left atrial hypertension. (nih.gov)
  • Acute transfusion reactions present as adverse signs or symptoms during or within 24 hours of a blood transfusion. (medscape.com)
  • The onset of red urine during or shortly after a blood transfusion may represent hemoglobinuria (indicating an acute hemolytic reaction) or hematuria (indicating bleeding in the lower urinary tract). (medscape.com)
  • Acute transfusion reactions may present in complex clinical situations when the diagnosis requires distinguishing between a reaction to the transfused blood product and a coincidental complication of the illness being treated that occurs during or immediately after a blood transfusion. (medscape.com)
  • The prevalence of an acute hemolytic reaction from a blood transfusion is approximately 1 in 70,000 transfusions . (healthline.com)
  • Pulmonary endothelial cell -specific (EC-specific) overexpression of miR-1 protected the lung against cell death and barrier dysfunction in both murine and human models and increased the survival of mice after pneumonia -induced ALI. (bvsalud.org)
  • Lung inflammatory reaction and oxidative stress are promoted in the initiation of radiation-induced pneumonia. (biomedcentral.com)
  • HRS and HBO could all decrease the release of immflammatory cytokines in lung tissue, reduce accumulation of oxidative products and alleviate apoptosis of pulmoanry cells, and could produce good therapeutic effects on ALI induced by LPS. (researchsquare.com)
  • These findings illustrate a previously unknown role of miR-1 as a cytoprotective orchestrator of endothelial responses to acute injury with prognostic and therapeutic potential. (bvsalud.org)
  • Based on this knowledge, new therapeutic concepts are being developed to attenuate lung tissue damage and promote tissue repair and organ regeneration. (dzl.de)
  • Stephen M. Black (above) and a team of researchers have uncovered a new therapeutic target for treating acute lung injury. (stephenmblack.com)
  • A Novel Therapeutic Approach in Acute Respiratory Distress Syndrome? (silverchair.com)
  • The purposes of this communication are to call attention to this seldom considered mechanism for extending lung injury that might further justify implementation of low tidal volume/high positive end-expiratory pressure ventilatory strategies for lung protection and to suggest additional therapeutic measures implied by this broadened conceptual paradigm. (healthpartners.com)
  • After the administration of QFPD treatment in LPS-induced ALI mice, the therapeutic effect was evaluated through the H&E staining of lung tissues and the level of inflammatory factors in vivo . (xiahepublishing.com)
  • Especially, pulmonary administration of PSLipos-L-NAC could significantly reduce the inflammatory response of M1-like macrophages in lung tissue and promote lung injury repair in a bleomycin-induced acute lung injury (ALI) mouse model, providing a potential therapeutic approach for ALI. (biomedcentral.com)
  • Additionally, the incorporation of other clinical support devices such as MV and ECMO in large animal models can lead to further lung damage and appearance of features absent in the small animal models. (lu.se)
  • To investigate the effects of hydrogen-rich saline (HRS) combined with hyperbaric oxygen (HBO) on acute lung injury (ALI) and its clinical significance. (researchsquare.com)
  • OBJECTIVE: To describe the clinical implications of an often neglected mechanism through which localized acute lung injury may be propagated and intensified. (healthpartners.com)
  • Retrospective clinical studies, however, suggest that the use of large VT favors the development of lung injury in these patients. (elsevierpure.com)
  • This is the first edition of this document for novel coronavirus, an adaption of WHO Clinical management of severe acute respiratory infection when MERS-CoV infection is suspected publication (2019). (who.int)
  • Clinical profile of gas leak victims in acute phase after Bhopal episode. (cdc.gov)
  • It includes acute respiratory failure owing to progressive hypoxemia, diffuse bilateral pulmonary infiltration, and reduced lung compliance. (sbwire.com)
  • Pediatric acute lung injury (PALI) is a common complication of congenital heart disease that presents with refractory hypoxemia. (springer.com)
  • In the supine position, both heart and diaphragm compression may aggravate the collapse of the gravity-dependent area of the lung and worsen hypoxemia and ventilator-related lung injury [ 8 ]. (springer.com)
  • Despite recent advances in our understanding of the mechanism and treatment of acute lung injury, its incidence and outcomes in the United States have been unclear. (nih.gov)
  • Potential treatment methods such as statin therapy and nutritional strategies are also expected to gain more focus from research bodies operating in the area of treatment of acute lung injury. (sbwire.com)
  • Guidelines for the diagnosis and treatment of acute lung injury/acute respiratory distress syndrome (2006). (signavitae.com)
  • We conducted a prospective, population-based, cohort study in 21 hospitals in and around King County, Washington, from April 1999 through July 2000, using a validated screening protocol to identify patients who met the consensus criteria for acute lung injury. (nih.gov)
  • Optimal fluid management in patients with acute lung injury is unknown. (nih.gov)
  • In a randomized study, we compared a conservative and a liberal strategy of fluid management using explicit protocols applied for seven days in 1000 patients with acute lung injury. (nih.gov)
  • These results support the use of a conservative strategy of fluid management in patients with acute lung injury. (nih.gov)
  • The aim of this study was to determine the expression of microRNA-127 (miR-127) in both rat models and patients of acute pancreatitis (AP) with lung injury (LI). (hindawi.com)
  • In this study, we sought to determine the expressions of miR-127 in the lung tissues of sodium taurocholate-induced AP models in rats and that in plasma of AP patients and to preliminarily explore the association of miR-217 levels and LI. (hindawi.com)
  • It has been observed that even in patients who survive acute lung injury, the quality of life is adversely affected in the long term. (sbwire.com)
  • The hydrostatic pressure however remains unaffected in the patients suffering with acute lung injury (ALI). (sbwire.com)
  • To develop an XGBoost model to predict the occurrence of acute lung injury (ALI) in patients with acute pancreatitis (AP). (signavitae.com)
  • The age and laboratory tests of patients with AP combined with ALI differed from those of patients without combined acute lung injury. (signavitae.com)
  • Lung injury is one of the most serious injuries that are difficult to handle and is a leading cause of death in patients with thoracic trauma [ 1 , 2 ] . (researchsquare.com)
  • 13 Here a ship exploded in a harbor and set off a chain of explosions and fires among some 50 refineries and chemical plants, resulting in over 2,000 hospital admissions of patients with smoke inhalation alone, those with burn injuries, many of whom who had simultaneously inhaled smoke as well. (mhmedical.com)
  • A summary of their study recently appeared in The Journal of Biological Chemistry , where they noted that a bacterial infection can throw off the equilibrium of two key proteins in the lungs and also put patients at risk of a highly lethal acute lung injury (ALI). (stephenmblack.com)
  • IgA deficient patients with antibodies against IgA are at greater risk of developing severe hypersensitivity and anaphylactic reactions Epinephrine should be available immediately to treat any acute severe hypersensitivity reactions. (nih.gov)
  • Monitor renal function, including blood urea nitrogen and serum creatinine, and urine output in patients at risk of developing acute renal failure. (nih.gov)
  • Figure 1 Effect of intravenous infusion of salbutamol on PiCCO permeability index in patients with acute respiratory distress syndrome. (bmj.com)
  • What tidal volumes should be used in patients without acute lung injury? (elsevierpure.com)
  • Patients without acute lung injury are still ventilated with large-and perhaps too large-VT. (elsevierpure.com)
  • Assuming that this will be the case in patients without ALI/acute respiratory distress syndrome too, the authors suggest that the use of lower VT should be considered in all mechanically ventilated patients whether they have ALI or not. (elsevierpure.com)
  • Dive into the research topics of 'What tidal volumes should be used in patients without acute lung injury? (elsevierpure.com)
  • By allowing patients with the acute respiratory distress sy. (biomedcentral.com)
  • This document is intended for clinicians taking care of hospitalised adult and paediatric patients with severe acute respiratory infection (SARI) when 2019-nCoV infection is suspected. (who.int)
  • To date, methods available at the bedside for estimating the physiologic correlate of pulmonary edema, extravascular lung water, often are unreliable or require invasive measurements. (csem.ch)
  • Interest in salbutamol therapy in ALI came after a ranodmised controlled trial showed that 7 days' treatment with intravenous salbutamol reduced extravascular lung water in ALI. (bmj.com)
  • The permeability index was derived from the ratio of extravascular lung water divided by pulmonary blood volume, as measured by the PiCCO system. (bmj.com)
  • Secondary end points included the number of ventilator-free days and organ-failure-free days and measures of lung physiology. (nih.gov)
  • A ventilator is used to deliver high doses of oxygen and positive pressure to the damaged lungs. (medlineplus.gov)
  • The CESAR study is a multicentre randomized controlled trial that aims to reveal the differences in terms of efficacy of treatment and costs between conventional ventilator support and extracorporeal membrane oxygenation for severe lung failure. (thecalculator.co)
  • They used a double-hit model of intratracheal lipopolysaccharide challenge followed by ventilator-induced lung injury (VILI). (silverchair.com)
  • Studies of ventilator-associated lung injury in subjects without ALI demonstrate inconsistent results. (elsevierpure.com)
  • Pulmonary disease changes the physiology of the lungs, which manifests as changes in respiratory mechanics. (biomedcentral.com)
  • As augmented vascular leakage is a principal occurrence in the acute lung injury and thus, therapies are being targeted towards decreasing the leakage. (sbwire.com)
  • Rapid development of severe acute respiratory distress syndrome after abatacept treatment in a patient with rheumatoid arthritis. (pneumotox.com)
  • a history of travel to or residence in the city of Wuhan, Hubei Province, China in the 14 days prior to symptom onset, or · patient is a health care worker who has been working in an environment where severe acute respiratory infections of unknown etiology are being cared for. (who.int)
  • However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. (nature.com)
  • At any rate these two disasters led to the establishments of centers for the care of burn victims and to research into the pathophysiology of burn injury. (mhmedical.com)
  • Acute lung injury is a part of the systemic inflammatory process where the lung demonstrates symptoms similar to other tissues such as extravascation of protein rich fluid, destruction in capillary endothelium, and interstitial edema. (sbwire.com)
  • MicroRNA-1 protects the endothelium in acute lung injury. (bvsalud.org)
  • We found that the levels of a VEGF -regulated microRNA , microRNA -1 (miR-1), were reduced in the lung endothelium after acute injury . (bvsalud.org)
  • Is MicroRNA-127 a Novel Biomarker for Acute Pancreatitis with Lung Injury? (hindawi.com)
  • OLV improves surgical exposure and operative conditions during a variety of procedures in the thorax, including lung resections, esophageal surgery, and procedures involving access to the thoracic aorta and the sympathetic chain. (medscape.com)
  • Excess release and over-expression of immflammatory mediators and related immflammatory cytokines could stimulate excess immflammatory reaction, resulting in damage to alvelar-cappilary membrane and increased vascular permeability and ultimately acute lung injury (ALI) [ 5 - 7 ] . (researchsquare.com)
  • This reaction may occur when donor plasma contains antibodies that cause damage to the immune cells in the lungs. (healthline.com)
  • Because fever and chills also herald a severe hemolytic transfusion reaction, all febrile reactions must be investigated as for acute hemolytic transfusion reaction, as with any transfusion reaction. (msdmanuals.com)
  • About 20 people die yearly in the US as a result of acute hemolytic transfusion reaction. (msdmanuals.com)
  • ABO incompatibility is the most common cause of acute hemolytic transfusion reaction. (msdmanuals.com)
  • Both microbial attack (bacteria, viruses, fungi) and non-microbial inflammatory injury (aspiration, inhalation of toxic gases) may cause Acute Lung Injury (ALI) with severe respiratory failure. (dzl.de)
  • The radiation-induced lung injury is a common complication from radiotherapy in lung cancer. (biomedcentral.com)
  • Softer PSLipos-L-NAC could resist macrophage capture, but remarkably prolong their targeting effect period on macrophages via durable binding to macrophage surface, and subsequently more effectively suppress inflammatory response in macrophages and then hasten inflammatory lung epithelial cell wound healing. (biomedcentral.com)
  • Scores equal to or above 3 (≥2.5 if rapid deterioration) are part of the criteria used in the referral to extracorporeal membrane oxygenation in acute lung injury. (thecalculator.co)
  • 3 days later, we study lung pathological, the levels of inflammatory factors, and cell apoptosis in the pulmonary tissue was detected by Tunel and cell apoptosis rate was calculated accordingly. (researchsquare.com)
  • In our experiment, adult SD rat model of acute lung injury was established by injecting lipopolysaccharide (LPS) into treachea, and life signs and dry-wet ratio of pulmonary tissue were closely observed. (researchsquare.com)
  • The high expression of IL-1beta in the first week after injection was accompanied by local increase of the proinflammatory cytokines IL-6 and TNF-alpha and a vigorous acute inflammatory tissue response with evidence of tissue injury. (ox.ac.uk)
  • This was associated with severe progressive tissue fibrosis in the lung, as shown by the presence of myofibroblasts, fibroblast foci, and significant extracellular accumulations of collagen and fibronectin. (ox.ac.uk)
  • These data directly demonstrate how acute tissue injury in the lung, initiated by a highly proinflammatory cytokine, IL-1beta, converts to progressive fibrotic changes. (ox.ac.uk)
  • Diuresis or fluid restriction may improve lung function but could jeopardize extrapulmonary-organ perfusion. (nih.gov)
  • The fluid buildup also makes the lungs heavy and stiff. (medlineplus.gov)
  • Listening to the chest with a stethoscope ( auscultation ) reveals abnormal breath sounds, such as crackles, which may be signs of fluid in the lungs. (medlineplus.gov)
  • This lung damage results in fluid buildup in the lungs and can severely limit the ability of the lungs to supply oxygen to the body. (healthline.com)
  • The profibrotic cytokines PDGF and TGF-beta1 were increased in lung fluid samples 1 week after peak expression of IL-1beta. (ox.ac.uk)
  • However, excessive tidal volumes and inadequate lung recruitment may contrib. (biomedcentral.com)
  • [7-10] Acute respiratory distress immediately after the transfusion of blood and/or blood products has been increasingly recognized over the past two decades. (mednemo.it)
  • CONCLUSIONS: The diffuse injury that characterizes acute respiratory distress syndrome is often considered a process that begins synchronously throughout the lung, mediated by inhaled or blood-borne noxious agents. (healthpartners.com)
  • Acute Respiratory Distress Syndrome - Can Data from the Sick Guide Care for the Healthy? (upenn.edu)
  • Thereby, it may inhibit the progression of acute respiratory distress syndrome. (genomediscovery.org)
  • One meta-analysis demonstrated faster and more stable positioning with the use of a DLT, whereas use of BBs resulted in less postoperative sore throat and hoarseness and fewer airway injuries. (medscape.com)
  • Relatively little attention has been paid to possibility that inflammatory lung injury may also begin focally and propagate sequentially via the airway network, proceeding mouth-ward from distal to proximal. (healthpartners.com)
  • For these short fibers, which can be fully engulfed by lung cells and do not dissolve in airway fluids in less than a few weeks, their clearance will be similar to other mineral and vitreous particles. (cdc.gov)
  • 1 investigated the role of NETs in the pathogenesis of acute lung injury in mice. (silverchair.com)
  • Hence, the authors propose that NETs do not contribute functionally to the pathogenesis of lung injury in this animal model. (silverchair.com)
  • Those who live often get back most of their normal lung function, but many people have permanent (usually mild) lung damage. (medlineplus.gov)
  • During the cascade events of activation of proinflammatory cytokines and mediators in AP, the injured cells of the lungs recruit immune cells and release cytokines, chemokines, growth factors, and prostaglandins, contributing to acute inflammatory response [ 4 - 7 ]. (hindawi.com)
  • 1 - 3 During the outbreak of the 2019 novel coronavirus disease (COVID-19), SARS-CoV-2 infection induced the excessive activation of immune cells in the body's lungs, 4 , 5 and this led to the development of ALI. (xiahepublishing.com)
  • SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. (nature.com)
  • It is also indicated to protect the uninvolved lung in the setting of pulmonary hemorrhage or infection, during one-lung lavage, or in the setting of a bronchopleural fistula. (medscape.com)
  • 1] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. (signavitae.com)
  • CpG ODN may reduce the injury of reactive oxygen species and adjust the serum TNF-α concentration in the mice after irradiation, which reduces the generation of the inflammatory cytokines. (biomedcentral.com)
  • Faron Pharmaceuticals, Ltd. is at present engaged in the development of pharmacological treatments for acute lung injury with the help of a consortium consisting European Commission, Traumakine program (University College London Hospital (UCLH) and University of Torino and University of Turku). (sbwire.com)
  • Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: a troublesome trio for acute pancreatitis. (signavitae.com)
  • Unstable Inflation Causing Injury: Insight from Prone Position and Paired CT Scans. (upenn.edu)